
Appendix 6D

Procedures for Calculating Drainage from Pipeline

Final EA 6D-1 Volume 2

Procedures for Calculating Drainage from Pipeline

Longhorn Pipeline

Introduction

Determination of degree of risk from a pipeline break depends in part on estimating
the volume of product that could be released from a break anywhere along the pipeline.
There are 43 block valves located along the pipeline, and their effect is to isolate any
releases between valves. The inside diameter (i.d.) of the pipeline is 20" from its start in
Galena Park to the Satsuma Station and 18" thereafter. Since the diameter is constant
between any two valves, the problem of calculating releases is simplified somewhat to
that of determining the length of pipe contributing fluid to a break at any given point.

The assumption is made that any fluid releases are dictated strictly by gravity flow
of product, with no siphoning effect. Since the block valves act as no flow boundaries,
this assumption is reasonable. This reduced problem can be solved by determining the
gravitational flow potential at every point along the pipeline.

The methodology described below calculates the flow potential in a series of three
steps or phases. All of the positive inflections (peaks, plateaus and steps) are first
delineated. In phase I, incremental potentials (potentials measured only between
inflections) are calculated at each inflection, in both the forward and backward directions,
thereby determining flow contributions for each segment of pipeline between inflections.
In phase 2 the incremental, contributions are integrated for the entire section of pipeline
between valves, resulting in forward and backward integrated potentials at each
inflection. Finally, in phase 3, total flow potentials are calculated for each 100 feet of
pipeline, incorporating incremental potentials between inflections and integrated
potentials from all other segments between valves. Finer resolution can be obtained by
interpolating flow potentials within the 100-foot intervals.

Data Source

Pipeline elevation data were obtained from an Access database acquired from
Longhorn Pipeline. The table LH -PROFILE contained 8363 points with elevations at
selected footage locations along the pipeline. These points were apparently derived from
digitization of contour crossings from 1:24,000 scale topographic maps. Elevation data
were spot checked against topographic maps and no discrepancies were found.

Elevations of the 100-foot intervals were calculated by interpolating the profile
data. Elevations for all valves were also calculated by interpolating the profile data.

Software

All calculations were performed using AWK scripts. AWK is a powerful list
processing language well suited to the types of calculations performed here. The
advantages are ease of programming and portability AWK is a standard application in

Final EA 6D-2 Volume 2

UNIX operating systems, and complete GNU implementations are available in the public
domain for IBM-compatible PCs.

A 3-phased approach was taken in the solution of the problem. This significantly
improved the amount of time required to perform the calculations and permitted
simplified checking of accuracy of the model.

Inflections

In the strictest sense, anywhere a line changes direction is an inflection. The sense
used here is restricted to those inflections where the line changes from a positive to a
negative direction (turns downward) or a positive to a neutral direction (flattens). The
changes in direction are evaluated in both upstream and downstream directions. The
points of inflection, then, delineate peaks, plateaus, and steps. Peaks and plateaus are
significant, because they have a higher potential than the surrounding pipeline segments,
and thus act to restrain flow.

Peak Plateau

Phase Calculations

Phase I calculations are concerned with calculating potentials between
inflections. For each point of inflection, the forward and backward potentials are
calculated using the 100-foot elevation points, interpolated as necessary. Forward
potentials are added for each 100-foot segment, up to the next inflection point, higher
than or level with the inflection point. Backward potentials are calculated in the same
manner back to the previous inflection point. An AWK script that performs these Phase
I calculations is shown in Appendix A.

The algorithm can be described simply: starting at an inflection point, if the next
point is higher or level, add the distance to the next point to the forward potential.
Because the calculation is performed for a segment between inflections, there is no
concern with flow restrictions across a peak, and the calculations can proceed from point
to point.

