
FIELD NOTE SAMPLES

FEDERAL HIGHWAY ADMINISTRATION

WESTERN FEDERAL LANDS HIGHWAY DIVISION

SAMPLE FIELD NOTES

GENERAL INSTRUCTIONS

- Field measurement and computations should be carried to one more decimal than is shown on the progress estimate spreadsheet.
- Pencil is acceptable for field notes but DON'T use RED or BLUE. (The exception: "A s-Constructed Plans" must be done in red pencil.)
- Do not fill in page number at top right. This is for FHWA internal use.
- Leave plenty of space on a page to allow for FHWA checks or notations.
- All information at top of page should be filled in by you.
- Also "Computed By" and "Date" should be filled in by you, as applicable.
- Do not erase. If there is an error, line it out or circle it (do not obliterate it) and write the correct information below it, or on a new page.

Section 109 Measurement and Payment

PAY NOTE REQUIREMENTS

Take or convert all measurements of work according to the International System of Units (SI), IEEE/ASTM SI 10.

Submit measurement notes to the CO within 24 hours of performing the work. Measurement notes form the basis of the Government's receiving report (see Subsection 109.08(d)). For lump sum items, submit documentation to support invoiced progress payment on a monthly basis.

Examples of acceptable field note formats are available by written request according to Subsection 106.01. As a minimum, include the following information in all records of measurement:

- (a) Project name and number
- **(b)** Contract item number
- (c) Date the work was performed
- (d) Location of the work
- (e) Measured quantity
- **(f)** Calculations made to arrive at the quantity
- **(g)** Supporting sketch and/or details as needed to clearly define the work performed and the quantity measured
- **(h)** Names of persons measuring the work
- (i) Identification as to whether the measurement is interim or final; and
- (j) Signed certification statement by the person taking the measurements, performing the calculations, and submitting them for payment that the measurement and calculations are correct to the best of their knowledge and that the quantity being measured is subject to direct payment for the identified item under the contract.

The Government may check contractor measurements to verify pay quantities and validity of contractor measurement methods.

INDEX

Division No.	Description
150	Project Requirements
200	Earthwork
250	Structural Embankments
300	Aggregate Courses
400	Asphalt pavements and Surface
	Treatments
550	Bridge Construction
600	Incidental Construction

APPENDIX

Appendix	Description					
A	Guidelines for Partial Payment					
В	Example Contractor invoice and support data					
С	Example Critical Path Method Schedule					
D	Example Quality Control Plan					
E	Reinforcing Steel weights and marks					
F	Pile driving data					
G	WFLHD sample size guidance sheet					
Н	Volume correction factors for asphaltic materials					
I	Area of a circle					
J	Metric conversion factors – General					
K	Blank Forms					

DIVISION 150

PROJECT REQUIREMENTS

INDEX

Dagarintian	Domo
Description	Page
Book identification and label	150 - 2
Cover page for ticket book	150 – 3
Mobilization	150 – 4, 5
Construction survey and staking	150 – 6, 7
Control point references	150 – 8
Field Slope Stakes	150 – 9
Examples of slope stakes notes	150 – 10, 11, 12, 13
Example clearing report	150-14
Example of XYZ Coordinates	150 – 15
Example staking detail report	150 – 16
Example seeding report	150 – 17
Example radial staking notes	150 - 18
Contractor quality control	150 – 19
Contractor sampling & testing	150 - 20
Silt fence	150 - 21
Filter barrier, straw bales	150 - 22
Water	150 - 23
Water ticket book	150 - 24

FH10-262 9-74(Identification)

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION 610 E. 5th Street VANCOUVER, WASHINGTON 98661

IDENTIFICATION

If this Book is found, PLEASE Return to the above listed address

CASCADE LAKES HIGHWAY OR PFH 46-1(3) DTFH70-94-C-00011

RESERVED FOR PROJECT STAMP

COUNTY:		STA	ATE:	·
FOREST,	PARK	OR	OTHER	CONSTRUCTION
CONTRACTOR:				
ENGINEER:			Y	EAR:

^{*} Identification such as this is to be placed as first loose leaf of binder or as a cover sheet for the Binder.

I TEM 63510 PI LOT CAR CASCADE LAKES HIGHWAY OR PFH 46-1(3) DTFH70-94-C-00011 TOTAL HRS BOOK NO COMPLETED BY: DATE: CHECKED BY: DATE:		
CASCADE LAKES HIGHWAY OR PFH 46-1(3) DTFH70-94-C-00011 TOTAL HRS BOOK NO COMPLETED BY: DATE:	I TEM 63510	
OR PFH 46-1(3) DTFH70-94-C-00011 TOTAL HRS BOOK NO COMPLETED BY: DATE:	PI LOT CAR	
BOOK NO DATE:	OR PFH 46-1(3)	IGHWAY
CHECKED BY: DATE:	COMPLETED BY:	DATE:
	CHECKED BY:	DATE:

1.) Ticket books can be used in lieu of form FHWA 17348.

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project: Da		
Number: 15101 Mobilization		<u>-</u>
DESCRIPTION, LOCATION, ETC		QUANTITY
50% Mobilization		
Reference FP-96 Section 151.03		
Original Contract Amount: \$4,495,134.00		
Less Mobilization: \$460,000.00		
Total: \$4,035,134.00		
Times (%) 0.05% = \$201,756.70		
Contract Work complete through June 2002 = \$202,000.00		
Mobilization: \$460,000.00		
50% of Mobilization: \$230,000.00		
5% of Contract: \$201,756.70		
	TOTAL	\$201,756.70
I certify that the above quantity was performed and/or used in the construction of this project.		
Contractor	Project Engineer/I	nspector
NOTE:		
See FP for Method of Measurement, Section 151.		

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:		Dat	e:	
Number: 15101 Mobilization	1			<u>.</u>
DE	SCRIPTION, LOC	ATION, ETC.		QUANTITY
100% Mobilization				
Reference FP-03 Section 151.03				
Original Contract Amount:	\$4,495,134.00			
Less Mobilization:	\$460,000.00			
Revised Contract Amount Total	\$4,035,134.00			
Contract Work complete th	rough June 2002 = \$2,	143,759.00		
Mobilization:	\$460,000.00			
10% of Contract Amount:	\$403,513.40			
Less Estimate No. 001:	\$201,756.70			
Mobilization this Estimate:	= \$143,243.30			\$201,756.70
			TOTAL	\$201,756.70
I certify that the above quanused in the construction of t		l and/or		
Contractor		_	Project Engineer/	Inspector
NOTE:				
See FP for Method of Meas	urement, Section 1:	51.		

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project: Date:		
Number: 15201 Construction Survey and Staking		
DESCRIPTION, LOCATION, ETC.		QUANTITY
Estimate No. 2		
Reference FP-96 Section 152.06		
Original Item Total Lump Su m = $100,000.00 \times 25\% = 25,000.00$		
Contract Work to date (excluding mob and bond premium amounts) = \$261,000.0	00 =	
10.4% of Original Contract Amount of \$2,500,000.00		
.5% of Original Contract Amount of \$2,500,000.00 = \$12,500.00		\$12,500.00
(maximum item payment allowed to date)		
\$12,500.00 = 12.5% of Item Lump Sum		
	TOTAL	\$12,500.0
I certify that the above quantity was performed and/or used in the construction of this project.		
Contractor	Project Engineer/I	nspector
NOTE:		
See FP for Method of Measurement Section 152		

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

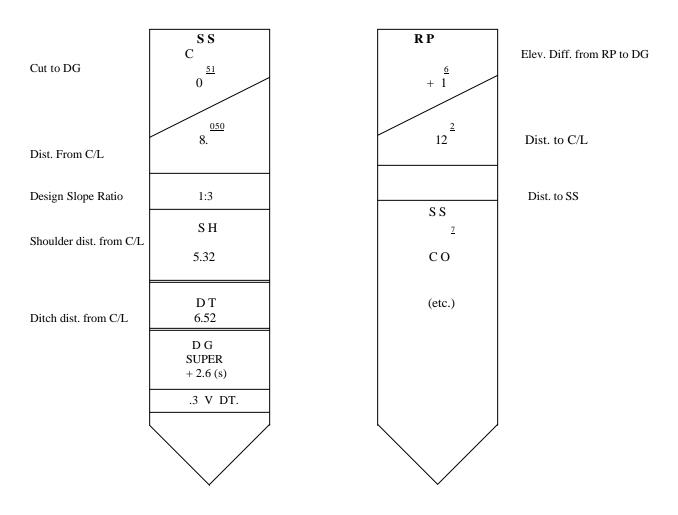
Project:Date	»:	
Number: 15201 Construction Survey and Staking		
DESCRIPTION, LOCATION, ETC.		QUANTITY
Estimate No. 003		
Reference FP-03 Section 152.06		
Contract Work to date (e xcluding mob and bond premium amounts) = \$2,5	500,000.00 =	
50% of Original Contract Amount of \$5,000,000.00		
50% of Original Item Lump Sum Amount of \$200,000 = \$100,000.00		
Less Payment for Estimate No. 002 of \$25,000.00 = \$75,000.00 this estimate	ate.	\$75,000.00
\$75,000.00 = 37.5% of Item Lump Sum		
	TOTAL	\$75,000.0
I certify that the above quantity was performed and/or used in the construction of this project.		
Contractor	Project Engineer/l	Inspector
NOTE:		
See FP for Method of Measurement Section 152		

Sand Lake - Galloway Road Control Checks

		Original Data		2003 Traverse Dif			Difference			
Pt.No.	Northing	Easting	Trig. Elev.	Pt.No.	Northing	Easting	Trig. Elev.	d North	d Easting	d Elev.
100	279544.320	2219521.978	4.182	100	279544.323	2219521.985	4.181	-0.003	-0.007	0.001
101	279686.003	2219658.686	4.887	101	279685.950	2219658.778	4.837	0.053	-0.092	0.050
102	279748.193	2219713.406	6.146	23102	279748.195	2219713.448	6.097	-0.002	-0.042	0.049
103	279808.172	2219787.504	8.892	103	279808.178	2219787.508	8.892	-0.006	-0.004	0.000
104	279983.136	2219804.578	10.216	104	279983.144	2219804.566	10.216	-0.008	0.012	0.000
105	280089.106	2219836.964	11.328	105	280089.111	2219836.949	11.333	-0.005	0.015	-0.005
106	280161.385	2219917.529	9.263	23106	280161.368	2219917.551	8.983	0.017	-0.022	0.280
107	280332.758	2219976.328	11.286	107	280332.750	2219976.336	11.292	0.008	-0.008	-0.006
108	280424.454	2219994.840	12.623	23108	280424.469	2219995.011	12.436	-0.015	-0.171	0.187
109	280559.097	2220056.763	11.442	109	280559.090	2220056.766	11.439	0.007	-0.003	0.003
110	280660.806	2220125.400	11.541	110	280660.815	2220125.399	11.531	-0.009	0.001	0.010
111	280778.158	2220167.791	12.130	23111	280817.535	2220177.339	13.068	-39.377	-9.548	-0.938
112	281029.730	2220218.582	15.982	112	281029.578	2220218.765	15.734	0.152	-0.183	0.248
113	281157.426	2220264.068	15.505	23113	281157.234	2220264.133	15.346	0.192	-0.065	0.159
114	281261.908	2220306.813	14.212	114	281261.887	2220306.830	14.205	0.021	-0.017	0.007
115	281423.308	2220356.465	13.987	115	281423.303	2220356.463	13.993	0.005	0.002	-0.006
116	281470.129	2220431.410	10.990	116	281470.121	2220431.410	10.993	0.008	0.000	-0.003
117	281455.663	2220637.735	6.250			2220637.726	6.250	0.035	0.009	0.000
118	281445.716	2220840.450	6.272			2220840.446	6.267	-0.003	0.004	0.005
119	281436.448	2220988.315	5.767	119	281436.461	2220988.313	5.775	-0.013	0.002	-0.008
120	281427.333	2221220.446	4.525			2221220.435	4.517	0.003	0.011	0.008
121	281424.690	2221491.242	4.924			2221491.197	4.901	0.005	0.045	0.023
122	281424.262	2221745.336	6.486			2221745.323	6.489	0.010	0.013	-0.003
123	281425.073	2222005.981	8.875			2222005.974	8.865	0.022	0.007	0.010
124	281717.075	2222008.135	7.655			2222008.131	7.651	0.016	0.004	0.004
125	281972.078	2222010.873	8.853			2222010.871	8.854	0.011	0.002	-0.001
126	282204.526	2222011.870	12.698			2222011.866	12.696	0.009	0.004	0.002
127	282464.365	2222019.956	16.498			2222019.958	16.499	0.009	-0.002	-0.001
128	282651.910	2222028.090	16.070			2222028.089	16.070	0.010	0.001	0.000
129	282845.294	2222036.210	18.736			2222036.212	18.735	0.007	-0.002	0.000
130	283052.237	2222050.530	20.661	130	283052.229	2222050.528	20.659	0.008	0.002	0.002

^{*} When providing Adjusted Original or Replacement Control Point listings, provide Station and Offset Description and Calculations

^{**} Describe Cap/Rebar or Hub/Tack


FIELD SLOPE STAKES

 $\begin{array}{ll} HG = HINGE\ POINT & DT = DITCH \\ SS = SLOPE\ STAKE & C = CUT \\ OG = ORIGINAL\ GROUND & F = FILL \\ \end{array}$

FS = FINISHED SUBGRADE TOP SH = SHOULDER

DG = DITCH GRADE FG = FINISHED GRADE RP = REFERENCE POINT

BELOW IS ONE EXAMPLE OF WRITING STAKES. REGARDLESS OF WHAT FORMATES ARE USED, IT IS IMPORTANT THAT THE STAKING DATA BE CLEARLY UNDERSTOOD AMONG STAKEHOPS, CONTRACTOR, AND FHWA PERSONNEL (station and elevation on backside of each stake)

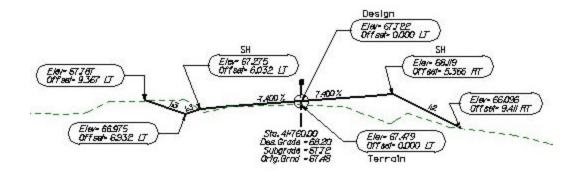
NOTES:

Cut to ditch Fill to shoulder

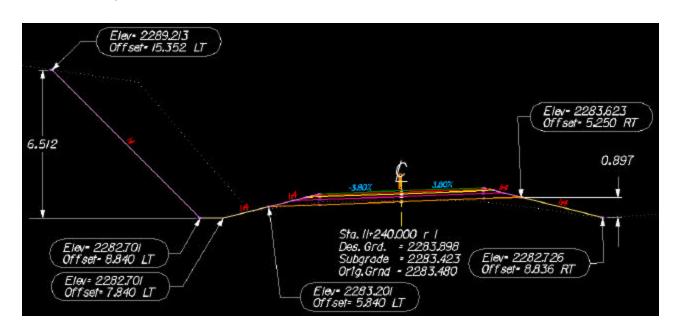
Typically, when slope staking in a cut section, the Hinge Point is the Ditch bottom and when slope staking in a fill section, the Hinge Point is the Shoulder

SLOPE STAKE REPORT (m)

STATION


41+760.000 Region 1

Terrain Elevation = 67.479

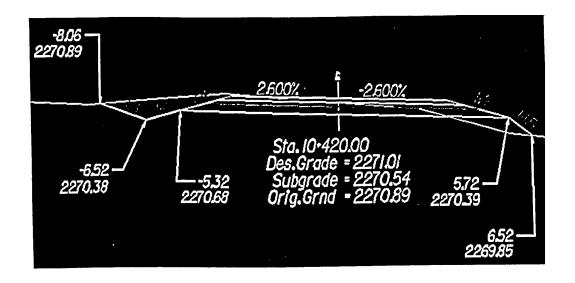

Design Elevation = 67.722 DIFF = F 0.242

CHANGE LT STAKE ELEV SLOPE CENTERLINE SLOPE ELEV RT STAKE CHANGE

RP NO REF HUB	RP NO REF HUB
C 0.811 67.787	NPOW1 66.516 F 1.602
9.367 +1:3.00	-1:1.50 7.770
6.932 66.975	68.119 SH 5.366
-0.300 -1:3.00	+7.40% 0.086
SH 6.032 67.275	68.033 4.200
-0.136 -7.40%	+7.40% 0.067
4.200 67.411	67.966 3.300
-0.067 -7.40%	+7.40% 0.244
3.300 67.478	67.722 0.000
-0.244 -7.40%	
0.000 67.722	

Below is a typical cross section and an example of the Slope Stake Notes:

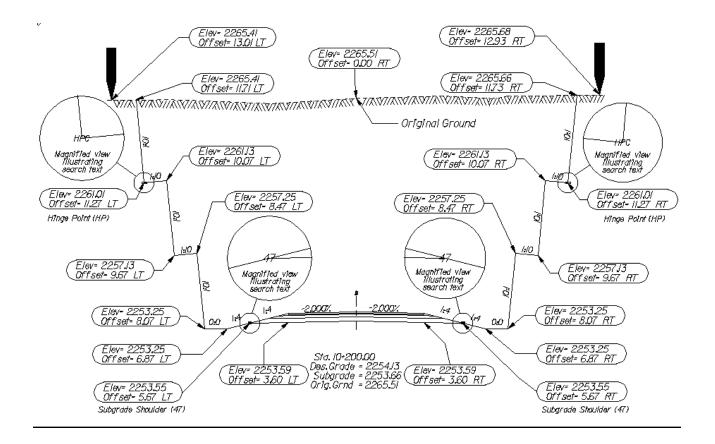
02/20/2004 Western Federal Lands Page# 1 Sample Field Notes


Steve Pratt
SLOPE STAKE REPORT (m)

STATIO	ON									
11+240.00	Reg	ion 1								
Terrain Elevation Design Elevation		2283.480 2283.423	DIFF =	C 0.057						
CHANGE		LT STAKE	ELEV	SLOPE	CENTERLINE	SLOPE	ELEV	F	RT STAKE	CHANGE
		RP NO REF	HUB					RP	NO REF I	HUB
		6.512	2289.213		A		2282.726	F	0.897	
		15.352		+1:1.00		-1:4.00			8.836	
		HP 8.840	2282.701				2283.623	HP	5.250	
		0.000		-1:0.00		+3.80%			0.063	
		7.840	2282.701				2283.560		3.601	
		-0.500		-1:4.00		+3.80%			0.137	
		5.840	2283.201				2283.423		0.000	
		-0.085		-3.80%						
		3.600	2283.286							
		-0.137		-3.80%						

RE-CROSS SECTION NOTES

0.000 2283.423


Chain	LT Ref.			CENTERLINE			RT Ref.
				Grade			
A	C 0.00	IN = 0	0.000		OT =	0.000	C 0.00
	0.000	DN =	0.00	2270.537	UP =	0.00	0.000
	0.000	SLOPE=	1: 3.0	0	SLOPE	= 1: -1.50	0.000
Station	LT Stake	SUPER=	2.6%		SUPER	R= 2.6%	RT Stake
10+420.00	C 0.51			C 0.35			F 0.54
Reg 1	8.060			0.000			6.524
	2270.888			2270.887			2269.853
	LT Hinge	0.00	0.14		0.00	0.00	RT Hinge
		0.000	-5.321(S	H)	0.000	0.000	
	2270.375			2270.537			2270.388
	-0.16	0.00	0.09	0.00	-0.09	0.00	- 0.15
	-6.521(DT)	0.000	-3.600	0.00	3.600	0.000	5.720 (SH)

example SLOPE STAKE REPORT

(OLD VERSION)

These examples were taken from our design information website at:

www.wfl.fha.dot.gov/geopak

08/13/2001

Federal Highway Administration Geopak 2001 FHWA Version 2 Designer's Name Here SLOPE STAKE REPORT (m) Page# 1

	STATI	ON									
10+200.	 00	Re	egion	1							
Terrain	Elevation	=	226	5.507							
Design	Elevation	-	225	3.663	DIFF = C	11.843					
	CHANGE		L	T STAKE	ELEV	SLOPE	CENTERLINE	SLOPE	ELEV	R	T STAKE
			RP							RP	
			+	0.001	2265.411				2265.683		0.019
				13.011							12.933
			IN	1.306						IN	1.202
			C	4.402	2265.412		A		2265.664	C	4.654
				11.705		+1:0.10		+1:0.10			11.731
			HP	11.265	2261.010				2261.010	HP	11.265
				-0.120		-1:10.0		-1:10.00			-0.120
				10.065	2261.130				2261.130		10.065
				4.000		+1:0.10		+1:0.10			4.000
				9.665	2257.130				2257.130		9.665
				-0.120		-1:10.0		-1:10.00			-0.120
				8.465	2257.250				2257.250		8.465
				4.000		+1:0.10		+1:0.10			4.000
				8.065	2253.250				2253.250		8.065
				0.000		-1:0.00		-1:0.00			0.000
				6.865	2253.250				2253.250		6.865
				-0.300		-1:4.00		-1:4.00			-0.300
			SH	5.665	2253.550				2253.550	SH	5.665
				-0.041		-2.00%		-2.00%			-0.041
				3.600	2253.591				2253.591		3.600
				-0.072		-2.00%		-2.00%			-0.072
				0.000	2253.663				2253.663		0.000

150-13

A partial sample of the notes are shown below:

10/02/98 PRA YELL 13(2) SECTION A
EAST ENTRANCE ROAD
Designer's Name Here

CLEARING REPORT

SUBTOTALS EVERY 700.0000 m . BEGINNING AT STATION 10+700 METHOD INCR ADDITIONAL CLEARING VIA STATION RANGE

11+000 TO 11+500 FOR LEFT SIDE = 10.000 m
11+800 TO 12+000 FOR RIGHT SIDE = 8.000 m
12+100 TO 12+500 FOR LEFT & RIGHT SIDES = 6.000 m

CLEARING DISTANCE STATION EXCEPTION AREA SUBTOTAL AREAS m2 LT RT WIDTH m2 HECTARES 10+020.00 R 1 11.720 10.628 0.000 451 10+040.00 R 1 11.920 10.760 0.000 462 10+060.00 R 1 12.104 11.384 0.000 472 10+080.00 R 1 12.142 11.477 0.000 479 10+100.00 R 1 12.401 11.872 0.000 486 10+120.00 R 1 12.470 11.855 0.000 490 10+140.00 R 1 12.439 12.166 0.000 504 10+160.00 R 1 12.631 13.068

A sample of the notes are shown below:

11/20/2000 FEDERAL HIGHWAY ADMINISTRATION Page# 1

11/20/2000		XYZ Cen	at nighway abr ter Folding No ver, Washingto	tes (Examp	le)
Station	X	Y Vancou		Offset	
10+060.000 R 1	159345.590	558450.295	2261.284	-5.665	Shoulder -2.000
	159347.048	558448.832	2261.325	-3.600	ETW -2.000
	159349.589	558446.283	2261.397	0.000	Centerline 0.622
	159352.131	558443.733	2261.420	3.600	ETW 0.620
	159353.439	558442.420	2261.431	5.454	
10+080.000 R 1	159359.613	558464.434	2261.853	-5.722	Shoulder -2.620
	159361.134	558462.953	2261.909	-3.600	ETW -2.619
	159363.714	558460.442	2262.003	0.000	Centerline 2.622
	159366.293	558457.931	2262.097	3.600	ETW 2.61
	159367.526	558456.731	2262.142	5.320	Shoulder
LO+100.000 R 1	159373.104	558478.884	2262.448	-5.740	Shoulder
	159374.696	558477.454	2262.508	-3.600	-2.799 ETW
	159377.374	558475.048	2262.609	0.000	-2.800 Centerline 2.800
					2.000

558472.642

558471.501

159380.052

159381.323

2262.710

2262.758

3.600 ETW

5.309 Shoulder

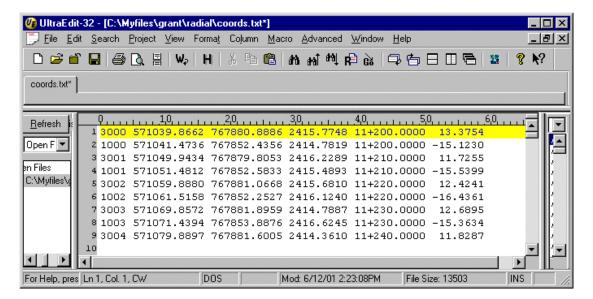
2.798%

Below is an example of the Staking Detail Notes:

06/24/97

PRA YELL 13(2) SECTION A EAST ENTRANCE ROAD Designer's Name Here STAKING DETAIL REPORT(m)

	Slope	≘	Left	Stake		*		, 	Right :	štake			9	lope
STATION	RISE/R		C/F	DIST	ELEV	SUPER	ADJ.	SUPER	ELEV.	DIST		C/F		E/RUN
10+020.00 R 1	1: 3.0	o c	0.611	8.699	2259.829	-2.0	2259.632	-2.0	2259.462	7.596	С	0.244	1:	3.00
10+040.00 R 1	1: 3.0	o c	0.673	8.883	2260.450	-2.0	2260.191	-2.0	2260.075	7.757	С	0.297	1:	3.00
10+060.00 R 1	1: 3.0	00 C	0.734	9.066	2261.070	-2.0	2260.750	-2.0	2260.843	8.384	С	0.506	1:	3.00
10+080.00 R 1	1: 3.0	00 C	0.745	9.101	2261.641	-2.0	2261.309	-2.0	2261.426	8.456	С	0.530	1:	3.00
10+100.00 R 1	1: 3.0	00 C	0.829	9.350	2262.283	-2.0	2261.868	-2.0	2262.118	8.856	С	0.664	1:	3.00
10+120.00 R 1	1: 3.0	00 C	0.887	9.527	2262.901	-2.0	2262.427	-2.0	2262.688	8.888	С	0.674	1:	3.00
10+140.00 R 1	1: 3.0	00 C	0.893	9.544	2263.466	-2.0	2262.986	-2.0	2263.361	9.230	С	0.788	1:	3.00
10+160.00 R 1	1: 3.0	00 C	0.951	9.718	2264.083	-2.0	2263.545	-2.0	2264.169	9.977	С	1.037	1:	3.00
10+180.00 R 1	1: 3.0	00 C	1.141	10.289	2264.832	-2.0	2264.104	-2.0	2264.828	10.277	С	1.137	1:	3.00
10+200.00 R 1	1: 3.0	00 C	1.155	10.329	2265.405	-2.0	2264.663	-2.0	2265.653	11.074	С	1.403	1:	3.00
10+220.00 R 1	1: 3.0	00 C	1.137	10.275	2265.946	-2.0	2265.222	-2.0	2266.380	11.576	С	1.570	1:	3.00
10+240.00 R 1	1: 3.0	00 C	0.674	8.887	2266.042	-2.0	2265.782	-2.0	2266.593	7.478	С	1.225		2.00:1.
10+260.00 R 1DI	1:-15.0	00 C	0.173	8.215	2266.086	-1.4	2266.341	-2.0	2267.119	10.439	С	1.191	1:	3.00
10+280.00 R 1	1: 3.0	00 C	0.398	7.820	2267.052	1.0	2266.900	-2.0	2267.332	9.401	С	0.845	1:	3.00
10+300.00 R 1DI			0.170	7.879	2267.427	2.6	2267.459	-2.6	2267.435	8.194	С	0.425	1:	3.00
10+320.00 R 1DI			0.194	8.235	2267.962	2.6	2268.018	-2.6	2267.790	6.907	С	0.079DL	1:-	15.00
10+340.00 R 1DI	1:-15.0	00 C	0.196	8.264	2268.519	2.6	2268.577	-2.6	2268.546	8.173	С	0.417	1:	3.00
10+360.00 R 1	1: 3.0	00 C	0.520	8.082	2269.495	2.6	2269.136	-2.6	2268.892	6.103	F	0.096	1:	-4.00
10+380.00 R 1	1: 3.0			8.002	2270.011	2.6	2269.679	-2.6	2269.576	7.957	С	0.346	1:	3.00
10+400.00 R 1	1: 3.0			8.346	2270.594	2.6	2270.147	-2.6	2269.872	6.228	F	0.127		-4.00
10+420.00 R 1	1: 3.0	00 C	0.513	8.060	2270.888	2.6	2270.537	-2.6	2269.853	6.524	F	0.536	1:	-1.50
10+440.00 R 1	1: 3.0	00 C	0.730	8.711	2271.417	2.6	2270.848	-2.6	2270.418	6.144	F	0.282	1:	-1.50
10+460.00 R 1	1: 3.0	00 C	0.938	9.336	2271.857	2.6	2271.081	-2.6	2271.541	9.649	С	0.909	1:	3.00
10+480.00 R 1	1: 3.0			8.679	2271.792	2.6	2271.235	-2.6	2271.354	8.625	С	0.568	1:	3.00
10+500.00 R 1	1: 3.0	00 C	0.800	8.921	2271.948	2.6	2271.310	-2.6	2271.423	8.605	С	0.562	1:	3.00


A sample of the notes are shown below:

06/23/97

PRA YELL 13(2) SECTION A EAST ENTRANCE ROAD Designer's Name Here SEEDING REPORT

STATION	SLOPE LT	DISTANCE RT	AVERAGE LT	SLOPE DIST RT	AREA LT	m2 RT	SUBTOTAL LT	AREA RT	m2 BOTH
40.500 00 0			7.803	6.760	157	136			
10+520.00 R 1	7.766	6.259	7.237	6.424	145	129			
10+540.00 R 1	6.709	6.590							
10+560.00 R 1	6.010	5.296	6.359	5.943	128	119			
10,000,00 1, 1	0.010	0.000	5.988	4.485	120	90			
10+580.00 R 1	5.965	3.675	5.309	3.928	107	79			
10+600.00 R 1	4.653	4.182	3.309	3.520	107	75			
10.000 00 0 1			4.325	4.033	87	81			
10+620.00 R 1	3.997	3.885	5.299	3.833	106	77			
10+640.00 R 1	6.602	3.780							
10+660.00 R 1	7.653	3.418	7.128	3.599	143	72			
101000100 K 1		0.110	9.288	5.106	186	103			
10+680.00 R 1	10.924	6.794	12.141	7.950	243	159			
10+700.00 R 1	13.359	9.106	12.171	7.930	243	139	5220	4618	9838
40.000.00.0		10 100	14.207	9.604	285	193			
10+720.00 R 1	15.056	10.102	14.861	10.084	298	202			
10+740.00 R 1	14.667	10.066							

An example of the sorted final results are shown below:

The surveyors should be able to use the electronic copy of this file for uploading into their instruments.

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:		
Number: 15301 Contractor Qu	ality Control	<u>.</u>
DESC	CRIPTION, LOCATION, ETC.	QUANTITY
Per FP-03, Section153.10		
50% of Contract Completed allows	for 50% of payment of Lump Sum Bid Item	
D . Cd I . G . III		
Payment of the Lump Sum will be p	prorated based on the total work completed.	
Original Contract = \$5,0	000,000.00	
Work Completed = \$2,	500,000.00	
Allow 50% of Lump Sum Bi	d Item amount of \$150,000.00	
Payment =	\$75,000.00	\$75,000.00
	TOTAL -	\$75,000.00
I certify that the above quantitused in the construction of this		
Contractor	Project Engineer/I	nspector
NOTE:		
See FP for Method of Measur	ement Section 153	

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project: Date	::	
Number: 15401 Sampling and Testing	<u>.</u>	
DESCRIPTION, LOCATION, ETC.		QUANTITY
Estimate No. 001		
Per FP-96 and FP-154.07 Payment for 25% of Item Lump Sum as follows	:	
Testing Facilities in place and Testing		
Personnel Identified		
Work being Tested has Started		
Pay this Estimate \$125,000.00 @25% = \$31,250.00		31,250.00
	TOTAL	\$31,250.00
I certify that the above quantity was performed and/or used in the construction of this project.		
Contractor	Project Engineer/l	Inspector
NOTE: See EP for Method of Measurement Section 154		

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:		
Number: 15703 Silt Fence	<u>.</u>	
DESC	CRIPTION, LOCATION, ETC.	QUANTITY
Station 3+010 to Station 3+035 Left		25.1
Station 4+200 to Station 4+240 Left		40.3
Station 5+000 to Station 5+010 Righ		10.4
Station 6+100 to Station 6+160 Left		60.5
	C 1 1	136.3
	Subtotal	130.5
	Round to nearest even number	
	TOTAL	13
I certify that the above quantit used in the construction of this		
Contractor	Project Engineer	/Inspector
NOTE:		
See FP for Method of Measure	ement, Section 157.	

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 15703 Filter Barrier, Straw E	3ales	<u>.</u>
DESCRIPTI	ON, LOCATION, ETC.	QUANTITY
Station 3+010 to Station 3+015 Left		15
Station 4+200 to Station 4+220 Left		30
Station 5+000 to Station 5+010 Right		6
Station 6+100 to Station 6+120 Left		30
	TOTAL -	81
I certify that the above quantity was jused in the construction of this project		
Contractor	Project Engineer/	Inspector
NOTE:	a : 155	
See FP for Method of Measurement.	Section 157.	

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

REGION SEVENTEEN DAILY RECORD OF MISCELLANEOUS ITEMS

Project:Date:					
Number: <u>15801 W</u>	ater		<u>.</u>		
	DESCRIPTION, LOCATION, ET	C.	QUANTITY		
Truck No. 205T	Capacity (Cubic Meters) = 15.	14m3	-		
Load No. 1 - 8:15am,	Station 0+200 to Station 0+250 (Compaction,	No Payment)			
Load No. 2 - 9:30am,	Station 0+250 to Station 0+300 (Compaction,	No Payment)			
Load No. 3 - 10:15am,	Station 0+400 to Station 0+450 (Compaction	, No Payment)			
Load No. 4 - 11:30am	, Detour Station 3+000 (Dust Control)		15.14		
Load No. 5 - 1:00pm,	Station 0+200 to Station 0+300 (Compaction,	No Payment)			
Load No. 6 - 2:30pm,	Station 0+450 to Station 0+500 (Compaction,	No Payment)			
Load No. 7 - 3:30pm,	Station 2+400 to Station 2+430 (Compaction,	No Payment)			
Load No. 8 - 4:15pm,	Detour Station 3+000 (Dust Control)		15.14		
Pay Loads	Pay Quantity (Cubic Meters)	Non-Pay Loads			
2	30.3	6			
		TOTAL	30		
•	pove quantity was performed and/or action of this project.				
Cor	ntractor	Project Engineer/	Inspector		
MOTE					

NOTE:

See FP for Method of Measurement, Section 158.

Provide calculations for measurement of truck capacity for approval, prior to production.

_	PR-1348 PORTATI	ON	U.S. DEPARTMENT OF			
				FEDERAL HIGHWAY		
ADMINISTRATION				BUREAU OF PUBLIC		
ROADS			DAILY WATER REI	PORT		
				ATER		
NAME	OF PRO	JECT	WA FHP 32-1(6			
			NORTH CASCADE			
TRUCK 205T	NO.	CAPA	CITY (CUBIC METERS) 15.14	DATE WORK PERFORMED 9-20-80		
LOAD NO.	TIN DELIV		LOCATIN/ STATION TO STATION	USED FOR		
1	8:15	AM	0 + 200 - 0 + 250	COMPACTION		
2	9:30	AM	0 + 250 - 0 + 300	(
3	10:15	AM	0 + 400 - 0 + 450			
4	11:30	MA	DETOUR 3 + 000	DUST CONTROL		
5	1:00 PM		0 + 200 - 0 + 300	COMPACTION		
6	2:30 PM		0 + 450 - 0 + 500			
7	3:30	PM	2 + 400 - 2+ 430			
8	4:15	PM	DETOUR 3 + 000	DUST CONTROL		
			SUMMARY			
PAY LO	DADS	PA	Y QUANTITY (CUBIC ME	ETERS) NON-PAY LOADS		
	2 30.3 6					
	I CERTIFY THAT THIS IS A TRUE AND COMPLETE RECORD OF WATER USED ON THE PROJECT FROM THIS TRUCK.					
SUPE	RINTEN	DENT O	R DRIVER PROJEC	CT ENGINEER OR INSPECTOR		
	ORIGINAL TO PROJECT ENGINEER					

DIVISION 200

EARTHWORK

INDEX

II (2)	
Description	Page
Daily record - item 20101 quantity (m3)	200 – 2, 3
Clearing report	200 - 4
Daily record - item 20204, removal of individual trees	200 – 5
Daily record - item 20401 quantity (m3)	200 – 6
Info. for Progress Payment Excavation Quantities	200 - 7
Cross Section Notes	200 - 8
End Area Computations	200 - 9
Three-dimensional Volume Computation	200 - 10
Truck Measurements	200 - 11, 12
Truck Measurement Certification	200 - 13
Daily record - item 20701 quantity (m2)	200 - 14
Daily record - item 21101 quantity (m2)	200 - 15, 16
Daily record - item 21201 quantity (km)	200 - 17, 18

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

REGION SEVENTEEN DAILY RECORD OF MISCELLANEOUS ITEMS

Project:	Date:			
Number: 20101 Clearing and Grubbing				
DESCRIPTION, LOCATION, ETC.		QUANTITY(ha)		
		0.220		
Station 1+115 to Station 1+250 Left = $135m = 0.23$ ha		0.230		
Station 1+260 to Station 1+330 Left = $0.08m = 0.08$ ha		0.080		
	TOTAL	0.310 ha		
	TOTAL 7			
I certify that the above quantity was performed and/or used in the construction of this project.				
Contractor	Project Enginee	r/Inspector		
NOTE:				

See FP for Method of Measurement, Section 201. The original computed notes may be used for pay notes.

DATE: _	LIN	NE:	PARTY	:		
PROJEC	T:					
PROJECT				<u>ITEM 20101</u>		
	STA	MP		CLEARING		
	T	T	(GRUBBING	j	
DATE	STATION	STATION	meters	RT. LT.	INSP.	
1 + 115	0	0				
			1	10	10	
1 + 105	19 - 17	2				
			3.5	80	280	
1 + 025	23 - 18	5				
			3.5	70	245	
1 + 955	21 - 19	2				
			2	50	100	
0 + 905	22 - 19	2				
			2.5	50	125	
0 + 855	22 - 18	3				
		BEGIN	ABRUPT			
TOTAL					760	

Note: This example is for showing as-built revisions to the Clearing and Grubbing. Normally, a field book listing clearing distances and areas is provided at the beginning of the project.

The original computer notes may be used for pay notes.

WDFD-472 U.S. DEPARTMENT OF TRANSPORTAT PAGE:____
3/83 FEDERAL HIGHWAY ADMINISTRATION
VANCOUVER, WASHINGTON

MISC CONSTRUCTION NOTES

MISC CONSTRUCTION NOTES						
STATION	RIGHT	TOTAL WIDTH	AVG WIDTH	DIST (m)		
		(m)	(m)	m2		
1 + 115	0	0				
			6.5	10	65	
1+105	3 – 16	13				
			8	80	640	
1 + 025	21 – 18	3				
			4.5	70	315	
0 + 955	22 – 16	6				
			10.5	50	525	
0 + 905	3 – 18	15				
			9	50	525	
0 + 855	22 – 18	3				
			TOTAL		1995	
			TOTAL		1773	
Si	milar notes fo	or SELECTI	VE CLEARIN	IG AND		
C COMPUTED			1, 20202, and			
COMPUTED BY: CHECKED BY:						

DATE:

1/11/93

DATE: <u>1/11/92</u>

A partial sample of the notes are shown below:

10/02/98 PRA YELL 13(2) SECTION A
EAST ENTRANCE ROAD
Designer's Name Here

CLEARING REPORT

SUBTOTALS EVERY 700.0000 m . BEGINNING AT STATION 10+700 METHOD INCR ADDITIONAL CLEARING VIA STATION RANGE

11+000 TO 11+500 FOR LEFT SIDE = 10.000 m
11+800 TO 12+000 FOR RIGHT SIDE = 8.000 m
12+100 TO 12+500 FOR LEFT & RIGHT SIDES = 6.000 m

CLEARING DISTANCE STATION EXCEPTION AREA SUBTOTAL AREAS m2 LT RT WIDTH m2 HECTARES 10+020.00 R 1 11.720 10.628 0.000 451 10+040.00 R 1 11.920 10.760 0.000 462 10+060.00 R 1 12.104 11.384 0.000 472 10+080.00 R 1 12.142 11.477 0.000 479 10+100.00 R 1 12.401 11.872 0.000 486 10+120.00 R 1 12.470 11.855 0.000 490 10+140.00 R 1 12.439 12.166 0.000 504 10+160.00 R 1 12.631 13.068

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

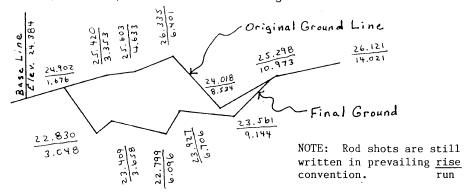
oject:Date:			
Number: 20204 Removal of Individual Trees			
DESCRIPTION, LOCATION, ETC.	QUANTITY(m2)		
Station 1+004, Left	0.55		
1 @ 840 mm diameter [(.420 x .420) x 3.14]			
1 @ 1,549 mm diameter [(.7745 x .7745) x 3.14]	1.88		
Station 0+094, Right			
2 @ 1,677 mm diameter [(.8385 x .8385) x 3.14]	4.42		
TOTAL	6.85		
I certify that the above quantity was performed and/or used in the construction of this project.			
Contractor Project Engine	Project Engineer/Inspector		
NOTE: See FP for Method of Measurement, Section 202.			

