| Hydrogeologic subdivision | | | Group, formation, or
member | | | Hydrologic
function | Thickness
(feet) | Lithology | Field
identification | Cavern
development | Porosity/ permeability type | |---------------------------|--|-----------------|--|------------------|---|------------------------------|---------------------|--|--|--|--| | | Upp | er | Taylor Group | | | CU | 600 | Clay; chalky | Gray-brown clay; | None | Low porosity/ low | | | confi | | | | | | | limestone | marly limestone | | permeability | | aceous | uni | t | Austin Group | | | CU: rarely
AQ | 130 – 150 | White to light-tan to gray limestone | White, chalky
limestone;
Pycnodonte aucella
Inoceramus
subquadratus | None | Low porosity; rare
water production
from fractures/ low
permeability | | Upper Cretaceous | | | Eagle Ford Group Buda Limestone Del Rio Clay | | | CU | 30 – 50 | Brown, flaggy sandy
shale and
argillaceous
limestone | Thin flagstone;
petroliferous | None | Primary porosity
lost/ low
permeability | | | | | | | | CU | 40 – 50
50 – 60 | Buff, light-gray,
dense mudstone
Blue-green to | Porcelaneous
limestone
Fossiliferous: | Minor surface
karst
None | Low porosity/ low
permeability
None/primary upper | | | т | | | | | | | yellow-brown clay | Ilymatogyra arictina | | confining unit | | Lower Cretaceous | Ι | | Georgetown
Formation | | | CU | 40 – 60 | Gray to light-tan,
marly limestone | Marker fossil: Waconella wacoensis | None | Low porosity/ low permeability | | | II | Edwards Aquifer | Edwards Group | Person Formation | Cyclic
and
marine
members,
undivided
(4) | AQ | 0 – 70 | Mudstone to
packstone; miliolid
grainstone; chert | Boxwork vugs; light
tan, massive, some
Toucasia, Caprinid,
and Chondrodonta | Many caves;
might be
associated with
earlier karst
development | Laterally extensive;
both fabric and not
fabric/ water-
yielding: one of the
most porous and
permeable;
essentially absent in
Travis County | | | III | | | | Leached
and
collapsed
members,
undivided
(4) | AQ | 30 – 80 | Crystalline Limestone; mudstone to wackestone to miliolid grainstone; chert; collapsed breccia | Light-gray,
bioturbuted iron-
stained beds separated
by massive limestone
beds; <i>Toucasia</i> ,
<i>Chondrodonta</i> | Extensive
lateral
development;
large rooms | Majority not fabric/
one of the most
porous and
permeable | | | IV | | | | Regional dense member (3) | CU | 20 – 30 | Light-tan, dense
argillaceous
mudstone | Wispy iron-oxide
stains; Pleuromya
knowltoni,
Ceratostreon texanum | None; only
vertical
fracture
enlargement | Not fabric/ low
permeability;
vertical barrier | | | V | | | Keiner Formation | Grainston
e member
(2) | AQ | 45 – 60 | Light-gray, milialid
grainstone;
mudstone to
wackestone: chert | White crossbedded
grainstone; <i>Toucasia</i> ,
<i>Turritella</i> , and
<i>Chondrodonta</i> | Few caves | Not fabric/
recrystallization
reduces permeability | | | VI | | | | Kirschber g evaporite member (1) | AQ | 65 – 75 | Light-gray,
crystalline
limestone; chalky
mudstone; chert | Boxwork voids, with neospar and travertine frame: Cladophyllia and Turritella | Probably
extensive cave
development | Majority fabric/ one of the most porous and permeable | | | VII | | | | Dolomiti
c member
(1) | AQ | 110 – 150 | Mudstone to
grainstone;
crystalline
limestone; chert | Massively bedded,
light gray, Toucasia
abundant;
Dictyoconus
wahtutentis, Caprinid | Caves related
to structure or
bedding planes | Mostly not fabric;
some bedding-plane
fabric/water-
yielding: locally
permeable | | | VIII | | | | Basal
nodular
member | Karst AQ:
not karst
CU | 45 – 60 | Shaly, fossiliferrous
nodular limestone;
mudstone; <i>miliolid</i>
grainstone | Massive, nodular and mottled; Ceratostreon texanum, Dictyoconus walnutensis, and Texigryphaea | Few caves | Fabric/low
permeability | | | Lower confining unit Upper member of the Glen Rose Limestone | | | | Rose | CU:
evaporite
beds AQ | 350 - 500 | Yellowish-tan,
thinly bedded
limestone and marl | Stair-step
topography;
alternating limestone
and marl | Some surface
cave
development | Some water production at evaporite beds/ relatively impermeable from Small and others | Modified from Small and others. Figure 4-11. Summary of the Lithographic and Hydrologic Properties of the Hydrologic Subdivisions of the Edwards Aquifer Outcrop (Barton Springs Segment)