Final EA 6D-3 Volume 2

Flow Along Pipeline

Phase 2 Calculation

Phase 2 calculations are concerned with summation at each inflection of
potentials between block valves. For each point of inflection, the forward and backward
potentials are calculated using inflections at the same height or higher, stepping up as
new peaks are encountered, until a maximum inflection or block valve is encountered.
An AWK script that performs these Phase 2 calculations is shown in Appendix A.

Flow Along Pipeline

Final EA 6D-4 Volume 2

The algorithm can be described simply: Starting at an inflection point, the forward
potential is the sum of all potentials at downstream inflections of equal or increasingly
greater height until either a maximum height (regional peak) or block valve is
encountered. The back potential is calculated in a similar manner, and the sum of the two
is the total potential at the inflection.

Phase 3 Calculation

The final Phase 3 calculations are concerned with calculating potentials at regular
intervals along the pipeline - in this case an interval of 100 feet. The potential for each
point is calculated in a manner similar to that used in Phase 1, and initially incorporates
only the potential associated with the pipeline segment between inflections. The
potentials from the bounding inflections are incorporated according to the following
logic:

(1) If the elevation of the point is greater than the elevation of the upstream
inflection point (the back point) then the potential at the point is equal to the
calculated (incremental) potential plus the integrated forward potential (from
Phase 2) of the inflection minus the incremental forward potential (from Phase
1) of the inflection plus the integrated backward potential of the next
downstream inflection.

(2) If the elevation of the point is equal to the elevation of the upstream inflection
point, then the potential at the point is equal to the sum of the integrated
forward and back-ward potentials at the inflection.

(3) If the elevation is less than the elevation of the upstream inflection then the
potential at the point is equal to the calculated (incremental) potential plus the
integrated forward potential (from Phase 2) of the inflection minus the
incremental forward potential (from Phase 1) of the inflection plus the

Final EA 6D-5 Volume 2

These rules are simplified where valves are encountered (no flow boundaries),
since contributing upstream and downstream flows beyond valves are zero.

An AWK script that performs these Phase 3calculations is shown in Appendix A.

Results

The results of the calculations are summarized in a table of points, defined by
their footage location every 100 feet along the pipeline as measured from the beginning at
Galena Park (in excess of 36,600 individual points). Each point is associated with a flow
potential value expressed in feet. This value represents the length of pipe that is calculated
to drain to the point if product is released. This table was used to create a GIS layer
(represented as an ArcView shapefile), which allows the information to be queried
spatially.

Final EA 6D-6 Volume 2

Attachment A

Procedure for Estimating Velocity of Draining Liquid in the Pipeline

Final EA 6D-7 Volume 2

Attachment A

Estimating Flow Velocities at Leak Locations along the Pipeline

Since the maximum drained volume often comes from a long stretch of pipe, the velocity of the
draining liquid in the pipeline can be estimated to project the approximate time needed to fully
drain the line. The velocity of the liquid draining from the pipeline segment immediately
downstream of a leak site was estimated using the following procedure:

• The high point along the line between the location of the leak and the nearest
downstream valve was found from the pipeline elevation profile.

• The distance between the high point and the leak point was defined as the
difference in stationing values of the two locations. This distance was assumed to
be the total length of pipe, L, from which drainage occurred.

• The head driving the drainage was assumed to be only due to the difference in
elevation, ∆E, of the high point and the leak site.

• The system was assumed to be a straight pipe of length L with a slope of ∆E/L.

• The velocity was estimated using the Fanning equation, shown below:

V2 = ∆PgcD
 2fLρ

where
V = volumetric fluid velocity, feet/sec
∆P = pressure drop due to friction (head loss), lb/ft2

gc = 32.17 lb(mass) ft / lb(force) sec2

D = inside diameter of pipe, ft
f = friction factor
L = length of pipe, ft
ρ = fluid density, lb/ft3

• The friction factor, f, is obtained from a chart that shows the friction factor curves for
a variety of pipe materials as a function of the Reynolds Number, NRe, where

NRe = DVρ
µ

where µ = absolute viscosity of the liquid, lb / ft sec

Final EA 6D-8 Volume 2

• The estimated liquid draining velocity through the pipe is determined through an
iterative calculation:

– A fluid velocity is first estimated
– The value of NRe is calculated
– Using the NRe, the friction factor is found from the friction factor chart
– The velocity is calculated from the Fanning equation
– If the calculated velocity is not equal to the estimated velocity, a new

velocity is assumed, and the procedure is repeated until the calculated
velocity matches the assumed velocity.