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:			
Number: 20401 - Roadway Excavation				
DESCRIPTION, LO	CATION, ETC.	QUANTITY (m3)		
		700		
Station 0+300 to Station 0+400, Left		700		
Station 0+400 to Station 0+550, Left		500		
Station0+550 to Station 0+700, Left		1,100		
Accumulative Total to Date: = 2,300 m3				
Estimated percent complete = 2,300 m3 divided by	195,500 m3 = 0.017%			
	TOTAL	2,300		
I certify that the above quantity was performed used in the construction of this project.	l and/or			
Contractor	Project Engine	Project Engineer/Inspector		
NOTE: See FP for Method of Measurement Section 20	04			

OR PFH 93-1(2)

ESTIMATE NO. 8


STATION 0+030	DESIGN EXCAV. (m3)	DESIGN ACCUM. EXCAV. (m3)	ESTIMATED PERCENT COMPLETE	ESTIMATED m3	ESTIMATED ACCUM. EXCAV. (m3)	REMARKS
to 0+390	13 344.0	13 344.0	85%	11 342.4	11 342.4	
0+394 to 0+505	5 108.0	18 452.0	85%	4 341.8	15 684.2	INCLUDES SUBEX 105.0
0+600 to 0+710 0+750	10 299.0	28 751.0	85%	8 754.2	24 438.4	
to 0+900	4 110.0	32 861.0	85%	3 493.5	27 931.9	
to 1+200	1 867.0	34 728.0	80%	1 493.6	29 425.5	
to 1+475	36.0	34 764.0	. 80%	28.8	29 454.2	CULVERT INLET 10.5
1+500 to 1+675	4 614.0	39 378.0	80%	3 691.2	33 145.5	
to 1+800	225.0	39 603.0	80%	180.0	33 325.5	
to 1+980	472.0	40 075.0	80%	377.6	33 703.1	
to 2+306	7 198.0	42 273.0	80%	5 758.4	39 461.5	
Campground Road (Lt of Station 0+093) 0+005						
to 0+172	5.0	42 278.0	50%	2.5	39 464.0	
to 0+190	52.0	42 330.0	50%	26.0	39 490.0	
Approach Roa						
0+500		42 395.0	100%	65.0	39 555.0	
0+805		42 896.0	100%	501.0	40 056.0	
1+602		43 041.0	100%	145.0	40 201.0	
3+978	22.0	43 063.0	100%	22.0	40 223.0	
GRAND TOTA	L	43 063.0	93%		40 223.0	
LESS PREVIO					0.0	
PAYMENT DU	I HIS MO	NIH			40 223.0	

(NOTE: ROUND TO WHOLE NUMBERS FOR PAYMENT)

(EXAMPLE FOR USE WITH PROGRESS ESTIMATE)

REMARKS AND/OR SKETCHES Combined Section Re-Measure Re-Measure Combined Section Measure Measure 34, 184 34.184 U.S. DEPARTMENT OF TRANSPORTA PAGE. FEDERAL HIGHWAY ADMINISTRATION VANCOUVER, WASHINGTON н н 0.00 6.10 6.10 8.53 8.53 6.10 0.00 5.64 9.91 10.52 10.52 8.08 8.08 3.81 0.00 6.10 6.10 8.53 8.53 6.10 0.00 5.64 9.91 10.52 10.52 8.08 8.08 3.81 0.00 0.00 -6.10 -6.10 -8.53 3.66 5.64 9.91 10.52 10.52 **CROSS-SECTION** 34.184 / 2 = 17.092 m² 0.00 -6.10 -8.53 -8.53 3.81 8.08 8.08 10.52 $34.184 / 2 = 17.092 \, \text{m}^2$ 0.00 0.00 -6.10 -6.10 3.81 5.64 9.91 10.52 READINGS RIGHT 0.00 -6.10 -8.53 3.81 8.08 8.08 ど WDFD-266 9/93 PARTY: Jones, Smith TYPE OF TOPOG X STAMP TYPE OF TOPOG YPEOJECT X STAMP DEGREE +17.092 m)/2](602-588) CROSS -SECTION LEFT = 234.43 m [(17.092 m ELEVATION GRADE GROUND DATE: 4/3/98 LINE: "L" 0+601.980 0+588.260 STATION

In this example the computation is made with actual ground elevations.

Readings are set down in a clockwise direction around the figure, beginning and ending at the same point. Note that this point is referred vertically to the base elevation (0.0) and that this 0.0 reading is also repeated; thus:

$$\left(\frac{24.384}{0.000}\right) \\ \frac{0.000}{1.676} \\ \frac{24.902}{1.676} \\ \frac{25.420}{3.353} \\ \frac{25.603}{4.633} \\ \frac{26.335}{6.401} \\ \frac{24.018}{8.534} \\ \frac{25.298}{10.973} \\ \frac{23.561}{9.144} \\ \frac{23.927}{6.706} \\ \frac{22.799}{6.096} \\ \frac{23.409}{3.658} \\ \frac{22.830}{3.048} \\ \frac{24.902}{1.676} \\ \frac{0.000}{1.676} \\ \frac{1.676}{1.676} \\ \frac{1.676}{1$$

Plus and minus signs are not necessary so long as the figure is entirely on one side of the base lines; however, the algebraic difference is essential in the following computation. Note the signs carefully.

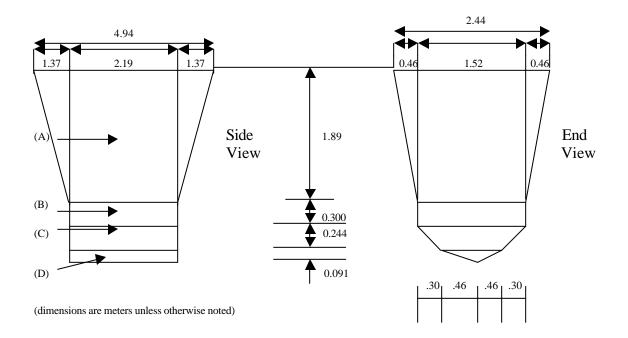
```
24.902 \times (-1.676 + 3.353) =
                                            41.761
25.420 \times (-1.676 + 4.633) =
                                            75.167
25.603 \times (-3.353 + 6.401) =
                                            78.038
26.335 \times (-4.633 + 8.534) =
                                           102.733
24.018 \times (-6.401 + 10.973) =
                                           109.810
25.298 \times (-8.534 + 9.144) =
                                            15.432
23.561 \times (-10.973 + 6.706) =
                                            100.535
23.927 \times (-9.144 + 6.096) =
                                            72.929
22.799 \times (-6.706 + 3.658) =
                                            69.491
23.409 \times (-6.096 + 3.048) =
                                            71.351
22.830 \times (-3.658 + 1.676) =
                                            45.249
24.902 \times (-3.048 + 1.676) =
                                            34.166
Double End Area =
                                             29.220
Area =
                                             14.610
```

Computation of Area of Any Irregular Section (by Crisscross Method)

EXAMPLE FOR END AREA COMPUTATION

200 - 10

		: I	PARTY:		
PROJECT: PROJECT STAMP				<u>UTATION (</u> ISIONAL V	
DATE	STATION	STATION	LENGTH (m)	WIDTH (m)	DEPTH (m)
7/10/03	1 +036	1+436	400.0	12.0	3.0
7/17/03	1+890	1+760	870.0	11.0	3.0
8/15/03	1+114	3+464	350.0	6.0	3.0
TOTAL					


WDFD-472 U.S. DEPARTMENT OF TRANSPORTAT PAGE:____ FEDERAL HIGHWAY ADMINISTRATION 3/83 VANCOUVER, WASHINGTON

MISC CONSTRUCTION NOTES					
VOLUME (m3)	INSP.				
14400	ABC				
28710	ABC				
6300	ABC				
46410					
COMPUTED F	3Y:	<u> </u>	CHE	ECKED BY:	<u> </u>

COMI CIED BI.	_CHECKED D1
DATE:	DATE:

Truck Measurement Example

Truck No. ? (tractor) Trailer No. ? (belly dump) **Project Name** XXXXXXXXXXXX Project Number XX XXX XXXX (X)

Volume (A) (Use prismoidal formula,
$$V = \underline{h} (A_1 + (4A_m + A_2))$$

$$h = 1.89$$

$$A_1 = 4.94 \times 2.44 = 12.05$$

$$A_2 = 2.19 \times 1.52 = 3.33$$

$$A_1 = 4.94 \times 2.44 = 12.05 \qquad \qquad A_2 = 2.19 \times 1.52 = 3.33 \qquad \qquad A_m = \underbrace{(4.94 + 2.19)}_2 \times \underbrace{(2.44 + 1.52)}_2 = 7.07$$

$$V = \underbrace{1.89}_{h} (12.05 + (4 \times 7.07) + 3.33) = 13.753$$

Volume (B)

$$V = 2.19 \times 1.52 \times 0.30$$

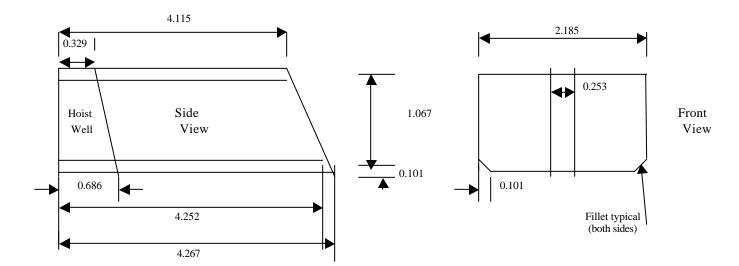
$$= 0.999$$

Volume (C)

$$V = 2.19 \times 1.52 + 0.92 \times 0.244 = 0.652$$

Volume (D)

$$V = 2.19 \times \frac{0.92}{2} \times 0.091 = 0.092$$


Total Volume = 15.496 m^3

Checked By: _____ Composed By: _____

Truck Measurement Example

Truck No. ? (tractor)
Trailer No. ? (belly dump)
License No. XXXXXXX

(dimensions are meters unless otherwise noted)

Volume

$$\frac{4.115 + 4.267}{2} \times 2.185 \times 1.067 = 9.771$$

Less Hoist Well

$$0.686 + 0.329 \times 0.253 \times 1.067 = -0.137 \text{ (minus)}$$

Less Fillets

Total Volume = 9.591 m^3

NOTE

The above computations are for illustration only, and not necessarily part of survey notes. However, to ensure measurements are adequate, the surveyor might make at least rough computations for complicated shapes.

Composed By:	Checked Bv:
Composed Dy:	Checked Dy:

CERTIFICATION

Date:	
Truck No N	Measured Volume:
Owner:	
It is mutually agreed to, by No Name Bros., an Division, that the above listed truck will be pa	.
Agreed volume by both parties =	Cubic Meters.
It is also agreed to, by both parties, that if the Inspector(s) think that a truck is not loaded to the cubic meters accordingly for that particula	the agreed volume, then the right to reduce r load.
FOR THE CONTRACTOR: No Name Bros.,	Inc.:
Name:	Date:
Title:	
For Western Federal Lands Highway Division	1:
Name:	Date:
Title:	

^{*} See attached computations.

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 20701 - Earthwork Geotextile, Typ	e-I-A	_
DESCRIPTION, L	OCATION, ETC.	QUANTITY (m2)
Station 0+092 to 0+160 Left Lane (4.5 m width)	(68 m x 4.5m) = 306 m	306
Station 0+403 to 0+600, Full Width (9 m width) ((197 m x 9 m) = 1,773 m	1,773
Station 2+700 to 3+005, Right Lane (4.5 m width) (305 m x 4.5 m) = 1,373 m	1,373
	TOTAL	3,452
I certify that the above quantity was performed used in the construction of this project.	ed and/or	
Contractor	Project Engine	er/Inspector
NOTE: See FP for Method of Measurement, Section	207.	

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	D	Pate:	
Number: <u>2110</u>	01 - Roadway Obliteration		
	DESCRIPTION, LOCATION, E	TC.	QUANTITY (m2)
Station 2+000	9 m Left and 12 m Right Total width = 21 m		
	Average width =21.5	Distance = 20 m	430
Station 2+980	10m Left and 12 m Right Total width = 22 m		
	Average width =21.5	Distance = 20 m	430
Station 2+960	8 m Left and 13 m Right Total width = 21 m		
	Average width =21.5	Distance = 20 m	430
Station 2+940	9 m Left and 14 m Right Total width = 22 m		
	Average width =21.5	Distance = 20 m	430
Station 2+920	9 m Left and 12 m Right Total width = 21 m		
	Average width =21	Distance = 20 m	420
Station 2+900	9 m Left and 12 m Right Total width = 21 m		
	Average width =21.5	Distance = 20 m	430
Station 2+880	9 m Left and 13 m Right Total width = 22 m		
		TOTAL	2570
•	ne above quantity was performed and/or astruction of this project.		
	Contractor	Project Engine	eer/Inspector
NOTE: See FP for Me	thod of Measurement, Section 211.		

200 - 16

DATE:	LINE:	PARTY:	
PROJECT:			
	PROJECT		ITEM 21101
	STAMP		ROADWAY
			OBLITERATION

0	1			ı	1	
STATION	WIDTH LT RT (m) (m)		TOTAL	AVG	DISTANCE	
STATION			WIDTH (m)	WIDTH (m)	(m)	
2+000	9	12	21	(111)		
21000		12	21	21.5	20	
				21.5	20	
2+980	10	12	22			
				21.5	20	
2+960	8	13	21			
				21.5	20	
2+940	9	14	22			
				21.5	20	
2+920	9	12	21			
				21	20	
2+900	9	12	21			
				21.5	20	
2+880	9	13	22			

WDFD-472 U.S. DEPARTMENT OF TRANSPORTAT PAGE:_____
3/83 FEDERAL HIGHWAY ADMINISTRATION
VANCOUVER, WASHINGTON

MISC CONSTRUCTION NOTES

AREA (m2)			
430			
430			
430			
430			
420			
-			
430			
2570	TOTAL		
_			

COMPUT	ED BY:	CHECKED BY:	
DATE:	1/11/92	DATE:	1/11/93

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 21201 - Linear Grading		
DESCRIPTIO	ON, LOCATION, ETC.	QUANTITY (Km)
		1.105
Station 1+005 to Station 2+200 = 1,195 m =	= 1.195 Km	1.195
	_	
	TOTAL	1.19:
I certify that the above quantity was perfused in the construction of this project.	formed and/or	
Contractor	Project Engine	eer/Inspector
NOTE:		
See FP for Method of Measurement, Sec	etion 212.	

7)
2)
\subset)
- 1	
\vdash	4
\propto)

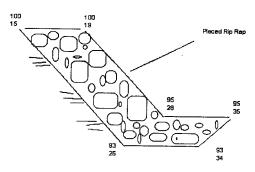
DATE: PROJECT:	LINE: _ PROJECT STAMP		ARTY: <u>ITEM 2</u> LINEA	'G		/DFD-472 /83	FEDE V	RAL HIGH ANCOUVI	OF TRANSPO WAY ADMI ER, WASHIN	NISTRATIO GTON	
DATE	FROM STATION	TO STATION	STA DISTANCE	INSP	=1						
1/24/93	1+005	2+200	1,195 m	ABC	_						
1/30/93	2+400	3+005	605 m	ABC	- -						
					-						
TOTAL	STATIONS		1,800 m		_						
					-						
					-						
					=						
					-						
					-						
					_						
					-						
					_						
					_						
					-						
					-						
					_						

COMPUTED BY: ABC	CHECKED BY:	JKD
DATE:	DATE:	

DIVISION 250

STRUCTURAL EMBANKMENT

INDEX


Description	Page
Daily record - item 25103	250 – 2
quantity (m3) (measurement of	
riprap in place)	
Measurement of riprap in place	250 - 3
Daily record - item 25101	250 – 4
quantity (t)	
Examples of daily weight	250 – 5, 6, 7
records, tare chart and street	
delivery reports (scaled)	
Daily record - item 25101	250 - 8, 9
quantity (m3) (truck	
measurement)	
Example of truck measurement	250 - 10
Truck certification	250 - 11
Daily record - item 25303	250 - 12
quantity	
Examples of gabion walls	250 - 13, 14, 15

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 25103 - Keyed Riprap		
DESCRIPTION, LOCAT	TION, ETC.	QUANTITY (m3)
Station 1+005 - End Section		
Area Volume = 215.0		215.0
Station 1+015		
Area Volume = 729.3		729.3
Station 1+030		
Area Volume = 789.3		789.3
Station 1+045		
Area Volume = 695.3		695.3
Station 1+060		
Area Volume = 208.5		208.5
Station 1+070 - End Section		
* See attached measurement and computations.		
	TOTAL	2,637
I certify that the above quantity was performed and used in the construction of this project.	/or	
Contractor	Project Engine	eer/Inspector
NOTE: See FP for Method of Measurement, Section 251.		

Criss-Cross average end area method using elevations and distance

Statio	n										
1005	0.0	End sect	tion								
	0.0								0.0		
										Volume	215.0
1015	100.0	100.0	95.0	95.0	93.0	93.0	100.0	100.0	1		
	15.0	19.0	28.0	35.0	34.0	26.0	15.0	19.0			
		1300.0	1520.0	570.0	-837.0	-1767.0	-700.0		43.0		
									Area		
										Volume	729.3
1030	98.9	99.0	94.0	93.8	91.7	91.5	98.9	99.0			
	15.0	19.0	29.0	34.8	33.5	25.0	15.0	19.0			
		1386.0	1485.2	422.1	-898.7	-1692.8	-593.4		54.2		
									Area		
										Volume	789.3
1045	100.0	100.0	95.0	95.0	93.0	93.0	100.0	100.0			
	15.5	20.0	28.0	36.0	35.0	24.5	15.5	20.0			
		1250.0	1520.0	665.0		-1813.5		_0.0	51.0		
									Area		
										volume	695.3
1060	101.3	101.7	96.2	96.2	94.5	94.5	101.3	101.7			
	15.0	19.0	28.0	35.0	34.0	26.0	15.0	19.0			
		1322.1	1539.2	577.2	-850.5	-1795.5	-709.1		41.7		
									Area		
										Volume	208.5
1070		End section	on						0.0		
	0.0								Area		
										Total	2637.4 cubic meters

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 25101 - Placed Riprap		
DESCRIPTIO	ON, LOCATION, ETC.	QUANTITY (t)
Station 0+085 to 0+200 Left		205.0
* See attached documentation.		
	TOTAL -	205.0
I certify that the above quantity was per used in the construction of this project.	formed and/or	
Contractor	Project Engine	eer/Inspector
NOTE:		
See FP for Method of Measurement, Sec	ction 251.	

WFLHD-422 (Rev 12/90)	DAILY WEIGHT RECORD	PAGE NO
PROJECT:		
ITEM NO.: 25101 Placed Riprap		DATE
SOLIDCE NO :	Day Lot No.	SHEET NO 1 OF 1

LOAD NO.	TRUCK NO.	TIME	GROSS MASS (KG)	LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)	LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)
1	37	8:35am	35 600								
2	42	8:44am	35 800								
3	32	8:52am	34 000								
4	36	9:03am	34 500								
5	37	9:11am	36 000								
6	42	9:20am	35 900								
7	32	9:30am	36 100								
8	36	9:41am	35 900								
9	37	9:53am	35 700								
10	42	10:02am	36 000								
				DAILY SUMMARY MASS (kg) <u>355,500</u> TARE (kg) <u>150,500</u>		OFFICE USI	E ONLY	delivery r	appearing eport will isfactory e	be deleted	
				NET (kg) 205,000 Metric ton 205.0 WEIGHED BY: S. Worth				IN	CERTIFY '	'ION	
									DATE	4/25/2	.003
-				CHECKE	ED BY:	ABC					
m 15									COMPAN	NI <u>AYZ (</u>	Construction
Truck Re	e-weigh				A CDEE Y	TI -] DOEGNA	VT A CREE	т.		
					AGREE WI	<u> </u>	-		Inspecto		
					A GREE WI		-		E Inspecto		
					AGREE WI] DOES NO	OT AGREE	E Inspecto	or:	
ı	ı	ı	ı	ı	250	- 5					

TARE CHART

PAGE NO._____

PROJECT:		WILL BE DELETED U SATISFACTORILY E			
TEM NO.: 25101 Placed Riprap	<u> </u>			DATE	
SOURCE NO.: Magpie Pit	_	Pay Lot No.:		SHEET NO). <u>1</u> OF <u>1</u>
TRUCK NO.	37	42	32	36	
TARE 1 (kg)	15 000	15 100	15 200	14 900	
TARE 2 (kg)					
TARE 3 (kg)					
TARE AVERAGE (kg)	15 000	15 100	15 200	14 900	
TRUCK TALLY	1 1 1	1 1 1	1.1	1.1	
NUMBER LOADS	3	3	2	2	
TARE WEIGHT (kg)	45,000	45,300	30,400	29,800	
TRUCK NO.					
TARE 1 (kg)					
TARE 2 (kg)					
TARE 3 (kg)					
TARE AVERAGE (kg)					
TRUCK TALLY					
NUMBER LOADS					
TARE WEIGHT (kg)					
TRUCK NO.					
TARE 1 (kg)					
TARE 2 (kg)					
TARE 3 (kg)					
TARE AVERAGE (kg)					
TRUCK TALLY					
NUMBER LOADS					
TARE WEIGHT (kg)					
TOTAL TARE WEIGHT	150,500.0 kg		I CERTIFY 'COBY:		C T

DATE: COMPANY:

WFI	LHD-434
(Rev	12/90)

STREET DELIVERY REPORT SPREAD REPORT

PAGE NO.		

PROJECT:							
ITEM NO.: <u>2510</u>	1 Placed Riprap			DATE			_
SOURCE NO:	Magnie Pit	Pay Lot No:		SHEET NO	1	OF	1

LOAD NO.	TRUCK NO.	TIME	STATION TO STATION	REMARKS	LOAD NO.	TRUCK NO.	TIME	STATION TO STATION	REMARKS
1	37	8:53am	0+085	Left					
2	42	9:03am	0+110	Lt					
3	32	8:12am	"	Right					
4	36	9:21am	"	Rt Approach					
5	37	9:30am	0+200	Lt					
6	42	9:42am	0+210	Lt					
7	32	9:50am	0+110	Lt					
8	36	9:59am	0+220	Lt					
9	37	10:11am	0+220	Rt					
10	42	10:20am	0+200	Rt					

CERTIFICATION

I CERTIFY THAT THE ABOVE LOADS WERE PLACED AS SHOWN AND ARE THE SOLE BASIS FOR PAYMENT.

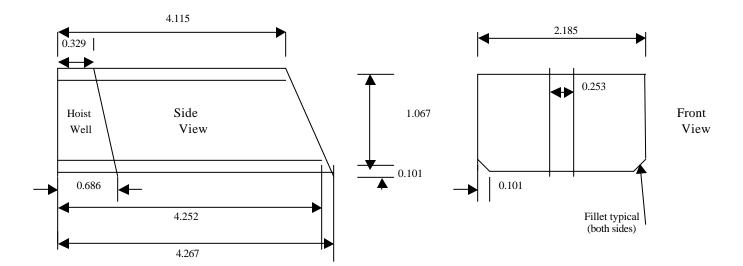
Contractor signature	Received by:	Date	
COHITACIOI SIGNALUIC	NCCCIVCUIV.	Date	

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

REGION SEVENTEEN DAILY RECORD OF MISCELLANEOUS ITEMS

Project: Dat	te:	
Number: 25101 - Placed Riprap		
DESCRIPTION, LOCATION, ET	C.	QUANTITY (m3)
Station 0+085 to 0+200 Left Lane		93
Station 01005 to 01200 Ecit Lanc		
* See attached truck measurement summary and truck volume com	nputations.	
	TOTAL	93
	TOTAL	
I certify that the above quantity was performed and/or used in the construction of this project.		
Contractor	Project Engine	er/Inspector
NOTE: See FP for Method of Measurement Section 251		

This Method of Measurement is not normal practice for Item No. 25101.


WFLHD-422 (Rev 12/90)	DAILY WEIGHT RECORD	PAGE NO
PROJECT:		
ITEM NO.: 25101 Placed Riprap		DATE
SOURCE NO.:	Pay Lot No.:	SHEET NO1OF1

LOAD NO.	TRUCK NO.	TIME	GROSS VOLUME	LOAD NO.	TRUCK NO.	TIME	GROSS VOLUME	LOAD NO.	TRUCK NO.	TIME	GROSS VOLUME
NO.				NO.	NO.		VOLUME	NO.	NO.		VOLUME
1	37	8:35am	9.3								
2	42	8:44am	9.3								
3	32	8:52am	9.3								
4	36	9:03am	9.3								
5	37	9:11am	9.3								
6	42	9:20am	9.3								
7	32	9:30am	9.3								
8	36	9:41am	9.3								
9	37	9:53am	9.3								
10	42	10:02am	9.3								
				DAI	LY SUMM	ARY	OFFICE USE	ONII W		appearing	
				TARE			OFFICE USE	CONLI	delivery r	eport will b isfactory ex	ne deleted
				NET						CERTIFY 7	
				m3		93.0				FORMAT	
				WEIGHI	ED BY: <u>Tru</u>	ck Meas					
				CHECK	ED BY:				DATE _		
									COMPAN	NY	
Truck Re	-weigh						<u> </u>		<u> </u>		
					AGREE WI	тн Г	DOES NO	OT AGREE	E Inspecto	or:	
					AGREE WI	тн 🗀	DOES NO	OT AGRE	E Inspecto	or:	
					AGREE WI	тн 🗀	DOES NO	OT AGRE	E Inspecto	or:	
					250	 - 9					

Truck Measurement Example

Truck No. ? (tractor)
Trailer No. ? (belly dump)
License No. XXXXXXX

(dimensions are meters unless otherwise noted)

Volume

$$\frac{4.115 + 4.267}{2} \times 2.185 \times 1.067 = 9.771$$

Less Hoist Well

$$0.686 + 0.329 \times 0.253 \times 1.067 = -0.137 \text{ (minus)}$$

Less Fillets

Total Volume = 9.591 m^3

NOTE

The above computations are for illustration only, and not necessarily part of survey notes. However, to ensure measurements are adequate, the surveyor might make at least rough computations for complicated shapes.

Composed By: _____ Checked By: ____

CERTIFICATION

Date:	
Truck No	Measured Volume:
Owner:	
It is mutually agreed to, by No Name Bros., a Division, that the above listed truck will be pa	
Agreed volume by both parties =	Cubic Meters.
It is also agreed to, by both parties, that if the Inspector(s) think that a truck is not loaded to the cubic meters accordingly for that particular FOR THE CONTRACTOR: No Name Bros.,	the agreed volume, then the right to reduce ar load.
Name:	
Title:	
For Western Federal Lands Highway Division	n:
Name:	Date:
Title:	

^{*} See attached computations.

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

REGION SEVENTEEN DAILY RECORD OF MISCELLANEOUS ITEMS

Date:

Numbe	er: <u>25303 G</u>	abions				
		DES	CRIPTION, LOCA	TION, ETC.		QUANTITY (m3)
Row	Height	Length	No. of Baskets	m3		
1	0.915	2.750	8	20.13		20.13
2	0.915	2.750	11	27.679		27.68
3	0.915	2.750	13	32.711		32.71
4	0.915	2.750	14	35.228		35.23
5	0.915	3.660	1	3.349		3.35
						_
					TOTAL T	119
		pove quantity	y was performed an project.	nd/or		
	Co	ontractor		-	Project Engine	er/Inspector

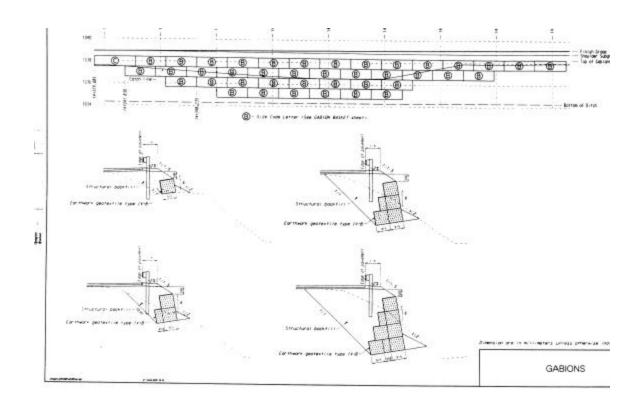
NOTE:

Project:

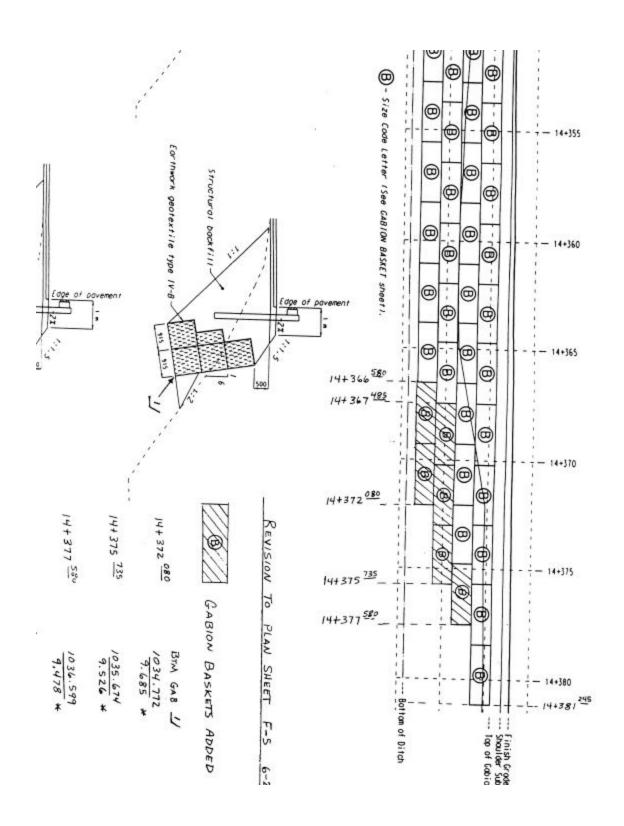
^{*} See FP for Method of Measurement, Section 253.

^{*} Measuring individual baskets as shown in the example may not provide the true face of wall square meter measurement. Review measurement method prior to completion of documentation.

250 - 13


DATE:	LINE:	PARTY:	
PROJECT:			
	PROJECT		ITEM 25303
	CTAMD		CARIONS

0				
STATION	No. A;s	m2	No. B's	m2
0+080				
ТО	1	1.67	14	35.14
0+150				


WDFD-472 U.S. DEPARTMENT OF TRANSPORTAT PAGE:_____ 3/83 FEDERAL HIGHWAY ADMINISTRATION VANCOUVER, WASHINGTON

MISC CONSTRUCTION NOTES

	No. C's	m2			Total m2
	1	3.35			40.16
NOTE:		Gabion Baskets	Height (m)	Length (m)	Front Face (m2)
	A	A	0.915	1.83	1.67
	В	В	0.915	2.75	2.51
	С	C	0.915	3.66	3.35
COMPUTE	ED BY:			KED BY:	
DATE:		DAT	E:		

Size Code	W1	Walter Street	Di-	
	Size in	meters	Diaphragm	Capacity
Letter	Length	Height	Partitions	m3
A	1.83	0.9/5	1	1.5
В	2.75	0.9/5	2	2.3
C	3.66	0.9/5	3	3.1
X	4.58	0.9/5	4	3.8
7	5.49	0.9/5	5	4.6
D	1.83	0.45	1	0.8
E	2,75	0.45	2	1.1
F	3.66	0.45	3	1.5
G	1.83	0.30	1	0.5
Н	2.75	0.30	2	0.8
1	3.66	0.30	3	1.0

DIVISION 300

Aggregate Courses

INDEX

Description	Page
Daily record - item 30101 quantity (m3)	300 – 2
Example of daily weight record, tare chart and spread report	300 – 3, 4, 5
Example daily weight record using belt scale	300 – 6
Weight ticket	300 - 7
Contractor's submittal letter for target values	300 - 8

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 30101 - Aggregate Base, Gr		
DESCRIPT	TION, LOCATION, ETC.	QUANTITY (t)
Station 1+100 to 1+815 Left Lane		684.5
* See attached documentation		
	TOTAL	684.:
I certify that the above quantity was p used in the construction of this projec		
Contractor	Project En	ngineer/Inspector
NOTE: See FP for Method of Measurement, S	Section 301	

DAILY WEIGHT RECORD

(Rev 12/90					DAILY WEIG	IHI KECUK	<u>D</u>				
PROJECT	:										
ITEM NO	.: 30101,	Aggregate B	Base	-					DATE		_
SOURCE	NO.: <u>63</u>	4-55142		-	Pay Lot No.:	1			SHEET	NO1_	_OF <u>1</u>
LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)	LOAI NO.	TRUCK NO.	TIME	GROSS MASS (kg)	LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)
1	63	8:00 am	24,500	41	63	3:50pm	24,400				
2	72	8:10 am	24,400	42	56	4:05pm					
		8:25 am	24,600			1	,				
4	109	8:35 am	23,900								
	32	8:50 am	24,500								
6	56	9:05 am	24,600								
7	63	9:10 am	25,000								
8	72	9:25 am	24,400								
9	101	9:35 am	24,900								
10	109	9:55 am	24,500								
11	32	10:10 am	24,700								
12	63	10:20 am	24,400								
13	72	10:30 am	24,000								
14	101	10:35 am	24,900								
15	109	10:45 am	23,900								
16	32	11:00 am	24,500								
17	63	11:10 am	24,800								
18	72	11:25 am	24,400								
19	101	11:35 am	24,900								
20	109	11:50 am	24,700								
21	32	11:55 am	24,500								
22	63	12:35 am	24,500								
23	101	12:40 am	24,400								
24	72	12:50 pm	24,800								
25	109	1:05 pm	23,900								
26	32	1:15 pm	24,000								
27	56	1:25 pm	24,500								
28	63	1:35 pm	24,600								
29	73	1:45 pm	24,800								
30	101	1:55 pm	24,500								
31	109	2:05 pm	23,900		DAIL MOLINA	AADX	<u> </u>		T 1		
32	32	2:20 pm	24,400	MAS	DAILY SUMN	MAR 1 29, 900	OFFICE U	JSE ONLY		ot appearing	be deleted
33	63	2:25 pm	24,600	TAR		45, 500				atisfactory	
34	72	2:40 pm	24,500	NET		84, 450					NFORMATIO
35	101	2:50 pm	24,500	Metr	ic tons	<u>684.45</u>			SIGNED)	
36	109	3:00 pm	24,800		OHER DA		,		D		
37	63	3:15 pm	24,600	WEI	GHED BY:	ABC			DATE		
38	72	3:30 pm	24,700	CHE	CKED BY:	JKD			СОМРА	NY XY7	Z Construction
39	101	3:35 pm	24,500			UILD					
40	109	3:40 pm	23,900				I		II		
Truck Re	-weigh				V CDEE MI	ти	DOESNO	т аспес	Ingrast	\r.	
					AGREE ₃₀₀ I		<u>]</u> 1	OT AGREE	_		
					AGREE WI	TH	DOES NO	OT AGREE	Inspecto	or:	·

AGREE WITH

DOES NOT AGREE Inspector:___

TARE CHART

PAGE NO._____

LOADS NOT APPEARING ON

PROJECT:		STREET DELIVER WILL BE DELETE SATISFACTORIL	RY REPORT ED UNLESS				
ITEM NO.: 30101, Aggregate	e Base			DATE _			
SOURCE NO.: <u>634-5514</u>		Pay Lot No.:	1	SHEET NO. <u>1</u> OF <u>1</u>			
TRUCK NO.	63	72	101	109	32		
TARE 1 (kg)	8400	8300	8500	8700	8500		
TARE 2 (kg)	8300	8100	8300	8600	8400		
TARE 3 (kg)		8200					
TARE AVERAGE (kg)	8350	8200	8400	8650	8450		
TRUCK TALLY	M11111	M III	M III	M III	M I		
NUMBER LOADS	9	7	8	8	6		
TARE WEIGHT (kg)	75,150	57,400	67,200	69,200	50,700		
TRUCK NO.	56						
TARE 1 (kg)	8600						
TARE 2 (kg)							
TARE 3 (kg)							
TARE AVERAGE (kg)	8600						
TRUCK TALLY							
NUMBER LOADS	3						
TARE WEIGHT (kg)	25,800						
TRUCK NO.							
TARE 1 (kg)							
TARE 2 (kg)							
TARE 3 (kg)							
TARE AVERAGE (kg)							
TRUCK TALLY							
NUMBER LOADS							
TARE WHGHT (kg)							
TOTAL TARE WEIGHT	345, 450 kg	· 	C O BY: DATE:	THIS INFORMAT R R E	C T		

WFLHD-434 (Rev 12/90)

STREET DELIVERY REPORT SPREAD REPORT

|--|

PROJECT:			
ITEM NO.: 30101, Aggregate Base			DATE
SOURCE NO.: 634-55142	Pay Lot No.:	1	SHEET NO. 1 OF 1

LOAD NO.	TRUCK NO.	TIME	STATION TO STATION	REMARKS	LOAD NO.	TRUCK NO.	TIME	STATION TO STATION	REMARKS
1	63	8:25am	1+100	Right Lane	26	32	1:40pm	1+200	Left Lane
2	72	8:35am	0+140	٠.	27	56	1:50pm	1+230	"
3	109	8:55am	0+170		28	63	2:00pm	1+270	"
4	101	9:00am	0+205		29	72	2:10pm	1+305	"
5	32	9:15am	0+230		30	101	2:20pm	1+340	"
6	56	9:30am	0+310		31	109	2:30pm	1+390	"
7	63	9:45am	0+360	"	32	32	2:45pm	1+420	"
8	101	9:55am	0+390		33	63	3:00pm	1+480	"
9	72	10:05am	0+450		34	72	3:05pm	1+520	"
10	109	10:20am	0+490		35	101	3:15pm	1+570	"
11	32	10:35am	0+510		36	109	3:25pm	1+575	Approach Lef
12	63	10:45am	0+580		37	63	3:40pm	1+660	"
13	72	11:05am	0+620		38	72	3:50pm	1+705	"
14	109	11:15am	0+700		39	101	4:00pm	1+725	"
15	101	11:25am	0+730		40	109	4:15pm	1+775	"
16	32	11:30am	0+795		41	63	4:20pm	1+790	"
17	63	11:45am	0+820		42	56	4:30pm	1+815	"
18	72	11:55am	0+870	VOID					
19	101	12:05pm	0+890	Right Lane					
20	109	12:30p m	0+920						
21	32	12:35pm	0+030	Approach Right			NOTE:	Enter station wl	here
22	63	1:00pm	0+980	Right Lane				The second secon	
23	101	1:05pm	0+020						
24	72	1:15pm	1+100	Left Lane					
25	109	1:30pm	1+160						
	l	_		_	<u> </u>		1		

CERTIFICATION

I CERTIFY THAT THE ABOVE LOADS WERE PLACED AS SHOWN AND ARE THE SOLE BASIS FOR PAYMENT.

Contractor signature Rece	eived by:I	Date

DAILY WEIGHT RECORD

DDOIEC	-,			Ex	ample utilizii	ng Belt Scale	es				
PROJECT	l:	· · · · · · · · · · · · · · · · · · ·									
ITEM NO	D.: <u>30101</u> .	, Aggregate Ba	se	-					DATE		_
SOURCE	NO.: <u>63</u>	34-55142		P	ay Lot No.:	1			SHEET	NO. <u>1</u>	_OF <u>1</u>
LOAD NO.	TRUCK NO.	TIME	GROSS MASS	LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)	LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)
1	63	8:00 am	(t)	41	63	3:50pm					
2	72	8:10 am		42	56	4:05pm					
3	101	8:25 am			30	поэрш					
4	109	8:35 am									
5	32	8:50 am									
6	56	9:05 am									
7	63	9:10 am									
8	72	9:25 am									
9	101	9:35 am									
10	109	9:55 am									
11	32	10:10 am									
12	63	10:20 am									
13	72	10:30 am									
14	101	10:35 am									
15	109	10:45 am									
16	32	11:00 am									
17	63	11:10 am									
18	72	11:25 am									
19	101	11:35 am									
20	109	11:50 am									
21	32	11:55 am									
22	63	12:35 am									
23	101	12:40 am									
24	72	12:50 pm									
25	109	1:05 pm									
26	32	1:15 pm									
27	56	1:25 pm									
28	63	1:35 pm									
29	73	1:45 pm									
30	101	1:55 pm									
31	109	2:05 pm		DA	AILY SUMN	AADV			Londano	t appearing	a on stroot
32	32	2:20 pm			ding 7		OFFICE U	JSE ONLY		report will	
33	63	2:25 pm			eading 10					tisfactory	
34	72	2:40 pm		NET kg	6	84,747					NFORMATIO
35	101	2:50 pm		Metric to	onne	<u>684.75</u>			SIGNED		
36	109	3:00 pm		WEIGH	ED BV:	۸ D <i>(</i>	,		DATE		
37	63	3:15 pm		WEIGH	ED BY:	ADC	-		DAIE _		
38	72	3:30 pm		CHECK	ED BY:	JKD			COMPA	NY <u>XYZ</u>	Z Construction
39	101	3:35 pm		-							
40	109	3:40 pm		ļii			I		II .		
Truck Re	-weign	1		ı 🦳 4	AGREE ₃ WI	тн Г	DOES NO	T AGREE	Inspecto	or:	
					AGREE WI		DOES NO	OT AGREE	Inspecto	or:	
					AGREE WI	тн 🔚	DOES NO	OT AGREE	Inspecto	r:	

WEIGHT TICKETS

SOMEWHERE ROAD PROJECT ABC CONTRACTORS

PROJECT: PFH 123-4(5) TICKET NO.: 6789 LOAD NO.: 15

ITEM NO. 30104 - SUB-BASE AGGREGATE, GRADING A

Date: 10/16/2004 TIME LOADED: 07:45

TIME DUMPED: 08:05

LOCATION DUMPED: Sta. 0+080 to 0+093

Truck No. 12 GROSS (kg) 35,850

TARE (kg) 15,650

NET (kg) 20,200

ACCUMMULATIVE DAY NET: 1,113.750

Please provide the following information on all weight tickets.

- (1) Project Number
- (2) Item Number and Description
- (3) Date
- (4) Time
- (5) Ticket Number
- (6) Haul Unit Number
- (7) Net Mass in load at least to the nearest 50 kilograms
- (8) Subtotal net mass for each haul unit since the beginning of the shift
- (9) Accumulated total net mass for all haul units since beginning of the shift

^{*} Sample Weight Ticket printed at electronic scale.

Time and station of placement added at project by spread person
Can utilize similar ticket for aggregate or asphalt items.

ABC Contractors Project Office P.O. Box 1234 Anywhere, USA 56789

Phone No.: 123-456-7891 Fax No.: 123-456-7892

April 20, 2004

Serial Letter No. 26

Mr. U. R. Bright, Project Engineer Federal Highway Administration 12345 Slam Dunk Road Somewhere, USA 56789

RE: Somewhere Road Project

Target Values for Sub-Base Aggregate

Item No. 30104

Dear Mr. Bright:

We submit our 180 kg sample to which the "Humphres Method of Granular Soils" is to be performed for the 30101, Aggregate Base, Grading A.

Following are the target values for the aggregate samples:

Grading A	Percent Mass Passing Sieve
63 mm	100
50 mm	97 - 100
37.5 mm	
25 mm	65 - 79
19 mm	
12.5 mm	45 - 59
9.5 mm	
4.75 mm	28 - 42
425 um	9 - 17
75 um	10 max

Sincerely,

Johnny Sunshine Project Superintendent

^{*} Provide Target Values for all Specification and Intermediate Screens.

DIVISION 400

Asphalt Pavements and Surface Treatments

INDEX

Description	Page					
Daily record - item 40101 quantity (m3)	400 – 2					
Example of daily weight record, tare chart and spread report	400 – 3, 4, 5					
Example daily weight record using belt scale	400 - 6					
Weight ticket	400 - 7					
Daily record - item 40901 quantity (m3)	400 - 8, 9					
Daily record - item 40904 quantity (m3)	400 - 10, 11					
Information for progress estimate	400 - 12					
Daily record - item 41301 quantity (m3)	400 - 13, 14					

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 40101 - Hot Asphalt Concrete Pavement	i .	
DESCRIPTION, LOCA	ΓΙΟΝ, ETC.	QUANTITY (t)
Station 1+100 to 1+815 Left Lane		684.5
* See attached documentation		
		COA 1
	TOTAL	684.:
I certify that the above quantity was performed and used in the construction of this project.	l/or	
Contractor	Project Engineer/Ins	spector
NOTE: See FP for Method of Measurement, Section 401		

DAILY WEIGHT RECORD

(Rev 12/90					DAILT WEI	GHT KECO	<u>KD</u>					
PROJECT	:											
ITEM NO.: 30101, Aggregate Base				_					DATE		<u></u>	
SOURCE NO.: 634-55142				Pay Lot No.:1			SHEET NO1OF1					
LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)	LOAI NO.	D TRUCK NO.	TIME	GROSS MASS (kg)	LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)	
1	63	8:00 am	24,500	41	63	3:50pm	24,400					
2	72	8:10 am	24,400	42	56	4:05pm	24,900					
3	101	8:25 am	24,600									
4	109	8:35 am	23,900									
5	32	8:50 am	24,500									
6	56	9:05 am	24,600									
7	63	9:10 am	25,000									
8	72	9:25 am	24,400									
9	101	9:35 am	24,900									
10	109	9:55 am	24,500									
11	32	10:10 am										
12	63	10:20 am										
13	72	10:30 am										
14	101	10:35 am										
15	109	10:45 am										
16	32	11:00 am										
17	63	11:10 am										
18	72	11:25 am										
19	101	11:35 am 11:50 am										
20	109 32	11:55 am										
22	63	12:35 am										
23	101	12:40 am										
24	72	12:40 am										
25	109	1:05 pm	_									
26	32	1:15 pm	24,000									
27	56	1:25 pm	24,500									
28	63	1:35 pm	24,600									
29	73	1:45 pm										
30	101	1:55 pm	24,500									
31	109	2:05 pm	23,900		II.	I		L		I		
32	32	2:20 pm	24,400	1	DAILY SUM		OFFICE I	ISE ONI V			g on street	
33	63	2:25 pm		MAS		029, 900 045, 500	OFFICE	OFFICE USE ONLY		delivery report will be deleted		
34	72	2:40 pm	24,500	TARE 345, 500 NET 684, 450					unless satisfactory explained. I CERTIFY THIS INFORMATION SIGNED			
35	101	2:50 pm	24,500	Metric tons 684.45								
36	109	3:00 pm	24,800									
37	63	3:15 pm	24,600	WEI	GHED BY: _	AB	<u>C</u>	DATE				
38	72	3:30 pm 24,700		CHECKED BY: IND					COMPANY VV7 Construction			
39	101	3:35 pm 24,500		CHECKED BY: JKD					COMPANY XYZ Construction			
40												
Truck Re	-weigh	, · · · · · · · · · · · · · · · · · · ·		, [AGREE ₄	дты Г	DOES NO	OT AGREI	E Inspect	or:		
				ŀ⊨	1		<u> </u>					
				AGREE WITH DOES NOT AGREE Inspector:								

AGREE WITH

DOES NOT AGREE Inspector:

TARE CHART

PAGE NO._____

LOADS NOT APPEARING ON

PROJECT:		STREET DELIVER WILL BE DELETE	ED UNLESS				
ITEM NO.: 40101, Hot Aspl	nalt Concrete Pavemen	SATISFACTORIL t_	Y EXPLAINED.	DATE _			
SOURCE NO.: <u>634-5514</u>	12	Pay Lot No.:	1	SHEET NO. 1 OF			
TRUCK NO.	63	72	101	109	32		
TARE 1 (kg)	8400	8300	8500	8700	8500		
TARE 2 (kg)	8300	8100	8300	8600	8400		
TARE 3 (kg)		8200					
TARE AVERAGE (kg)	8350	8200	8400	8650	8450		
TRUCK TALLY	M11111	M III	M III	M III	M I		
NUMBER LOADS	9	7	8	8	6		
TARE WEIGHT (kg)	75,150	57,400	67,200	69,200	50,700		
TRUCK NO.	56						
TARE 1 (kg)	8600						
TARE 2 (kg)							
TARE 3 (kg)							
TARE AVERAGE (kg)	8600						
TRUCK TALLY							
NUMBER LOADS	3						
TARE WEIGHT (kg)	25,800						
TRUCK NO.							
TARE 1 (kg)							
TARE 2 (kg)							
TARE 3 (kg)							
TARE AVERAGE (kg)							
TRUCK TALLY							
NUMBER LOADS							
TARE WHGHT (kg)							
TOTAL TARE WEIGHT	345, 450 kg		C O BY: DATE:	THIS INFORMAT R R E	C T		

WFLHD-434 (Rev 12/90)

STREET DELIVERY REPORT SPREAD REPORT

PAGE NO.		

PROJECT:							
ITEM NO.: 40101, Hot Asphalt Concrete Pavement	DATE						
SOURCE NO.: 634-55142	Pav Lot No.:	1		SHEET NO.	1	OF	1

LOAD NO.	TRUCK NO.	TIME	STATION TO STATION	REMARKS	LOAD NO.	TRUCK NO.	TIME	STATION TO STATION	REMARKS
1	63	8:25am	1+100	Right Lane	26	32	1:40pm	1+200	Left Lane
2	72	8:35am	0+140	"	27	56	1:50pm	1+230	66
3	109	8:55am	0+170	"	28	63	2:00pm	1+270	44
4	101	9:00am	0+205	"	29	72	2:10pm	1+305	44
5	32	9:15am	0+230	"	30	101	2:20pm	1+340	44
6	56	9:30am	0+310		31	109	2:30pm	1+390	"
7	63	9:45am	0+360	"	32	32	2:45pm	1+420	44
8	101	9:55am	0+390		33	63	3:00pm	1+480	
9	72	10:05am	0+450		34	72	3:05pm	1+520	
10	109	10:20am	0+490		35	101	3:15pm	1+570	"
11	32	10:35am	0+510		36	109	3:25pm	1+575	Approach Lef
12	63	10:45am	0+580		37	63	3:40pm	1+660	
13	72	11:05am	0+620		38	72	3:50pm	1+705	"
14	109	11:15am	0+700		39	101	4:00pm	1+725	
15	101	11:25am	0+730		40	109	4:15pm	1+775	
16	32	11:30am	0+795		41	63	4:20pm	1+790	
17	63	11:45am	0+820		42	56	4:30pm	1+815	
18	72	11:55am	0+870	VOID					
19	101	12:05pm	0+890	Right Lane					
20	109	12:30p m	0+920						
21	32	12:35pm	0+030	Approach Right			NOTE:	Enter station where dump begins	
22	63	1:00pm	0+980	Right Lane					
23	101	1:05pm	0+020						
24	72	1:15pm	1+100	Left Lane					
25	109	1:30pm	1+160						

CERTIFICATION

I CERTIFY THAT THE ABOVE LOADS WERE PLACED AS SHOWN AND ARE THE SOLE BASIS FOR PAYMENT.

Contractor signature	Received by:	Date
Contractor signature	received by.	Date

WFLHD-422 (Rev 12/90)

DAILY WEIGHT RECORD

Example utilizing Belt Scales

PROJECT:	Example dillizi	ng Ben seares				
ITEM NO.: 40101, Hot Asphalt Concrete Pavement	DATE					
SOURCE NO.: <u>634-55142</u>	Pay Lot No.:	1	SHEET NO	1	OF _	1

LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)	LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)	LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)
1	63	8:00 am	(Rg)	41	63	3:50pm					
2	72	8:10 am		42	56	4:05pm					
3	101	8:25 am									1
4	109	8:35 am									
5	32	8:50 am									
6	56	9:05 am									1
7	63	9:10 am									
8	72	9:25 am									
9	101	9:35 am									
10	109	9:55 am									
11	32	10:10 am									
12	63	10:20 am									
13	72	10:30 am									
14	101	10:35 am									
15	109	10:45 am									
16	32	11:00 am									
17	63	11:10 am									
18	72	11:25 am									
19	101	11:35 am									
20	109	11:50 am									
21	32	11:55 am									
22	63	12:35 am									
23	101	12:40 am									
24	72	12:50 pm									
25	109	1:05 pm									
26	32	1:15 pm									
27	56	1:25 pm									
28	63	1:35 pm									
29	73	1:45 pm									
30	101	1:55 pm									
31	109	2:05 pm							1		
32	32	2:20 pm			AILY SUMN		OFFICE I	USE ONLY			g on street
33	63	2:25 pm		End Rea	ading <u>7</u> leading <u>10</u>	9 <u>2 300</u>)7 553	OI I ICL	OIIII			be deleted explained.
34	72	2:40 pm		NET kg							expiained. NFORMATI
35	101	2:50 pm			conne						
36	109	3:00 pm									
37	63	3:15 pm		WEIGH	IED BY:	ABC	2		DATE		
38	72	3:30 pm		CHECK	ED DV	шъ			COMPA	NIN/ N/N//	7.0
39	101	3:35 pm		CHECK	ED BY:	JKD			COMPA	NY XYZ	Z Constructio
40	109	3:40 pm									
Truck Re	-weigh		-		AGREE WI	тн Г	DOES NO	T AGREE	Inspects	r.	
				_ =	AGREE XXI	. =	J				
					AGREE WI	ГН	DOES NO	OT AGREE	Inspecto	or:	
					AGREE WI	тн 「	DOES NO	OT AGREE	Inspecto	or:	

WEIGHT TICKETS

SOMEWHERE ROAD PROJECT ABC CONTRACTORS

PROJECT: PFH 123-4(5) TICKET NO.: 6789 LOAD NO.: 15

ITEM NO. 30104 - SUB-BASE AGGREGATE, GRADING A

Date: 10/16/2004 TIME LOADED: 07:45

TIME DUMPED: 08:05

LOCATION DUMPED: Sta. 0+080 to 0+093

Truck No. 12 GROSS (kg) 35,850

TARE (kg) 15,650

NET (kg) 20,200

ACCUMMULATIVE DAY NET: 1,113.750

Please provide the following information on all weight tickets.

- (1) Project Number
- (2) Item Number and Description
- (3) Date
- (4) Time
- (5) Ticket Number
- (6) Haul Unit Number
- (7) Net Mass in load at least to the nearest 50 kilograms
- (8) Subtotal net mass for each haul unit since the beginning of the shift
- (9) Accumulated total net mass for all haul units since beginning of the shift

^{*} Sample Weight Ticket printed at electronic scale.

Time and station of placement added at project by spread person
Can utilize similar ticket for aggregate or asphalt items.

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 40901 - Emulsified Asphalt Surf	ace Treatment	
DESCRIPTION,	LOCATION, ETC.	QUANTITY (t)
Station 1+100 to 1+815 Left Lane		15.7
Station 1+100 to 1+013 Left Lane		
* See attached documentation and invoices		
	TOTAL T	15.7
I certify that the above quantity was performused in the construction of this project.	med and/or	
Contractor	Project Engine	er/Inspector
NOTE: See FP for Method of Measurement, Section	on 409.	

DATE: PROJECT:	LINE: PROJECT STAMP	PARTY:	ITEM 40904 EMULSIFIED ASPI GRADE		WDFD-472 3/83	FEI V.	DERAL HIO ANCOUVE	GHWAY A ER, WASH	DMINISTR INGTON	T PAGE: RATION
I:							MISC CON	STRUCTIO	ON NOTES	
DATE	INVOICE NO.	metric tons		INSP.	REMARKS					
3/10/93	178796	15.70		ABC						
3/11/93	178797	16.50		ABC						
3/12/93	178002	13.40		ABC						
SUBTOTAL	1	45.6								
				 						
3/15/93	189777	320		ABC	MATERIALS	NOT USE	D, RETUR	NED TO S	UPPLIER	
	1									
	TOTAL	42.4								
-										
					NOTE: RE	ASURE VO	OLUME IN	TANK FO	R VERIFIC	CATION,
Note:	Per FP96 S		0.02(k), when emuls		BU	JT PAYME	NT WILL	BE BASED	ON TONS	l.
			n volume to mass, us netric ton regardless			ON	RETURN	INVOICES	S.	
	temperature	•	S							
	1	1	1 1	1	COMPUTE	D BY:		CHEC	 KED BY: TE:	

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project: Date	:	
Number: 40904 - Prime Coat Grade MC - 250		
DESCRIPTION, LOCATION, ETC		QUANTITY (t)
Station 0+107 to 0+547 Left Lane = 2,320 Liters applied @ 15.6C =	= 2.32 metric tonne	2.32
Station 0+547 to 0+872 Left Lane = 1,166 Liters applied @ 15.6C =	= 1.16 metric tonne	1.16
Station 0+107 to 0+789 Right Lane = 3,677Liters applied @ 15.6C	= 3.67 metric tonne	3.67
* See attached documentation and invoices		
——————————————————————————————————————		
	TOTAL	7.2
I certify that the above quantity was performed and/or used in the construction of this project.	,	
Contractor	Project Engineer	/Inspector
NOTE:		
See FP for Method of Measurement, Section 409.		

	DATE: PROJEC		LINE	:	PARTY:	PARTY: R P. SMITH ITEM 40904			
	TROJEC		ROJECT		PRIME COAT				
			STAMP			GRADE MC-	<u>250</u>		
11	STA. TO STA.		SHOT LENGT H (m)	SHOT WIDTH (m)	AREA OF SHOT (m2)	HOT L ASPHALT APPLLIED	TEMP. C WHEN SHOT		
	7/9/80, C	LEAR &	& WARM, A	TMOSPHEI	RIC TEMP. 180	C & RISING @	7:30AM		
	0+107	LT							
	ТО		440	4	1760	2445	5 99		
	0+547	LT							
	ТО		325	4	1300	1230	99		
	0+872	LT							
	0+107	RT							
	TO)	682	4	2728	3861	93		
	0+789	RT							
	NO	OTE: SI	MILAR NO	ΓES SHALL	BE USED				
			FOR DOC	UMENTING	THE APPLIC	CATION			
			AND DIST	RIBUTIN C	OF MOST				
			LILQUID A	ASPHALTIO	C MATERIAL:	<u> </u>			
			_						

WDFD-472 U.S. DEPARTMENT OF TRANSPORTAT PAGE:_____
3/83 FEDERAL HIGHWAY ADMINISTRATION
VANCOUVER, WASHINGTON

MISC CONSTRUCTION NOTES

	MISC C	ONSTRUCTIO	MINOTES					
FACTOR FOR CONVERSION TO 15.5 C	LITERS APPLIED @ 15.6 C	APL. RATE L/m3 @ 15.6C	PLAN APL.RATE L/m3	INVOICE NO.	REM			
0.9482	2320	1.32	1.3	B3319				
0.9482	1166	0.89	1.3	B3319				
0.9518	3677	1.35	1.3	B3319				
TOTAL	7163	Liters						
@ 15.6 C								
	7163 L @ 1	5.6 C / 1002 Lit 7.15 metri		ton =				
		· N D2210	1 7.22					
	Inv	oice No. B3319	shows 7.22 n	netric tons t	oy mass			
		considered ade	quate.					
	/s/ Inspector							
COMPUTED B	Y:		CHECKED	BY:				
DATE:			$DATE \cdot$					

INFORMATION FOR PROGRESS PAYMENT

Unnamed Lake Road OR PFH 1234-1 (2) ESTIMATE #8

ITEM 41201, EMULSIFIED ASPHALT, GRADE CSS-1, TACK COAT

DATE	INVOICE NO.	GROSS MASS (kg)	TARE MASS (kg)	NET MASS (kg)	NET MASS DELIVERED (metric tons)	MASS RETURNED (metric tons)	MASS USED (metric tons)
7/27/98	4347	23150	12800	10350	10.35	1.06	9.29
8/03/98	*	13300	11200	2100	2.10	.40	1.70
8/04/98	*	14750	11800	2950	2.95	0.00	2.95
8/05/98	*	14250	11550	2700	2.70	0.00	2.70

TOTAL TO DATE = 16.64

* WEIGHED ON PROJECT PLATFORM SCALE

GRAND TOTAL = 16.64

LESS PREVIOUS PAYMENTS = 10.03

PAYMENT DUE THIS MONTH = 6.61 = 6.6

 $^{^*}$ Provide documentation showing location and rate of application as per page 400 - 11 of Field Note Sample Book.

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 41301 - Asphalt Pavement Mill	ing	
DESCRIPTION	N, LOCATION, ETC.	QUANTITY (m2)
Station 2+060 to 3+911 Right - 4 m wide x 18	851 m length = 7,404 m2	7,404.0
Station 2+205 to 3+356 Left Lane = 4 m wide	e x 1151 m length = 1,604 m2	1,604.0
	•	
	TOTAL	9,008
I certify that the above quantity was perfoused in the construction of this project.	ormed and/or	
Contractor	Project Engine	eer/Inspector
NOTE:		
See FP for Method of Measurement, Secti	ion 413.	

DATE: LINE:	PARTY:
PROJECT:	
PROJECT	ITEM 41301
STAMP	ASPHALT PAVEMENT
	MILLING

DATE	STATION	STATION	WIDTH (m)	LENGTH (m)	Square meters
10/21/92	2+060	3+911 R	4	1,851	7,404.0
10/28/92	2+205	3+356 L	4	1,151	1,604.0
TOTAL					9,008

WDFD-472 U.S. DEPARTMENT OF TRANSPORTAT PAGE:_____ 3/83 FEDERAL HIGHWAY ADMINISTRATION VANCOUVER, WASHINGTON

MISC CONSTRUCTION NOTES

INSPECTOR									
ABC									
ABC									
COMPUTED BY: CHECKED BY: DATE: DATE:									

DIVISION 550

Bridge Construction

INDEX

	<u></u>
Description	Page
Daily record - item 55101 quantity (m)	550 – 2
Examples of capacity computation	550 – 3
Examples of pile driving record	550 – 4, 5
Daily record - item 55201 quantity (m3)	550 – 6, 7
Example of bridge layout	550 – 8
Daily record - item 55401 quantity (kg)	550 – 9, 10
Request for portland cement concrete mix design	550 – 11, 12, 13, 14, 15, 16, 17
Example of delivery ticket for portland cement	550 - 18, 19

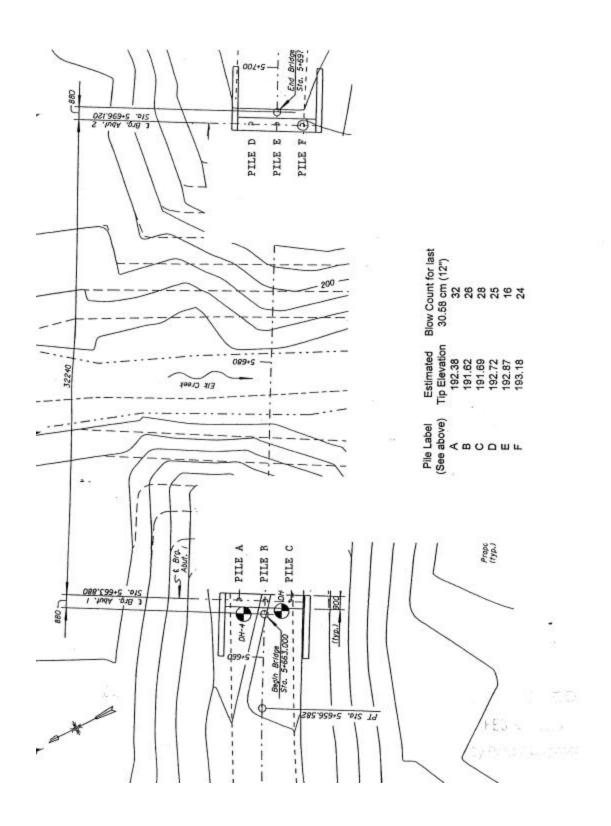
Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 55101 - Steel H - Pile, in place	e, 310 mm x 110 mm	
DESCRIPTIO	ON, LOCATION, ETC.	QUANTITY (m)
Abutment No. 1 = 82 m		82.0
* See attached documentation.		
	TOTAL	82.0
I certify that the above quantity was perfused in the construction of this project.	formed and/or	
Contractor	Project Enginee	er/Inspector
NOTE: See FP for Method of Measurement, Sec	ction 551.	

can provide tables of ram stroke versus hammer energy.

Ous dynamic formula (FP96 Subsection 551.06(b) to
determine ultimate capacity (blow per mm) unless the wave
equation is required according to FP96 Subsection 551.03(b)
if wave equation is used, WFLHD Geotech Branch will
furnish the amount of blows required to obtain pile capacity. N = 5.4 BLOWS PER 25 mm AT MAX. ENERGY Hammers seldom operate at the maximum manufacturer's rated energy. Hammer energy values should be based U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION VANCOUVER, WASHINGTON on field observed ram stroke. Hammer manufacturers 뢍 1/12/98 CHECKED BY: DATE: 1/12/98 MISC. CONSTRUCTION NOTES SUBSTITUTE VALUES AND SOLVE FOR X: 7 1320+550 $X = \sqrt{7\sqrt{23870}}$ $N = 10^{0.73}$ X = 0.73ABC $N = 10^{\circ}$ 1/12/98 COMPUTED BY: SOLVING FOR N NOTES: DATE: FP96 TABLE 551-1 PILE HAMMER MINIMUM ENERGY
CALCULATE ULTIMATE PILE CAPACITY (RU):
RU = 440 kN REQUIRED BEARING ×
FACTOR OF SAFETY (3) = 1320 kN
FACTOR OF SAFETY (3) = 1320 kN
FROM TABLE 551-1: 1320 kN => 21 kJ
HAMMER ENERGY (kJ = kN·m)
CHECK PROPOSED HAMMER ENERGY:
CHECK PROPOSED HAMMER ENERGY RATING = 23.87 kN·m STROKE = 23870 JOULES (AT MAX. ENERGY)
NUMBERS OF HAMMER BLOWS PER 25mm AT DYNAMIC FORMULA:

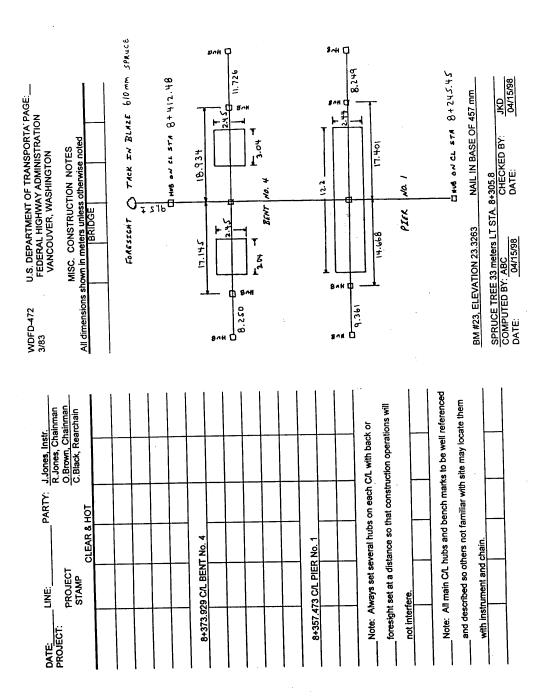
RU= 7√E log(10N) - 550


RU= ULTIMATE PILE CAPACITY (KN) = 1320 KN

E= MANUFACTURER'S RATED HAMMER ENERGY

IN JOULES AT THE FIELD OBSERVED RAM Steel H-Piles In Place ITEM - 55101 CAPACITY COMPUTATIONS PARTY: WHERE N=10* (RU + 550)Therefore $X = \int_{-7}^{-} \sqrt{E}$ FINAL PENETRATION LINE: PROJECT STAMP SOLVING FOR N: 뿔 PROJECT:

WDFD-472


TION PAGE:			8+143.037	C/L ABUT		55106	БАСН	1-						4-						2	Y: JKD 1/12/98
ANSPORTA MINISTRATI HINGTON ON NOTES		•H	9	H	SUMMARY	55101	meters	13.11		12.14	12.04	12.42	13.01	12.80		12.09	12.05	12.44	12.87	125.0	CHECKED BY DATE:
DEPARTMENT OF TRANSPORT, DERAL HIGHWAY ADMINISTRAT VANCOUVER, WASHINGTON MISC. CONSTRUCTION NOTES	PILE LAYOUT	ΘН	•	Н		BLOWS	per 25 mm	9		7	7	9	9	9		7	7	8	9		
U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION VANCOUVER, WASHINGTON MISC. CONSTRUCTION NOTES	n meters unless	e		H	battered 12:3.5	GROUND	ELEVATION	238.354	238.354	238.354	238.354	238.354	238.354	238.354	238.354	238.354	238.354	238.354	238.354		TB 1/12/98
WDFD-472 3/83	(Dimensions are in meters unless onnewise noted) Power Line Power Line PILE LAYOUT Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power Line Power L	1 1 09x		H Sq	Piles 6 thru 10 are battered 12:3.5	PILE	NO	-		2	3	4	5	9	,	7	8	O	10	TOTAL	COMPUTED BY: DATE:
PILES, IN PLACE	DATE: 1/10/98					TIP ELEV	225.552		226.518	226.619	226.238	225.653	225.857		226.564	226.613	226.223	225.784		es	
<u> </u>	DA) × 85			CUT OFF	ELEVATION TIP	238.658 22	238.658	238.658 22	238.658 22	238.658 22	238.658 22	238.658 22	238.658	238.658 22	238.658 22	238.658 22	238.658 22		e to power lin	
PARTY: ITEM 55101	RECORD EEK BRIDGE	TYPE : HP 250	ELWAG DO-Z	7	OFF		(m) 0.229	1.905	3.100	3.200	2.819	2.234	0.305	1.600	2.643	2.691	2.286	1.829	24.841	ed to 7.62 m du	
LINE: PROJECT STAMP	PILE DRIVING RECORD BOULDER CREEK BRID	BUT #2 PILE	2GY: 23.87 KN	4RING : 440 K	LENGTH CUT OFF	IN LEADS LE	7.62 (n	7.62	15.24	15.24	15.24	15.24	7.62	7.62	15.24	15.24	15.24	15.24	152.4	Length restricted to 7.62 m due to power lines	over abutment
DATE: PROJECT:	PILE DRIVING RECORD STRUCTURE: BOULDER CREEK BRIDGE	LOCATION : ABUT #2 PILE TYPE : HP 250 x 85	HAMMER ENERGY: 23.87 kN·m	REQUIRED BEARING: 440 KN		PILE NO.	1:-		2	3	4	5	• • 9		7	ဆ	6	10	TOTAL	:	

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 55201 - Structural Concrete		
DESCRIPTION, LOCAT	ΠΟΝ, ETC.	QUANTITY (m3)
Pier Cap Abutment No. 1 = 4.27 x 11.4 x 0.88 = 42.84 n	n3	42.84
Pier Cap Abutment No. 1 = 4.27 x 11.4 x 0.88 = 42.84 n	n3	42.84
* See attached documentation.		
	TOTAL	85.68
I certify that the above quantity was performed and used in the construction of this project.	Vor	
Contractor	Project Engineer/	——————————————————————————————————————
	Floject Engineer/	mspector
NOTE: See FP for Method of Measurement, Section 552		

DATE:	LINE:		PARTY:	Contractor					
PROJECT:	PROJECT STAMP			Item 55201 Structural Concrete					
Estimate No. 1									
Pier Cap Abut	No. 1								
	4.27 x 11.4	x .88 =		42.84	m3				
Pier Cap Abut	. No. 2								
	Same as P	ier Cap At	out. No. 1	42.84	m3				
Total Item 552	01 Est. No.	85.68	m3						
 		11.4							
					4.27				
		17	0.88		_				
	(Do	cumentati	on for Pro	gress Est.)					

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 55401 - Reinforcing Steel		
DESCRIPTION, LOCATION,	ETC.	QUANTITY (kg)
Abutment No. 1		1,060.79
Abutment No. 1		579.502
	Total	1,640.292
* See attached documentation.		
	PAY TOTAL	1,640
I certify that the above quantity was performed and/or used in the construction of this project.		
Contractor	Project Engin	neer/Inspector
NOTE:		
See FP for Method of Measurement, Section 554.		

U.S. DEPARTMENT OF TRANSPOFPAGE:	VANCOUVER, WASHINGTON MISC. CONSTRUCTION NOTES	CONTR. INSP. REMARKS	WJF JTB Straight Bars	" Straight Bars											יי אחר אין די אין אין אין אין אין אין אין אין אין אי
WDFD-472 3/83		INSTALLED	04/40/98	=											AA111777 DV. ABA
						ם									
	ITEM 55401 REINFORCING STEEL	kg	1060.790	579.502	1640.292	1640 kg			k.w						
	ITEM 55401 REINFORCI	LENGTH (m)	267	583	Total	Pay Qty =									
PARTY:		SIZE	#25	15 #13										,	
:		NO.	114 #25	15			·								
LINE	PROJECT STAMP	MARK	A1	A2											
DATE: LINE:	PROJECT:	DESCRIPT.	ABUT No.1	ABUT No.2											

ACE PRECAST PRODUCTS P.O. Box 1234

Anywhere, USA 56789 Phone No.: 123-456-7891 Fax No.: 123-456-7892

April 20, 2004

Serial Letter No. 01

ABC Contractors Mr. U. R. Bright, Project Manager 12345 Slam Dunk Road Somewhere, USA 56789

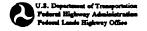
RE: Somewhere Road Project

Concrete mix design Item No. 55201

Dear Mr. Bright:

We submit our request for our concrete mix design and also some representative cylinder results.

This is our standard design for the required 35 mpa to meet ASTM C 1433 requirements. This is actual measured material for a .67 cubic meter batch.


½ Round rock660 kgsWashed concrete sand597 kgsType 10 Portland cement213 kgsMaximum Water Cement Ratio0.45

Please note that this is confidential information and for your and the agencies use only.

Please let me know if you require any additional information and also when you have your schedule for delivery.

Best Regards

Johnny Sunshine Project Superintendent

PORTLAND CEMENT CONCRETE MIX DESIGN¹ TRIAL BATCH SUMMARY

Project: NV Contractor: Mr. Concrete producer:	M Con	ustr. Go		Conc.	: <u>10/1/86</u> prete for: <u>Rox culs</u> s of concrete: <u>ALAE</u> designation:	
COMPRESSIV Minimum aver Design strengt	rage streng	th required2	•	24.49 25	megapascals (MI	· ·
 PROPORTIONS Material 	-	SSD Mass per m³ (kg)	Absolute Volume (m³)	Tolerance % (±)	Admixtures	Docage per m³ (mL)
Coment Water Course aggregate ³ Fine aggregate ³ Total air Other Totals	3.15 1.00 2.73 2.72	362 147 1237 638	0.792± 0.453	1 1 2 2	Air entrainment Water reducer Retarder Color Accelerator Other	749
 PROPERTIES Water/coment r Measured unit r 		es)* <u>0.4/</u> 2 <u>378</u>	/_ 3_ kg/==²	Moasu	red air content	384 kg/m³ 5.3 percent 00 mm
 MEASURED Condition of the Individual 7-day Individual 28-day 	y, MPa	16.97	. 14.03	. <u>/7.76</u> . . <u>27.76</u> .	Average (7 day): Average (28 day):	/6,25 MPa 29,66 MPa
substitute. • SIGNATURES	io for modifi Contract Mix Dec	od concrete is t		nam of water to the o	ombined masses of portland	
Porm FHWA 1608 (Re	v 10 -9 6)					Page 1 of 6

Revised 10/1/96

Example of a Concrete Mix Design

Page 1 of 6

	CEMENT CONCRETE MIX DESI IATERIALS SOURCE SUMMAR		_
• CEMENT (AASHTO M 85)			-
	Ideal Basic Inc., Fort		
Type of comeat:	Materials certification at	ached: Yes No	
• WATER (725.01 and AASHTO T 26	ຄ		-
Water potable: Yes No If	no, provide the following: Water pH number Chloride concentration Sulphate ion concentration Total solids content	(ppm) (ppm)	
ADMIXTURES			-
Material	Producer and Product Designation	Certification Attached	
Air entraining admixture	Protex	Yee No	
Water reducing admixture, type A		H H	
Retarding admixture, type B		H H	
Accelerating admixture, type C			
Water reducing and retarding admixture, type D			
Water reducing and accelerating admixture, type B			
Water reducing, high range admixture, type F			
Fly ash, type		i i	
Ground iron blast-furnace slag			
Silica fume (microsilica)			
Color additive	-		
Other:			
For normal mass portland coment concrete	(2300 - 2500 kg/m²).		

Revised 10/1/96

Example of a Concrete Mix Design

Page 2 of 6

PORTLAND CEMENT CONCRETE MIX DESIGN^t (Continued) MATERIALS SOURCE SUMMARY • COARSE AGGREGATE (703.02 AND AASHTO M 80) Name of supplied producer: Roderson Crushing Go. Location of material source: Brush Flats, 5km NE, Fart Callins, Crushed stone Crushed gravel Crushed blast furnace slag Material type: Gravel Grading no.: Sieve Analysis: Properties: Sieve (1) Coal and lignite 0.2 (%) (0-0.5)3 Specification Designation (2) Deleterious obert <u>O.O.</u> (%) (0-3)³ 50 mm (3) Sodium sulfate soundness² 4/6 (%)(0-12)³ 37.5 mm (4) Clay lumps and friable particles _O,/_(%) (0-2)³ 25.0 mm (5) LA abresion ____ grading B _ 2/ % loss (0-40)³ 19.0 mm (6) Bulk specific gravity 2.7/ 12.5 mm 90-100 (7) Absorption <u>0.59</u> (%) 9.5 mm (8) Bulk SSD specific gravity 2.73 4.75 mm (9) Dry rodded unit mass 1724 (kg/m²) 2.36 mm (10) Missus 75 µm // (%) (%-1)⁵ 1.18 mm (11) Adherent fince _______(%) (0-1)3 (12) Other__ • FINE AGGREGATE (703.01 AND AASHTO M 6). Name of supplied producer: Anderson Crushing Co. 5km NE, Fort Gallins Location of material source: Brush Flats Blend Manufactured sand Natural sand Properties: Sieve Analysis: Sieve Accumulative (1) Clay humps <u>O.O</u> (%) (0-3)³ Designation Percent Retained (2) Coal and lignite ______(%) (0-1)3 9.5 mm (3) Sodium sulfate soundness 3.2 (%) (0-10)³ (4) Sand equivalent value, alt. 2 79 (>75)³ 4.75 mm 2.36 mm (5) Bulk specific gravity 2.49 1.18 mm (6) Bulk SSD specific gravity 2.72 600 µm (7) Absorption 1.05 (%) 300 µm (8) Organic impurities nanco 150 µm (9) Minus 75 µm /. O (%) (0-3)3 Finences modulus: 2,79 (10) Other _ ¹ For normal mass portland coment concrete (2300 - 2500 kg/m³). At five cycles. Specification limits. Page 3 of 6 Form FHWA 1606 (Rev 10-96)

Revised 10/1/96

Example of a Concrete Mix Design

Page 3 of 6

PORTLAND CEMENT CONCRETE MIX DESIGN¹ (Continued) DATA FOR COMPUTING THE COEFFICIENT OF VARIATION OF BATCHES

	OF VARIATION OF BATCHES								
		7-1	7-Day Compressive Strongths (MPs)				Day Comp	ressive Stre	ngthe (MPs)
Batch No.	Date Batched	CyL (Cyi. 2	CyL 3	Average (I)	Cyl. 1	Cyl. 2	Cyl. 3	Average (x)
1	10/1/96	16.34	15.86	16.58	16.26	24.40	26.92	25.//	25.48
2	10/1/96	15.03	13.78	15.86	14.89	23.34	I	26.35	24.74
3	10/1/96	15.62	15,82	Ks.13	15.86	21.42	25.99	23.62	23.69
	10/2/96	19.21	19.99	19.34	19.51	23.37	21,26	24.08	22.9/
5	10/2/96	18.28	18.65	17.86	18.26	25.3/	22.76	26.75	24.95
- 6	10/2/96	19.17	<i>18</i> .27	19.31	18.92	22.7/	20.72	25.57	23.01
	10/2/96	17.44	18.62	19.93	18.66	24.42	26.06	22.17	24.89
	10/2/96	15.17	19.31	19.44	17.97	23.62	24.95	22.49	24.36
9	10/3/96	18.13	17.58	20.03	18.58	20.05	21.71	24.98	22.25
10	10/3/96	15.48	17.37	16.60	16.48	22.37	23,34	25.88	23.87
11	10/3/96	19.03	16.75	17.71	17.83	21.15	24.00	25.46	23.54
12	10/4/96	19.62	18.93	17.10	18.55	21.73	25.84	23.06	23.55
13	10/4/96	17.58	18.27	19.37	18.41	22.79	28.30	27.3/	26.14
14	10/4/26	-	15.41	17.90	17.45	21.47	25.96	22.8/	23.42
15	10/4/96	20.34	15.86	16.89	17.70	20.84	23.50	25.00	23,12
16	10/4/92	19.36	20.03	17.48	18.96	22.17	24.68	25.94	24.27
17	10/5/96	18.27	15.10	18.82	17.40	23.41	24.88	24.02	24.11
18	10/5/96	16.20	19.48	17.40	17.76	21.99	26,95	23.66	24.21
19 /	10/5/96	18.67	8.28	20.06	19.00	24.70	25.73	27.05	25.83
20 For normal		20.0/	18.27	19.55	19.28	26.59	24.78	25.64	25.68

ormal mass portland coment concrete (2300 - 2500 kg/m²).

$$\bar{x} = \frac{\sum x}{N} = \frac{484.02}{N} = \frac{24.20_{(MPe)}}{N}$$

$$= \sqrt{\frac{N \sum (X^2) - (\sum X)^2}{N(N-1)}} = \frac{1.06.38}{1.06.38}$$

Where:

The 28-day batch average of at least 2 cylinders (3 preferred).
 The mean of the averages of 28-day compressive results.
 The sample standard deviation of the 28-day batch averages.

= The number of batches sampled.

Form FHWA 1608 (Ray 10-96)

Page 4 of 6

<u>|20×11735.27-(484.02)²</u> 20(20-1)

Revised 10/1/96

Example of a Concrete Mix Design

Page 4 of 6

MINIMUM	MIX DE	SIGN COMPRESSIV	E STRENGTI	I (L)			
Сошр	uted value	from page 4:					
	⊼ −	24.20		_ (MPa)	• - <u>/</u>	0638	
When	e:	•					
		The sample standard page 4.	deviation of th	e 28-day comp	essive strength tost	results from	ı
	X =	The moen of the 28-	day compressiv	e strength test :	results from page 4	·	
		The coefficient of va					
	V = -	<u> </u>	1.0638		0.04	4	or 0.
		$\overline{\mathbf{x}}$	24.20	*			
£ = £		25 1.28 (0.044)	· =	20	.49		(М
- 1-kV	1 -	1.28 (0.044)					
When	re:			4.4			
WAR							
William		The 28-day design of	ompressive stre	ongth specified	in the contract.		
Wild			or a probability	that not more		will fall belo	w the
When	f _c =	A constant (1.28) f	or a probability	that not more		will fall belo	w the
1 For normal n	f _c = k =	A constant (1.28) f	or a probability ve strength (£). 0 - 2500 kg/m²).	that not more	then 1 in 10 tests v	will fall belo	w the
¹ For normal n	f _c = k =	A constant (1.28) f specified compressi	or a probability ve strength (£). 0 - 2500 kg/m²).	that not more	then 1 in 10 tests v	will fall belo	w the
1 For normal s	f _c = k =	A constant (1.28) f specified compressi	or a probability ve strength (£). 0 - 2500 kg/m²).	that not more	then 1 in 10 tests v	will fall belo	
¹ For normal n	fc = k =	A constant (1.28) f specified compression dement concrete (230 ent of variation when the	or a probability ve strength (£). 0 - 2500 kg/m²).	that not more	then 1 in 10 tests v	will fall below	w the

Revised 10/1/96

Example of a Concrete Mix Design

Page 5 of 6

PORTLAND CEMENT CONCRETE MIX DESIGN¹ (Continued) LABORATORY TRIAL BATCH MIX DESIGN SUMMARY

Description	Equivalent Batch Masses (SSD mass/m²)				
Materials:	Batch 1	Batck 2	Batch 3	Betch 4	Betch 5
Cornest (kg)	362				
Water (kg)	147				
Coarse aggregate (kg)	1237				
Fine aggregate (kg)	438				
Air entrainer (mL)	769				
Water reducer (mL)					
High range water reducer (mL)					
Other					
Properties:					
Water/coment ratio	0.41			l	
Theoretical unit mass (kg/m²)	2384				
Mossured unit mass (kg/m²)	2378				
Measured air content (%)	5.3				
Mousured slump ² (mm)	100				
Ambient temperature (°C)	17				
Concrete temperature (°C)	*	* 160	measurea	/	
Measured Compressive Strengths (MPa):					
Individual 7-day	16.97				
Individual 7-day	14.03				
Individual 7-day	17.76				
Average (7-day)	16.25				
Individual 28-day	30.27				
Individual 28-day	30,94				
Individual 28-day	27.76				
Average (28-day)	29.64				

Form FHWA 1608 (Rev 10-96)

Page 6 of 6

Revised 10/1/96

Example of a Concrete Mix Design

Page 6 of 6

For normal mass portland cement concrete (2300 - 2500 kg/m²).
 Measure slump values on concrete before and after addition of high range water reducer if used.