• The length of pipe to be traversed by draining liquid is equal to the drained volume
divided by the amount of liquid contained in a 1-foot length of pipe.

• The total drain time is then estimated as the length of pipe traversed divided by the
liquid velocity.

• The volume of liquid that would drain from the pipeline in 2 hours was then
estimated as:

Volume (gal/2-hr) = velocity (fps) x 7200 (sec/2-hr) x 12.495 (gal/ft)

Final EA 6D-9 Volume 2

Attachment B

Final EA 6D-10 Volume 2

Phase 1
Input file is the inflection set

BEGIN {
FS = ","

getline
startx = $2
starty = $3
start_type = $5

}
{
Read the inflection points one by one (valves are
just a special case of inflection)

Read the interval points between current inflection
and the next inflection into an array

Find the crossing point of the inflection elevation
with the interval points, interpolating if necessary

The spill spillen at the inflection is the spillen between
the next inflection and the crossing point. If there
is no crossing point the spill spillen is zero. The
measures for each point between this croosing and the next
inflection is the spill spillen, which will approach zero
at the next inflection.

Step through the array one point at a time, find the
2 crossing points, and calculate the spill spillens

When a minimum is reached, the spill spillen is the entire
spillen (or, when the soil spillen is the entire spillen,
a minimum has been reached)

This will result in incremental spill spillens for each
segment between inflections. Spill spillens for any point
between valves will sum the spillens of all enclosed
segments.

endx = $2
endy = $3
end_type = $5

getline < "All_interval.txt"
ptx = $1
pty = $4

while (ptx < startx)
{

getline < "All_interval.txt"
ptx = $1
pty = $4

}

x_array[0] = ptx

Final EA 6D-11 Volume 2

y_array[0] = pty

count = 1
while (ptx <= endx)
{

if (getline < "All_interval.txt" > 0)
{

the array consists only of the interval
points between the inflections
ptx = $1
if (ptx <= endx)
{

x_array[count] = ptx
y_array[count] = $4
count ++

}
}
else
{ ptx = endx +1 }

}
array_len = count - 1

close "All_interval.txt"

Forward calculations

calc_length(x_array,y_array,array_len,startx,starty,endx,endy)

if (start_type == "V")
{

#print "Valve"
}
#print "Forward calculation: "startx","spillen
print "F,"startx","spillen

if the spillen after calculations is zero, then a backward model needs to
be calculated - this is accomplished by reversing the array indeices and
running the same algorithm over the selected segment

reverse the arrays
for (i = 0; i <= array_len; i++)
{

bx_array[array_len - i] = -(x_array[i])
by_array[array_len - i] = y_array[i]

}

nendx = -endx
nstartx = -startx

calc_length(bx_array,by_array,array_len,nendx,endy,nstartx,starty)

#print "Backward calculation: "endx","spillen
print "B,"endx","spillen
if (end_type == "V")
{

#print "Valve"

Final EA 6D-12 Volume 2

}
#print "..."