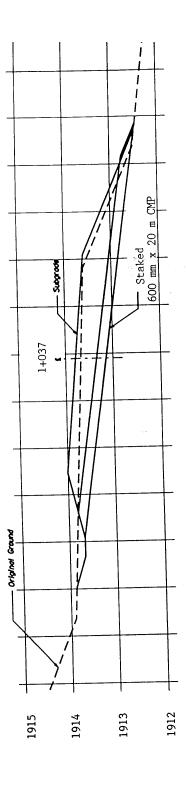
Doc. # 2640C (Rev. 8/01)				MINISTRATION HIGHWAY DIVISION	ı			
		DELIVERY TICKET	- Portland	Cement Concrete	8.34 lbs/g 3.785 L/g	al		
Project:	MV DDA	YELL 10(13)		Date:	1.308 yd3	/m3		
r roject.	Madison-			Ticket No.:				
Contracto)r	нк		Truck No.:				
Subcontr	70.7	Idaho Construction		Design Mix No.:				
170700000000000000000000000000000000000	Supplier:			Design wix No				
Control	обррнет.	Walters Meady Wilk		Class of Concrete:	A/AFI/S	EΔI		
Brand Ce	ement:	HOLNAN I II		m3 Batched:	ri(riL) / O	LITTLE		
Brand Air		MB		vd3 Batched:				
Brand W	ater Reduc	e MB		juo balanca.				
Hydration	Stabil.:	53337		BAG COUNT				
Location	of Placeme	ent:						
7	BATCH	WEIGHTS	_	WATER	SUMMARY			_
	BATCH	WEIGHTS	Max. Wat	ter: [.44 x cement]	SUMMART			
Water	(drum)		Free Wat	er: IN AGGREGATE	S			
Cement	,		1				NET	
CA			CA:	% Mo -	% Abs =		12.5	%
			CA Free \	Water = L		GAL		
FA			FA:	% Mo	% Abs=			%
Color:			FA Free V		70 7 100	GAL		70
AEA			1			O		
Reducer			Batched	Water: DRUM +	FREE			
Total			Max wate	r by mix design :L	2000	GAL	-	
NO STATE OF			32.5g/yd	161L/m3				
A(AE)	1yd3	1m3	Max wate	r allowed at site:L		GAL		
ssd/yd3	English	Metric	100000000000					
Water	32.49	9 160.88	Added W			GAL		
Cement	620.43	3 368.1	drum+free					
CA	1693.19	9 1004.57	Total Wa			GAL		
FA		3 719.57	CALCUL					
	3797.42	2 2253.12	W / C Rat					
TIME				REVOLUTIONS				
20 0		122		Counter reading at				
Time wa	ter added to	cement & agg.:		Counter reading at				
T	•			Counter reading at	end of place	2:		
I ime dis	charge com	npieted:						
Cylinder	Identificat	tion:						
AIR		SLUMP		UNIT WT		TEMP		_
CIIN		SLUWF		ONIT WI		IEMP		
Discosol	of batch no	at wood:						
Amount	or patch no	ot used.	Reason:					
i .			Reason.					
Concrete	Batch Tec	hnician or	4	Concrete Testing T	echnician o	,		
Plant Ins				Field Inspector	Commonan O			

DELIVERY TICKET FOR PORTLAND CEMENT

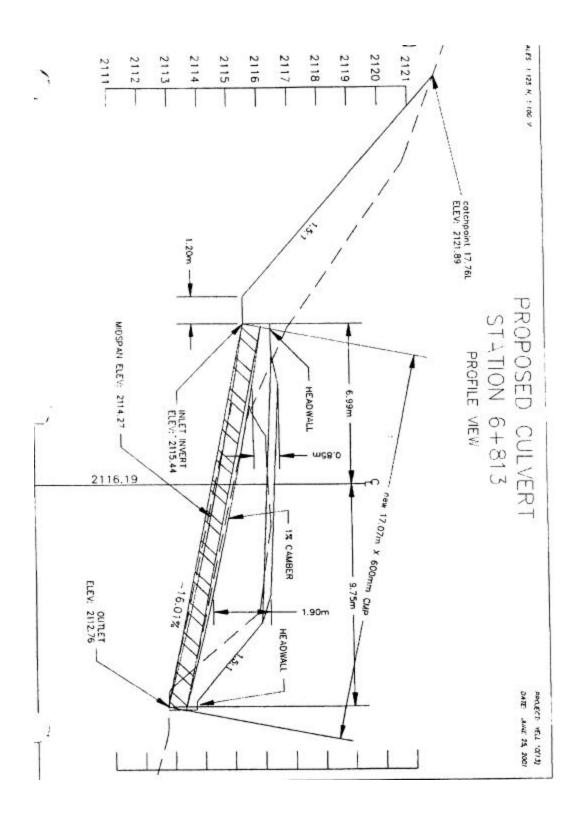
TOTAL	WATER IN I	MIX DATOIT		.4.0	
		MIX BATCH V	WATER+1+2-3	4+5	
WATER	ADDED AT	SIGHT			5
	SORPTION			(D x F.A.)	4
C.A. AB	SORPTION	FACTOR C	1.5	(C x C.A.)	3
	ISTURE CO	CO 11577 C.S. v. 1		(B x F.A.)	2
(.44) x C	ement = MA	X. WATER ALLOWE	:D		
		WATER S	SUMMARY		
		LIZER(DELVO)			
ADDITIV					
F.A.					
C.A.	····	Ono(ii diry)			
WATER	T + POZZOL	ONS(if any)			
	WEIGHTS				VALUES
	r Entr.; er Reducer: nd Placement:	MB AE90 (Master Bu Polyheed 990 (Maste		u Units Batched: u Units Placed:	
Brand Ce	ement:	LaFarge	CI	ass of Concrete:	
Subcontr		HOLM II HOOD RIVER S & G		uck No.: esign Mix No.:	
Contracto	or:	ELTING, INC.			
Project: OR PFH 162-1(1) MT. HOOD MEADOWS ACCE			ite: cket No.:		

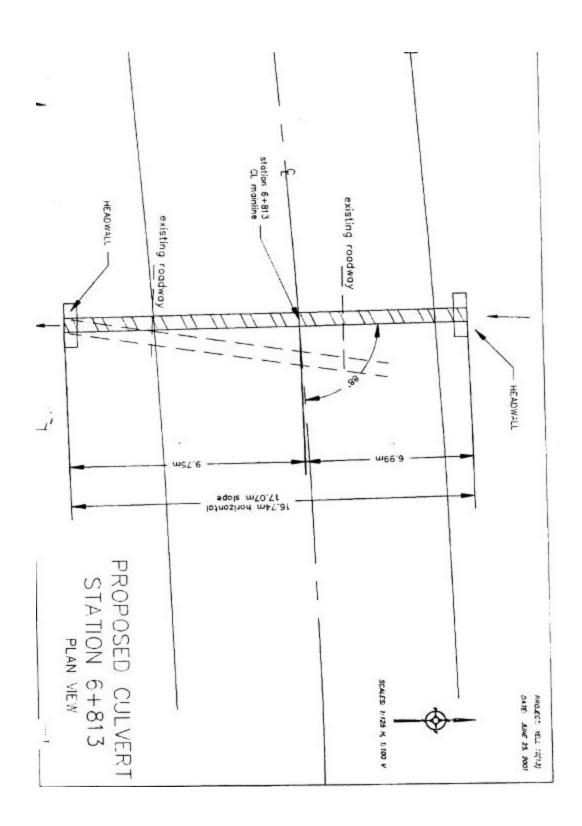
DIVISION 600

Incidental Construction INDEX


Description	Page
Daily record - item 60201	600 - 2, 3, 4, 5, 6
quantity (m)(Culverts)	_, _, _, _,
Daily record - item 60801	600 - 7, 8
quantity (m)(Concrete & Rubble	.,,
Waterway)	
Daily record - item 60802	600 - 9, 10
quantity (m)(Asphalt Paved	, ,
Waterway)	
Daily record - item 61701	600 - 11, 12
quantity (m)(Guardrail)	,
Daily record - item 61702	600 - 13, 14
quantity (m)(Term. End Section)	,
Daily record - item 62201	600 - 15
quantity (hr)(Equip. Hours)	
Daily record - item 62301	600 – 16
quantity (hr)(General Labor)	
Daily record - item 62401	600 - 17
quantity (m2)(Placing Topsoil)	
Daily record - item 62503	600 - 18, 19
quantity (ha)(Seeding)	
Daily record - item 62506	600 - 20, 21
quantity (ha)(Mulching)	
Daily record - item 63401A	600 - 22, 23
quantity (m)(Pvm't Marking)	
Daily record - item 63401B	600 - 24, 25
quantity (m)(Pvm't Marking)	
Daily record - item 63401C	600 – 26, 27, 28
quantity (m)(Pvm't Marking)	
Daily record - item 63507	600 - 29, 30
quantity (m2)(Const. Signs)	
Daily record - item 63509	600 – 31
quantity (hr)(Flagger)	

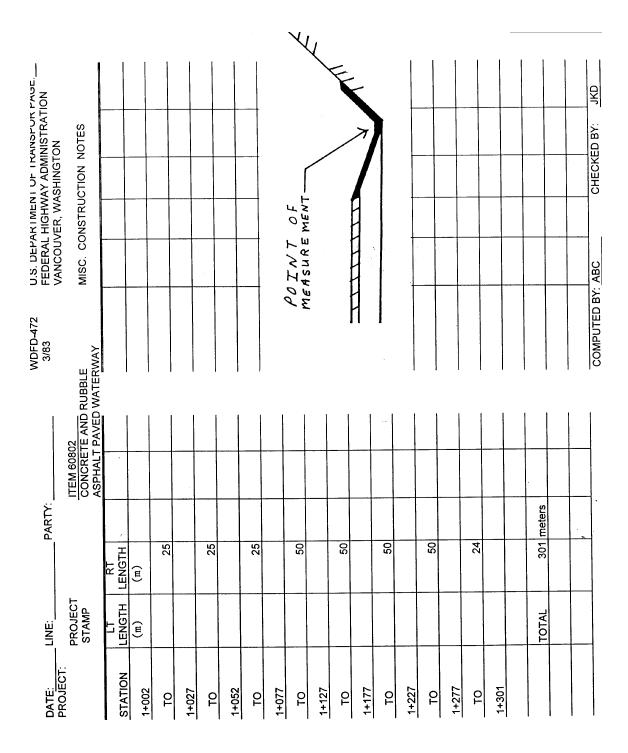
Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661


Project: Da	te:	
Number: 60201 - 600 millimeter pipe culvert		
DESCRIPTION, LOCATION, ET	CC.	QUANTITY (m)
Station 3+082 - 600 mm pipe culvert, 600 mm		14.3
* See attached documentation.		
	TOTAL	14.3
I certify that the above quantity was performed and/or used in the construction of this project.		
Contractor	Project Engineer	r/Inspector
NOTE: See FP for Method of Measurement, Section 602.		


U.S. Department of Transportation Western Federal Lands Highway Division 610 East Fifth Street Vancouver, Washington 98661

Vancouver, Washington 98661 8-20-2007 Page: Date: Project: ID PFH 79-1(8) Staking R&D Consultants **Culvert Notes** Big Dry Fork Road R. Smith, R. Brown crew: M. Park Inspector's Signature Station Size Length Gauge or Class Type 14.25 2.01 CMP 3+082 600 mm 6.60 In Place Ft. Lt. Beveled End Sections Inlet Extend: Ft. Lt. 1:2 7.65 Ft. Rt. _ Ft. Rt. __ Outet 8-20-07 Pipe Installed Date: Salvaged __ 1008.21 1007.45 0.76 Rt. Total Fall: Lt. Elevation 5% 760 mm 300 mm Max: Grade: Min: Cover NA Skew. Elevation CROSS - SECTION NOTES Grade Ground Station Cover calculations for flexible pavement: 3+082 LT Shidr CL RT Shldr 0.00 8.21 1008.21 (inlet) w/camber Subgrade elev: 1009.09 1009.18 1009.09 8.06 +0.10 1008.16 (right shoulder) 1008.61 1008.33 3.00 Top of pipe: 1008.79 6.00 7.91 +0.15 1008.06 Depth of cover. 0.30 0.57 0.76 7.83 +0.15 1007.98 (centerline) 7.62 9.00 7.76 +0.15 1007.91 12.00 7.61 +0.11 1007.72 12.24 7.60 +0.10 1007.70 (left shoulder) 15.28 7.45 1007.45 (outlet) Lot S Lotà Heat # 13302 Hear # 13302 Heat \$ 13352 End Section £1007, 45 1008 21 6.60 m 7.65m 0.00 SUMMARY OF QUANTITIES Ent. in Sum Book Page No. Date Item No. Description Quantity Unit 60201A 600 mm pipe culvert 14.3 m 1 60206A End section for 600 mm pipe culvert ea Checked by: M. Valdez/FHWA Computed by: G. Jackson/BC Inc. 8-20-2007 8-20-2007 Date: Date: culvert.wpf

CASCADE LAKES HIGHWAY OR PFH 46-1(3) DTFH70-94-C-00011


Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 60801 - Concrete and Rubble Pav	ed Waterway	
DESCRIPTION, I	LOCATION, ETC.	QUANTITY (m2)
Station 0+566 to Station 0+597		37.2
Average Length of 31 m x Average Width of 1.2	2 m = 37.2	
* See attached documentation.		
	TOTAL 🗖	37.2
I certify that the above quantity was performused in the construction of this project.	ned and/or	
Contractor	Project Engine	eer/Inspector
NOTE:		
See FP for Method of Measurement, Section	1 608.	

WDFD-472 U.S. DEPARTMENT OF TRANSPOR PAGE:	MISC. CONSTRUCTION NOTES									$\begin{array}{c} A + A + A \\ A + A + A \\ A + A + A \\ A + A +$		Some of the second seco										CHECKEN BY. ABO CHECKEN RY. IKD
PARTY:	TEM 60801 CONCRETE AND RUBBLE PAVED WATERWAY	H WIDTH AVG.W square	1.2	1.25 3.75	1.3	1.35 6.75	1.4	1,25 5.00	1.1	1.1 2.20	1.1	1.1 3.30	1.1	1.2 4.80	1.3	1.25 6.25	1.2	1.15 5.75	1.1		TOTAL 37.8 m.2	
LINE	PROJECT STAMP	LENGTH (m)		က		2		4		2		3		4		5		2		<u> </u>		
DATE: LINE:	PROJECT	STATION	0+566		0+569		0+574		0+578		0+280		0+583		0+587		0+592		0+597			

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 60802- Paved Waterway		
DESCRIP	TION, LOCATION, ETC.	QUANTITY (m)
Station 1+002 to Station 0+597 = 405 m	1	405
* See attached documentation.		
	TOTAL	405
I certify that the above quantity was used in the construction of this proje		
Contractor	Project En	ngineer/Inspector
NOTE: See FP for Method of Measurement,	Section 608.	

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 61701- Guardrail System G4, Type I, Clas	s A (1.8 m Wood Post)	
DESCRIPTION, LOCATION	ON, ETC.	QUANTITY (m)
Station 3+056 to Station 3+221.6 = 165.2 m (Left)		165.2
Station 4+003 to Station 4+125 = 122.0 m (Left)		122.0
Station 5+137 to Station 5+148 = 11 m (Left)		11.0
Station 5+148 to Station 5+294.3 = 146.3 m (Left)		146.3
* See attached documentation.		
	TOTAL 🗖	444.5
I certify that the above quantity was performed and/oused in the construction of this project.	or	
Contractor	Project Engine	er/Inspector
NOTE: See FP for Method of Measurement, Section 617.		

72 U.S. DEPARTMENT OF TRANSPORTA PAGE:FEDERAL HIGHWAY ADMINISTRATION VANCOUVER, WASHINGTON MISC. CONSTRUCTION NOTES																	-
3/83 3/83 3/83 3/83 3/83 3/83 3/83 3/83	AL AL											0	.		!		
ITEM 61701 GUARDRAIL, SYSTEM	DATE INSTALLED INITIAL	7/6/92 ABC	7/3/92 ABC	7/6/92 ABC	7/7/92 ABC	7/4/92 ABC	7/7/92 ABC	7/8/92 ABC	7/4/92 ABC		7/5/92 ABC	7/7/92 ABC					
PARTY:	ITEM ITEM 61702A 61702B	1		1	-		-					7	4 2				
LINE: _ PROJECT STAMP	1TEM 61701		165.2			122.0			11.0		146.3		-T 444.5				
DATE: PROJ <u>ECT:</u>	STATION	3+056.4	LT	3+221.6	4+003	רז	4+125	5+137	디	5+148	ב	5+294.3	TOTAL LEFT				

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 61702 - Terminal Section, Type Flared		
DESCRIPTION, LOCAT	TION, ETC.	QUANTITY (ea)
Estimate No. 6		
Terminal Sections, Type Flared		4
* See attached documentation.		
	TOTAL	4
I certify that the above quantity was performed and used in the construction of this project.	/or	
Contractor	Project Engineer/	Inspector
NOTE: See EP for Method of Measurement Section 617		
See FP for Method of Measurement, Section 617.		

WDFD-472 U.S. DEPARTMENT OF TRANSPORTAPAGE:3/83 FEDERAL HIGHWAY ADMINISTRATION VANCOUVER, WASHINGTON MISC. CONSTRUCTION NOTES																				יאי ידייריי.
≥ _€			! !	1	į	I	1	+ 1	1		l	ı	I	ļ	l	!	1	l	l	1
SYSTEM	DATE INTIAL INSTALLED INITIAL 7/6/92 ABC	ABC	ABC	ABC	ABC	ABC		ABC	ABC		ABC	ABC								
ITEM 61701 GUARDRAIL, SYSTEM	11EM DATE 61702B INSTALLED 1 7/6/92	7/3/92	7/6/92	7/7/92	7/4/92	7/7/92		1 7/8/92	7/4/92		7/5/92	7/7/92		2						
PARTY:	1TEM 61702B							,											-	_
	1TEM 61702A		-	1		1						1		4						
LINE:STAMP	1TEM 61701	165.2			122.0				11.0		146.3			444.5						_
DATE: L	STATION	LT	3+221.6	4+003	Ţ	4+125		5+137	בו	5+148	ב	5+294.3		TOTAL LEFT						

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 62201 - Motor Grader, 110 kW mir	nimum	
DESCRIPTION, LO	OCATION, ETC.	QUANTITY (hr)
Station 5+010 to Station 6+500		8.0
* Refer to Project Specifications for Requirement	ts to list the names of the operator and verify	
With a Certified Contractor Payroll.		
	TOTAL -	8.0
I certify that the above quantity was performed used in the construction of this project.	ed and/or	
Contractor	Project Engineer	r/Inspector
NOTE:		
See FP for Method of Measurement, Section	622.	

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 62301 - General Labor		
DESCRIPTION, LOCAT	TION, ETC.	QUANTITY (hr)
Scaling Slopes		
Station 3+055 to Station 3+090		8.0
* Refer to Project Specifications for Requirements to lis	st the names and verify	
with a Certified Contractor Payroll.		
	TOTAL -	8.0
I certify that the above quantity was performed and used in the construction of this project.	/or	
Contractor	Project Engineer	/Inspector
NOTE: See FP for Method of Measurement, Section 623.		

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:		Date:		
Number: <u>62401</u> -	Furnishing a	and Placing Topsoil		
	DES	CRIPTION, LOCATION, ETC.		QUANTITY (m2)
Station 4+900 =	17 wide			
		Average width = $18.5 \text{ x Length } 50 \text{ m}$ =	=	925
Station 4+950 =	20 wide			
		Average width = 17.5 x Length 50 m =	=	875
Station 5+000 =	15 wide			
		Average width = 15x Length 50 m =		750
Station 5+500=	15 wide			
			TOTAL	2,550
I certify that the a used in the constr		y was performed and/or s project.		
C	Contractor		Project Engine	eer/Inspector
NOTE: See FP for Metho	d of Measure	ement, Section 624.		

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 62503 - Seeding, Hydraulic Method		
DESCRIPTION, LOCA	TION, ETC.	QUANTITY (SU)
Station 0+035 to Station 1+624, Right		9
Station 0+033 to Station 1+024, Right		
* See attached Documentation		
	TOTAL	9
I certify that the above quantity was performed and used in the construction of this project.	d/or	
Contractor	Project Engine	eer/Inspector
NOTE: See FP for Method of Measurement, Section 625.		

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Date:	Line:	_ Party:	
Project Sta	nmp:		Item No. 62503
			Seeding, Hydraulic Metho

CITE A IDEC N		OF TIPPET	TO 4 FENTS	TATEMENT A T. C.	seeding, Hydraune Wethod	CON EN ETTA VEC
STATION	PLAN	SLURRY	DATE	INITIALS		COMMENTS
	m2	UNITS				
0+035						
	944	1	9/28/02	JKD	1 Slurry	Unit = 4000 Liters of Water plus
0+055					8.810 kg	g Bulk Seed
	1,02	1	9/28/02	JKD	(6.725 K	(G Live Seed)
1+206						
	985	1	9/28/02	JKD	22.7 kg	10:20:10 Fertilizer
1+278					13.6 kg	38:0:0 Fertilizer
	1,907	1	9/28/02	JKD		
1+322					And Mu	lch for Tracer:
	990	1	9/28/02	JKD	16.812 k	g per Slurry Unit
1+400						
	1,020	1	9/29/02	JKD	10 Slurr	y Units per Hectare
1+520					10,000 s	quare meters = 1 hectare
	1,000	1	9/29/02		10,000/1	0 = 1,000 m2 per Slurry Unit
1+599						
	995	1	9/29/02	JKD		
1+624						
	1,000	1	9/29/02	JKD		

Computed By:	Date:	Checked By:	Date:	
		600 - 19		

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Date:	
N, ETC.	QUANTITY (SU)
	11
	11
TOTAL	11
Project Engine	eer/Inspector
	N, ETC. TOTAL

DATE:	LINË		PARTY:		WDFD-472 3/83	EDERAL HIGHWAY ADMINISTRATION	PPURIA PAGE.
PROJECT:	PROJECT			ITEM 62506		VAINCOUVER, WASHIINGLOIN	
	STAMP			MULCHING HYDRAULIC METHOD		MISC. CONSTRUCTION NOTES	ES
STATION	PLAN (m2)	SLURRY UNITS	DATE	INITIALS			
0+022							
	1004	-	9/28/92	JKD			
0+055						1 SLURRY UNIT = 4000 LITERS OF WATER PLU	S OF WATER PLU
	1002	7	9/28/92	JKD		450 kg MULCH	
1+206							
	985	-	9/28/92	JKD	-		
1+278						10 SLURRY UNITS PER HECTARE	ARE
	1907	2	9/28/92	JKD			
1+322						10000 square meters = 1 hectare	, p
	066	7	9/28/92	JKD			
1+400						10000/10 = 1000 m2 PER SLURRY UNIT	RRY UNIT
	1020	1	9/29/92	JKD	.		
1+520							
	1000		9/29/92	JKD			
1+599							
	995	-	9/29/92	JKD			
1+624							
	1000	-	9/29/92	JKD			
1+711							
	968	1	9/29/92	JKD			
PAGETOTAL		11	,		COMPUTED BY: JKD	JKD CHECKED BY:	BY: ABC

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 63401A - Pavement Markings	s, Type B, Broken Yellow	
DESCRIPTIO	ON, LOCATION, ETC.	QUANTITY (m)
		1 010
Station 5+900 to Station 6+912, Centerline		1,012
* See attached Documentation		
	TOTAL T	1,012
I certify that the above quantity was per used in the construction of this project.	formed and/or	
Contractor	Project Engine	eer/Inspector
NOTE:		
See FP for Method of Measurement, Se	ction 634.	

3/83 FEDERAL HIGHWAY ADMINISTRATION	MISC. CONSTRUCTION NOTES																		CHECKED BY:	COMPUTED BY: OFF CHECKED BY: AND CHECKED BY: A
PARTY:	SOLID & I	63401A 63401B BROKEN SOLID (m) (m)		410			86 86			500				144			44		187 , 696 meters	
LINE	PROJECT STAMP	TYPE		DOUBLE			SLD/BRK			RECKEN				DOUBLE			DOUBLE			
DATE:		STATION	2+900	10	6+105	6+213	10	6+311	R+521	C -	0,1840	01040	6+643	2	6+715	068+9	οT	6+912	TOTAL	

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 63401B - Pavement Markings, Type	e B, Solid Yellow	
DESCRIPTION, LO	OCATION, ETC.	QUANTITY (m)
Station 4+800 to Station 5+900, Centerline		1,100
,		
* See attached Documentation		
See attached Documentation		
	TOTAL	1,100
I certify that the above quantity was performe used in the construction of this project.	d and/or	
Contractor	Project Engine	er/Inspector
NOTE: See FP for Method of Measurement, Section 6	534.	

DATE:	LINE		PARTY:		3/83	FEDERAL HIGH	FEDERAL HIGHWAY ADMINISTRATION	NOI
	PROJECT STAMP		ITEM 63401A & 63401B PAVEMENT MARKINGS RROKEN YELLOW REFL	ITEM 63401A & 63401B PAVEMENT MARKINGS SOLID & RROKEN YELLOW RFFLECTORIZED		MISC. CONSTE	MISC. CONSTRUCTION NOTES	
STATION	TYPE	63401A 63401E BROKEN SOLID (m) (m)	63401B SOLID (m)					
2+900								
ТО	DOUBLE		410					
6+105								
6+213								
5	SLD/BRK	98	86					
6+311								
R+521								
2	BROKEN	88						
6+610								
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5, X				
6+643								
01	DOUBLE		144					
6+715								
6+890								
ТО	DOUBLE		44					
6+912								
TOTAL		187	, 696 meters		COMPUTED BY: UPB	Y: UPB	CHECKED BY: /	ABC
						40146100		12/16/03

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 63401C - Pavement Markings, Type	B, Solid White	
DESCRIPTION, LO	CATION, ETC.	QUANTITY (m)
Station 4+800 to Station 5+900, Centerline		794
Sunton 11000 to Bunton 51700, Contornic		
* See attached Documentation		
	TOTAL	794
I certify that the above quantity was performed used in the construction of this project.	and/or	
Contractor	Project Engin	eer/Inspector
NOTE: See FP for Method of Measurement, Section 63	34.	

DATE:	LINE		PARTY:			WDFD-472 3/83	U.S. DEP FEDERAI	ARTMEN' L HIGHW	U.S. DEPARTMENT OF TRANSPORT/PAGE:_ FEDERAL HIGHWAY ADMINISTRATION	NSPORT/ ISTRATIC	PAGE:_
PROJECT:	PROJECT STAMP		, we can os	ITEM 63401C PAVEMENT N HITE REEL FC	ITEM 63401C PAVEMENT MARKINGS SOI ID WHITE REFI ECTORIZED		VANCOU MISC. C	IVER, WA	VANCOUVER, WASHINGTON MISC. CONSTRUCTION NOTES	N TES	
STATION	LEFT (m)	RIGHT (m)	LENGTH (m)								
1+025											
Δ		335	335								
1+360											
1+420											
2		180	180								4
1+600											
1+722											
T0	87		87		!						
1+809											
					٠						
2+026					·						
2	74		74								
2+100											
2+210											
10	118		118								
2+328											
TOTAL			794	794 meters							
						COMPUTED BY: UPB DATE: 12/15/93	: UPB 12/15/93		CHECKED BY: DATE:		ABC 12/16/93

N N							_						1				ABC
USPORTA STRATIO N TES																	D BY:
OF TRAN Y ADMINI HINGTON																	CHECKED BY:
RTMENT HIGHWA FR, WAS									İ								
U.S. DEPARTMENT OF TRANSPORTA: PAGE FEDERAL HIGHWAY ADMINISTRATION VANCOUVER, WASHINGTON MISC. CONSTRUCTION NOTES																	
																	COMPLITED RY
WDFD-472 3/83																	COMP
S																	neters
PARTY:	LENGTH (100 mm)	12.0	256.0	7.0	24.9	9.0	2.2	2.2		139.2	20.4	76.0	127.6	21.6	60.0		758.0 meters
TEM 63401C	LENGTH LENGTH (m) (100 mm)	1.0	16.0	7.0	8.3	9.0	0.5	0.5		5.8	3.4	15.2	5.8	3.6	12.0		TOTAL
PARTY:	NUMBER 1	12	9	-	-	-	-	-		24	9	5	22	9	5		
	WIDTH (mm)	100	100	100	300	150	430	430		5	100	100	100	5	100		
LINE:PROJECT STAMP	TYPE	SKIPS	PRK STALLS	PRK STALLS	HANDICAP	HANDICAP	HANDICAP	HANDICAP		PRK STALLS							
DATE: PROJECT:	LOCATION	SNAKE RIVER	SNAKE RIVER PRK STALLS	SNAKE RIVER PRK STALLS	SNAKE RIVER HANDICAP	SNAKE RIVER HANDICAP	SNAKE RIVER HANDICAP	SNAKE RIVER HANDICAP	TETON) X		OVERLOOK	GLACIER	GLACIER	GLACIER		

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project:	Date:	
Number: 63507 - Construction Signs		
DESCRIPTION, LOCAT	TON, ETC.	QUANTITY (m2)
2 each - Detour Arrows - 762 mm x 610 mm		0.930
4 Each - Flagger Symbol - 900 mm x 900 mm		3.240
* See attached Documentation	_	
See attached Documentation		
	TOTAL	4.170
I certify that the above quantity was performed and used in the construction of this project.	/or	
Contractor	Project Enginee	er/Inspector
NOTE: See FP for Method of Measurement, Section 635.		

PAGE. TKC TKC Ϋ́ KC TKC TKC TKC TKC TKC ΤĶ Ϋ́ TKC ΤKC 1KC ξĊ TKC TKC TKC TKC (10/11/91 10/11/91 10/14/91 10/14/91 10/09/91 10/09/91 WDFD~U.S. DEPARTMENT OF TRANSPORTATION 3/83 FEDERAL HIGHWAY ADMINISTRATION VANCOUVER, WASHINGTON 10/09/91 10/09/91 10/10/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/14/91 10/14/91 10/14/91 10/14/91 10/29/91 DATE 27.300 m 2 14.210 21.000 23.880 24.420 27.300 12.010 12.860 15.650 17.090 17.850 9.480 10.300 11.740 12.500 17.360 2.880 7.380 18.210 5.580 19.560 TOTAL MISC. CONSTRUCTION NOTES 2.880 QUANTITY 1.440 0.270 0.490 0.360 1.350 1.440 1.440 0.270 0.490 0.360 1.350 1.440 2.880 2.880 2.700 1.800 0.820 0.540 2.100 (m2) 2 900x900x900 1200 x 1200 1 1200 x 1200 1 1200 x 1200 2 1200 x 1200 2 1200 × 1200 1 1200 x 1200 2 1200 × 1200 2 1500 × 600 2 1500 × 700 1500 x 900 1 1500 x 900 2 1500 × 900 (mm) 600×450 700 × 700 600 x 450 600 x 600 700 × 700 009 × 009 2 600 x 450 PAGE TOTAL (EACH) QTY ITEM 63507 CONSTUCTION SIGN ROAD CONSTRUCTION NEXT 1.5 MILES ROAD CONSTRUCTION NEXT 0.5 MILE ROAD CONSTRUCTION NEXT 0.5 MILE ROAD CONSTRUCTION AHEAD ROAD CONSTRUCTION AHEAD ROAD CONSTRUCTION AHEAD W/500 FT PLATE W/500 FT PLATE W/500 FT PLATE ONE LANE ROAD AHEAD END CONSTRUCTION TRUCK CROSSING FLAGGER SYMBOL TRUCK CROSSING FLAGGER SYMBOL FLAGGER SYMBOL PARTY: DO NOT PASS LEGEND 25 MPH **25 MPH** YIELD PROJECT STAMP LINE NUMBER W20-7A W20-7A W20-4 W20-1 W20-1 W13-1 W20-1 W20-1 W13-1 G20-1 G20-1 G20-2 G20-1 W8-6 W8-6 R1-2 R4-1 PLAN SIGN NUMBER DATE: PROJECT: 9 ß ဖ ဖ 4 O 9 N ~ က 4 Ξ 4 7

Federal Highway Administration Western Federal Lands Highway Division Vancouver, Washington 98661

Project: Date: _		
Number: 63509 - Flagger		
DESCRIPTION, LOCATION, ETC.		QUANTITY (m2)
Sub-excavation - Station 1+025 to Station 1+315		
Jane Doe - 0600 to 1630 (no lunch break)		10.5
Sally Dowright - 0600 to 1630 (no lunch break)		10.5
Borrow Source Access Road - Station 3+291 - Left		
John Downhome - 0600 to 1630 (no lunch break)		10.5
Culvert Placement - Station 4+217		
Joe Rigrite - 0600 to 1630 (no lunch break)		4.0
Jim Miney - 0600 to 1630 (no lunch break)		4.0
Note: Refer to project specification for requirements to list names and	verify with	
Certified contractor payroll reports.		
	TOTAL	39.5
I certify that the above quantity was performed and/or used in the construction of this project.		
Contractor	Project Engineer/	Inspector
NOTE:		
See FP for Method of Measurement, Section 635.		

APPENDIX

Appendix	Description	
A	Guidelines for Partial Payment	
В	Example Contractor invoice and support data	
С	Example Critical Path Method Schedule	
D	Example Quality Control Plan	
E	Reinforcing Steel weights and marks	
F	Pile driving data	
G	WFLHD sample size guidance sheet	
Н	Volume correction factors for asphaltic materials	
I	Area of a circle	
J	Metric conversion factors – General	
K	Blank Forms	

APPENDIX 'A'

Guidelines for percentage payments for partially complete work

Description Allowance (Cumulative) Clearing and Grubbing • Felled and slashed 35 • Bucked and piled (slashings, brush and logs) 60 • Grubbed 75 • Burned or chipped and removed 98 • Substantially complete including cleanup 100 **Excavation and Embankment** • Pioneered 5 Drilled 20 • Blasted 35 • Roughed out to grade 85 • Roadbed finished to grade 90 • Slopes seeded 98 • Substantially complete including cleanup 100 Structural Excavation • Excavation complete 85 • Backfill complete 98 • Substantially complete including cleanup 100 **Aggregate Courses** • Crushed and stockpiled onsite 50 • Placed on roadway 80 • Spread, compacted and tested 98 • Substantially complete including cleanup 100 **Asphalt Pavements** • Aggregates crushed and stockpiled onsite 50 • Placed, compacted and tested 98 • Substantially complete including cleanup 100

PCC Pavement

 Forms set 	35
• Concrete in place	90
 Forms removed and testing complete 	98
 Substantially complete including cleanup 	100
Concrete Structures	
Falsework erected	10
 Forming complete 	20
 Concrete in place 	80
 Forms removed 	90
 Concrete tested and finished 	98
 Substantially complete including cleanup 	100
Steel Structures	
Falsework erected	10
 Steel in place 	80
 Bolting and welding complete 	90
 Painting complete 	98

• Substantially complete including cleanup

Notes:

(1) These percentages are typical. They may be adjusted based on a detailed analysis of circumstances on given project.

100

(2) Whenever partially complete work entails continuing maintenance, an appropriate percentage should be retained to cover those costs.

APPENDIX 'A'

FP 96 PAY DECIMAL LIST

Page 1

ITEM 15101	DESCRIPTION Mobilization	UNIT Lump Sum	FIGURE 0.1%
15201	Construction Survey and Staking	Lump Sum	0.1%
15202	Slope Stake and Reference Points	km	0.1
15203	Centerline Reestablishment	km	0.1
15204	Drainage Structure Survey and Staking	Each	1.
15205	Bridge Survey and Staking	Lump Sum	0.1%
15206	Retaining Wall Survey and Staking	Lump Sum	0.1%
15207	Grade Finishing Stakes	km	0.1
15208	Permanent Monuments and Markers	Each	1.
15209	Miscellaneous Survey and Staking	Hour	0.5
15210	Miscellaneous Survey and Staking	Lump Sum	0.1%
15401	Contractor Testing	Lump Sum	0.1%
15501	Construction Schedule	Lump Sum	0.1%
15601	Snow Removal	km	1.
15602	Detour	Lump Sum	0.1%
15702	Soil Erosion Control	Lump Sum	0.1%
15703	Silt Fence	m	1.
15704	Brush Barriers	m	1.
15705	Slope Drains	m	1.
15707	Temporary Culvert Pipe	m	0.1
15708	Straw Bales	Each	1.
15709	Check Dams	Each	1.
15710	Sand Bags	Each	1.
15713	Plastic Lining	m2	1.
15714	Temporary Turf Establishment	ha	0.001
15715	Temporary Turf Establishment	kg	1.
15716	Equipment for Soil Erosion	Hour	0.5
15730	Temporary Turf Establishment	Slry	0.1
15731	Temporary Turf Establishment (Fertilizing)	t	0.1
15735	Clear Plastic Covering	m2	1.
15741	Mulching Hydraulic Method	Slry	0.1
15801	Watering for Dust Control	m3	1.

Page 2

ITEM 20101	DESCRIPTION Clearing and Grubbing	UNIT ha	FIGURE 0.001
20204	Removal of Individual Trees	m2	0.01
20301	Removal of Structures and Obstructions	Each	1.
20302	Removal of Structures and Obstructions	m	0.1
20303	Removal of Structures and Obstructions	m2	0.1
20304	Removal of Structures and Obstructions	Lump Sum	0.1%
20401	Roadway Excavation	m3	1.
20402	Sub excavation	m3	1.
20403	Unclassified Borrow	m3	1.
20404	Unclassified Borrow	t	0.1
20405	Select Borrow	m3	1.
20406	Select Borrow	t	0.1
20407	Select Topping	m3	1.
20408	Select Topping	t	0.1
20409	Embankment Construction	m3	1.
20501	Control Blasting Hole	m	1.
20701	Earthwork Geotextile Fabric	m2	1.
20801	Structure Excavation	m3	0.1
20802	Foundation Backfill	m3	0.1
20803	Structural Backfill	m3	0.1
20804	Shoring and Bracing	Lump Sum	0.1%
20805	Cofferdams	Lump Sum	0.1%
21001	Permeable Backfill	m3	1.
21101	Roadway Obliteration	m2	1.
21102	Roadway Obliteration	Lump Sum	0.1%
21201	Linear Grading	km	0.01

ITEM	DESCRIPTION	UNIT	FIGURE
21301	Subgrade Stabilization	m2	1.
21302	Lime	t	0.1
21303	Cement	t	0.1
21304	Fly Ash	t	0.1
25101	Placed Riprap	m3	1.
25102	Placed Riprap	t	0.1
25103	Keyed Riprap	m3	1.
25104	Keyed Riprap	t	0.1
25105	Mortared Riprap	m3	1.
		_	
25201	Special Rock Embankment	m3	1.
25202	Special Rock Embankment	t	0.1
25203	Rock Buttress	m3	1.
25204	Rock Buttress	t	0.1
25301	Gabions	m2	0.1
25303	Gabions	m3	1.
25305	Revet Nattress	m3	0.1
23303	No vot Puttiess	1112	0.1
25401	Reinforced Concrete Crib Retaining Wall	m2	0.1
25402	Metal Crib Retaining Wall	m2	0.1
25403	Treated Timber Crib Retaining Wall	m2	0.1
25404	Crib Wall Backfill	m3	1.
25501	M. I. S. H. C. I.W. I.F. of W. H.	2	0.1
25501	Mechanically Stabilized Earth Wall	m2	0.1
25502	Select Granular Backfill	m3	1.
25503	Concrete Leveling Pad	m	0.1
25601	Ground Anchor	Each	1.
25602	Performance Test	Each	1.
25801	Reinforced Concrete Retaining Wall	m2	0.1
25802	Reinforced Concrete Retaining Wall	m	0.1
25803	Reinforced Concrete Retaining Wall	m3	0.01
26201	Rockery Wall	m2	0.1
20201	roomery wan	1114	0.1

ITEM	DESCRIPTION	UNIT	FIGURE
30101	Aggregate Base	t	0.1
30102	Aggregate Base	m2	1.
30103	Aggregate Base	m3	1.
30201	Treated Aggregate Course	t	0.1
30202	Treated Aggregate Course	m2	1.
30203	Cement	t	0.1
30204	Fly Ash	t	0.1
30205	Lime	t	0.1
30301	Road Reconditioning	km	0.001
30302	Road Reconditioning	m2	1.
30401	Aggregate Stabilization	km	0.001
30402	Aggregate Stabilization	m2	1.
30403	Lime	t	0.1
30404	Cement	t	0.1
30405	Fly Ash	t	0.1
30501	Aggregate-Topsoil Course	t	0.1
30502	Aggregate-Topsoil Course	m2	1.
30503	Aggregate-Topsoil Course	m3	1.
30601	Dust Palliative Application	km	0.001
30602	Dust Palliative Application	m2	1.
30603	Emulsified Asphalt	t	0.1
30604	Lignin Sulfied	t	0.1
30605	Calcium Chloride	t	0.1
30606	Magnesium Chloride	t	0.1
30701	Stockpiled Aggregates	t	1.
30702	Stockpiled Aggregates	m3	1.
30703	Preparation of Stockpile Site	ha	0.001
30801	Roadway Aggregate	m3	1.
30802	Roadway Aggregate	t	0.1
30803	Roadway Aggregate	m2	1.

ITEM	DESCRIPTION	UNIT	FIGURE
30901	Emulsified Asphalt Treated Aggregate	t	0.1
30902	Emulsified Asphalt Treated Aggregate	m2	1.
30903	Emulsified Asphalt Treated Aggregate	m3	1.
30904	Emulsified Asphalt	t	0.1
40101	Hot Asphalt Concrete Pavement	t	0.1
40103	Asphalt Cement	t	0.01
40104	Mineral Filler	t	0.01
40104	Antistrip Additive	t	0.01
40105	Superpave Asphalt Concrete Pavement	t	0.01
40100	Superpave Aspiran Concrete Favement	ι	0.1
40201	Minor Hot Asphalt Pavement	t	0.1
40301	Hot Recycled Asphalt Concrete Pavement	t	0.1
40303	Asphalt Cement	t	0.01
40304	Mineral Filler	t	0.01
40305	Recycling Agent	t	0.01
40306	Antistrip Additive	t	0.01
40401	Open-Graded Asphalt Friction Course	t	0.1
40402	Asphalt Cement	t	0.01
40403	Antistrip Additive	t	0.01
10 103	7 musurp 7 kddiave	·	0.01
40501	Hot Asphalt Treated Base Course	t	0.1
40502	Asphalt Cement	t	0.01
40503	Mineral Filler	t	0.01
40504	Antistrip Additive	t	0.01
40601	Dense-Graded Amulsified Asphalt Pavement	t	0.1
40602	Emulsified Asphalt	t	0.1
40603	Mineral Filler	t	0.01
T0003	Minicial Filler	ι	0.01
40701	Open-Graded Emulsified Asphalt	t	0.1
40702	Emulsified Asphalt	t	0.1
40703	Choker Aggregate	t	0.1

Page 6

ITEM	DESCRIPTION	UNIT	FIGURE
40801	Cold Recycled Asphalt Base Course	t	0.1
40802	Cold Recycled Asphalt Base Course	m2	1.
40803	Emulsified Asphalt	t	0.1
40804	Recycling Agent	t	0.01
40805	Lime	t	0.1
40901	Surface Treatment Aggregates	t	0.1
40902	Surface Treatment Aggregates	m3	1.
40903	Asphalt Cement	t	0.01
40904	Emulsified Asphalt	t	0.1
41001	Slurry Seal	m2	1.
41002	Emulsified Asphalt	t	0.1
41003	Slurry Seal Aggregate	t	0.1
41101	Prime Coat	t	0.01
41102	Prime Coat	L	1.
41103	Blotter	t	0.1
41104	Blotter	m3	1.
41201	Tack Coat	t	0.1
41202	Tack Coat	L	1.

ITEM	DESCRIPTION	UNIT	FIGURE
41701	Minor Cold Asphalt Mix	t	0.1
50101	Reinforced Portland Cement Concrete Pavement	m2	0.1
50201	Concrete Pavement Patch	m2	0.1
50202	Sealing Joints and Cracks	m	1.
50203	Grout	m3	1.
50204	Undersealing Holes	Each	1.
50205	Surface Diamond Grinding	m2	0.1
50208	Rubblizing and Compacting Concrete Pavement	m2	1.
55101	Piles in Place	m	0.1
55102	Piles in Place	Each	1.
55103	Pile Load Test	Each	1.
55104	Pile Load Test	Lump Sum	0.1%
55105	Preboring	m	0.1
55106	Splices	Each	1.
55107	Test Piles	m	0.1
55108	Test Piles	Each	1.
55201	Structural Concrete	m3	0.01
55204	Seal Concrete	m3	0.1
55301	Precast, Prestressed Concrete Structural Members	Each	1.
55302	Precast, Prestressed Concrete Structural Members	m	0.1
55303	Prestressing System	Lump Sum	0.1%
55401	Reinforcing Steel	kg	1.
55402	Epoxy Reinforcing Steel	kg	1.
55501	Structural Steel	kg	1.
55112	Sheet Pile in Place	m2	0.1
55601	Bridge Railing	m	0.1
55602	Bridge Railing	Lump Sum	0.1%
55603	Remove and Reset Bridge Railing	m	0.1
55701	Untreated Structural Timber and Lumber	m3	0.01
55702	Treated Structural Timber and Lumber	m3	0.01

ITEM	DESCRIPTION	UNIT	FIGURE
55801	Dampproofing	m2	1.
55802	Dampproofing	Lump Sum	0.1%
		-	
55901	Membrane Waterproofing	m2	1.
55902	Membrane Waterproofing	Lump Sum	0.1%
56001	Water Stop	m	0.1
56002	Water Stop	Lump Sum	0.1%
56101	Structural Concrete Bonding	m	0.1
56102	Structural Concrete Bonding	L	1.
56103	Structural Concrete Bonding	Lump Sum	0.1%
56104	Crack Preparation	m	0.1
56105	Crack Preparation	Lump Sum	0.1%
56301	Painting	Lump Sum	0.1%
56302	Painting	m2	0.1
56401	Basilia Daria	E1-	1
56401	Bearing Device	Each	1.
56501	Drilled Shafts	m	0.1
56502	Trial Drilled Shaft	Each	1.
56503	Bell	Each	1.
30303	BCII	Lacii	1.
60101	Minor Concrete	m3	0.01
60102	Minor Concrete	m2	0.1
60103	Minor Concrete	Lump Sum	0.1%
60104	Minor Concrete	Each	1.
60201	Pipe Culvert	m	0.1
60206	End Section	Each	1.
60209	Elbow	Each	1.
60210	Branch Connection	Each	1.
60301	Structural Plate Pipe	m	0.1

ITEM	DESCRIPTION	UNIT	FIGURE
60401	Manhole	Each	1.
60402	Manhole	m	0.1
60403	Inlet	Each	1.
60404	Catch Basin	Each	1.
60405	Manhole Adjustment	Each	1.
60406	Inlet Adjustment	Each	1.
60407	Capping Inlets and Manholes	Each	1.
60408	Junction Box	Each	1.
60409	Metal Frame Grate	Each	1.
60410	Spring Box	Each	1.
60411	Removing and Resetting Metal Frame and Grate	Each	1.
00-11	Removing and Resetting Metal Frame and Grate	Lacii	1.
60501	Underdrain system	m	0.1
60504	Geocomposie Underdrain System	m	0.1
60505	Geocomposite Sheet Drain system	m2	0.1
60506	Collector Pipe	m	0.1
60508	Granular Backfill	m3	1.
60509	Sand	m3	1.
60601	Spillway Assembly	Each	1.
60602	Pipe Anchor Assembly's	Each	1.
00002	Tipe Alichor Assembly s	Lacii	1.
60701	Removing, Cleaning, and Stockpiling Culvert	m	0.1
60702	Removing, Cleaning, and Relaying Culvert	m	0.1
60703	Cleaning culverts in Place	m	0.1
60704	Reconditioning Drainage Structures	Each	1.
60801	Paved Waterway	m2	0.1
60802	Paved Waterway	m	1.
60803	Asphalt Paved Waterway	t	0.1
55005	1 20 primit 2 th total in the straight	•	V.1

ITEM	DESCRIPTION	UNIT	FIGURE
60901	Portland Cement Concrete Curb	m	0.1
60902	Portland Cement Concrete Curb and Gutter	m	0.1
60903	Stone Curb	m	0.1
60904	Precast Curb	m	0.1
60905	Asphalt Curb	m	1.
60906	Reset Curb	m	1.
60907	Bed Course Material	m3	1.
60908	Bed Course Material	t	0.1
60909	Wheelstop	Each	1.
60910	Remove and Reset Wheelstop	Each	1.
60911	Log Curb	m	0.1
61001	Harizantal Drain Dina	m	0.1
61001	Horizontal Drain Pipe	m	0.1
	Collector System	m Lump Sum	0.1%
61003	Collector System	Lump Sum	0.1%
61101	Water System	Lump Sum	0.1%
61102	Water Line	m	0.1
61103	Encasemenet Pipe	m	0.1
61104	Valve	Each	1.
61105	Valve Box	Each	1.
61106	Fire Hydrant	Each	1.
61201	Sewer System	Lump Sum	1.
61202	Sewer Line	m	0.1
01202	20 (10)		0.12
61301	Simulated Stone Masonry Surface Treatment	m2	0.1
61302	Simulated Stone Masonry Test Wall	Each	1.
61401	Lean Concrete Backfill	m3	1.
61501	Sidewalk	m2	0.1
61502	Drive Pad	m2	0.1
61503	Median	m2	0.1
61601	Concrete Slope Paving	m2	0.1

ITEM	DESCRIPTION	UNIT	FIGURE
61701	Guardrail System	m	0.1
61702	Terminal Section	Each	1.
61703	Removing and Resetting Guardrail	m	0.1
61704	Raising Guardrail	m	0.1
61705	Replace Posts	Each	1.
61706	Connection to Structure	Each	1.
61707	Reinforced Concrete Transition	Each	1.
61801	Concrete Barrier	m	0.1
61802	Precast Concrete Guardwall	m	0.1
61803	Terminal Section	Each	1.
61804	Reset Barrier	m	1.
61901	Fence	m	1.
61901	Fence, Chain Link	m	0.1
61901A	Fence, Log, Rail	m	0.1
61902	Gate	Each	1.
61903	Cattle Guard	Each	1.
61904	Brace Panel	Each	1.
61905	Bollard Post	Each	1.
61906	Remove and Reset Fence	m	1.
61912	Pedestrian Railing	m	0.1
62001	Masonry	m3	0.1
62002	Stone Masonry Guard wall	m	0.1
62003	Remove and Reset Stone Masonry	m3	0.1
62050	Railing	m	0.1
62101	Monument	Each	1.
62102	Marker	Each	1.
62201	Rental Equipment	Hour	0.5
62301	General Labor	Hour	0.5

ITEM	DESCRIPTION	UNIT	FIGURE
62401	Furnish and Placing Topsoil	m2	1.
62402	Furnish and Placing Topsoil	ha	0.001
62403	Furnish and Placing Topsoil	m3	1.
62404	Placing Conserved Topsoil	m2	1.
62405	Placing Conserved Topsoil	ha	0.001
62406	Placing Conserved Topsoil	m3	1.
62501	Seeding	ha	0.001
62502	Seeding	m2	1.
62503	Seeding, Hydraulic Method	Slry	1.
62504	Mulching	ha	0.001
62505	Mulching	m2	1.
62506	Mulching, Hydraulic Method	Slry	1.
62507	Fertilizer, Dry Method	t	0.1
62508	Water	m3	1.
62509	Turf Establishment	ha	0.001
02203			0.001
62601	Plants	Each	0.1
62701	Sod	m2	1.
62801	Sprigging	ha	0.001
62802	Sprigging	m2	1.
62901	Erosion Control Mat	m2	1.
62902	Roving	m2	1.
62903	Cellular Confinement System	m2	1.
63301	Sign Installation	Each	1.
63302	Sign Installation	m2	0.001
63304	Posts	Each	1.
63306	Object Markers	Each	1.
63307	Delineators	Each	1.
63308	Removing and Resetting	Each	1.
63312	Signs, Routed Wood	m2	0.001
	5 ,		

ITEM	DESCRIPTION	UNIT	FIGURE
63401	Pavement Markings	m	1.
63402	Pavement Markings	m2	0.1
63403	Pavement Markings	L	1.
63404	Pavement Markings	km	0.001
63405	Pavement Markings	Each	1.
	C		
63501	Temporary Traffic Control	Lump Sum	0.1%
63502	Advance Warning Arrow Panel	Hour	0.5
63503	Advance Warning Arrow Panel	Each	1.
63504	Barricade	m	0.1
63505	Barricade	Each	1.
63506	Cone	Each	1.
63507	Construction Sign	m2	0.001
63508	Drum	Each	1.
63509	Flagger	Hour	0.5
63510	Pilot Car	Hour	0.5
63511	Temporary Concrete Barrier	m	1.
63512	Moving Temporary Concrete Barrier	m	1.
63513	Temporary Guardrail	m	1.
63514	Temporary Pavement Markings	m	1.
63515	Temporary Pavement Markings	km	0.001
63516	Temporary Pavement Markings, Symbols	m2	0.1
63517	Temporary Pavement Markings, Symbols	Each	1.
63518	Temporary Raised Pavement Marker	Each	1.
63519	Pavement Marking Removal	m	1.
63520	Vertical Panel	Each	1.
63521	Warning Light	Each	1.
63522	Shadow Vehicle	Each	1.
63523	Maintenance of Traffic, Pavement Patch	t	1.
63524	Variable Message Sign	Each	1.
63525	Temporary Crash Cushion	Each	1.
63526	Moving Temporary Traffic Cushion	Each	1.
63527	Replacement Temporary Traffic Cushion	Each	1.
63528	Temporary Traffic Signal System	Lump Sum	0.1%
63529	Temporary Traffic Signal System	Each	1.
63530	Relocating Temporary Traffic Signal System	Each	1.
63531	Temporary Fence	m	1.
63532	Portable Rumble Strip	Each	1.
63533	Opposing Traffic Lane Divider	Each	1.
63534	Steel Plates	m2	0.1

ITEM	DESCRIPTION	UNIT	FIGURE
63560	Traffic and Safety Supervisor	Day	0.1
63601	Signal Installation	Lump Sum	0.1%
63602	Lighting Installation	Lump Sum	0.1%
63603	Electrical Installation	Lump Sum	0.1%
63604	Railroad Crossing System	Lump Sum	0.1%
63605	Relocate	Lump Sum	0.1%
63606	Conduit	m	1.
63607	Electrical Conductors	m	1.
63608	Luminaries	Each	1.
63609	Poles	Each	1.
63610	Pull Box	Each	1.
63611	Relocate	Each	1.
63701	Field Office	Each	0.01
63702	Field Laboratory	Each	0.01
63703	Residential Housing	Each	0.01
64502	Barrier Log	m	0.1
65002	Landscape Log	m	1.
65802	Pumped Grout	m3	0.1
65803	Drilled Holes	m	0.1
67509	Containment Log	m	0.1

Revised 04/07/98

ACE CONTRACTING, INC. P.0. BOX 1234 ANYWHERE, USA 12345-6789 (123) 456-7891

January 1, 2004

Mr. Rodney Router, Project Engineer Western Federal Lands Highway Division P.O. Box 4567 Somewhere, USA 98765-4321

Re: Progress Estimate No. 003

OR PFH 123-1(1)

Happy Trails Creek Road

Contract No. DTFH70-XX-C-000XX

Dear Mr. Router

We submit our invoice for items on which there was work during the invoice period of December 1, 2003 through December 31, 2003. Also enclosed is our certification statement, and update of work performed by our subcontractors to date.

Please send payment to our Anywhere, USA corporate bank account by electronic transfer, as usual.

In the event that this invoice is found to be defective, please contact the following person.

John R. Doe, Project Manager
Ace Contracting, Inc.

P.0. Box 1234

Anywhere, USA 12345-6789

(123) 456-7891

Respectfully,

John R. Doe, Project Manager

JRD/lm Enclosures To: U.S. Department of Transportation

Federal Highway Administration

Western Federal Lands Highway Division

Mr. Rodney Router, Project Engineer

Western Federal Lands Highway Division

P.O. Box 4567

Somewhere, USA 98765-4321

Re: Contract No. DTFH70-XX-C-000XX

Award Date: 9/12/2003 Progress Estimate No. 003

Period December 1, 2003 through December 31, 2003

OR PFH 123-1(1)

Happy Trails Creek Road

Pursuant to FAR Clauses 52.232-5, and 52.232-27, and Special Contract Requirements, Subsection 109.08, the following is work completed to date. Payment is hereby requested.

Prepared By: Ace Contracting, Inc.

I hereby certify, to the best of my knowledge and belief, that--

- (1) The amount requested are only for performance in accordance with specifications, terms, and conditions of the contract.
- (2) Payment to subcontractors and suppliers have been made from previous payments received under the contract, and timely payments will be made from the proceeds of the payment covered by this certification, in accordance with subcontract agreements and the requirements of chapter 39 of title 31, United States Code; and
- (3) This request for progress payment does not include any amount which the prime contractor intends to withhold from a subcontractor or supplier in accordance with the terms and conditions of the subcontract.

Name: Title: Signature: Date:

Date Received:Date Approved:Signature:Date ApprovedSignature:Project Engineer

FOR WORK PERFORMED JULY 1, 1998 THROUGH JULY 31, 1998	CONTRACT NO. DTFH70-XX-C-000XX	ACE CONTRACTING, INC.
PROGRESS ESTIMATE NO. 003	OR FS 108-2(11)	HAPPY TRAILS CREEK ROAD

1 2200,000 LS 5200,000 0 0 1 0 1 0 1 0 1 0 1 0 0	ITEM		CONTRACT				CURRENT	PREV.	OTY.	~	CURRENT	AMOL
Mobilization Constr. Survey and Staking 1 \$51,500,000 LS LS \$200,000 0 0.05 0.05 0.80 0.36 \$2,575.00 Constructor Testing Construction Schedule 1 \$51,500.00 LS LS \$51,500.00 0.05 0.80 0.86 \$2,575.00 Contractor Testing Construction Schedule 1 \$52,600.00 LS LS \$55,000.00 0.25 0.75 \$1,250.00 Staw Bales 340 \$7.50 EA \$25,500.00 0.26 0.75 \$150.00 Staw Bales 340 \$7.50 EA \$2,500.00 1.00 1.00 1.00 \$3,500.00 Staw Bales 340 \$7.50 EA \$1,000 \$1,000 \$2,500.00 \$3,500.00 \$1,00	Ŏ.	NAME	QUANTITY	PRICE	FIND	AMOUNT	ΔT.	OTY.	TO DATE		AMOUNT	TO D
rey and Staking 1 \$51,500.00 LS \$51,500.00 0.05 0.80 0.85 \$2,555.00 esting 1 \$35,000.00 LS \$2,500.00 0.05 0.05 0.05 0.05 0.05 0.05 0.	15101	Mobilization	-	\$200,000.00	rs	\$200,000.00	0.00	1.00	1.00		\$0.00	\$200,0
esting 1 \$35,000.00 LS \$35,000.00 0.10 0.80 0.90 \$3,500.00 1.5 Schedule 1 \$2,500.00 LS \$2,500.00 0.50 0.25 0.75 \$1,250.00 \$1,000.00 \$2,5	15201	Constr. Survey and Staking	-	\$51,500.00	rs	\$51,500.00	0.05	0.80	0.85		\$2,575.00	\$43,7
s Schedule 1 \$2,500.00 LS \$2,500.00 0.50 0.25 0.75 \$1,250.00 340 \$7,50 EA \$130.00 500.00 2,000.00 2,500.00 \$4,600.00 340 \$7,50 EA \$1130.00 10.00 2,000.00 2,500.00 \$4,600.00 340 \$7,50 EA \$1130.00 10.00 2,000.00 2,500.00 \$1,000.00 340 \$7,50 EA \$110,000 10.00 10.00 2,500.00 \$1,000.00 350 \$14,50 m3 \$5,000.00 13.00 0.00 13.00 \$2,000.00 \$1,000.00 350 \$14,50 m3 \$5,000.00 10.00 2,000.00 \$1,000.00 \$1,000.00 350 \$14,50 m3 \$5,000.00 10.00 2,000.00 \$1,000.00 \$1,000.00 350 \$1,000.00 3	15401	Contractor Testing	-	\$35,000.00	S	\$35,000.00	0.10	0.80	06.0		\$3,500.00	\$31,5
s, 100 \$9.30 m \$38,130.00 500.00 2,500.00 2,500.00 \$4,650.00 s, 100 \$7.50 EA \$2,550.00 24.00 105.00 129.00 \$180.00 4,100 \$7.50 EA \$2,550.00 24.00 105.00 129.00 \$180.00 4,100 \$7.500.00 EA \$2,550.00 10.00 25.00 \$180.00 4,100 \$5,600.00 EA \$72,800.00 13.00 \$20.00 \$2,500.00 350 \$14.50 m3 \$412,560.00 20,000.00 \$20.00 \$210.00 app curver \$300 \$9.76 \$1,830.00 \$20.00 \$210.00 \$210.00 app curver \$50 \$25.00 \$21,000.00 \$21,000.00 \$21,000.00 \$21,000.00 app curver \$50 \$52.50 \$21,000.00 \$21,000.00 \$24.00 \$24.00 \$24.00 \$24.00 \$24.00 \$24.00 \$24.00 \$24.00 \$22.00 \$24.00 \$24.00 \$24.00 \$23.00 <td>15501</td> <td></td> <td>-</td> <td>\$2,500.00</td> <td>rs</td> <td>\$2,500.00</td> <td>0.50</td> <td>0.25</td> <td>0.75</td> <td></td> <td>\$1,250.00</td> <td>\$1,8</td>	15501		-	\$2,500.00	rs	\$2,500.00	0.50	0.25	0.75		\$1,250.00	\$1,8
strong strain 340 \$7.50 EA \$2,550.00 24.00 105.00 \$180	15703		4,100	\$9.30	Ε	\$38,130.00	500.00	2,000.00	2,500.00		\$4,650.00	\$23,2
s 70 \$150.00 EA \$10,500.00 15.00 10.00 25.00 \$2,250.00 I Grubbing 13 \$5,600.00 ha \$72,800.00 13.00 13.00 \$72,800.00 Gravation 108,000 \$3.82 m3 \$412,560.00 29,000.00 46,000.00 75,000.00 \$710,700 \$72,800.00 sase Grading D 33,000 \$9,76 t \$322,080.00 21,000.00 27,000.00 \$700.00 \$700.00 \$700.00 \$20,000 \$700.00 \$700.00 \$20,000 \$700.00 \$20,000	15708	Straw Bales	340	\$7.50	EA	\$2,550.00	24.00	105.00	129.00		\$180.00	\$8
4 Grubbing 13 \$5,600.00 ha \$72,800.00 13.00 13.00 \$72,800.00 ccavation 108,000 \$3.82 m3 \$412,560.00 29,000.00 46,000.00 75,000.00 \$10,780.00 sp 350 \$14.50 m3 \$412,560.00 29,000.00 46,000.00 75,000.00 \$10,780.00 sp 33,000 \$9.76 t \$322,080.00 21,000.00 20,000.00 \$204,960.00 nus \$0.00 \$1,000.00 0.00 21,000.00 \$20,496.00 \$20,400.00 pe Culvert 50 \$59.00 15.00 12.00 27.00 \$20,000.00 ceyed Riprap 50 \$45.00 m \$27,300.00 24.00 24.00 \$38.60.00 signed Riprap 50 \$150.00 m \$75,000.00 38.00 15.00 24.00 \$5,700.00 signed Riprap 50 \$150.00 38.00 15.00 24.00 \$5,700.00 signed Riprap 50 \$45.00	15709		70	\$150.00	EA	\$10,500.00	15.00	10.00	25.00		\$2,250.00	\$3,7
cavation 108,000 \$3.82 m3 \$412,560.00 29,000.00 75,000.00 \$110,780.00 350 \$14.50 m3 \$5,075.00 66.00 205.00 271.00 \$597.00 38.00 nor. Pavement 6,300 \$53.54 t \$148,302.00 0.00 21,000.00 0.00 21,000.00 \$204,960.00 0.00 21,000.00 0.00 21,000.00 0.00 21,000.00 0.00 21,000.00 0.00 21,000.00 0.00 0.00 21,000.00 0.00 0.00 0.00 0.00 0.00 0.00 0	20101		13	\$5,600.00	ha	\$72,800.00	13.00	00.0	13.00	**	\$72,800.00	\$72,8
ase, Grading D 33,000 \$14.50 m3 \$5,075.00 66.00 205.00 271.00 \$957.00 see, Grading D 33,000 \$9.76 t \$322,080.00 21,000.00 0.00 21,000.00 \$20.00 0.00 \$21,000.00 \$21,000.00 0.00 \$21,000.00 0.00 \$21,000.00 0.00 \$21,000.00 0.00 0.00 \$21,000.00 0.00 0.00 0.00 0.00 0.00 0.00 0	20401		108,000	\$3.82	m3	\$412,560.00	29,000.00	46,000.00	75,000.00	69	110,780.00	\$286,5
Asse, Grading D 33,000 \$9.76 t \$322,080.00 21,000.00 0.00 21,000.00 \$20,000 0.00 \$2,000.00 0.00 \$2,000.00 0.00 0.00 0.00 0.00 0.00 0.00 0	25101		350	\$14.50	m3	\$5,075.00	66.00	205.00	271.00		\$957.00	\$3,9
## \$2,100.00 ## \$29,500.00 ## \$29,500.00 ## \$29,500.00 ## \$20,000 ## \$20,	30101	Addregate Base, (\$9.76	+	\$322,080.00	21,000.00	00.0	21,000.00	Ġ	204,960.00	\$204,9
oncr. Pavement 6,300 \$23.54 t \$148,302.00 0.00 0.00 0.00 \$0.		Incentive Bonus		\$0.10	-		21,000.00	00.0	21,000.00	:	\$2,100.00	\$2,1
pe Culvert 50 \$590.00 m \$29,500.00 15.00 27.00 \$8,850.00 \$8,950.00 to 24.00 \$27.00 \$8,850.00 \$936.00 \$15.00 \$24.00 \$1350.00 \$936.00 \$15.00 to 24.00 \$15.00 \$	40101	Hot Asph. Concr.		\$23.54	+	\$148,302.00	00.00	00.0	0.00		\$0.00	
Fig. 27,300.00 24,00 24,00 \$936.00 \$936.00 to 0.00 24,00 \$936.00 seyed Riprap 50 \$45.00 m3 \$2,250.00 30.00 15.00 45.00 \$1,350.00 tone Curb 500 \$150.00 m \$75,000.00 38.00 186.00 224.00 \$5,700.00 tone Curb 500 \$4.20 t \$138,600.00 (21,000.00) 33,000.00 12,000.00 (\$88,200.00) \$334,638.00 tone curb 500 \$4.20 t \$138,600.00 (21,000.00) 33,000.00 12,000.00 \$334,638.00 tone curb 500 \$4.20 t \$138,600.00 (21,000.00) 33,000.00 12,000.00 \$334,638.00 tone curb 500 \$4.20 t \$138,600.00 (21,000.00) 33,000.00 12,000.00 \$334,638.00 tone curb 500 \$4.20 t \$138,600.00 (21,000.00) 33,000.00 12,000.00 \$334,638.00 tone curb 500 \$134,638.00 tone curb 500 \$150 \$150 \$150 \$150 \$150 \$150 \$150	60201	1200 mm Pipe Cu		\$590.00	Ε	\$29,500.00	15.00	12.00	27.00		\$8,850.00	\$15,9
eyed Riprap 50 \$45.00 m3 \$2,250.00 30.00 15.00 45.00 \$1,350.00 stone Curb 500 \$150.00 m \$75,000.00 38.00 186.00 224.00 \$5,700.00 Hand Advance 33,000 \$4.20 t \$138,600.00 (21,000.00) 33,000.00 (\$88,200.00) \$334,638.00	63209	Flagger	700	\$39.00	光	\$27,300.00	24.00	0.00	24.00		\$936.00	63
Eayed Riprap 50 \$45.00 m3 \$2,250.00 30.00 15.00 45.00 \$1,350.00 stone Curb 500 \$150.00 m \$75,000.00 38.00 186.00 224.00 \$5,700.00 stone Curb 500 \$150.00 m \$75,000.00 38.00 186.00 224.00 \$5,700.00 stone Curb 500 \$1,000.00 33,000.00 12,000.00 (\$88,200.00) \$334,638.00								3				
01 Keyed Riprap 50 \$45.00 m3 \$2,250.00 30.00 15.00 45.00 \$1,350.00 02 Stone Curb 500 \$150.00 m \$75,000.00 38.00 186.00 224.00 \$5,700.00 als on Hand Advance 33,000 \$4.20 t \$138,600.00 (21,000.00) 33,000.00 12,000.00 (\$88,200.00) \$334,638.00 \$334,638.00 \$334,638.00 \$334,638.00 \$334,638.00	Contract	Modifications										
02 Stone Curb 500 \$150.00 m \$75,000.00 38.00 186.00 224.00 \$5,700.00 als on Hand Advance 33,000 \$4.20 t \$138,600.00 (21,000.00) 33,000.00 12,000.00 (\$88,200.00) \$334,638.00	25102	CM-0001 Keyed Riprap	20	\$45.00	m3	\$2,250.00	30.00	15.00	45.00		\$1,350.00	\$2,0
als on Hand Advance 33,000 \$4.20 t \$138,600.00 (21,000.00) 33,000.00 12,000.00 (\$68,200.00) \$334,638.00	60901	CM-0002 Stone Curb	200	\$150.00	Ε	\$75,000.00	38.00	186.00	224.00		\$5,700.00	\$33,6
Materials on Hand Advance 33,000 \$4.20 t \$138,600.00 (21,000.00) 33,000.00 12,000.00 (\$88,200.00) \$334,638.00	Temporar	y Items										
\$334,638,00	30101			\$4.20	+	\$138,600.00	(21,000.00)	33,000.00		٠	\$88,200.00)	\$50,4
	TOTALS									ю	334,638.00	\$978,2

Quantity reflects 10% (\$5,150) being withheld from subcontractor as a condition of subcontract. Incentive bonus reflects 1.02 payfactor, in accordance with Subsection 106.05 · Note

PROGRESS ESTIMATE NO. 003 OR FS 108-2(11) HAPPY TRAILS CREEK ROAD

ACE CONTRACTING, INC. CONTRACT NO. DTFH70-XX-C-000XX

THE FOLLOWING IS A LIST OF SUBCONTRACTORS TO WHOM PAYMENTS HAVE BEEN MADE AND A LISTING OF TOTAL AMOUNTS EXPECTED TO BE PAID THESE SUBCONTRACTORS RELATING TO WORK PERFORMED UNDER THIS CONTRACT.

SUBCONTRACTOR	s	TOTAL AMOUNT UBCONTRACTED	DUE THIS ESTIMATE	PAID TO DATE
Acme Striping, Inc.	•	\$21,000.00	\$0.00	\$0.00
Our-Way Traffic Control Co.		\$25,000.00	\$700.00	\$700.00
Zippy Surveying, Inc.		\$51,500.00	\$2,575.00	\$43,775.00
Movers & Shakers Logging Co.	7.0	\$65,000.00	\$65,000.00	\$65,000.00
Stone & Sons Masonry Co.		\$65,750.00	\$4,997.00	\$29,456.00
Smith Testing, Inc.		\$30,000.00	\$3,000.00	\$27,000.00
		12		
TOTALS		\$258,250.00	\$76,272.00	\$165,931.00

Denotes DBE Subcontractor

SUBMITTED: Robert D. Jones

BY: Robert G. Jones, Project Manager

DATE: Aug. 5, 1998

PROGRESS SCHEDULE NARRATIVE

March 16, 1998 OR FS 108-2(11) HAPPY TRAILS CREEK ROAD

Work Schedule: We will work Monday through Friday, using eight-hour shifts from 7:00 AM to 3:30 PM, including half-hour lunch break. No weekend work is anticipated at this time. Flaggers will be set up as needed to control one-way traffic. As the summer progresses we might extend our shift time to a twelve-hour workday, and possible weekend work, which would be reflected on a schedule update. There will be no project work affecting public traffic during the July 4th weekend.

The following narrative gives details of our planned work, as required by FP-96 Section 155. Since the plotted CPM schedule includes details of Item Number, Start and Finish dates, we have omitted those columns below. The "Activity ID" number corresponds to that on the CPM schedule.

Activity ID	Description of Work and its Location, Equipment, Labor, Materials, Production Rates, Materials/Equipment Delivery, Work by Subcontractors
2	After receiving the Notice to Proceed effective 3/27/98, two laborers and the Superintendent will take samples from our proposed source for testing. We expect to have all test results submitted to FHWA by 4/16/98.
3	Construction signs and type III barricades will be installed at the designated locations by the traffic control subcontractor, Our Way Traffic Control. Their work crew consists of one foreman, one laborer, and a pickup truck. Other traffic control devices will be stored at the staging area until needed.
	Materials for erosion control and materials for the concrete retaining wall should also arrive during the week of March 30, 1998, and all will be stored at the staging area.
4	The PUD has scheduled relocation of power poles on the lower end of the project. Their work will not affect our operations.
5 & 6	The survey subcontractor, Zippy Surveying, will stake clearing limits starting from station 2+355, then drop back after the clearing and grubbing has started to relocate control points, and set slope stakes with reference point stakes for the full length of the project. Using a four-person crew, they expect to complete .5 km per day.
7	Mobilization of the crusher to our materials source and mobilization of earthwork equipment will be accomplished. Due to contract constraints, equipment and haul vehicles will be kept at the designated staging area when not in use.
8	Our testing subcontractor, Smith Testing, will be on site from the start of crushing until the completion of paving. Their staff consists of one to two testers, with occasional site visits by their Lab Chief. Our Superintendent will be responsible for quality assurance for all operations.

- 9-11 After source approval is received, aggregate production will begin with the base rock. Crusher setup should take no more than two days, with crew of a Foreman and four laborers. One D8 dozer and one 966 f. e. loader, each with one operator, will feed and stockpile materials. The anticipated production rate for base rock is 1200 metric tons per day. Base rock will be stockpiled at the station 1+003 rt. turnout using three end-dump trucks and a 966 f. e. loader. After completing base rock production, it will take one day to change crusher screens and begin producing pavement aggregates. The anticipated production rate for that operation is 800 metric tons (combined sizes total) per day. This material will be placed in stockpiles at the hot plant location. In crushing both aggregates, we may decide to lengthen our work shift to achieve the target production rates. Our testing subcontractor, Smith Testing, will run production tests on all aggregates to ensure contract specifications are met. After we complete production of the pavement aggregates, Smith Testing will begin to develop the asphalt mix design.
- Silt fence and straw bales will be installed throughout the project at the locations identified in the Erosion Control Plan. These devices will be maintained as necessary by one laborer. Two laborers will remove all devices at project completion.
- The clearing and grubbing operation can begin after clearing limits are established, station 2+355 ahead. The clearing sub is Movers & Shakers Logging, and their six-person crew expects to complete 1 km per day. Their equipment includes two skidders and a track excavator-each piece of equipment with its own operator. Merchantable logs will be decked at mainline turnouts for pickup by their two self-loading trucks on Friday mornings. Waste materials will be taken to the designated disposal site, using one end-dump truck, for later burning.
- Following completion of clearing and grubbing, excavation will begin at station 2+355 and proceed ahead, with the material going to the station 5+150 rt. fill. Excavation equipment will be two scrapers, one excavator, and one 988B f. e. loader-each piece of equipment with its own operator. We also expect to use four end dump trucks (with four drivers), for a total production rate of 550 cubic meters per day. Smith Testing will run proctors on excavated material as necessary to monitor work in the fill, and take compaction tests. The rock cut at station 3+040 should take another estimated four days to drill and shoot using one track drill with two operators and one laborer, with two additional days to haul the material to the USFS stockpile off-project, using five end-dump trucks and drivers with the 988B f. e. loader and one operator, for a production rate average of 400 cubic meters per day.

(Note to Contractors: Continue on with all remaining activities shown on CPM schedule)

U. S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

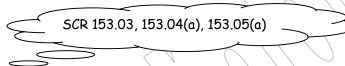
CONTRACTOR DAILY QUALITY CONTROL REPORT

Project:	
Contract/Subcontractor:	
Date :	Day:
Weather:	
Quality Control Inspection Narrative	
•	contained in this record is accurate, and that all the requirements of the contract. Any exceptions part of this record.
Recorded by:	Reviewed by:
Contractor Quality Control Manager	Federal Highway Administration

Quality Control and Assurance Plan [SCR 153.02]] Humday Construction Company WA PFH 387-2(3) Clear River Road

				_
			SCR 153.03, 153.04(a), 153.05(a)	3
1	Qualifications.			
1.	Quannications.			
	<	>		

The following individuals will be providing quality control and quality assurance inspection and testing on the project.


- a. Erica Lewis will be the Quality Manager and will principally be doing Quality Assurance inspections on grading, structures, walls, survey and other items detailed elsewhere in this plan. Erica has a B. S. in Civil Engineering and has worked the past two years for Muenster Construction Co as the Quality Control Manager. Prior to that Jane spent eight years working as an inspector and project engineer for Washington DOT.
- b. John Fisher will principally be performing Quality Control inspections on work performed by Muenster Construction Co. This will include clearing, grading, culverts and aggregate base and emulsified base placement. John will also be doing the Quality Control for seeding, willow planting and permanent signs and pavement markings. John has a B. S. in Construction Management and has spent the past three years working for Muenster Construction Co. as a culvert foreman and project engineer. Prior to that he worked three years for Cooke County Public Works as an inspector class one. John will be Quality Assurance inspector for traffic control. John will be the alternate Quality Manager
- c. Lillie Roe will be performing Quality Control inspections on structure work, including the bridge and the walls on the project. Lillie works for Structural Industries as a licensed Structural Engineer. She has worked in this capacity for the past 10 years, primarily in the role of project engineer on construction projects.
- d. Stephanie Lee will be doing Quality Control inspections on survey, guardrail, traffic control and other items as detailed elsewhere in this plan. She will also be performing Quality Assurance inspections on clearing, culverts, base rock, emulsified base, paving and other items as detailed elsewhere in this plan. Stephanie spent the past 7 years working for Waudby Contractors as a foreman for a paving crew. Prior to that she worked as a seasonal surveyor for the US Forest Service as well as a seasonal worker for various construction contractors doing grade checking and materials testing.
- e. Hernandez Testing will be providing all the testing on the project except the Quality Control for the crushing. Hernandez is a respected testing firm that has been in business for the past 35 years. Austin Roberts will be the primary Quality Control compaction tester, including embankment,

culverts and structures. Austin has been a tester for the past 3 years and is Level 2 certified by WSDOT. The remaining specific testers, and their qualifications, will be provided as we get closer to on-site testing. All offsite tests (mix designs) will be conducted in their main lab located in Spokane, WA.

- f. Grace Becker will be the Quality Control gradation tester during crushing. Grace works for Williams Crushing and has been their Quality Control tester for the past 3 years.
- g. Issac Galloway will be the Quality
 Control inspector for the paving
 operations. Issac is a foreman for
 Emory Paving and has been a foreman for
 the past 15 years.

A subcontractor foreman can do the QC.

h. If other inspectors or testers are needed, qualification information will be provided.

2. Authority.

Erica Lewis reports directly to Linda Russel, Vice President. Erica will be coordinating all activities with the Superintendent and various Foremen on the project. She has the authority to stop all work (including that of subcontractors and suppliers) for non-compliance reasons. All testers and inspectors will report directly to Erica Lewis. They will not have authority to stop work.

3. Chart of Inspections

Appendix A contains a chart of inspections (both Quality Control and Quality Assurance) that details the definable features of work, the responsible inspector and the frequency and method of inspections.

The first part of the Quality Assurance Plan is to develop a list of definable features of work for this project. The list of definable features for this project follows:

- a. Survey
- b. Clearing and Grubbing
- c. Erosion Control Devices

- d. Excavation
- e. Culvert
- f. Crushing
- g. Embankment
- h. Wall Installation
- i. Fencing
- j. Finishing Subgrade
- k. Willow Planting
- l. Seeding/Mulching
- m. Bridge Work
- n. Base Rock
- o. Emulsified Treated Base
- p. Guardrail
- q. Paving
- r. Traffic Control
- s. Pavement Markings & Permanent Signs

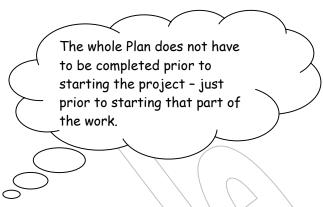
Installation

A definable feature is a portion of the work that due to its size, environmental sensitivity, complexity, location, etc. requires attention to the details of how the work will progress and how compliance with the contract will be obtained. The Contractor and Government need to agree on what the definable features of work are for a given project.

The second part of the Quality Assurance Plan is to develop a specific tracking report for each definable feature of work. Details of the tracking report and its usage follow:

Tracking Report

The tracking report is an internal document that tracks inspections, testing, and necessary follow-up to assure all work is in compliance with the contract.


The tracking report is not required by the contract, but it is one example of a way to coordinate and track all the Quality Assurance activities.

Prior to the start of a definable feature of work (including subcontractor and supplier work), the base tracking report will be developed – this will include all areas of testing and inspection, including a pre-work inspection to assure all submittals and, certifications as well as preparatory work is completed and that all materials to be incorporated into the work are in compliance with the contract. A copy of the base report will be submitted to the Government at least 2 weeks prior to starting that portion of the work.

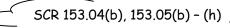
Any deficiencies noted during Quality Control or Quality Assurance inspections of an item of work will be entered into the tracking report for follow-up. Any reoccurring problems will be addressed between Erica Lewis and the foreman (or superintendent if necessary) of the operation.

Upon completion of a feature of work, the original of the tracking report (that includes all notes on inspections) will be provided to the Government. At any time during the work the Government may review the current tracking report or request a copy of the current tracking report.

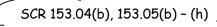
Copies of the base tracking reports for the surveying and clearing and grubbing items are included in Appendix B. The base tracking reports for erosion control devices and excavation are in the final stages of development and will be forwarded upon completion, but no later than 2 weeks prior to commencing work on these items.

The third part of the Quality Assurance Plan is to hold "toolbox" meetings. On the project as work progresses, prior to the start of each definable feature of work, a "toolbox" meeting will be held with the foreman and crew. The Government will be invited to the meetings. Each meeting will cover the applicable specifications of the contract and the expectations from the crew for the work. Any work requiring specialized training will be reviewed prior to start up (during development of the tracking report – see Appendix B) to assure the work crew is qualified and prepared to complete the work in compliance with the contract. These "toolbox" meetings may occur prior to starting work for the day, during a lunch break or at the end of the day as needed.

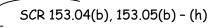
5CR 153.04(c), 153.07 5. Record Management.


Erica Lewis will have overall responsibility for managing all paperwork associated with the quality system. A chart of the paperwork to be maintained along with person responsible for completion, timeframe for completion and submission and location of the contractor copy of the paperwork is found below.

Unless otherwise indicated, originals will be provided to the Government upon completion. All reports will be used per contract specifications, except the tracking report (which is a Schmidt Construction Co. report and not required by the contract).