#--------------------------------

startx = endx
starty = endy
start_type = end_type

}

##

function calc_length(x_array,y_array,array_len,startx,starty,endx,endy)
{

spillen = 0
upflag is: 0 for down, 1 for level, and 2 for up
upflag = -1
for (i = 0; i < count; i++)
{

if (y_array[i] < starty)
{

upflag = 0
}
must check for the case of a downturn before a
level run with no following upturn
if (y_array[i] == starty && upflag != 0)
{

need to make sure equal points
are contiguous
if (i > 0 && (y_array[i-1] == starty))
{
 spillen = spillen + x_array[i] - x_array[i-1]
}
if (i == 0)
{
 spillen = x_array[i] - startx
}
upflag = 1

}
if (y_array[i] > starty)
{

if (i > 0)
{
 interpy = (starty - y_array[i-1]) / (y_array[i] -

y_array[i-1])
 xdiff = x_array[i] - x_array[i-1]
 interpx = x_array[i-1] + (xdiff * interpy)
 spillen = spillen + endx - interpx
}
else
{
 spillen = spillen + endx - startx
}
if it goes up, it can't come back down
before the next inflection
upflag = 2

Final EA 6D-13 Volume 2

break
}

}

if (upflag == 1)
{

spillen = spillen + endx - x_array[array_len]
}

return spillen
}

Final EA 6D-14 Volume 2

Phase 2
No input file required (use dummy)
#
BEGIN {

FS = ","
indx = 0
place = 0
NREC = 0
int_farray[0] = 0
int_barray[0] = 0

#--

while (getline < "comb_inflections.txt" > 0) {
while (++NREC < place)
{

getline < "comb_inflections.txt"

}

station = $2
elevation = $3
type = $5
forward = $6
backward = $7

if (type == "V")
{

x_array[indx] = station
y_array[indx] = elevation
f_array[indx] = forward
b_array[indx] = backward

#print "New Valve"

}

type = ""
while (type != "V")
{

getline < "comb_inflections.txt"
NREC++
station = $2
elevation = $3
type = $5
forward = $6
backward = $7

x_array[++indx] = station
y_array[indx] = elevation
f_array[indx] = forward
b_array[indx] = backward

if (type == "V") break
}

Final EA 6D-15 Volume 2

at this point we have an array filled from
valve to valve
we know our total number of reads by NR

array_len = indx

Now, we need to step up the line until we reach the
next highest point, at which point we stop adding
spill length until we find a higher point

#forward pass
for (i=0; i<array_len; i++)
{

int_farray[i] = f_array[i]
highpoint = y_array[i]
for (j=i+1; j<array_len;j++)
{
 if (highpoint <= y_array[j])
 {

int_farray[i] = int_farray[i] + f_array[j]
highpoint = y_array[j]

 }
}

}
guarantee no forward flow at the end valve
int_farray[array_len] = 0

Now, we need to step down the line until we reach the
next highest point, at which point we stop adding
spill length until we find a higher point

#backward pass
for (i=array_len; i>0; i--)
{

int_barray[i] = b_array[i]
highpoint = y_array[i]
Don't iterate to j==0, b_array[0] is zero
for this segment
for (j=i-1; j>0;j--)
{
 if (highpoint <= y_array[j])
 {

int_barray[i] = int_barray[i] + b_array[j]
highpoint = y_array[j]

 }
}

}

for (i=0; i<=array_len; i++)
{

vflag = "I"
if (i == 0) {vflag = "S"}
if (i == array_len) {vflag = "E"}

print x_array[i]","y_array[i]","int_farray[i]","int_barray[i]","vflag
}

Final EA 6D-16 Volume 2

now, reset the file
place = NREC
NREC = 0

reset the integration arrays
for (i=0; i<=array_len; i++0)
{

int_farray[i] = 0
int_barray[i] = 0

}
indx = 0
if (getline < "comb_inflections.txt" == 0) exit
close ("comb_inflections.txt")

}
}

Final EA 6D-17 Volume 2

Phase 3 model
Input is the interval file
#
BEGIN {

FS = ","