Paperwork	Responsible for	Timeframe of	Location of
	Completion	Completion and	Contractor
	_	Submission	Сору
Quality Report	Erica Lewis	End of next work day	Job Trailer
Test Reports	Hernandez Testing	Per Contract – all	Lab Trailer
	and Grace Becker	results attached to	
		Daily Quality Report	
Construction	Larry Jefferies,	End of next work day	Job Trailer
Operations	Superintendent, Issac		
Report	Galloway, Foreman		
	and other foremen for		
	subcontractors		
Control Charts &	Hernandez Testing	Daily or Weekly as	Lab Trailer
QLPay Results	and Grace Becker	appropriate	(originals too)
WFLHD 470	Erica Lewis	When work ready for	Job Trailer
		inspection per 153.06	
Pay Item Notes	Erica Lewis	When work completed	Job Trailer
Submittals &	Erica Lewis	As received and	Job Trailer
Certifications		reviewed	
Tracking Report	Inspector for each	Prior to starting work –	Job Trailer
	item	updated as action taken	
Final Inspection	Erica Lewis	Upon completion of a	Job Trailer
Report		segment of work –	
		prior to Government	
		inspection	

Inspection Responsibilities			Process and Frequency			
Definable Features	Quality Control	Quality Assurance	Quality Control	Quality Assurance		
Survey	Stephanie		25% of the survey will be randomly checked. If problems are found, more will be checked to delineate the problem area for correction.	Prior to the start of surveying, a meeting with the Government will be held to review the survey and staking process, including methods of notation. 10% of survey will be randomly checked.		
Clearing & Grubbing	John	Stephanie	Within 3 hours of starting clearing/grubbing, inspection of operations will occur. If compliance with the contract is found, then inspections will occur once or twice daily or as questions arise.	Work will be inspected once per day for the first three days. If things are ok, will check three times per week.		
Erosion Control Devices	Stephanie	Erica	Prior to installation, placement area will be inspected. Within 3 hours of first installation of each type of device, inspection will completed for compliance with the contract and permits. Inspection will occur once per day or as needed if problems.	Each installation will be inspected upon completion of installation. A check of all devices will occur once per week.		
Excavation	John		Within 3 hours of starting excavation, inspection of operations will occur. If ok, then once or twice daily or as questions arise. As each soil type is encountered samples will be taken to classify the soils and obtain maximum density information for use in compaction.	Work will be inspected once per day for the first three days. If things are ok, will check once per week.		
Culvert Installation	John	Stephanie	Within 2 hours of starting installation of the first culvert, line and grade of culvert will be checked. Line and grade will be checked with the installation of each culvert segment until three segments are set in a row with no problems with line and grade. After that line and grade will be checked at start of installation, half way through installation and upon completion of installation. Once two culverts are installed without problems, line and grade will be checked once per culvert. If problems are encountered the inspection frequency will increase as indicated above. Excavation and backfill – need details. Additional details of the inspection testing will be added at least two weeks prior to start of any culvert work.	inspected upon completion.		


The whole Plan does not have to be completed prior to starting the project - just prior to starting that part of the work.

	Inspection R	esponsibilities		Process and Frequency		
Definable Features	Quality Control	Quality Assurance	Quality Control	Quality Assurance		
Crushing	Grace	Stephanie	Quality tests will be performed 3 weeks before crushing operations are scheduled to begin. Full production tests (in conformance with Sampling and Testing Tables in SCRs) will be performed once per six hours with a minimum of twice per shift. Partial production tests will be performed every 2 to 6 hours—depending on the stage of crushing and outcome of results. These test results will be used to modify the crushing operations. Complete final product tests will be performed once per 1000 ton (in conformance with Sampling and Testing Tables in SCRs). Additional final product tests (either full or partial) will be performed as needed depending on test results and conformance to contract requirements. For Emulsified Treated Aggregate Base, whenever gradation tests are performed from the grade, asphalt content will be determined, but not less than one per 1000 tons. Samples for Humphreys curves will be submitted upon determination of final gradation.			
Embankment	John	Erica	At the start of embankment for each new soil type compaction will be checked three times per lift per embankment area until a suitable rolling pattern is established. Then compaction will be checked twice per layer per 5000 square meters until at least 10 compaction tests in a row pass. Then compaction will be checked once per layer per 5000 square meters. Any failing test will be recompacted and retested. If compaction tests show more than three failing tests in a row, a new rolling pattern will be established.	Work will be inspected twice per day for the		
Wall Installation	Lillie	Erica	Excavation limits, backfill operations and compaction tests will be performed per Table 255-1. – need to add details. Additional details of the inspection testing will be added at least two weeks prior to start of any wall work.	Work will be inspected once per day for the first week. If things are ok, will check once per day.		

	Inspection R	esponsibilities	Process and Frequency			
Definable Features	Quality Control	Quality Assurance	Quality Control	Quality Assurance		
Fencing	Stephanie	Erica	Alignment and installation will be checked within one day of start up, then spot checked once per day unless problems occur.	Installation will be inspected the first day. If things ok, will check upon completion of a section, at least once per week.		
Finishing Subgrade	John	Erica	Within 4 hours of starting finishing compaction and final line and grade will be checked. Compaction will be checked at least four times per 2000 square meters until a suitable rolling pattern can be confirmed. Then compaction will be checked twice per 2000 square meters until at least 10 compaction tests in a row pass. Then compaction will be checked once per 2000 square meters. Any failing test will be recompacted and retested. If compaction tests show more than three failing tests in a row, a new rolling pattern will be established. Final line and grade will be checked for 25% of area until all 25% is within tolerances. Then final line and grade will be checked for 10% of area. If problems are found, more will be checked to delineate the problem area for correction. If more than 3 checks are found out of tolerance inspection frequency will be increased to 25% until tolerances are met again.	Work will be inspected once per day for the first three days, then upon completion of a section of work.		
Willow Planting	John	Stephanie	Installation will be checked within one day of start up, then checked once per day.	Work will be inspected the first day. If things ok, will check twice per week.		
Seeding/Mulching	John	Stephanie	Set up will be checked prior to start up, first batching will be checked and first placement will be checked. If things are ok, inspection will be twice per day.	Work will be inspected the first day. If things ok, will check twice per week.		
Bridge Work	Lillie	Erica	Mix design will be performed per the contract at least 1 month before anticipated concrete work. All concrete tests will be performed (need more detail). Prior to concrete placement, forms and rebar will be inspected for compliance with contract requirements. Precast girders will be inspected at the plant during production. Additional details of the inspection testing will be added at least two weeks prior to start of any bridge work.			

	Inspection R	esponsibilities	Process and Frequency		
Definable Features	Quality Control	Quality Assurance	Quality Control	Quality Assurance	
Base Rock	John	Stephanie	Gradation testing covered under crushing definable feature. Compaction tests will be completed continuously upon starting of rolling to establish a rolling pattern. Once pattern is established, compaction tests will be one per 200 tons. After 10 passing tests in a row, compaction tests will be one per 500 tons. Any failing test will be recompacted and retested. If compaction tests show more than three failing tests in a row, a new rolling pattern will be established. Line and grade and surface tolerance will be checked once per 200 square meters on the final course. After 5 checks are within tolerances, line and grade and surface tolerance will be checked once per 500 square meters on the final course. If checks show non-conformance with the contract, checks will increase back to once per 200 square meters until problem is determined and resolved.	Work will be inspected once per day.	
ET Aggregate Base	John	Stephanie	Gradation testing and asphalt content covered under crushing definable feature. Asphalt content by ignition will be tested each time a gradation test is performed. Compaction tests will be completed continuously upon starting of rolling to establish a rolling pattern. Once pattern is established, compaction tests will be one per 200 tons. After 10 passing tests in a row, compaction tests will be one per 500 tons. Any failing test will be recompacted and retested. If compaction tests show more than three failing tests in a row, a new rolling pattern will be established. Line and grade and surface tolerance will be checked once per 200 square meters on the final course. After 5 checks are within tolerances, line and grade and surface tolerance will be checked once per 500 square meters on the final course. If checks show non-conformance with the contract, checks will increase back to once per 200 square meters until problem is determined and resolved.	Work will be inspected once per day.	

_	
$\overline{}$	SCR 153.04(b), 153.05(b) - (h)
\geq	

	Inspection Responsibilities		Process and Frequency		
Definable Features	Quality Control	Quality Assurance	Quality Control	Quality Assurance	
Guardrail	Stephanie	Erica	Alignment and installation will be checked within 3 hours of start up, then once per day unless problems occur.	Alignment will be checked prior to installation. Installation will be checked once per day for two days, then once every two days.	
Paving	Issac	Stanhania	Asphalt Cement will be sampled per Table 401-9. (need details) Mix temperature, gradation, asphalt content, compaction, width and thickness will be performed per Table 401-9. (need details) If conformance is not met, inspection will be increased until conformance is consistent. The smoothness will be checked upon completion of the final surface course. Additional details of the inspection testing will be added at least two weeks prior to start of any paving work.	contract at least 2 months before anticipated paving start up. Work will be inspected	
Traffic Control	Stephanie	John	Installation of devices will be checked within one day of start up, then checked once every two days of installation. Overall operation will be checked twice per day.	Installation of devices will be checked upon installation and twice per week. Overall operation will be checked twice per day.	
Pavement markings & Permanent Signs	John	Stephanie	Survey will be checked prior to start up, placement will be checked at start of operation, then twice per day. Additional details of the inspection testing will be added at least two weeks prior to start of any pavement markings or permanent sign work.	Layout of pavement markings will be checked prior to placement of markings. 50% of signs will be inspected after installation. If problems, additional signs will be inspected.	

Appendix B – Tracking Report

SCR 153.04(b), 153.05(b) - (h)

Definable Feature of Work: Surveying

Quality Control Responsible Inspector: Stephanie Lee Quality Assurance Responsible Inspector: Erica Lewis Contract Requirements: Section 152 of FP 96 and SCRs Checks prior to starting work: Surveyor has reviewed

requirements & has survey data needs to do work, submission of staking schedule (per 155 – dates and

sequences of each staking activity).

This is where you can state how you will be doing the work and making sure the work will be completed in compliance with the contract.

Pre-work meeting topics: (152.02 FP) surveying and staking methods, stake marking, grade control for courses of material, referencing, structure control, work schedule, changes in staking schedule, schedule of turning in notes for survey and other pay items.

Initial Inspection - Plan: The first day of staking each item – check 25% of work List inspection date/time and outcome:
Control Points:
Clearing and Grubbing:
Slope Stakes:
Erosion Control Devices:
Culvert:
Wall:
Fencing:
Top Subgrade:
Bridge Work:
Top Base:
Top ET Base:
Guardrail:
Signs:
Paving:
Striping:

Appendix B – Tracking Report

_		
$\overline{}$	SCR 153.04(b), 153.05(b) - (h)	

Ongoing Inspection (list inspection date/time and outcome):

Control Points:

Clearing and Grubbing:

Slope Stakes:

Erosion Control Devices:

Culvert:

Wall:

Fencing:

Top Subgrade:

Bridge Work:

Top Base:

Appendix	B	Tracking	Report
-----------------	---	----------------------------	--------

_	
$\overline{}$	SCR 153.04(b), 153.05(b) - (h)

Top	ET	Base:
-----	----	-------

Guardrail:

Signs

Paving:

Striping:

Follow-up (list follow-up activities and results):

Appendix B – Tracking Report

SCR 153.04(b), 153.05(b) - (h)

Definable Feature of Work: Clearing and Grubbing **Quality Control Responsible Inspector:** John Fisher **Quality Assurance Responsible Inspector:** Stephanie Lee

Contract Requirements: Section 201 of FP 96 and

SCRs

Checks prior to starting work: Clearing and Grubbing stakes set, logging subcontractor has entered into timber contract with USFS, slash burning locations approved by Government, save trees and oot wad trees are marked. Necessary erosion control devices are installed.

Pre-work meeting topics: Logging subcontractor and grubbing foreman have read 201 requirements and are aware all equipment must be cleaned and

A detailed plan for the work will help in anticipating problems and should limit the number of surprises and areas of rework.

inspected prior to starting work. All merchantable timber issues are clear. Slash locations and root wad tree stockpile locations are known and approved. Grubbing foreman is aware of how 201work ties into 204 work. Review the importance of the erosion control devices and the requirement that they be preserved and/or repaired upon damage.

Initial Inspection - Plan: Within 3 hours of starting logging and grubbing – ensure contract requirements being met.

List inspection date/time and outcome:

Logging:

Grubbing:

Ongoing Inspection (list inspection date/time and outcome): (1 to 2 times per day) Logging:

Grubbing:

Follow-up (list follow-up activities and results):

WFL Contractor Quality Control and Quality Assurance Plans and Systems

These guidelines are intended to assist WFL Contractors in the preparation of acceptable Contractor Quality Control and Quality Assurance Plans (CQCQAP). They are based on the requirements contained in the Special Contract Requirements, Section 153 of the Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects (FP). These guidelines are not contractual requirements, and do not supplement or supersede any contractual requirements.

Introduction

A contractor quality control and quality assurance plan (CQCQAP) is the documentation of the contractor's process for delivering the level of construction quality required by the contract. This document is intended to provide guidance to contractors, subcontractors and suppliers as to what is expected from CQCQAPs.

The CQCQAP is the framework of the contractor's process for delivering quality construction. The plans and specifications define the expected results or outcome. The CQCQAP outlines how those results will be achieved. While it is not possible to determine from the CQCQAP whether the level of construction quality will be acceptable, it is possible to verify that the contractor, as an organization, has addressed the basic elements of its quality process. These guidelines address, not only what should be in the CQQACP in order for it to be acceptable to the Government, but also what elements the Government's QA process needs to have in order to assure quality without usurping the contractor's responsibilities.

The **standard industry definitions** are as follows:

Quality Control: The sum total of activities performed by the seller (producer, manufacturer, and/or contractor) to make sure that a product meets contract specification requirements.

Quality Assurance: All those planned and systematic actions necessary to provide confidence that a product or service will satisfy given requirements for quality.

What does this mean to you and me? Quality Control is doing the work in an acceptable manner. Quality Assurance is making sure the work gets done in an acceptable manner.

How do you explain it?

The contractor is responsible for doing work that meets the contract requirements. **Quality Control** is the things the contractor does to make sure the work meets the contract before and during and after construction. It is testing materials, it is checking the grade of a culvert prior to backfilling, it is making sure the lifts are the right thickness, it is making sure the wall is at the right grade, it is making sure the bolts are tightened properly on the guardrail, it is making sure the subgrade is finished to tolerances.

Quality Assurance is a check of the quality control – is the quality control process working so that the final product meets the contract requirements? It is the spot check of the slope stake notes, it is the checking of the work of a subcontractor such as reinforcement steel spacing, it is the check of the grade of a culvert, it is the check of the excavation and/or embankment slope. It is the verification of previous the quality control activities. It assures that the work will result in the quality product you are looking for. The contractor is being asked to double check his work – to make sure his quality control is working.

FAR Requirements

FAR Clause 52.246-12 Inspection of Construction is the foundation for all contract requirements dealing with quality control and quality assurance. In summary the clause:

- Requires the contractor to maintain an adequate inspection system and perform inspections that will ensure contract compliance.
- Requires the contractor to maintain inspection records and make them available to the Government.
- Allows [but does not require or obligate] the Government to do its own tests and inspections and requires the contractor to assist.
- Says that Government tests and inspections are for its benefit and do not take the place of the contractor's quality control obligations.
- Says that anytime the contractor tells the Government that work is ready for inspection and it is not [i.e. it is in noncompliance], the Government may charge the contractor for the costs of its inspections and tests.
- Says that the contractor is obligated to comply with the contract whether or not a Government inspector is present.
- Says that the Government may order previously completed work torn apart for inspection, and that if it is noncompliance, the Contractor will pay for the inspection and the correction of the work. If it is in compliance the Government will pay for the inspection and disruption to the work.

Organizational Structure - Subsection 153.03

One of the first issues a contractor, or any organization must face when designing its QCQA procedures, is how these systems will relate to, and impact its organizational structure.

Separate Quality Staff – Inspection and testing are very specialized functions. A contractor may elect to hire a separate staff or subcontractor to perform testing and inspection and to generate the documentation required by the FAR Clause and the contract. If a contractor has a separate quality staff, it is important to define the relationship between those personnel and the production organization. What will be the disposition of failing tests/inspections? Who will have authority to order production ceased? Under what circumstances? What will be the conditions of restarting production?

Combined Staff - Quality management experts generally discourage separating quality control and assurance personnel from production personnel. It pits one part of the organization against another. This built in adversity is seen as both inefficient and requiring additional staff. Ideally quality control should be achieved by developing an organizational culture, which encourages quality - a culture that is embraced by everyone in the organization.

However the makeup of the structure, a Quality Manager must be assigned and be available during all phases of the work. This person will manage the contractor's quality control and quality assurance activities. For most projects the Superintendent, project manager or foreman cannot be designated as quality manager. The contractors quality systems must be a priority and cannot take a back seat to other primary functions.

Quality Control and Quality Assurance Systems- Subsection 153.04, 153.05

Testing and inspection provides a reflection of quality and the process. But only changes to the process can improve quality. Extensive inspection needed to identify defects so that they can be corrected is an indication of a poor process. Ideally frequencies of QC and QA inspections are dependent on characteristics of the overall process. In a transition environment however, when not used to performing formal QC and QA systems, it may be necessary to increase inspections to minimize the risk of serious deficiencies undetected until late in the process.

It is easy to become preoccupied with testing when describing a QCQA plan. Testing is easily defined and leaves a clear documentation trail. But the non-materials based testing and inspection, for example the inspection of a culvert staking survey and location of structures, and the organizational resources that actually will control the quality of the construction are by far, the most important part of the plan, even though describing these resources and procedures [the process] in writing is often difficult.

For materials the contract may contain a listing of mandatory contractor testing including sampling points, frequencies and time limits for delivering results. This testing is intended primarily for the agency's use in documentation and accepting the work. Some contracts require additional testing identified as *production* testing which is intended to provide real time information during the construction and manufacture of materials to allow the contractor to adjust or control the process and ensure that testing at the end of the process will indicate compliance. Whether or not the contract specifies production testing, it is up to the contractor to address whether or not it is needed in the Contractors QCQA. Frequencies of, inspection points and time limits of non-materials based items of work are not normally provided in the contract. This is where the contractor must thoroughly analyze under each definable feature of work what inspections or tests will be performed.

Charts are a simple method in which to describe the QC system for each definable feature of work. In them, persons responsible, testing or inspection activity and frequencies can easily be shown.

Most organizations have intuitive QCQA processes, which have evolved over time to reflect the requirements of company management. For example, most companies have their own way of monitoring production, quality and deficiencies. Describing and documenting these processes formally within a QCQA framework in writing is often difficult. There is almost no physical limit to the length and detail included in this section. Every requirement, every sentence in the contract could precipitate a paragraph or more of detailed process control procedures to describe how that requirement will be fulfilled. From a practical point though, this is excessive. For most typical FLH construction projects the narrative and charts covering quality control and quality assurance system procedures should adequately address the details in one to three pages for each definable feature of work (see below). This does not include, certifications, personnel résumés and other attachments. The fact that many of the detailed requirements of the contract are not specifically addressed in the CQCQAP does not mean they can be ignored. The contract requirements themselves are the foundation for the outcomes expected from the CQCQAP.

For QC systems describe in narrative and chart form QC personnel, what inspections, tests and activities will be performed for each definable feature of work as the work progresses. Describe inspections, testing or other activities that will be used to monitor quality while the work is in progress.

For QA systems develop narrative that describes QA personnel, what inspections, tests, plans and activities such as materials certification verification, site preparation, staking adequacy, methods of construction adequacy, environmental restriction considerations, and training or instructions provided. Describe what steps will be taken when deficiencies are noted during QA review, inspections or testing. QA should describe what will be performed to verify that work is prepared, started and completed in accordance with the contract, and further provide a process to verify that the QC system is functioning.

Categories and Definable Features of Work – Subsection 153.04(b)

To be assist in reviewing project work and developing QCQA plans a typical contract may be divided into multiple categories depending on the nature of the work and the organizations performing the work. For example stakeout, clearing, excavation and embankment might be grouped together as a single category of **Grading**.

Sometimes how categories are defined is influenced by which subcontractors or crews do the work, since each may have its own organizational relationships. It should be left up to the contractor to group items of work in logical categories to facilitate the development of the CQCP. Other typical categories are as follows.

Pavement Structure

Grading

Safety Appurtenances

Seeding and Landscaping

Temporary Traffic Control

Bridge

Definable features of work are sub items within the categories of work, of which specific QCQA activities are outlined in the QCQA Plan. For example definable features of work under "Bridge" would be survey, structural excavation, forming, reinforcing steel, concrete placement and curing. This is where the details of the QCQA process are described for the individual features of work. The **who, what, when, where and how** (see below) need to be adequately described for the separable work items

Preliminary, Startup, Production and Completion Phases

To further understand QCQA the terms preliminary, startup, production and completion phases are terms that are used to help define and grasp the quality control and quality assurance process. The contractor's system does not have to be modeled under this framework but the concept of separating the distinct phases of work may help in defining and developing a process.

The preliminary phase is critical. During the preliminary phase the contractor verifies that everything is in place to begin the work. It is where the contractor has developed a plan to attack the work and knows exactly how the work will be performed barring any glitches. The preliminary phase includes evaluation of equipment, materials and other resources prior to commencing the work. For example, the review and approval of materials certifications. It also includes crew training of contract requirements or other special circumstances. Training does not always mean formal classroom training. The preliminary phase also includes verifying that preliminary work such as staking and clearing for instance, have been completed in accordance with the contract and have been previously evaluated under their own requirements of the QCQA plan.

Startup includes the additional management, training and inspection resources usually needed when a new operation is started. Usually minor changes are made to processes once work is underway.

Production addresses the routine QC and QA resources necessary after the process is established and production is ongoing. Describing what is needed to maintain an adequate quality level during production.

The completion phase is a description of the activities that will take place to verify that the final

product meets the requirements of the contract. What testing or inspections will be recorded to document contract compliance? What arrangements have been made for Government QA inspection? What pay note or measurement documentation will be provided?

The Who, What, Where, When and How.

For each definable feature of work, the QCQA plan should answer these questions whether it is framed in the context of the phases described above or with any other developed process.

Who will be responsible for QCQA throughout the operation? A Quality Control Technician may be assigned responsibility for testing and documentation and perhaps even training and monitoring of startup. As the operation moves toward production and closeout however, other QCQA personnel may be assigned increasing responsibility.

What will be done to ensure contract compliance? What work, what stage and at what frequency will work be inspected and tested? What will be inspected, Grade? Alignment? Spacing of reinforcing steel? Construction survey staking? Aggregate gradations? What authority will the person have over operations? What portion of the time during the work will the identified person actually be present to perform QC or QA responsibilities? Testers and inspectors cannot control quality if their responsibilities are limited to testing, measuring and documentation. "What" should address not only personnel and activities, but materials and equipment used in the construction. These items often have stated or implied contract requirements, and the QCQA system must verify that those requirements are met. What documentation will be provided to record inspection and results of inspections?

Where will these activities be performed? Will optional production testing and inspections be performed? Will manufactured materials be inspected at the plant, at the contractor's facility or at the site of work? Will the equipment be inspected at the yard, or will inspections be performed at the site?

When will these activities be performed? How many inspections or tests will be performed at what frequency? The earlier QCQA activities are performed, the more latitude the contractor has in dealing with problems. However, when activities are performed too early there is a risk of unforeseen changes or glitches prior to actual construction. When will test results and inspection narrative be available? This is a key component of the QCQA plan, which determines largely how responsive it can be to deficiencies.

How will inspections be performed? Will standard checklists be developed from the specifications? Have arrangements been made with subcontractors or others to provide access to the work? What equipment will be needed to perform the inspections or tests? What documentation will be produced as a result of the inspections or tests? The more generalized and vague the inspection procedures are, the more likely they will not be consistently effective.

The CQCP should minimize any parroting or paraphrasing of requirements in the contract, and should avoid simply promising to comply with the contract. These kinds of statements and assurances are of essentially no added value. The CQCQA plan must go beyond boilerplate descriptions and address the contractor's QCQA organization and process for consistently delivering the level of quality that the contract requires.

Subcontractors

When subcontractors and suppliers [other than suppliers of commercial items] provide part of the work, then the QCQAP needs to be clear whether their QC responsibilities will be independent, or a part of the prime contractor's responsibilities. Remember the Primes' quality manager is in overall control of the project QCQA. If they are independent, then the subcontractors or suppliers QCQAP must be developed and submitted for approval, through the prime. Otherwise, the prime must address how it will monitor and verify subcontractor quality as a part of its plan. In either case the prime is contractually responsible for all the work.

Manufactured Materials

An important part of the CQQAP is the process for verifying that manufactured materials comply with the requirements of the contract.

Commercial Items - These are materials manufactured and sold to the general public, as opposed to materials made to the unique specifications of the agency. For most commercial items, the contractor's responsibilities are limited to verification that the materials are as required or permitted in the contract, and that the delivered materials are in fact those approved materials. Some materials which are arguably commercial are considered of critical importance, and have specific QCQA requirements in the contract.

Non-commercial Items - These are materials manufactured offsite, but specifically to agency specifications for this project. QCQA plan coverage for non-commercial items should be a separate document from the manufacturer, or the manufacture of those items should be included in the QCQA plan of the contractor or a subcontractor. Like critical commercial items, critical non-commercial items may have specific QCQA requirements in the contract.

Records and Documentation. Subsection 153.07

While good documentation is often a reflection of good quality control, documentation is not the same thing as quality control. Adequate documentation is necessary to concisely document the process and results of the contractors QCQA system. Minimum documentation is outlined in the Special Contract Requirements. These include charts or tables of definable features of work describing QC and QA activities, the daily quality control and assurance report where all QCQA activities are documented, Form 470 the notification of completion of work that is used to notify the Government that certain work is completed and is ready for Government QA and pay item measurement notes all make up records and documentation.

Partial Plans - Subsection 153.02

It is possible, and very likely that subcontractors, suppliers and overall responsibilities for some latter phases of the construction, will have not been arranged at the time the prime is ready to begin on the initial phases. It is permissible for the contractor to submit, and the agency to accept a partial plan. In many cases, a contractor may not be able to develop a thorough and concise QCQA plan for many of the definable features of work by the notice to proceed date. The contractor may not have developed an internal plan on the methods, materials and approach or crews that will be used in the performance of the work. A good QCQA plan cannot be developed until the contractor has decided how they intend to complete the work. A QCQA plan that is submitted very early on, and that is full of generalities can be more harmful than beneficial. A QCQA plan without details and specifics that addresses the requirements of the contract will not be acceptable.

Item No. 30901 - Emulsified Asphalt Treated Base

Emulsified Asphalt Treated Base Pre-Work, QA/QC Meeting

Pugmill Operations

- 1. Pugmill is required that the control for the aggregate, oil and water are interlocked to provide consistent material. How is this obtained with this plant? (How is each part monitored)
- 2. Is water and rock mixed in pug prior to addition of oil?
- 3. Explain the controls of the plant.
- 4. Pugmill paperwork. (daily records, tank stickings, computer printouts, oil deliveries)

General knowledge of plant operation.

Scale Operations and Truck Route

- 1. Explain truck and loader routes through the pit for safety to testers, inspectors and visitors.
- 2. Scale paperwork, weight tickets and spread sheets.

Laydown Operations

- 1. List the equipment which is intended for use (number, size and type)
- 2. Explain the laydown operation. (start with the truck arriving on grade)
- 3. How will the compaction and moisture content be monitored?
- 4. How will the public and constructio traffic be routed?
- 5. Edge Treatment.

Testing

Material Sample Testing

- 1. Who, where and how will the cold feed sample be taken?
- 2. Who, where and how will the acceptance testing be behind the paver?
- 3. Who will transport the samples to the lab?
- 4. Who will conduct testing in the lab?
- 5. Cold feed samples requires SE test, Grade samples requires gradation and fracture faces. (Random numbers administered by WFLHD, 1/100 MG)

- 6. Reporting time on test reports is six (6) hours. How are you going to meet this requirement?
- 7. Where will the control chart be posted? (QL-Pay does not produce acceptable control charts)
- 8. Who will up-date QL-Pay status?
- 9. Lab tour.

Grade Testing

- 1. Compaction testing required each 500 MG. (Acceptance compaction testing not performed until the contractor has performed and documented on OC report and WFLHD form 470, that the compaction meets the specification, then verification random compaction location will be revealed.
- 2. Who and how often will the tester test compaction and moisture content during the lay down to ensure consistent and quality product?
- 3. Who will verify that the placed hubs are within tolerance as described in table 152-1.

Attended:

WFLHD Contractor: Project Manager: Project Engineer: Superintendent: Inspector: QC Manager: Inspector: Pugmill Operators: Inspector: Scale Operator:

Lay Down Operations Foreman:

Grade Foreman:

Testers:

Example Only:

Meeting agenda should be modified to meet the job specifications.

All paperwork is to be turned in daily and must be **ORIGINAL** and LEGIBLE!!

Unnamed Lake Highway, OR PFH 2000 - 1 (10) Pre-Pave, QA/QC Meeting

Location: Black Rock Pit Date: Time: 0 Dark Thirty

1. Plant Tour

- A. Which bunker will be dedicated to what material?
- B. Where will the cold feed and oil samples be taken from?
- C. How will the trucks be routed through the pit?
 - 1. What is the site distance when leaving the pit?
 - 2. What CB (citizen band) channel will the trucker be utilizing?
- D. Where and what products will the trucks use to soap down? (ensure truck boxes are clean first)
- E. How are the trucks weighted?
 - 1. What will the tickets or scale tickets look like?
 - 2. Explanation of what is required to conduct a scale check.
 - 3. What is the scale verses the truck lengths?
- F. All trucks are required to have tarps.
- G. What is the number of trucks planned for an average day?
- H. How is the plant controlled?

(aggregate flow, oil content, oil temp., drum temp., moisture, etc...)

- I. What is the proposed plant production rate?
- J. Explain the Plant control panel.
- K. Oil chart from the asphalt supplier displaying oil temperature verses usage.
- L. What type of communication is there between the grade and the asphalt plant?

2. Paver Site

- A. How do you plan to construct joints, both transverse and longitudinal?
- B. Do you have a straight edge to use when pulling from a joint (3 meter required)?
- C. How do you plan to do the temporary striping?
- D. How do you plan to take samples behind the paver?
- E. How do you propose to ensure consistent temperature across the screed?
- F. What is the maximum usable screed width?
- G. What is the number and specifications for the rollers intended for use on the paving?
- H. Who and when will be monitoring the depth and compaction during paving?
- I. Plan of attach, direction of paving, from where to where, which lift verses which lane, offset and width.

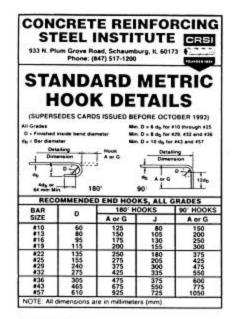
3. Test Strip

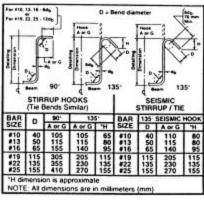
- A. The length of the test strip is approximately 300 meters.
- B. What is the date, time and location of the test strip.
- C. Samples to be taken and tested during the test strip.
 - 1. three (3) gradations.
 - 2. three (3) SE's.
 - 3. four (4) cores with Nuclear density correlation.
- D. Proposed roller pattern to start with.

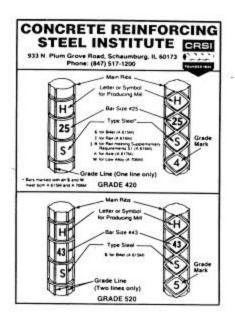
4. Testing

- A. Graduation samples, 1 per 700 tonne, from behind the paver.
- B. Se from plant cold feed, 1 per 700 tonne.
- C. What is the percent of moisture to be tested from graduation samples?
- D. Cores must be 6" O.D. Which requires a 6" I.D. core bit.
- E. Fill core holes with asphalt mix (prefer fine mix for this with tack).
- F. There is a 6 hour reporting time on test results, cores have a 24 hour reporting time.
- G. Boxes for mix samples, bags for SE samples, metal cans for oil samples.
- H. Bruce Wasill or Brad NeitzkeWill be on site for the test strip day and will answer any direct test procedure questions.
- I. When is the correction factor for the oven to be done so that we may witness this?

Attended:


Grade Foreman:


Testers:


Contractor:	WFLHD
Project Manager:	Project Engineer:
Superintendent:	Inspector:
QC Manager:	Inspector:
Pugmill Operators:	Inspector:
Scale Operator:	-
Lay Down Operations Foreman:	

All paperwork is to be turned in daily and must be ORIGINAL and LEGIBLE!!

APPENDIX 'E'

		Nominal D Round S	ENGLISH		Carl St. Const. Const. Const.	Nominal D Round S	METRIC
WEIGHT lb/ft	X-SECT. AREA sq. in.	DIA. inches	BAR DESIG. NO.	MASS kg/m	X-SECT. AREA mm2	DIA. mm	BAR DESIG. NO.
0.376	0.11	0.375	3	0.560	71	9.5	10
0.668	0.20	0.500	4	0.994	129	12.7	13
1.043	0.31	0.625	5	1.552	199	15.9	16
1.502	0.44	0.750	6	2.235	284	19.1	19
2.044	0.60	0.875	7	3.042	387	22.2	22
2.670	0.79	1.000	8	3.973	510	25.4	25
3.400	1.00	1.128	9	5.060	645	28.7	29
4.303	1.27	1.270	.10	6.404	819	32.3	32
5.313	1.56	1.410	11	7.907	1006	35.8	36
7.650	2.25	1.693	14	11.380	1452	43.0	43
13.600	4.00	2.257	18	20.240	2581	57.3	57

Metric bar designation numbers approximate the number of millimeters of the nominal diameter of the bar.

STEEL	BAR SIZE RANGE	GRADE	MINIMUM YIELD MPa	MINIMUM TENSILE MPa
BILLET	#10 - #19	300	300	500
ASTM	#10 - #57	420	420	620
A615M	#19 - #57	520	520	690
RAIL	#10 - #36	350	350	550
ASTM A616M	#10 - #36	420	420	620
AXLE	#10 - #36	300	300	500
ASTM A617M	#10 - #36	420	420	620
LOW ALLOY ASTM A706M	#10 - #57	420	420	550

NOTE: Bars are of three minimum yield levels: 300 MPa (40,000 psi), designated as Grade 40 420 MPa (60,000 psi), designated as Grade 60 520 MPa (75,000 psi), designated as Grade 75

APPENDIX 'F'

Contractor Furnished Data for Wave Equation

Contract No		Structure Name and/	or No _		
			or or Sub	confractor	
County			(Piles	driven by)	
(0					
Hammer Components Ram Anvil		Manufacturer		Model No	
ō O	l	Hammer Type:		Serial No.	
5	10000000000	Manufacturers Maximum Rat	ed Energ	y	(Joule
Ram	Hammer	Stroke at Maximum Rated Er	nergy		(meter
E '''''	10.000	Range in Operating Energy:		16	(Joule
0 7	,	Range in Operating Stroke:		to	(meter
		Ram Weight.	(k	gl	
	1	Modifications:			
E Anvil	L_,				
E ^ V					
<u>a</u>					
I					
	Striker	Weight:	(N)	Diameter	(mn
	Plate	Thickness			
		Material #1		Material #2	
				(for Composite Cushion)	
		Name		Name:	
	Hammer .	Area		Area	(cn
	Cushion	Thickness/Plate:			
		No. of Plates:		No. of Plates:	
		Total Thickness of Hammer (Cushion	rec. or riales	
		Total Michiess of Maintier	Guarion		
_	_				
	Helmet				
	(Drive Head)	Weight:	(kN)		
	u				
		*			
	72230-7	2019/98/80			
_	Pile	Material:			
	Cushion	Area:	(cm ²)	Thickness/Sheet	(mr
	J.	No. of Sheets:	_		
		Total Thickness of Pile Cush	ion	(mm)	
		Pile Type:			
	•	Wall Thickness:	(r	nm) Taper:	
	arsoo	Cross Sectional Area:			
	Pile		- 1		
		Ordered Length:	te	n)	
1	I	Design Load:			
1	I	Ultimate Pile Capacity:			
	1	Chimitate vine Capacity.		34,	
	J	Description of Splice:			
		Driving Shoe/Closure Plate [Description	on:	
		Submitted By:		Date:	
		Telephone No.:		Fax No.:	

PILE AND DRIVING EQUIPMENT DATA FORM

APPENDIX "F"

Diesel Hammer Listing

GRLWEAP ID	Hammer Mfgr	Hammer Name E	Max. Energy kN-m	Ram Weight kN	Eq. Max. Stroke m	Hamme Type T
81	LINKBELT	LB 180	10.98	7.70	1.43	CED
120	ICE	180	11.03	7.70	1.43	CED
1	DELMAG	D 5	11.16	4.89	2.28	OED
36	DELMAG	D 6-32	14.24	5.88	2.42	OED
82	LINKBELT	LB 312	20.37	17.18	1.19	CED
147	MKT	DE 20	21.70	8.90	2.44	OED
2	DELMAG	D 8-22	23.87	7.83	3.05	OED
402	BERMINGH	B200	24.41	8.90	2.74	OED
83	LINKBELT	LB 440	24.69	17.80	1.39	CED
122	ICE ·	440	25.17	17.80	1.41	CED
141	MKT 20	DE333020	27.13	8.90	3.05	OED
151	MKT	DA 35B	28.48	12.46	2.29	CED
148	MKT	DE 30	30.38	12.46	2.44	OED
41	FEC	FEC 1200	30.51	12.24	2.49	OED
127	ICE	30-S	30.52	13.35	2.29	OED
401	BERMINGH	B23	31.18	12.46	2.50	CED
414	BERMINGH	B23 5	31.18	12.46	2.50	CED
121	ICE	422	31.36	17.80	1.76	CED
3	DELMAG	D 12	32.00	12.24	2.62	OED
149	MKT	DA35B SA	32.28	12.46	2.59	OED
150	MKT	DE 30B	32.28	12.46	2.59	OED
61	MITSUB.	M 14	34.24	13.22	2.59	OED
350	HERA	1250	34.38	12.50	2.75	OED
101	KOBE	K 13	34.49	12.77	2.70	OED
84	LINKBELT	LB 520	35.69	22.56	1.58	CED
42	FEC	FEC 1500	36.75	14.68	2.50	OED
201	VULCANI	VUL V12	36.77	12.26	3.00	OED
142	MKT 30	DE333020	37.98	12.46	3.05	OED
62	MITSUB.	MH 15	38.16	14.73	2.59	OED
4	DELMAG	D 15	38.40	14.68	2.62	OED
403	BERMINGH	B225	39.67	13.35	2.97	OED
123	ICE	520	41.19	22.56	1.83	CED
351	HERA	1500	41.25	15.00	2.75	OED
152	MKT	DA 45	41.67	17.80	2.34	CED
37	DELMAG	D 12-32	42.50	12.55	3.39	OED
153	MKT	DE 40	43.40	17.80	2.44	OED
143	MKT 33	DE333020	44.76	14.68	3.05	OED
415	BERMINGH	B250 5	48.02	13.35	3.60	OED
161	MKT	DA 55B	51.81	22.25	2.33	CED
202	VULCAN	VUL V18	52.97	17.66	3.00	OED
5	DELMAG	D 16-32	53.23	15.66	3.40	OED

APPENDIX 'F'

Diesel Hammer Listing

GRLWEAP	Hammer Mfgr	Hammer Name	Max.	Ram	Eq. Max.	Hamme
.0	Wilgi	E	Energy kN-m	Weight kN	Stroke m	Type T
128	ICE	40-S	54.25	17.80	3.05	OED
144	MKT 40	DE333020	54.25	17.80	3.05	OED
160	MKT	DA55B SA	54.25	22.25	2.44	OED
404	BERMINGH	B300	54.68	16.69	3.28	OED
410	BERMINGH	B300 M	54.68	16.69	3.28	OED
6	DELMAG	D 22	55.08	21.85	2.52	OED
124	ICE	640	55.10	26.70	2.06	CED
129	ICE	42-S	56.97	18.19	3.13	OED
38	DELMAG	D 19-32	57.51	17.80	3.23	OED
159	MKT	DE 50B	57.65	22.25	2.59	OED
63	MITSUB.	M 23	58.34	22.52	2.59	OED
412	BERMINGH	B400 4.8	58.59	21.36	2.74	OED
413	BERMINGH	B400 5.0	61.04	22.25	2.74	OED
103	KOBE	K22-Est	61.51	21.58	2.85	OED
64	MITSUB.	MH 25	63.53	24.52	2.59	OED
416	BERMINGH	B350 5	64.02	17.80	3.60	OED
7	DELMAG	D 22-02	65.78	21.58	3.05	OED
8	DELMAG	D 22-13	65.78	21.58	3.05	OED
43	FEC	FEC 2500	67.81	24.47	2.77	OED
163	MKT 50	DE70/50B	67.82	22.25	3.05	OED
352	HERA	2500	68.75	25.00	2.75	OED
9	DELMAG	D 22-23	69.53	21.58	3.22	OED
104	KOBE	K 25	69.88	24.52	2.85	OED
125	ICE	660	70.03	33.69	2.08	CED
85	LINKBELT	LB 660	70.03	33.69	2.08	CED
405	BERMINGH	B400	72.90	22.25	3.28	OED
411	BERMINGH	B400 M	72.90	22.25	3.28	OED
44	FEC	FEC 2800	75.95	27.41	2.77	OED
353	HERA	2800	77.00	28.00	2.75	OED
203	VULCAN	VUL V25	78.51	24.53	3.20	OED
417	BERMINGH	B400 5	80.03	22.25	3.60	OED
162	MKT	DE 70B	80.70	31.15	2.59	OED
11	DELMAG	D 30	80.84	29.37	2.75	OED
130	ICE	60-S	81.37	31.15	2.61	OED
10	DELMAG	D 25-32	83.40	24.52	3.40	OED
65	MITSUB.	M 33	83.70	32.31	2.59	OED
45	FEC	FEC 3000	85.49	29.37	2.59	OED
66	MITSUB.	MH 35	89.00	34.35	2.59	OED
12	DELMAG	D 30-02	89.52	29.37	3.05	OED
13	DELMAG	D 30-13	89.52	29.37	3.05	OED
131	ICE	70-S	94.95	31.15	3.05	OED

APPENDIX "F"

Diesel Hammer Listing

GRLWEAP ID	Hammer Mfgr	Hammer Name	Max. Energy	Ram Weight	Eq. Max. Stroke	Hammer Type
		E	kN-m	kN	m	T
164	MKT 70	DE70/50B	94.95	31.15	3.05	OED
354	HERA	3500	96.25	35.00	2.75	OED
107	KOBE	K 35	97.90	34.35	2.85	OED
126	ICE	1070	98.47	44.50	2.21	CED
46	FEC	FEC 3400	99.02	33.29	2.97	OED
14	DELMAG	D 30-23	99.90	29.37	3.40	OED
15	DELMAG	D 30-32	99.90	29.37	3.40	OED
418	BERMINGH	B450 5	105.63	29.37	3.60	OED
132	ICE	80-S	108.51	35.60	3.05	OED
67	MITSUB.	M 43	109.06	42.10	2.59	OED
16	DELMAG	D 36	113.69	35.29	3.22	
17	DELMAG	D 36-02	113.69	35.29	3.22	OED
18	DELMAG	D 36-13	113.69	35.29	3.22	OED
68	MITSUB.	MH 45	115.87	44.72		OED
421	BERMINGH	B550 C	119.36	48.95	2.59	OED
19	DELMAG	D 36-23	120.04		2.44	OED
20	DELMAG	D 36-32	120.04	35.29 35.29	3.40	OED
133	ICE	90-S	122.07		3.40	OED
21	DELMAG	D 44	122.67	40.05	3.05	OED
419	BERMINGH	B500 5	124.84	42.27	2.90	OED
110	KOBE	K 45	125.81	34.71	3.60	OED
24	DELMAG	D 46-13		44.14	2.85	OED
134	ICE	100-S	130.93	45.12	2.90	OED
136	ICE	200-S	135.64	44.50	3.50	OED
355	HERA	5000	135.64	89.00	1.52	OED
420	BERMINGH	B550 5	137.50	50.00	2.75	OED
22	DELMAG		144.05	40.05	3.60	OED
23		D 46	145.37	45.12	3.22	OED
25	DELMAG	D 46-02	145.37	45.12	3.22	OED
	DELMAG	D 46-23	145.37	45.12	3.22	OED
165	MKT 110	DE110150	149.20	48.95	3.05	OED
26	DELMAG	D 46-32	153.49	45.12	3.40	OED
356	HERA	5700	156.75	57.00	2.75	OED
135	ICE	120-S	162.76	53.40	3.05	OED
27	DELMAG	D 55	168.91	52.78	3.20	OED
357	HERA	6200	170.50	62.00	2.75	OED
112	KOBE	KB 60	176.58	58.87	3.00	OED
70	MITSUB.	MH 72B	183.31	70.75	2.59	OED
71	MITSUB.	MH 80B	202.91	78.32	2.59	OED
166	MKT 150	DE110150	203.45	66.75	3.05	OED
358	HERA	7500	206.25	75.00	2.75	OED
28	DELMAG	D 62-02	206.77	60.79	3.40	OED

APPENDIX 'F'

Diesel Hammer Listing

GRLWEAP ID	Hammer Mfgr	Hammer Name	Max. Energy	Ram Weight	Eq. Max Stroke	Hammer Type
.0	·····a·	E	kN-m	kN	m	T
29	DELMAG	D 62-12	206.77	60.79	3.40	OED
30	DELMAG	D 62-22	206.77	60.79	3.40	OED
113	KOBE	KB 80	235.43	78.50	3.00	OED
359	HERA	8800	242.00	88.00	2.75	OED
31	DELMAG	D 80-12	252.61	78.41	3.22	OED
32	DELMAG	D 80-23	266.71	78.41	3.40	OED
33	DELMAG	D100-13	333.47	98.03	3.40	OED

WFLHD SAMPLE SIZE GUIDANCE SHEET

Masses (weights) listed below are minimum amounts required by WFLHD lab to run tests. One canvas bag holds approximately 23kg (50 pounds).

DEFINITION OF 'NOMINAL': For processed aggregate, the nominal maximum size of particles is the largest sieve size listed in the applicable specification, upon which any material is permitted to be retained. (AASHTO T 2)

NOTE: For tests not listed below, contact the WFLHD Materials Laboratory.

April 1, 2001

TESTS ON SUBBASE, BASE, & S	URFACING AGGREG	ATES:		TESTS ON SOILS:		
,,,		kgs	lbs		kgs	lbs
AG-PG Complete Preliminary Testin AG-1 to 10, 12 & 13	ng of Gravel Subbase"A":	180	400	S0-PS Complete Preliminary Testing Soils SO-1 to 5	40 (3)	90 (3)
	Subbase "B," or Base "C," "D," or "E":	160	350	SO-RI Routine Identification (classification) of Soils SO-1 & 2	25	55
AG-PQ Complete Preliminary Testin	og of Quarry					
AG-4 to 10, 12 & 13	Subbase "A":	160	350	SO-2 Plasticity Index AASHTO T 89/90	5 (2)	12 (2)
	Subbase "B," or Base "C," "D," or "E":	140	300	SO-3 Specific Gravity AASHTO T 100 SO-4 R-Value, 300 PSI Exudation AASHTO T 190	5 (2) 40 (3)	12 (2) 90 (3)
AG-EV Base or Subbase Evaluation	Subbase "A": Subbase "B" or	90	200	AASHTO 1 190		
AG-1 to 6 & 16	Base "C," "D," or "E":	70	150	SO-7 Natural Moisture Content AASHTO T 265	2	5
AG-1 Sieve Analysis AASHTO T	11/T 27 Subbase "A":	45 *	100 *	SO-8 Moisture Density, AASHTO T 99 SO-9 Moisture Density, AASHTO T 180	40 (3) 40 (3)	90 (3) 90 (3)
	Subbase "B" or Base "C," "D," or "E":		50 *		(0)	24 (6)
	, ,			00 04 0 W 1 D 1 D 1 A 10 W 10 D 10	40	0.0
AG-10 Immersion Compression AAS	SHTO T 165	80	180	SO-21 California Bearing Ratio AASHTO T 193 SO-22 pH of Soil AASHTO T 289	40 5 (2)	90 12 (2)
				SO-24 Direct Shear AASHTO T 236	5 (2)	12 (2)
AG-16 R-Value, 300 PSI exudation A	A A SHTO T 190	19mm no	ominal size:	SO-25 Resistivity AASHTO T 288 SO-26 Revegetation Analysis	5 (2) 2	12 (2) 4
110 10 K- varue, 500 I 51 extuation /	111011101170	50	110	50 20 Revegetation Analysis		h no large rocks
			ominal size:	SO 27 Condentision	1	· · · · · ·
		75	160	SO-27 Conductivity	1 quart o in a plas	
AG-17 Humphre's Granular Compac (NOTE: The FP-96 calls for 150kg		180 ive 180kg ii	400 f possible)			
(NOTE: The FP-96 calls for 150kg	but we would prefer to ha	ive 180kg i	f possible)			
AG-17 Humphre's Granular Compac (NOTE: The FP-96 calls for 150kg * This is sufficient quantity to produced to the concentration of the	but we would prefer to ha	o AG-1 thr	f possible)	TESTS ON BITUMINOUS MATERIALS:		
* This is sufficient quantity to pro-	but we would prefer to ha	o AG-1 thr	f possible)		kgs 363	lbs 800
(NOTE: The FP-96 calls for 150kg * This is sufficient quantity to pro-	but we would prefer to ha	o AG-1 thr	f possible)	AC-MD Hot Mix Design, consult with laboratory AC-IC Preliminary Immersion Compression/CKE T 270	363 80	800 180
* This is sufficient quantity to proceed the concentration of the concen	but we would prefer to ha	o AG-1 thr TE:	f possible) u AG-4 lbs	AC-MD Hot Mix Design, consult with laboratory AC-IC Preliminary Immersion Compression/CKE T 270 AB-CC Complete Classification of liquid asphalt	363 80 1 quart m	800 180 etal can
* This is sufficient quantity to proceed the concentration of the concen	but we would prefer to ha	o AG-1 thr	f possible)	AC-MD Hot Mix Design, consult with laboratory AC-IC Preliminary Immersion Compression/CKE T 270 AB-CC Complete Classification of liquid asphalt AB-VG Verification of liquid asphalt grading AB-RI Routine Identification of liquid asphalt	363 80 1 quart m 1 quart m 1 quart m	800 180 etal can etal can etal can
* This is sufficient quantity to proceed the suffic	cess the entire test group GATES AND CONCRE	D AG-1 thr TE: kgs 15 (1)	tu AG-4 lbs 34 (1)	AC-MD Hot Mix Design, consult with laboratory AC-IC Preliminary Immersion Compression/CKE T 270 AB-CC Complete Classification of liquid asphalt AB-VG Verification of liquid asphalt grading	363 80 1 quart m 1 quart m	800 180 etal can etal can etal can
* This is sufficient quantity to proceed the suffic	cess the entire test group GATES AND CONCRE	D AG-1 thr TE: kgs 15 (1)	tu AG-4 lbs 34 (1)	AC-MD Hot Mix Design, consult with laboratory AC-IC Preliminary Immersion Compression/CKE T 270 AB-CC Complete Classification of liquid asphalt AB-VG Verification of liquid asphalt grading AB-RI Routine Identification of liquid asphalt	363 80 1 quart m 1 quart m 1 quart m	800 180 etal can etal can etal can olastic jug
* This is sufficient quantity to pro	cess the entire test group GATES AND CONCRE	D AG-1 thr TE: kgs 15 (1)	tu AG-4 lbs 34 (1)	AC-MD Hot Mix Design, consult with laboratory AC-IC Preliminary Immersion Compression/CKE T 270 AB-CC Complete Classification of liquid asphalt AB-VG Verification of liquid asphalt grading AB-RI Routine Identification of liquid asphalt AB-EA Tests on emulsified asphalt	363 80 1 quart m 1 quart m 1 quart m 1 gallon p	800 180 etal can etal can etal can olastic jug ter core
* This is sufficient quantity to proceed the suffic	cess the entire test group GATES AND CONCRE T 11/T 27 y break) AASHTO T 22	AG-1 thr TE: kgs 15 (1) 2 cylinde	ru AG-4 lbs 34 (1)	AC-MD Hot Mix Design, consult with laboratory AC-IC Preliminary Immersion Compression/CKE T 270 AB-CC Complete Classification of liquid asphalt AB-VG Verification of liquid asphalt grading AB-RI Routine Identification of liquid asphalt AB-EA Tests on emulsified asphalt AC-2 Bulk SG & air voids AASHTO T 166 AC-5 & AC-3 Asphalt Content & gradation (T 30)	363 80 1 quart m 1 quart m 1 gallon p 6" diame	800 180 etal can etal can etal can olastic jug ter core
* This is sufficient quantity to proceed to the sufficient quantity to proceed the sufficient quantity to proceed to the sufficient quantity to proceed to the sufficient quantity to proceed to proceed the sufficient quantity to proceed to proceed the sufficient quantity to proceed to proceed the sufficient quantity to proceed the	cess the entire test group GATES AND CONCRE T 11/T 27 y break) AASHTO T 22	o AG-1 thr TE: kgs 15 (1) 2 cylinde	f possible) u AG-4 lbs 34 (1)	AC-MD Hot Mix Design, consult with laboratory AC-IC Preliminary Immersion Compression/CKE T 270 AB-CC Complete Classification of liquid asphalt AB-VG Verification of liquid asphalt grading AB-RI Routine Identification of liquid asphalt AB-EA Tests on emulsified asphalt AC-2 Bulk SG & air voids AASHTO T 166 AC-5 & AC-3 Asphalt Content & gradation (T 30) AC-6 Resilient Modulus	363 80 1 quart m 1 quart m 1 quart m 1 gallon p 6" diame 4 4" diamet	800 180 etal can etal can etal can olastic jug ter core 9 er core
* This is sufficient quantity to proceed the suffic	cess the entire test group GATES AND CONCRE T 11/T 27 y break) AASHTO T 22	AG-1 thr TE: kgs 15 (1) 2 cylinde e as follow kgs 0.5	lbs 34 (1) ers lbs 2	AC-MD Hot Mix Design, consult with laboratory AC-IC Preliminary Immersion Compression/CKE T 270 AB-CC Complete Classification of liquid asphalt AB-VG Verification of liquid asphalt grading AB-RI Routine Identification of liquid asphalt AB-EA Tests on emulsified asphalt AC-2 Bulk SG & air voids AASHTO T 166 AC-5 & AC-3 Asphalt Content & gradation (T 30) AC-6 Resilient Modulus (2) Minimum amount of minus 4.75mm (# 4) material that in the sample material being submitted. If the sample contential, enough representative material must be sent	363 80 1 quart m 1 quart m 1 quart m 1 gallon p 6" diame 4 4" diamet	800 180 etal can etal can etal can olastic jug ter core 9 er core
* This is sufficient quantity to proceed to the sufficient quantity to proceed the suf	cess the entire test group GATES AND CONCRE T 11/T 27 y break) AASHTO T 22	o AG-1 thr TE: kgs 15 (1) 2 cylinde e as follow kgs	f possible) ru AG-4 lbs 34 (1)	AC-MD Hot Mix Design, consult with laboratory AC-IC Preliminary Immersion Compression/CKE T 270 AB-CC Complete Classification of liquid asphalt AB-VG Verification of liquid asphalt grading AB-RI Routine Identification of liquid asphalt AB-EA Tests on emulsified asphalt AC-2 Bulk SG & air voids AASHTO T 166 AC-5 & AC-3 Asphalt Content & gradation (T 30) AC-6 Resilient Modulus (2) Minimum amount of minus 4.75mm (# 4) material that in the sample material being submitted. If the sample c material, enough representative material must be sent minus 4.75mm material is obtained after sieving.	363 80 1 quart m 1 quart m 1 quart m 1 gallon p 6" diame 4 4" diamet	800 180 etal can etal can etal can olastic jug ter core 9 er core ntained er size cient
* This is sufficient quantity to proceed the suffic	cess the entire test group GATES AND CONCRE T 11/T 27 y break) AASHTO T 22 on maximum nominal siz	DAG-1 thr TE: kgs 15 (1) 2 cylinde e as follow kgs 0.5	lbs 34 (1) ers lbs 2	AC-MD Hot Mix Design, consult with laboratory AC-IC Preliminary Immersion Compression/CKE T 270 AB-CC Complete Classification of liquid asphalt AB-VG Verification of liquid asphalt grading AB-RI Routine Identification of liquid asphalt AB-EA Tests on emulsified asphalt AC-2 Bulk SG & air voids AASHTO T 166 AC-5 & AC-3 Asphalt Content & gradation (T 30) AC-6 Resilient Modulus (2) Minimum amount of minus 4.75mm (# 4) material that in the sample material being submitted. If the sample contential, enough representative material must be sent	363 80 1 quart m 1 quart m 1 quart m 1 gallon p 6" diame 4 4" diamet	800 180 etal can etal can etal can olastic jug ter core 9 er core ntained er size cient

APPENDIX 'H'

TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (METRIC UNITS)

Actual _	Volume F	actor	Actual _	Volume F	actor	Actual _	Volume F	actor	Actual _	Volume	Factor
°C	A*	B*	°C	A*	B*	°C	A*	B*	°C	A*	B*
-25.0	1.0290	1.0254	-5.0	1.0144	1.0126	15.0	1.0000	1.0000	35.0	0.9857	0.987
-24.5	1.0286	1.0251	-4.5	1.0140	1.0123	15.5	0.9996	0.9997	35.5	0.9854	0.9872
-24.0	1.0283	1.0248	-4.0	1.0137	1.0120	16.0	0.9993	0.9994	36.0	0.9850	0.9869
-23.5	1.0279	1.0244	-3.5	1.0133	1.0117	16.5	0.9989	0.9991	36.5	0.9847	0.986
-23.0	1.0276	1.0241	-3.0	1.0130	1.0114	17.0	0.9986	0.9988	37.0	0.9843	0.986
-22.5	1.0272	1.0238	-2.5	1.0126	1.0111	17.5	0.9982	0.9985	37.5	0.9840	0.986
-22.0	1.0268	1.0235	-2.0	1.0122	1.0107	18.0	0.9978	0.9981	38.0	0.9836	0.985
-21.5	1.0265	1.0232	-1.5	1.0119	1.0104	18.5	0.9976	0.9978	38.5	0.9833	0.985
-21.0	1.0261	1.0228	-1.0	1.0115	1.0101	19.0	0.9971	0.9975	39.0	0.9829	0.985
-20.5	1.0258	1.0225	-0.5	1.0112	1.0098	19.5	0.9968	0.9972	39.5	0.9826	0.984
-20.0	1.0254	1.0222	0.0	1.0108	1.0095	20.0	0.9964	0.9969	40.0	0.9822	0.984
-19.5	1.0250	1.0219	0.5	1.0104	1.0092	20.5	0.9961	0.9966	40.5	0.9819	0.984
-19.0	1.0247	1.0216	1.0	1.0101	1.0089	21.0	0.9957	0.9963	41.0	0.9815	0.983
-18.5	1.0243	1.0212	1.5	1.0970	1.0085	21.5	0.9954	0.9959	41.5	0.9812	0.983
18.0	1.0239	1.0209	2.0	1.0094	1.0082	22.0	0.9950	0.9956	42.0	0.9808	0.983
-17.5	1.0236	1.0206	2.5	1.0090	1.0079	22.5	0.9947	0.9953	42.5	0.9805	0.982
-17.0	1.0232	1.0203	3.0	1.0086	1.0076	23.0	0.9943	0.9950	43.0	0.9801	0.982
-16.5	1.0228	1.0200	3.5	1.0083	1.0073	23.5	0.9940	0.9947	43.5	0.9798	0.982
-16.0	1.0224	1.0196	4.0	1.0079	1.0069	24.0	0.9936	0.9943	44.0	0.9794	0.981
-15.5	1.0221	1.0193	4.5	1.0076	1.0066	24.5	0.9933	0.9940	44.5	0.9791	0.981
-15.0	1.0217	1.0190	5.0	1.0072	1.0063	25.0	0.9929	0.9937	45.0	0.9787	0.981
-14.5	1.0213	1.0187	5.5	1.0068	1.0060	25.5	0.9925	0.9934	45.5	0.9784	0.981
-14.0	1.0210	1.0184	6.0	1.0065	1.0057	26.0	0.9922	0.9931	46.0	0.9780	0.980
-13.5	1.0206	1.0180	6.5	1.0061	1.0053	26.5	0.9918	0.9928	46.5	0.9777	0.980
-13.0	1.0203	1.0177	7.0	1.0058	1.0050	27.0	0.9915	0.9925	47.0	0.9773	0.980
-12.5	1.0199	1.0174	7.5	1.0054	1.0047	27.5	0.9911	0.9922	47.5	0.9770	0.979
-12.0	1.0195	1.0171	8.0	1.0050	1.0044	28.0	0.9907	0.9918	48.0	0.9766	0.979
-11.5	1.0192	1.0168	8.5	1.0047	1.0041	28.5	0.9904	0.9915	48.5	0.9763	0.979
-11.0	1.0188	1.0164	9.0	1.0043	1.0037	29.0	0.9900	0.9912	49.0	0.9759	0.978
-10.5	1.0185	1.0161	9.5	1.0040	1.0034	29.5	0.9897	0.1100	49.5	0.9756	0.978
-10.0	1.0181	1.0158	10.0	1.0036	1.0031	30.0	0.9893	0.9906	50.0	0.9752	0.978
-9 .5	1.0177	1.0155	10.5	1.0032	1.0028	30.5	0.9889	0.9903	50.5	0.9749	0.977
-9.0	1.0174	1.0152	11.0	1.0029	1.0025	31.0	0.9886	0.9900	51.0	0.9745	0.977
-8 .5	1.0170	1.0148	11.5	1.0025	1.0022	31.5	0.9882	0.9897	51.5	0.9742	0.977
-8.0	1.0166	1.0145	12.0	1.0022	1.0019	32.0	0.9879	0.9894	52.0	0.9738	0.977
-7.5	1.0163	1.0142	12.5	1.0018	1.0016	32.5	0.9875	0.9891	52.5	0.9735	0.976
-7.0	1.0159	1.0139	13.0	1.0014	1.0012	33.0	0.9871	0.9887	53.0	0.9731	0.976
-6.5	1.0155	1.0136	13.5	1.0011	1.0009	33.5	0.9868	0.9884	53.5	0.9728	0.976
-6.0	1.0151	1.0132	14.0	1.0007	1.0006	34.0	0.9864	0.9881	54.0	0.9724	0.975
-5.5	1.0148	1.0129	14.5	1.0004	1.0003	34.5	0.9861	0.9878	54.5	0.9721	0.975

Use column A factors for asphalts with a specific gravity between 0.8495 and 0.9653 at 15 °C
 Use column B factors for asphalts with a specific gravity above 0.9654 at 15 °C

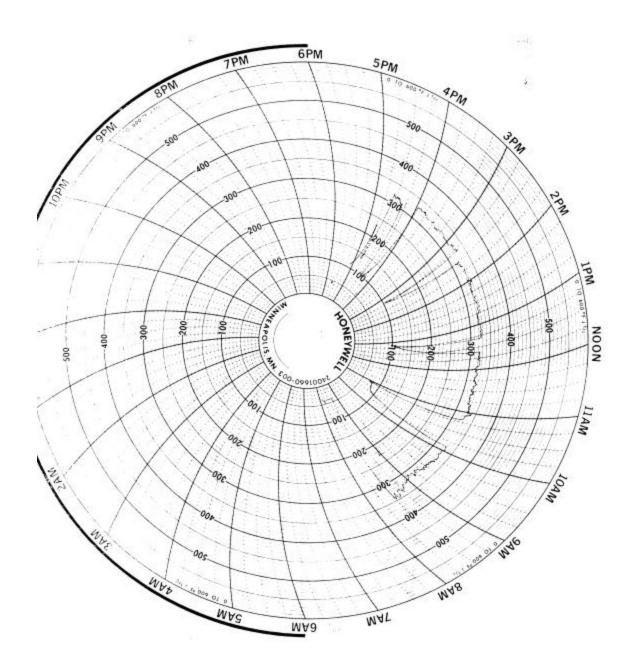
TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (METRIC UNITS)

Actual	Volume F		Actual	Volume	Factor	Actual	Volume I	Factor	Actual	Volume	Factor
°C	A*	В*	°C	A*	B*	°c '	A*	B*	° c	A*	B*
55.0	0.9717	0.9751	75.0	0.9578	0.9628	95.0	0.9441	0.9506	115.0	0.9305	0.0205
55.5	0.9714	0.9748	75.5	0.9575	0.9625	95.5	0.9438	0.9503	115.5	0.9303	0.9385 0.9382
56.0	0.9710	0.9745	76.0	0.9571	0.9622	96.0	0.9434	0.9500	116.0	0.9302	
56.5	0.9707	0.9742	76.5	0.9568	0.9619	96.5	0.9431	0.9497	116.5	0.9295	0.9379
57.0	0.9703	0.9739	77.0	0.9564	0.9616	97.0	0.9427	0.9494	117.0	0.9293	0.9376
							0.0.2.	0.0404	117.0	0.3232	0.9373
57.5	0.9700	0.9736	77.5	0.9561	0.9613	97.5	0.9424	0.9491	117.5	0.9289	0.9371
58.0	0.9696	0.9732	78.0	0.9557	0.9609	98.0	0.9421	0.9488	118.0	0.9285	0.9368
58.5	0.9693	0.9729	78.5	0.9554	0.9606	98.5	0.9417	0.9485	118.5	0.9282	0.9365
59.0	0.9689	0.9726	79.0	0.9550	0.9603	99.0	0,9414	0.9482	119.0	0.9279	0.9362
59.5	0.9686	0.9723	79.5	0.9547	0.9600	99.5	0.9410	0.9479	119.5	0.9275	0.9359
		İ						2,10 11 0	110.0	0.5275	0.5005
60.0	0.9682	0.9720	80.0	0.9543	0.9597	100.0	0.9407	0.9476	120.0	0.9272	0.9356
60.5	0.9679	0.9717	80.5	0.9540	0.9594	100.5	0.9404	0.9473	120.5	0.9269	0.9353
61.0	0.9675	0.9714	81.0	0.9536	0.9591	101.0	0.9400	0.9470	121.0	0.9265	0.9350
61.5	0.9672	0.9711	81.5	0.9533	0.9588	101.5	0.9397	0.9467	121.5	0.9262	0.9347
62.0	0.9668	0.9708	82.0	0.9529	0.9585	102.0	0.9393	0.9464	122.0	0.9258	0.9344
					J				122.0	0.0200	0.3344
62.5	0.9665	0.9705	82.5	0.9526	0.9582	102.5	0.9390	0.9461	122.5	0.9255	0.9341
63.0	0.9661	0.9701	83.0	0.9523	0.9578	103.0	0.9387	0.9458	123.0	0.9252	0.9338
63.5	0.9658	0.9698	83.5	0.9519	0.9576	103.5	0.9383	0.9455	123.5	0.9248	0.9335
64.0	0.9654	0.9695	84.0	0.9516	0.9573	104.0	0.9380	0.9452	124.0	0.9245	0.9332
64.5	0.9651	0.9692	84.5	0.9512	0.9570	104.5	0.9376	0.9449	124.5	0.9241	0.9329
							1, -				0.0020
65.0	0.9647	0.9689	85.0	0.9509	0.9567	105.0	0.9373	0.9446	125.0	0.9238	0.9326
65.5	0.9644	0.9686	85.5	0.9506	0.9564	105.5	0.9370	0.9443	125.5	0.9235	0.9323
66.0	0.9640	0.9683	86.0	0.9502	0.9561	106.0	0.9366	0.9440	126.0	0.9231	0.9320
66.6	0.9637	0.9680	86.5	0.9499	0.9558	106.5	0.9363	0.9437	126.5	0.9228	0.9317
67.0	0.9633	0.9677	87.0	0.9495	0.9555	107.0	0.9359	0.9434	127.0	0.9225	0.9314
					Ì			1			
67.5	0.9630	0.9674	87.5	0.9492	0.9552	107.5	0.9356	0.9431	127.5	0.9222	0.9311
68.0	0.9626	0.9670	88.0	0.9489	0.9548	108.0	0.9353	0.9428	128.0	0.9218	0.9308
68.5	0.9623	0.9667	88.5	0.9485	0.9545	108.5	0.9349	0.9425	· 128.5	0.9215	0.9305
69.0	0.9619	0.9664	89.0	0.9482	0.9542	109.0	0.9346	0.9422	129.0	0.9212	0.9302
69.5	0.9616	0.9661	89.5	0.9478	0.9539	109.5	0.9342	0.9419	129.5	0.9208	0.9299
~~ ~								l			
70.0	0.9612	0.9658	90.0	0.9475	0.9536	110.0	0.9339	0.9416	130.0	0.9205	0.9296
70.5	0.9609	0.9655	90.5	0.9472	0.9533	110.5	0.9336	0.9413	130.5	0.9202	0.9293
71.0	0.9605	0.9652	91.0	0.9468	0.9530	111.0	0.9332	0.9410	131.0	0.9198	0.9290
71.5	0.9602	0.9649	91.5	0.9465	0.9527	111.5	0.9329	0.9407	131.5	0.9195	0.9287
72.0	0.9598	0.9646	92.0	0.9461	0.9524	112.0	0.9325	0.9404	132.0	0.9191	0.9284
72.5	0.0505	0.0045	00.5								
72.5 73.0	0.9595	0.9643	92.5	0.9458	0.9521	112.5	0.9322	0.9401	132.5	0.9188	0.9281
73.5	0.9592 0.9588	0.9640	93.0	0.9455	0.9518	113.0	0.9319	0.9397	133.0	0.9185	0.9278
73.5 74.0		0.9637	93.5	0.9451	0.9515	113.5	0.9315	0.9394	133.5	0.9181	0.9275
74.0 74.5	0.9585	0.9634	94.0	0.9448	0.9512	114.0	0.9312	0.9391	134.0	0.9178	0.9272
74.0	0.9581	0.9631	94.5	0.9444	0.9509	114.5	0.9308	0.9388	134.5	0.9174	0.9269

Use column A factors for asphalts with a specific gravity between 0.8495 and 0.9653 at 15° C
 Use column B factors for asphalts with a specific gravity above 0.9654 at 15° C

TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (METRIC UNITS)

Actual _	Volume F		Actual _	Volume f	THE REAL PROPERTY.	Actual _	Volume F	actor	Actual	Volume	Factor
°c	Α*	В*	°c	A.	B*	°C	Α*	B*	°c	A*	B*
135.0	0.9171	0.9266	155.0	0.9039	0.9148	175.0	0.8909	0.9031	195.0	0.8781	0.891
135.5	0.9168	0.9263	155.5	0.0250	0.9145	175.5	0.8906	0.9028	195.5	0.8778	0.891
136.0	0.9164	0.9260	156.0	0.9033	0.9142	176.0	0.8903	0.9025	196.0	0.8775	0.890
136.5	0.9161	0.9257	156.5	0.9029	0.9139	176.5	0.8899	0.9022	196.5	0.8771	0.890
137.0	0.9158	0.9254	157.0	0.9026	0.9136	177.0	0.8896	0.9019	197.0	0.8768	0.890
137.5	0.9156	0.9251	157.5	0.9023	0.9133	177.5	0.8893	0.9017	197.5	0.8765	0.890
138.0	0.9151	0.9248	158.0	0.9020	0.9130	178.0	0.8890	0.9014	198.0	0.8762	0.889
138.5	0.9148	0.9246	158.5	0.9017	0.9127	178.5	0.8887	0.9011	198.5	0.8759	0.889
139.0	0.9145	0.9242	159.0	0.9013	0.9124	179.0	0.8883	0.9008	199.0	0.8755	0.889
139.5	0.9141	0.9239	159.5	0.9010	0.9121	179.5	0.8880	0.9005	199.5	0.8752	0.888
140.0	0.9138	0.9236	160.0	0.9007	0.9118	180.0	0.8877	0.9002	200.0	0.8749	0.888
140.5	0.9135	0.9233	160.5	0.9004	0.9115	180.5	0.8874	0.8999	200.5	0.8746	0.888
141.0	0.9131	0.9230	161.0	0.9000	0.9112	181.0	0.8874	0.8996	201.0	0.8743	0.888
141.5	0.9128	0.9227	161.5	0.8997	0.9109	181.5	0.8867	0.8993	201.5	0.8739	0.887
142.0	0.9125	0.9224	162.0	0.8994	0.9106	182.0	0.8864	0.8990	202.0	0.8736	0.887
142.5	0.9122	0.9222	162.5	0.8991	0.9104	182.5	0.8861	0.8988	202.5	0.8733	0.887
143.0	0.9118	0.9219	163.0	0.8987	0.9101	183.0	0.8858	0.8985	203.0	0.8730	0.886
143.5	0.9115	0.9216	163.5	0.8984	0.9098	183.5	0.8855	0.8982	203.5	0.8727	0.886
144.0	0.9112	0.9213	164.0	0.8981	0.9095	184.0	0.8851	0.8979	204.0	0.8723	0.886
144.5	0.9108	0.9210	164.5	0.8977	0.9092	184.5	0.8848	0.8976	204.5	0.8720	0.886
145.0	0.9105	0.9207	165.0	0.8974	0.9089	185.0	0.8845	0.8973	205.0	0.8717	0.885
145.5	0.9102	0.9204	165.5	0.8971	0.9086	185.5	0.8842	0.8970	205.5	0.8714	0.885
146.0	0.9098	0.9201	166.0	0.8968	0.0108	186.0	0.8839	0.8967	206.0	0.8711	0.885
146.5	0.9095	0.9198	166.5	0.8964	0.9080	186.5	0.8835	0.8964	206.5	0.8708	0.884
147.0	0.9092	0.9195	167.0	0.8961	0.9077	187.0	0.8832	0.8961	207.0	0.8705	0.884
147.5	0.9089	0.9192	167.5	0.8958	0.9075	187.5	0.8829	0.8959	207.5	0.8702	0.884
148.0	0.9085	0.9189	168.0	0.8955	0.9072	188.0	0.8826	0.8956	208.0	0.8698	0.884
148.5	0.9082	0.9186	168.5	0.8952	0.9069	188.5	0.8823	0.8953	208.5	0.8695	0.883
149.0	0.9079	0.9183	169.0	0.8948	0.9066	189.0	0.8819	0.8950	209.0	0.8692	0.883
149.5	0.9075	0.9180	169.5	0.8945	0.9063	189.5	0.8816	0.8947	209.5	0.8689	0.883
150.0	0.9072	0.9177	170.0	0.8942	0.9060	190.0	0.8813	0.8944	210.0	0.8686	0.882
150.5	0.9069	0.9174	170.5	0.8939	0.9057	190.5	0.8810	0.8941	210.5	0.8683	0.882
151.0	0.9065	0.9171	171.0	0.8935	0.9054	191.0	0.8807	0.8938	211.0	0.8680	0.882
151.5	0.9065	0.9168	171.5	0.8932	0.9051	191.5	0.8803	0.8935	211.5	0.8676	0.882
152.0	0.9059	0.9165	172.0	0.8929	0.9048	192.0	0.8800	0.8932	212.0	0.8673	0.881
152.5	0.9056	0.9163	172.5	0.8926	0.9046	192.5	0.8797	0.8930	212.5	0.8670	0.881
153.0	0.9052	0.9160	173.0	0.8922	0.9043	193.0	0.8794	0.8927	213.0	0.8667	0.881
153.5	0.9049	0.9157	173.5	0.8919	0.9040	193.5	0.8791	0.8924	213.5	0.8664	0.880
154.0	0.9046	0.9154	174.0	0.8916	0.9037	194.0	0.8787	0.8921	214.0	0.8660	0.880
154.5	0.9042	0.9151	174.5	0.8912	0.9034	194.5	0.8784	0.8918	214.5	0.8657	0.880


 $^{^{\}circ}$ Use column A factors for asphalts with a specific gravity between 0.8495 and 0.9653 at 15 $^{\circ}$ C Use column B factors for asphalts with a specific gravity above 0.9654 at 15 $^{\circ}$ C

TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (METRIC UNITS)

Actual	Volume F	actor	Actual	Volume F	actor	Actual	Volume F	actor
°c	A*	В*	*c	A*	B.	°c	A*	В*
215.5	0.8654	0.8800	235.0	0.8529	0.8687	255.0	0.8406	0.8574
215.5	0.8651	0.8797	235.5	0.8526	0.8684	255.5	0.8403	0.857
216.0	0.8648	0.8794	236.0	0.8523	0.8681	256.0	0.8400	0.8568
216.5	0.8645	0.8792	236.5	0.8520	0.8678	256.5	0.8397	0.8566
217.0	0.8642	0.8789	237.0	0.8517	0.8675	257.0	0.8394	0.8563
217.5	0.8639	0.8786	237.5	0.8514	0.8673	257.5	0.8391	0.856
218.0	0.8635	0.8783	238.0	0.8510	0.8670	258.0	0.8388	0.855
218.5	0.8632	0.8780	238.5	0.8507	0.8667	258.5	0.8385	0.855
219.0	0.8629	0.8778	239.0	0.8504	0.8664	259.0	0.8382	0.855
219.5	0.8626	0.8775	239.5	0.8501	0.8661	259.5	0.8379	0.854
220.0	0.8623	0.8772	240.0	0.8498	0.8658	260.0	0.8376	0.854
220.5	0.8620	0.8769	240.5	0.8495	0.8655	260.5	0.8373	0.854
221.0	0.8617	0.8766	241.0	0.8492	0.8652	261.0	0.8370	0.854
221.5	0.8614	0.8763	241.5	0.8489	0.8650	261.5	0.8367	0.853
222.0	0.8611	0.8760	242.0	0.8486	0.8647	262.0	0.8364	0.853
222.5	0.8608	0.8758	242.5	0.8483	0.8644	262.5	0.8361	0.853
223.0	0.8604	0.8755	243.0	0.8480	0.8641	263.0	0.8357	0.852
223.5	0.8601	0.8752	243.5	0.8477	0.8638	263.5	0.8354	0.852
224.0	0.8598	0.8749	244.0	0.8474	0.8636	264.0	0.8351	0.852
224.5	0.8595	0.8746	244.5	0.8471	0.8633	264.5	0.8348	0.852
225.0	0.8592	0.8743	245.0	0.8468	0.8630	265.0	0.8345	0.851
225.5	0.8589	0.8740	245.5	0.8465	0.8627	265.5	0.8342	0.851
226.0	0.8586	0.8737	246.0	0.8462	0.8624	266.0	0.8339	0.851
226.5	0.8582	0.8735	246.5	0.8459	0.8622	266.5	0.8336	0.851
227.0	0.8579	0.8732	247.0	0.8456	0.8619	267.0	0.8333	0.850
227.5	0.8576	0.8729	247.5	0.8453	0.8616	267.5	0.8330	0.850
228.0	0.8573	0.8726	248.0	0.8449	0.8613	268.0	0.8326	0.850
228.5	0.8570	0.8723	248.5	0.8446	0.8610	268.5	0.8323	0.849
229.0	0.8566	0.8721	249.0	0.8443	0.8608	269.0	0.8320	0.849
229.5	0.8563	0.8718	249.5	0.8440	0.8605	269.5	0.8317	0.849
230.0	0.8560	0.8715	250.0	0.8437	0.8602	270.0	0.8314	0.849
230.5	0.8557	0.8712	250.5	0.8434	0.8599	270.5	0.8311	0.848
231.0	0.8554	0.8709	251.0	0.8431	0.8596	271.0	0.8308	0.848
231.5	0.8551	0.8707	251.5	0.8428	0.8594	271.5	0.8305	0.848
232.0	0.8548	0.8704	252.0	0.8425	0.8591	272.0	0.8302	0.847
232.5	0.8545	0.8701	252.5	0.8422	0.8588	272.5	0.8299	0.847
233.0	0.8541	0.8698	253.0	0.8418	0.8585	273.0	0.8296	0.847
233.5	0.8538	0.8695	253.5	0.8415	0.8582	273.5	0.8293	0.847
234.0	0.8538	0.8693	254.0	0.8412	0.8580	1.000000	0.8290	0.846
234.5	0.8532	0.8690	254.5	0.8409	0.8577	274.5	0.8287	0.846

 $^{^{\}circ}$ Use column A factors for asphalts with a specific gravity between 0.8495 and 0.9653 at 15 $^{\circ}$ C Use column B factors for asphalts with a specific gravity above 0.9654 at 15 $^{\circ}$ C

DRUM PLANT DAILY REPORT HOT PLANT #___ /36 CONTRACT/PROJECT # 223 DATE 9 126 102 SPHALT INVENTORY HOT MIX INVENTORY LIME INVENTORY START: TANK DIP ____75" R. A. P. ___ TONS START _____TONS DED. WASTE 5.0 TONS END: TANK DIP __ 57 END TONS HOT GAL. TOTAL 10339 MIX PROD .: 1934.26 TONS GALS TOTAL_ TONS A.C. TEMPERATURE 30% H20 USED GALS 15.348.93 TONS DIP TOTAL: 56.46 TONS M.T.D. MAGNEHELIC + TOTAL DELIV: 99.56 TONS 1107,609.21 TONS Y.T.D. PRESSURE DROP: 10 = COMB. OIL: 156.02 TONS P.T.D. 12873.83 TONS H20 GALS/MIN: - END TOTAL: 4/0.49 TONS PLANT HOURS WEATHER: - TOT. USED: 1/5.53 TONS 6.7 TODAY: HRS SCRUBBER NOZZLES % BY TOTAL: 5.42 50.8 MONTH: HRS CHECKED: 9-22-02 4185 CLEANED: _ 9-22-02 YEAR: HRS FUGITIVE DUST CONTROL: REPLACED: 9-10-CZ TYPE OF DUST CONTROL USED: FREQUENCY OF APPLICATION / DAY: LOADER HOURS: 2701- 7 6000 gal AMOUNT APPLIED / DAY: LABOR HOURS: 2007-2 WEATHER: TEMPERATURE: 37" EL USAGE 27.406 3558 JURNER FUEL: GAL 217, 4/3 GAL. Y.T.D. GAL. M.T.D. 350 GAL. AUX. FUEL: GAL. M.T.D. 21050 GAL. Y.T.D. OIL DELIVERIES LIME DELIVERIES TICKET NUMBER TONS OF OIL TICKET NUMBER TONS OF LIME 1. 820539 34.08 2 B20544 33.05 3. B20546 32.413 OCT 1 2002 BY PROJECT ENGINEE OPERATOR COMMENTS: Plant First at 8:30 Am Today Had 4 more Raw Much Better Trucks Cycling Much Bette-Cleaned out at 4:45 pm. Try For Same Plant Ross Helped Load For old FaitLRI JOL Them 2 hrs C2-18 OPERATOR SIGNATURE CGILL SA 10-10

APPENDIX "I"