Load an array with the inflection data
indx = 0
while (getline < "comb_inflections.txt" > 0)
{
 inf_x[indx] = $2
 inf_y[indx] = $3
 inf_type[indx] = $5
 incr_frwd[indx] = $6
 incr_bkwd[indx] = $7
 inf_frwd[indx] = $8
 inf_bkwd[indx] = $9
 inf_elev[indx++] = $10
}
inf_arraylen = indx - 1
inf_indx = 0

lastxpoint = 0
lastypoint = 0
lastflag = 0

pt_indx = 0

startflag = 0
}
{

Read the interval points one at a time
x = $1
y = $4

if (x >= inf_x[inf_indx])
{

 # Add the inflection to the front
 if (pt_indx == 0)
 {

#print inf_type[inf_indx]
if (x == inf_x[inf_indx])
{
 x_array[0] = x
 y_array[0] = y
 s_array[0] = 0
 pt_indx++

 }
 else

{

 x_array[0] = inf_x[inf_indx]
 y_array[0] = inf_y[inf_indx]
 s_array[0] = 0
 pt_indx++

 if (lastflag == 1)

Final EA 6D-18 Volume 2

 {
x_array[pt_indx] = lastxpoint
y_array[pt_indx] = lastypoint

 s_array[pt_indx] = 0
pt_indx++
lastflag = 0

 }
 if (x < inf_x[inf_indx + 1])
 {
 x_array[pt_indx] = x
 y_array[pt_indx] = y
 s_array[pt_indx] = 0
 pt_indx++
 }

 }
 }
 if (x >= inf_x[inf_indx + 1])
 {

if (x > inf_x[inf_indx + 1])
{

 lastxpoint = x
 lastypoint = y
 lastflag = 1
}

 x_array[pt_indx] = inf_x[inf_indx + 1]
y_array[pt_indx] = inf_y[inf_indx + 1]
s_array[pt_indx] = 0
pt_indx++
calculate(x_array,y_array,s_array,pt_indx)

pt_indx = 0
inf_indx++

 }
 else
 {
 x_array[pt_indx] = x
 y_array[pt_indx] = y
 s_array[pt_indx] = 0
 pt_indx++
 }
}

}
Finally, catch the last segment
END {
 x_array[pt_indx] = inf_x[inf_indx + 1]

y_array[pt_indx] = inf_y[inf_indx + 1]
s_array[pt_indx] = 0
pt_indx++

calculate(x_array,y_array,s_array,pt_indx)
}

function calculate(x_array,y_array,s_array,array_len)
{

This is simplified because we are guaranteed to

Final EA 6D-19 Volume 2

be between inflections

Forward pass
for (i=0; i<(array_len-1); i++)
{
 for (j=i+1; j<array_len; j++)
 {

if (y_array[i] <= y_array[j])
{
 s_array[i] = s_array[i] + (x_array[j] - x_array[j-1])
}

 }
 }

Backward pass
for (i=(array_len - 1); i>0; i--)
{
 for (j=i-1; j>=0; j--)
 {

if (y_array[i] <= y_array[j])
{
 s_array[i] = s_array[i] + (x_array[j+1] - x_array[j])
}

 }
 }

for (i=startflag; i<array_len; i++)
{
 if (y_array[i] > inf_elev[inf_indx])
 {

s_array[i] = s_array[i] + (inf_frwd[inf_indx] -
incr_frwd[inf_indx]) + inf_bkwd[inf_indx + 1]

 }
 else if (y_array[i] == inf_elev[inf_indx])
 {

if (inf_type[inf_indx] != "V")
{
s_array[i] = inf_frwd[inf_indx] + inf_bkwd[inf_indx]
}
else
{
s_array[i] = inf_frwd[inf_indx]
}

 }
 else if (y_array[i] < inf_elev[inf_indx])
 {

if (inf_type[inf_indx] != "V")
{
s_array[i] = s_array[i] + (inf_frwd[inf_indx]-

incr_frwd[inf_indx]) + inf_bkwd[inf_indx]
}
else
{
s_array[i] = s_array[i] + (inf_frwd[inf_indx]-

incr_frwd[inf_indx])
}

Final EA 6D-20 Volume 2

 }

 print x_array[i]","y_array[i]","s_array[i]
}
startflag = 1

return
}

	Go to Top Page