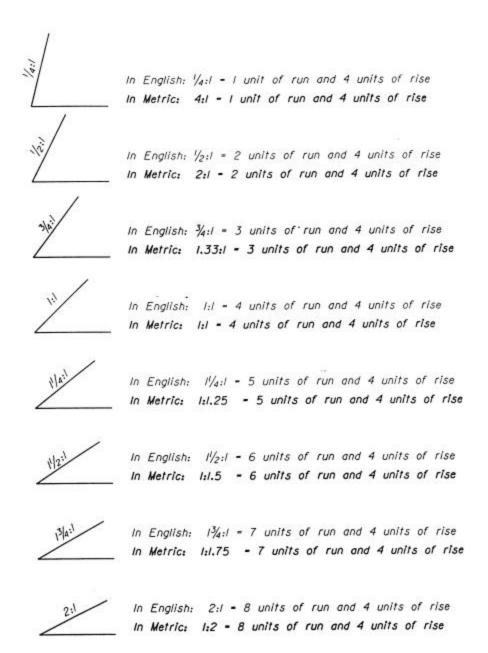
					_	_			_	_					_	_			-					_		_			_			_		_		
Area given	Area	19.635	20.428	22.062	22.902	23.758	24.630	26.421	27.340	28.274	29.225	31.172	32.170	34.212	35.257	37.393	38.485	39.592	41.854	43.008	45.365	45.355	49.017	പ	51.530 52.810	55.418	56.745	59.447	60.821	63.617	62.039	66.476	69.398	70.882	73.898	75.430
	٥	5.0	- 0	iω	4	κί	ώι	- 00	6.	0.9	-; 0	iω	4 "	. .	۲. (ဆုံ တ	7.0	-: c	ıή	4 rú	9 1	-; «i	o;	8.0	- 4	ω ં 4	rů.	6 L	هن من	9.0	- .	vi u	. 4	rvi a	۰ ر:	. α. c
D ² x 0.7853982 ≈ Use when Diameter	Area	000	80.5	. 170	.126	196	.283	503	.636	.785	.950	1.327	1.539	2.011	2.270	2.545	3.142	3.464	4.155	4.524	5.309	5.726 6.158	6.605	7.069	7.548	8.553	9.621	10.179	11.341	12.566	13.203	13.854	15.205	15.904	17.349	18.096
D.	a	0.0	<u>-</u> , c	iω	4	ις	φ.	- 00	. o.	1.0	٠. ٢	i w	4 "	úά	۲.	دن من 	2.0	0	i ი;	4 r.	φ.	`. ®	6.	3.0	- 4	wi d	i rö	9. 7.	ထတ်	4.0	₹.	4.0	4	rů e	76 L	. œ
,																			•																	
		320	98	229	542	227	513	5 6	8 5	174	898		9 2 2	163	967	979	487	81.997	222	537	572	513	135	990	186	243	306	375	.913	992	534	770	169	17	95.267	372
	Area	71.0	72.0	7, 2,	73.	74.(74	7,5	75.981	76.474	76.	77.	9.6	8 6	79.	80.472	8	18 6	83.	83.	. 4	80 80	86.	88	87.	88 8		<u>ස</u> ස	8 6	91.	92.	<u> </u>	ુ કુ ફુ	9.4	6 6 6	96
	o	30.0	<u>←</u> (iω	. 4	ιo	φ.1	·. α	ó oi	31.0	·	i ui	4.	ب د د		<u>م</u> ض	32.0	٠, ٢	iω	4. 4	iα	٠. «	6	33.0	- 0	ωi.₄	ίκό	æίν	: متن	34.0		40	.i 4:	, rui c	6 V	: œ
	Area	49.736	50.135	50.937	51.340	51,745	52.152	52.560	53.381	53.794	54.209	55.043	55.462	55.883	56.730	57.156 57.583	58.012	58.443	59.308	59.744	60.619	61.059	61.944	62.389	62.835	63.733	64.637	65.091	66.005	66.925	67.387	67.851	68.316 68.784	69.252	69.723	70.668
RCLE ters Area	U	25.0	 (si e	. 4	. rv.	ø.	۲. ٥	ة و	26.0	0	'nω	4	rvi e	. r	ထဲလဲ	27.0	-: ·	iω	4. n	. 6	ι: α	ن وز	28.0	-: ^	ω·	4 rú	ю́г	; eó eó	29.0	-	4	ω . 4	. rú .	9 7	; «
CI me las 5 =		-	150	793	117	442	770	860	34.428 34.760	984	429	5 6	443	785	472	37.818 38.166	1-1	998	573	929	645	902	731	42.096	463	202	947	321	45.076 45.455	837	219	604	377	766	48.157	643
OF quar form	Area	31.	32.	32.	3 6	33.	33.	34.	3, 4,	35.	35.	36.5	36.	36.	37.	37.	38.	38.	9 66	39.	4	4.5	4 4	42	2, 4	43	4 4 5 6	4 5	4 4	45	46	46	46	4	8 4	1 4
AREA In sc I C ² × 0.1	U	20.0	<u>-</u> ,	ui u	.i ⊿	Ļω	9	۲. ۵	si qi	21.0		vi e	4	rvi a	6 7.	ه <u>ه</u>	22.0	- . •	wi wi	4.	ΰα	۰. ۰	o 0:	23.0	÷,	i w	4 rö	6,1	. ω, σ	24.C	-	.2	— ω 4	i roi	9, 7	· α
	Area	17.905	18.144	18.386	18 873	19.118	19.366	19.615	19.866 20.118	20.372	20.627	20.884	21.403	21.665	22.193	22.460	22.998	23.269	23.542	24.093	24.37	24.931	25.497	25.783	26.070	26.650	26.942	27.531	28.126 28.126 28.426	28.727	29.031	29.335	29.642	30.259	30.570	31,100
	٥	15.0	-	ώı	.i <	ţ u	, ø	۲. ر	ဆဲလဲ	16.0	۲.	٠i د	; 4 .	ແ່ ເ	ن ر: -	ος σ	17.0	-	ui ui	4.	υœ	۲. ۵	oi ei	18.0	-, (i 65	4 ru	œί	- ω, o	19.0	-	: ~:	w 4	i ró	۰ نه	
	Area	7.958	8.118	8.279	8.442	8.773	8.941	9.111	9.282 9.455	9.629	9.805	9.982	0.342	0.524	0.708	11.080	1.459	11.651	1.844	12.236	12.634	12.835	13.242	13.449	13.656	14.076	14.289	14.719	15.155	15.597	15 821	16.046	16.273	16.731	16.963	17.196
given		 -	-	ui u	<u>.</u>	4. rc	, æ	۲.	ක. බ	11.0	<u> </u>					. w. o	. 0	_					مة من	3.0	٠. ٥	iω	4 r.	9.	, ∞ c	j 6	-	- 7	ы. -	4 rci	۰ ب ن	۲. ۱
ence is	-	+-		2 1		2.5	. 9	2		⊢	 		0 60	22	9 2		12	12	52	- 82	9 %	82	- 99	.093	12.5	- 2	5 6	98	.162	446 14	╁	32.5		 82	34	87
cumfer	Area	6	2.07	2.15	2.23	2.32	2.48	2.58	2.677	2.865	2.96	3.0	3.25	3.36	3.4	3.680	3.899	4.0	4.4	4.3	4 4	4.7	4.841	5.0	5.2	. v.	5.6	5.8	9.9.0	8 8	4	6.7	9 0	2.7	7.334	4.7
Use when Circumference	,	l v	; -:	2,0	ωj.	4 u	. w	.7	ထ တ	0.9	-	4,0	.i 4	ĸ.	۰. ا	; eo; c	2 0.7	-	4.	. 4.	rů «	7.	هن من	8.0	('nω		. . 6	r.' ∞i e	j. G	-	- 7	<u>ښ</u> .	4 rú	, e , t	<u>.</u>
2		8	8.8	.003	8.	50.0	020	.039	.051 764	080	960	.115	156	179	2 2 2 2 2 2 2 2 3	258	318	.351	.385	458	497	280	.624 .669	.716	.765	.815 7867	.920	1.031	1.089	1.210	2/7:	1.404	1.471	1.541	1.684	1.758
	-	, [3 -	7	wi .	4. 0	u e	۲.	αίω:	9	-	٠;٠	ωί 4	ι.	9,1	. eo e	2 0	-	4,	.i. 4:	rvi a	; r;	من من	000	F	ui w	4.	i eč	∠' æ'	ن د	١.	- ~	i ui	4 m	i ei	۲.

APPENDIX 'J'

U.S. - SI Conversion Factors

From English	To SI	Multiply by	Quantity	From SI	To English	Multiply by
ft	m	0.3048	Length	m	ft	3.2808
inch	mm	25.40		mm	inch	0.039
ft ²	m²	0.0929	Area	m²	ft ²	10.764
inch ²	mm²	645.2		mm²	in ²	0.0015
ft³	m³	0.028	Volume	m³	ft ³	35.714
inch ³	mm³	16387		mm³	inch ³	61x10 ⁻⁶
ft⁴	m ⁴	0.0086 -	Second	m ⁴	ft ⁴	115856
inch⁴	mm⁴	416231	Moment of Area	mm ⁴	inch⁴	2x10 ⁻⁶
Ibm	kg	0.4536	Mass	kg	Ibm	2.2046
lbm/ft ³	kg/m³	16.02	Mass Density	kg/m³	lbm/ft ³	0.062
lb	N	4.448	Force	N	lb	0.2248
kip	kN	4.448		kN	kip	0.2248
lbs/ft	N/m	14.59	Force/Unit-	N/m	lbs/ft	0.0685
kips/ft	kN/m	14.59	Length	kN/m	kips/ft	0.0685
lbs/in²	kPa	6.895	Force/Unit-	kPa	Ibs/in²	0.145
kips/in²	MPa	6.895	Area; Stress;	МРа	kips/in²	0.145
lbs/ft²	Pa	47.88	Pressure;	Pa	lbs/ft ²	0.021
kips/ft²	kPa	47.88	Elastic Mod.	kPa	kips/ft²	0.021

see over for survey foot


U.S. - SI Conversion Factors (continued)

From	То	Multiply by	Quantity	From	To	Multiply by
English	SI			SI	English	
lbs/ft3	N/m³	157.1	Force/Unit-	N/m³	lbs/ft ³	0.0064
kips/ft³	kN/m³	157.1	Volume	kN/m³	kips/ft³	0.0064
	V0					
lb-inch	N-mm	112.98	Moment; or	N-mm	lb-inch	0.0089
kip-inch	kN-mm	112.98	Energy	kN-mm	kip-inch	0.0089
lb-ft	N-m	1.356		N-m	lb-ft	0.7375
kip-ft	kN-m	1.356	15	kN-m	kip-ft	0.7375
ft-lb	Joule	1.356		Joule	ft-lb	0.7375
ft-kip	kJoule	1.356		kJoule	ft-kip	0.7375
			*			
s/ft	s/m	3.2808	Damping	s/m	s/ft	0.3048
blows/ft	blows/m	3.2808	Blow count	blows/m	blows/ft	0.3048

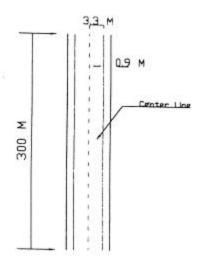
GUIDELINE FOR U.S. SURVEY FOOT CONVERSION:

to convert feet to meters use 0.3048006 to convert meters to feet use 3.2808333

ENGLISH - METRIC SLUPE RATIO CUNVERSIONS

METRIC SLOPES

ENGLISH CO	NVENTION		METRIC C	CONVENTION
Н:	٧		V	: H
		≤ 45 DEGREES		
20	:1		1	: 20
10	: 1		1	: 10
6	:1		1	: 6
4	: 1		1	: 4
3	: 1		1	: 3
2	: 1		1	: 2
1.5	:1 -		1	: 1.5
1.25	:1	-	1	: 1.25
1	:1		1	: 1
		> 45 DEGREES		
0.75	: 1		1.33	: 1
0.5	: 1		2.00	: 1
0.3	:1		3.33	; 1
0.25	:1		4.00	: 1
0.1	:1		10.00	: 1

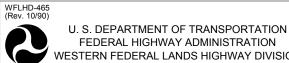

CONVERSION FROM GAL / YD2 TO L / M2 & YD3 / MILE TO M3 TO M

Shot Rate = 0.5 Gal / Yard2

Aggregate = 250 yard3 / mile

Shot Rate = $0.5 \text{ gal / yard}^2 \cdot 3.785412 \text{ Liters / gal} \cdot 1 \text{ yard}^2 / 0.8361274 \text{ M}^2 = 2.26 \text{ L / M}^2$ Aggregate = $250 \text{ yard}^3 / \text{mile} \cdot 0.7645549 \text{ M}^3 / \text{Yard}^3 \cdot 1 \text{ Mile / } 1609.344 \text{ M} = 0.118768097 \text{ M}^3 / \text{ M}$

For a Road 300 m x 8.4 m



Area = 2520 M^2

Oil = 2520 * 2.26 = **5695.2 Liters** Aggregate = 300 * 0.118768097 = **35.63 M**³

STANDARD WILLIAM STANDARD

BLANK FORMS

DESCRIPTION AND LOCATION OF WORK (PLEASE BE CONCISE)

			Y ADMINISTRATION	4	} ⊢				٠,			0011	0.00	,			
6			NDS HIGHWAY DIVISION		•	(A) -											
"	WEGIENNI		"Commitmen	t to Excelle		(B) -											
						(C) -											
						(D) -											
	CONTRACTOR'S D	AILY RECC	RD OF CONSTRUCTION OPERATION	ONS		(E) - (F) -											
						(G) -											
PRO	JECT:					(H) -											
				_		(l) -											
CON	ITRACTOR/SUB-CO	ONTRACTO	R:			(J) -											
						(K) -											
DAT	E:		DAY:													SHIFT:	
	THER															_TO: _	
	LAPOR	1 1		1	D	RODU	NOITS	TIME: /	DERSO	JN HOI	IDS W	OBKE	2)		EQUIF		
NO:	CLASSIFICATION:	NO:	EQUIPMENT TYPE:	(A)		(C)									WORK		
					.		L										
			CONTINUE	IO B	ACK	OF S	SHEE	: 1									
BY:					RF\	/IEW	FD F										
		CONTRA	OTOD (*)						\	T [2D 11	100			
SIG	NATURE FOR	CONTRA	CTOR (*)		SIG	II ANı	JKE,	PK(IJΕC	ι EN	GINE	-EK (JK Iľ	NSPE	ECTO	ıΚ:	
DA	ГЕ:				DA	ГЕ:											
		FRTIFIFD TL	HAT THE INFORMATION CONTAINED IN	I THIS F	SECUE	RD IS A	CCUP	ATF A	ND TH	ΑΤ ΔΙΙ	WOP	<u></u>	UMEN	TED H	IFRFIN	COME	PLIES
(*)						/		, ^		, _			→.VILIV		ıv	C C (VII	0

WITH THE REQUIREMENTS OF THE CONTRACT. ANY EXCEPTIONS TO THIS CERTIFICATION ARE DOCUMENTED AS PART OF THIS RECORD. ALSO, I CERTIFY THAT ALL CONSTRUCTION SIGNING AND TRAFFIC CONTROL (INCLUDING TEMPORARY STRIPING) IS CORRECT FOR THE STATUS OF THE PROJECT AND IS IN FULL CONFORMANCE WITH THE "MUTCO" AND THE CONTRACT REQUIREMENTS FOR THE PROJECT IDENTIFIED ABOVE.

	EQUIP	MENT MOV	E-IN/MOVE-OUT		
	EQUIPMEN	IT:			DATE:
TYPE:	MAKE:		MODEL/SIZE:	IN:	OUT:
		REMAI	RKS:		
ACCIDENTS	Pl	RODUCTION	N SUMMARY (Loads, To	ns, Cu. Yd. Lin. Ft.,	etc.)
YES NO	ITEM NO.		STATION TO STATI	ON	QUANTITY
UNSAFE OPERATIONS					
YES NO					
INTENTIONALLY LEFT BLANK					

Project:	Date:	
Item Number		
DESCRIPTION, LOCATION, ETC.		QUANTITY
	TOTAL 🛊	
l certify that the above quantity was performed and used in the construction of this project.	/or	
Contractor	Project Engin	eer/Inspector

Project:	Date:	
Item Number		
DESCRIPTION, LOCATION, ETC.		QUANTITY
	TOTAL 🛊	
l certify that the above quantity was performed and used in the construction of this project.	/or	
Contractor	Project Engin	eer/Inspector

Project:	Date:	
Item Number		
DESCRIPTION, LOCATION, ETC.		QUANTITY
	TOTAL 🛊	
l certify that the above quantity was performed and used in the construction of this project.	/or	
Contractor	Project Engin	eer/Inspector

Project:	Date:	
Item Number		
DESCRIPTION, LOCATION, ETC.		QUANTITY
	TOTAL 🛊	
l certify that the above quantity was performed and used in the construction of this project.	/or	
Contractor	Project Engin	eer/Inspector

Project:	Date:	
Item Number		
DESCRIPTION, LOCATION, ETC.		QUANTITY
	TOTAL 🛊	
l certify that the above quantity was performed and used in the construction of this project.	/or	
Contractor	Project Engin	eer/Inspector

Notification of Completion of Work

Date/Time:			
Item Number:	Item Description:		
Location:			
requirements and ch	identified above has been co ecked for compliance. I furth g, to perform this Quality Cont	er certify that I am qualifie	d and
Name (printed)		Signature	-
Remarks:			
	[FHWA use below I	inel	
	•	•	
If box one or two is c the next phase of wo	hecked, the contractor	can proceed immedi	ately with
•	i K.		
Received by:	(name: signature/print)	(da	ate/time)
	,	(**	,
☐ 1. This work will not be	inspected.		
☐ 2. This work was inspendent.	ected and no deficiencies wer	e found.	
•	ected and deficiencies were for FLHD 470 upon correction of		contractor
-	ected and deficiencies were for ne next phase of work as note		contractor
Remarks:			
Completed by:			
Completed by.	(name: signature/print)		(date/time)
Returned to Contractor by	•		
restained to contiductor by	(name: signature/pi	rint)	(date/time)

U.S. Department of Transportation Western Federal Lands Highway Division 610 East Fifth Street Vancouver, Washington 98661

Page:				Vancouver, Washington 98661 Date:										
Project:					Culvert Notes Staking crew:									
Station Size			Length	Length Gauge or Class		Туре	Insp	nature						
Beveled End S	Sections	s Inlet			In Place Ft	. Lt.		Extend: F	t I t					
							Extend: Ft. Lt Ft. Rt							
Pipe Installed Date:						/aged								
Elevation	Lt	t					 Tot							
Cover	M	/lin:			Max:			Grade:						
Skew: _														
Station		ation Ground			CROSS - SECTION NOTES									
				SUMMA	RY OF QUAI	NTITIES								
Item No.				Description		Quantity	um Book Date							
Computed	by:				_ Checke	d by:								
	-				_ Date:									
Date					_ Date.				culvert wn	f				

U.S. Department of Transportation Western Federal Lands Highway Division 610 East Fifth Street Vancouver, Washington 98661

Page:			Vanc	Vancouver, Washington 98661 Date:									
Project:				Culvert Notes		Stakingcrew:							
Station Size			Length	Gauge or Class	Туре	Insp	ector's Signature						
Beveled End S	Sections	s Inlet		In Place m Lt.		Extend: m	1 Lt						
Pipe Installed	Da	ate:											
Elevation	Lt	t		Rt	Ťo	tal Fall: _							
Cover	M	/lin:		Max:		Grade:							
Skew: _													
Station		ation Ground		CROSS - SECTION NOTES									
			SUMMA	ARY OF QUANTITIES									
Item No.			Description		Quantity	Unit	Ent. in Sum Book Page No. Date						
Computed	by:			Checked by:									
	-			·									
Date:				Date:			culvert wof						

WFLHD-422M (Rev 4/99)			DAILY MASS RECORD					PAGE NO					
PROJE	CT:												
										DAT	E		
					Pay Lot	No.:						OF	
LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)	LOAD NO.	TRUCK NO.	TIME	GROS MASS		LOAD NO.	TRUCK NO.	TIME	GROSS MASS (kg)	
			()/					ν 3/				(3/	
					DAILY S	UMMARY		OFFICE U	SE ONLY			aring on street	
				MASS	s (kg) _							will be deleted by explained.	
				TARE	(kg)								
				NET (kg)							I CERTIF INFORM		
				metric tons									
				 WEIG	HED BY	' :				SIGNED			
				WEIGHED BY:									
Truck	o waish									COMPA	ANY		
Truck R	e-weigh			_ ΔC	REE WI	тн 🗀	DOES!	NOT AC	RFF In	isnector.			
					REE WI								
					REE WI								

WFLHD-422V (Rev 4/99)			DAILY VOLUME RECORD					PAGE NO				
PROJE	CT:											
										DAT	E	
					Pay Lot	No.:						OF
LOAD NO.	TRUCK NO.	TIME	GROSS VOLUME	LOAD NO.	TRUCK NO.	TIME	GROS: VOLUN		LOAD NO.	TRUCK NO.	TIME	GROSS VOLUME
				VOLU		UMMARY		OFFICE U	SE ONLY	delivery	report v	aring on street
					_							ry explained.
					-						I CERTIF	
				m3	-)	
				WEIGHED BY: _								
				CHECKED BY:						ANY		
Truck R	e-weigh		1	1								
				1=	REE WI							
				1=	REE WI							
				j∐ AG	REE WI	ΙΗ <u></u>	DOFS V	IOT AG	KEE In	spector:		

WFLHD-443M (Rev 4/99)	TARE CHART	PAGE NO			
,	LOADS NOT APPE				
PROJECT:	STREET DELIVERY WILL BE DELETE				
ITEM NO.:	SATISFACTORILY E	DATE			
SOURCE NO.:	Pay Lot No.:	 SHEET NO OF			
TRUCK NO.					
TARE 1 (kg)					
TARE 2 (kg)					
TARE 3 (kg)					
TARE AVE. (kg)					
TRUCK TALLY					
NUMBER LOADS					
TARE WEIGHT (kg)					
TRUCK NO.					
TARE 1 (kg)					
TARE 2 (kg)					
TARE 3 (kg)					
TARE AVE. (kg)					
TRUCK TALLY					
NUMBER LOADS					
TARE WEIGHT (kg)					
TRUCK NO.					
TARE 1 (kg)					
TARE 2 (kg)					
TARE 3 (kg)					
TARE AVE. (kg)					
TRUCK TALLY					
NUMBER LOADS					
TARE WEIGHT (kg)					
TOTAL TARE WEIGHT (kg)	I C C BY:	 NFORMATION R E	TO BE		

COMPANY: ____

WFLHD-443 (Pov 12/00)	TARE CHART	PAGE NO.
(Rev 12/90)	LOADS NOT APPEARING ON	
PROJECT:	STREET DELIVERY REPORT WILL BE DELETED UNLESS	
ITEM NO.:		DATE
SOURCE NO.:	Pay Lot No.:	SHEET NO OF
TRUCK NO.		
TARE 1		
TARE 2		
TARE 3		
TARE AVERAGE		
TRUCK TALLY		
NUMBER LOADS		
TARE WEIGHT		
TRUCK NO.		
TARE 1		
TARE 2		
TARE 3		
TARE AVERAGE		
TRUCK TALLY		
NUMBER LOADS		
TARE WEIGHT		
TRUCK NO.		
TARE 1		
TARE 2		
TARE 3		
TARE AVERAGE		
TRUCK TALLY		
NUMBER LOADS		
TARE WEIGHT		
TOTAL TARE WEIGHT	C O	HIS INFORMATION TO BE R R E C T
	DATE:	
	COMPANY:	

wflhd443.wpf

WFLHE (Rev 12 PROJE	2/90)			STREET DELIVERY REPORT PAGE NO. SPREAD REPORT							
ITEM N	_						DATE				
	_				o.:			OF			
LOAD NO.	TRUCK NO.	TIME	STATION TO STATION	REMARKS	LOAD NO.	TRUCK NO.	STATION TO STATION	REMARKS			
			IE ABOVE LOA	CERTIF			HOWN	AND ARE THE	SOLE BASIS		
	PAYME			Pagaine	ad hv			Date			
Jonilal	noi signa	เนเช			.u by				flhd434.wpf		

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

TRAFFIC SAFETY CHECKLIST FLAGGER OPERATIONS

PROJECT	STATION TO STATION	
DAY MONTH YEAR	WEATHER	
REVIEWER(Print Name:)		
	<u>O.K.</u>	Needs <u>Correction</u>
Are appropriate number of flaggers being utilized?		
Are flaggers properly equipped with hardhat (any colorshirt, or jacket (orange) (reflectorized for night work)?		
3. Are flaggers equipped with required hand signaling d (stop/slow sign 18" or more diameter)?	evice	
 4. Does flagger meet minimum qualifications: a) Average intelligence b) Good physical condition-sight-hearing? c) Mental alertness? d) Courteous - firm manner? e) Neat appearance? f) Sense of responsibility? 		
5. Are flaggers trained:a) By State Certification orb) By Formal training by contractor orc) By Contractor's Traffic Control Designee?		
6. Are flaggers checked for quality of operations by Contractor on a frequent basis?		
7. Does flagger stop traffic properly?		
8 Does flagger direct traffic to proceed properly?		

WFLHD-404C (10-81) TRAFFIC SAFETY CHECKLIST - FLAGGER OPERATIONS (DOC. #2458C)

		<u>O.K.</u>	Needs <u>Correction</u>
9.	Does flagger alert or slow traffic properly?		
10.	Is the flagger stationed the proper distance from the traffic hazard to construction site (200 - 300 feet desirable)?		
11.	Is flagger's station highly visible to approaching traffic?		
12.	Is flagger's station adequately protected and preceded by the proper number of warning signs?		
13.	Are signs the proper size, shape, color?		
14.	Are signs properly spaced?		
15.	Are signs unobstructed and clean?		
16.	Are signs positioned properly horizontally and vertically from edge of road?		
17.	Are night positioned properly horizontally and vertically from edge of road?		
18.	Are floggers equipped with two-way radio communication equipment when out of sight from each other?		
19.	Roadway condition through construction zone?		
RE	EMARKS		
_			
-			

Laboratory Control No	
-----------------------	--

REQUEST FOR LABORATORY TESTS

Project Name:			F	Project Number:	·
DELPHI Project Number:				DELPHI Task	Number:
Agency:				State: _	County:
Cubmitted by			A ddro		
Submitted by:			Addre	SS.	
Phone Number:					
Fax Number:					
Field Sample Number:		— Sampled	l by:		Date Sampled:
					Date Shipped:
Quantity Represented:			-		
Sample Type (Acceptance, P	C, IAS, CVS, etc.):			— Date Resi	ılts Needed:
	,			24.0 1.000	
Source Name:				Source Numb	per:
Source Location:					
Material Description:		Cor	ntractor/Owne	er:	
•					
					Depth:
		-			QL-PAY Sample No:
Q217(1)B					
List Tests To Be Performed:	Parameters/Sieves	ct Specifications	Test Results	Target Values	
	- 4.4	ороспосионо	- Cott i todaito	ranger ranges	Special Instructions:
	37.5 mm				1
	25.0 mm				
	19.0 mm				
	12.5 mm				1
	9.5 mm				
	4.75 mm				
	2.36 mm				
	2.00 mm				
	1.18 mm				
	600 µm				4
	425 μm				-
	300 μm 150 μm				-
	75 µm				-
	Liquid Limit				1
	PI				1
	Sand Equivalent				-
	Fractured Faces				1
	Asphalt Content				Portland Cement Concrete Data
	Density				Air Content (%): Slump:
	Flakiness Index				Break Age in Days (7,14,28, other):
	Concrete Strength				

INSTRUCTIONS FOR SUBMITTING SAMPLE

- 1. Fill out the transmittal completely, (use "NK" for not known).
- 2. Make three copies of the transmittal.
- 3. Place the first transmittal inside a waterproof envelope and place inside the container.
- 4. Place a second transmittal in a waterproof envelope and attach to the outsi de of container.
- 5. Address the envelope to the Laboratory. (610 E. Fifth St. Vancouver, WA 98661)
- 6. Mail the third transmittal directly to the Laboratory.
- 7. Keep the original copy of the transmittal for your records.

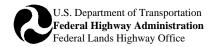
TESTS	ON SUBBASE, BASE, & SURFACING AGGREGATES:	TESTS	ON SOILS:
AG-PG	Complete Preliminary Testing Of Gravel. AG-1 to 10, 12 & 13	SO-PS	Complete Preliminary Testing Soils. SO-1 to 5
AG-PQ	Complete Preliminary Testing Of Quarries.	SO-RI	Routine Identification of Soils. SO-1 & 2
	AG-4 to 10, 12 & 13	SO-1	Mechanical Analysis to 0.02 mm. AASHTO T 88
AG-EV	Base or Subbase Evaluation.	SO-2	Plasticity Index. AASHTO T 89 & T 90
	AG-1 to 6 & 16	SO-3 SO-4	Specific Gravity. AASHTO T 100 R-Value, 300 PSI Exudation.
AG-1	Sieve Analysis as received. AASHTO T 11 & T 27		AASHTO T 190
AG-2	Plasticity Index as received. AASHTO T 89 & T 90	SO-5	AASHTO Structural Design, Flexible
AG-3	SE as received, Referee Method. AASHTO T 176	SO-6	Complete Hydrometer. AASHTO T 88
AG-4	Durability. AASHTO T 210	SO-7	Natural Moisture Content. AASHTO T 265
AG-5	Apparent Specific Gravity, Fine & Coarse.	SO-8	Moisture Density. AASHTO T 99
AG-6	Los Angeles Abrasion. AASHTO T 96	SO-9	Moisture Density. AASHTO T 180
AG-7	Fine Aggregate Angularity	SO-10	SE, Referee Method. AASHTO T 176
AG-8	Soundness by Sodium Sulfate. AASHTO T 104	SO-11	Unconfined Compression.
AG-9	Accelerated Weathering, EG & DMSO	SO-12	Ignition Loss.
AG-10	Immersion Compression. AASHTO T 165	SO-13	Triaxial "Q" Test.
	Cement Treated Base, Mix Design.	SO-14	Triaxial "R" Test.
	Plasticity Index, Lab Manufactured. AASHTO T 89 & T 90	SO-15	Triaxial "S" Test.
	SE, Lab Manufactured, Referee Method. AASHTO T 176	SO-16	
	Specific Gravity, Coarse. AASHTO T 85	SO-17	,
	Specific Gravity, Fine. AASHTO T 84	SO-18	Shrinkage Limit. AASHTO T 92
	R-Value, 300 PSI Exudation. AASHTO T 190	SO-19	Consolidation.
	Humphre's Granular Compaction.		Additive Stabilization, Specify Type.
	Fractured Faces. ASTM D5821	SO-21	<u> </u>
	Unit Weight. AASHTO T 19		PH of Soil. AASHTO T 289
AG-20	Flat and Elongated Particles		Zinc Coating, Iron or Steel. AASHTO T 65
		SO-24	
TEOTO	ON CONCRETE ACCRECATED AND CONCRETE.	•	Resistivity AASHTO T 288
15515	ON CONCRETE AGGREGATES AND CONCRETE:	15313	ON BITUMINOUS MATERIALS:
	Sieve Analysis. AASHTO T 11 & T 27 Sand Equivalent. AASHTO T 176	AC-MD	Hot Mix Design, Consult w/ Laboratory.
	Los Angeles Abrasion. AASHTO T 96 Soundness by Sodium Sulfate. AASHTO T 104	AC-IC	Preliminary Immersion Compression
	Specific Gravity, Coarse & Fine. AASHTO T 85 & T 84 Unit Weight. AASHTO T 19	AB-CC	Complete Classification of Liquid Asphalt
CO-7	Organic Impurities. AASHTO T 21 Clay Lumps. AASHTO T 112	AB-VG	Verification of Liquid Asphalt Grading
CO-9	Lightweight Pieces. AASHTO T 113	AB-RI	Routine Identification of Liquid Asphalt
	Mortar Strength. AASHTO T 71 Compressive Strength, Cylinders. AASHTO T 22	AB-EA	Tests on Emulsified Asphalts
		AC-1	Dispose of Unneeded Backup Samples
		AC-2	Bulk SG & Air Voids. AASHTO T 166
		AC-3	Sieve Analysis. AASHTO T 30
		AC-4	Immersion Compression. AASHTO T 165
			Asphalt Content, specify Ignition or Extraction
		AC-6	Resilient Modulus

WFLHD-247 (Rev. 7/82)								OF TRAN AY ADMIN			
SIEVE ANALYSIS	OF FINE	& COARS	E AGGRE	GATE	WESTERN FEDERAL LANDS HIGHWAY DIVISION						
PROJECT			NO	Э.			FIEL	D SAMPLE	=		
SAMPLE OF				ATE							
LOCATION											
MOISTURE											
MOISTURE CONTENT COARSE			F	FINE	P-200 WA	ASH		COAF	RSE	FINE	
Wt. Wet Aggr.					P-200 CO						
Wt. Dry Aggr.					Wt. Dry A						
Wt. of Water					Wt. Wash		aar				
Percent of Moisture					Wt. P-200		.ygı .				
			<u> </u>		VVI. P-200				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	
REMARKS			SIEVE S			RETA	AINED		TOTAL & PASSING	SPECIFI- CATIONS	
			COARSI	E AGGR.	Wt. WET	Γ Wt.	DRY	%	TOT	SPE	
				INCH							
				INCH							
CERTIFY THIS INFO	RMATIC	ON TO BE		INCH							
CORR				INCH							
SIGNED BV:				INCH							
SIGNED BY:				INCH							
DATE:			No. 4								
COMPANY:			No. 4 MINUS								
			Total Sa	mple Wt.							
	W	ASHED FR	OM COAF	RSE	DRY No. 4 MINUS						
SIEVE SIZE FINE	RET	TAINED	LO T	D.	RETAI	NED	LO T	อี			
AGGREGATE			PERCENT PASSING	PASSING			PERCENT PASSING	PASSING			
	Wt. Dr	y %	PE PA	Δ4	Wt. Dry	%	PE PA	_ ₹			
No.											
No.											
No.											
No.											
No.											
No.											
Pan											
Wt. P-200											
Total P-200											

Orig. Dry Wt

WORKSHEET FOR SIEVE ANALYSIS OF FINE AND COARSE AGGREGATE AASHTO T 11 AND AASHTO T 27

Duningt				S.				Sampla r				
Project:				50	ource:	urce: Sample						
Sample of:				Qı	uantity repre	sented:		Lot no.:				
Sampled by: _			Date: _		Teste	d by: _		Г	Date: _			
МС	DISTURE DI	ETERN	MINATION		P	ERCE	NT PASSING	G 75 μm SIE	VE (P-	75) W	ASH	
Moisture	Content		Coarse	Fine		P-75	5 Content		Coarse Fine			
Mass of wet aggregate			Mass of we	et aggre	gate							
Mass of dry agg	regate				Mass of dr	y aggreg	gate					
Mass of water					Mass of wa	ished dr	y aggregate					
Moisture (%)					Mass of 75	μm min	us					
REMARKS:		<u> </u>			Coar	92	_			То	tal	
KEMAKKS:					Aggreg Sieve S	ate	Mass Wet	Retained Mass Dry	%	Pass (%	sing	Spec's
					Sieves	mm	wass wet	Mass Dry	70	(/	0)	spec s
						mm						
						mm						
						mm						
						mm						
						mm						
					4.75 mm							
					4.75 mm m	inus						
					Total samp	e mass						
	WAS	SHED I	FROM COA	RSE		DRY 4	1.75 mm MIN	NUS		TD 4 1		
Fine	Retain		Percent	Adjusted	Retai		Percent	Adjustee		Total Passing	g	Spec's
Aggregate Sieve Size	Mass Dry	%	Passing	(%) Passing	Mass Dry	%	Passing	(%) Passing		(%)		
4.75 mm												
									$-\parallel$			
Pan									$-\parallel$			
Mass P-75									$-\parallel$			
Total P-75									$-\parallel$			
Orig. dry mass								1				



WORKSHEET FOR DETERMINING SAND EQUIVALENT AASHTO T 176

Where sampled:	Project:				Source:				
Sample of: Lot no.:	Where sampled:				Quantity represe	ented:			
The following method was used to prepare the sample: Air dry	a						Sample	No.:	
NOTE: In each cylinder, place about 85 mL by volume of quartered material passing the 4.75-mm sieve. Soaking Time (10 minutes ± 1 minute)	Sampled by:		_ Date: _		Tested by:		Da	te:	
Determination 1 2 3 Determination 1 2 Cylinder no. Starting time Starting time Finish time Finish time CALCULATIONS: SE = Sand Reading * 100 Clay Reading Sand reading Clay reading Sand equivalent (SE) values¹ Sand Equivalent (mean) 2 =				_			_		
Cylinder no. Starting time Finish time CALCULATIONS: SE = Sand Reading * 100 Clay reading	Soaking Time	(10 minut	es ± 1 min	ute)	Sedimentation Period (20 minutes	± 15 sec	onds)	
Starting time Finish time CALCULATIONS: SE = Sand Reading * 100 Clay Reading Sand reading Clay reading Sand equivalent (SE) values¹ Sand Equivalent (mean) 2 =	Determination	1	2	3	Determination		1	2	3
Finish time CALCULATIONS: $SE = \frac{Sand\ Reading}{Clay\ Reading} * 100$ Sand reading Clay reading Sand equivalent (SE) values Sand Equivalent (mean) $^2 =$	Cylinder no.				Cylinder no.				
CALCULATIONS: SE = Sand Reading * 100 Clay Reading * Sand reading Sand equivalent (SE) values¹ Sand Equivalent (mean) 2 =	Starting time				Starting time				
CALCULATIONS: $SE = \frac{Sand\ Reading}{Clay\ Reading} * 100$ Clay reading Sand equivalent (SE) values ¹ Sand Equivalent (mean) ² =	Finish time				Finish time				
Sand equivalent (SE) values ¹ Sand Equivalent (mean) ² =		Sano	l Readina		Sand reading				
Sand Equivalent (mean) ² =	CALCULATIONS: S	$\mathbf{SE} = \frac{State}{Clay}$	Reading	* 100	Clay reading				
					Sand equivalent (SE) v	alues1			
	Remarks:					lent (mean)	2 =		
	Kemarks:								

¹ Mathematically round calculated value to nearest 0.1. After rounding to nearest 0.1, then round the result up to a whole number and record.

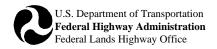
Mathematically round calculated SE mean to nearest 0.1. After rounding to nearest 0.1, then round the result up to a whole number and record that as the SE value of the sample.

Worksheet for Determining Liquid Limit and Plastic Limit of Soils AASHTO T 89, Method A or B and AASHTO T 90

Project: Source:				Sample	of:				Qua	ntity re	pres	ente	d: _							
Lot no Sar	nple no.		Sampled by	y:		Date:		Tested by:						Da	te:					
Liqu	uid Limit AA	SHTO T 8	39		7															
Determination No.	1	2	3	4																
Number of blows					1															
Container No.																				
Mass of container & wet so	il																			
Mass of container & dry so	il												+						\Box	\mp
Mass of water																				\equiv
Mass of container																			\coprod	\pm
Mass of dry soil																			Ħ	\pm
Water content (%)																			Ш	\pm
Liquid limit					୍ର 🏻														Ш	\pm
		Final liqu	uid limit (LL):		ַ בָּ כַּ														ш	#
					Moisture															\pm
Plas	stic Limit AA	ASHTO T	90		 ≥														Ħ	\pm
Determination No.	1	2	3	4	↑ ^ 										#				ш	#
Container No.																			Ħ	#
Mass of container & wet so	il																		ш	#
Mass of container & dry so	il																		H	+
Mass of water															+				\Box	Ŧ
Mass of container					10			15			0		25	5		30		35		4
Mass of dry soil									Nur			lows					,	J J		
Water content (%)																				
Plastic limit																				
		Final plas	tic limit (PL):		1															

CALCULATIONS

Plasticity Index = ____ (LL) - ___ (PL) = ____



Worksheet for In-Place Nuclear/Moisture DensityTesting FLH T 513, AASHTO T 238 and AASHTO T 239

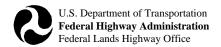
Project:	Source:		Quantity Represented:				
Item No.		Tested By	y	Date			
Test No.							
Station							
Offset							
Elevation							
Mode-Depth							
Density Count							
Wet Density							
Moisture Count							
Moisture							
Dry Density							
% Moisture							
Max. Dry Density							
T 99 / T 180							
Optimum Moisture							
% Relative Compaction							
Moisture Correction							
Classification							

Density	Moisture
Standard	Standard

Remarks:

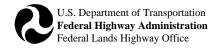
Worksheet for Determining Moisture/Density Relationships AASHTO T 99 AND AASHTO T 180

Project: Source: Where sampled: Quantity represented: Sample of: Lot No. Sample No. Sampled by: Date: Tested by: Date: AASHTO T 99 AASHTO T 180 Method A B C D If a st No. AASHTO T 180 Method A B C D If a st No. I
Sample of: Lot No. Sample No. Sampled by: Date: Tested by: Date: AASHTO T 99 AASHTO T 180 Method A B C D Image: Sample No. AASHTO T 180 Method A B C D Image: Sample No. AASHTO T 180 Method A B C D Image: Sample No. AASHTO T 180 Method A B C D Image: Sample No. AASHTO T 180 Method A B C D Image: Sample No. AASHTO T 180 Method A B C D Image: Sample No. AASHTO T 180 Method A B C D Image: Sample No. AASHTO T 180 Method A B C D Image: Sample No. AASHTO T 180 Method A B C D Image: Sample No. Image: Sample No. AASHTO T 180 Method A B
Sampled by: Date: Tested by: Date: AASHTO T 99 AASHTO T 180 Method A B C D Image: Sampled by: Test No. → Method A B C D Image: Sampled by: Test No. → Method A B C D Image: Sampled by: Test No. → Method A B C D Image: Sampled by: Test No. → Method A B C D Image: Sampled by: Test No. → Method A B C D Image: Sample by: Test No. → Method A B C D Image: Sample by: (a) Wet soil + mold tare [kg] (b) Mold tare [kg] (c) [a-b] Wet wt. [kg] (d) Wet density (*)c [kg/m³] (d) Wet density (*)c [kg/m³] (e) Method [kg] (e) Method [
AASHTO T 99 AASHTO T 180 Method A B C D Test No. (a) Wet soil + mold tare [kg] (b) Mold tare [kg] (c) [a-b] Wet wt. [kg] (d) Wet density (*)c [kg/m³] Test No. Test No. (a) Wet soil + mold tare [kg] (b) Mold tare [kg] (c) For molds within tolerance, use a constant factor 1059.43 for methods A and C or 470.74 for methods B and D.
Test No. (a) Wet soil + mold tare [kg] (b) Mold tare [kg] (c) [a-b] Wet wt. [kg] (d) Wet density (*)c [kg/m³] Tory density (\$\frac{c}{1+0.01\text{w}}\$) [kg/m³] * For molds within tolerance, use a constant factor 1059.43 for methods A and C or 470.74 for methods B and D.
(d) Wet density (*)c [kg/m³] Dry density (\frac{c}{1+0.01w}) [kg/m³] * For molds within tolerance, use a constant factor 1059.43 for methods A and C or 470.74 for methods B and D.
(d) Wet density (*)c [kg/m³] Dry density (\frac{c}{1+0.01w}) [kg/m³] * For molds within tolerance, use a constant factor 1059.43 for methods A and C or 470.74 for methods B and D.
(d) Wet density (*)c [kg/m³] Dry density (\frac{c}{1+0.01w}) [kg/m³] * For molds within tolerance, use a constant factor 1059.43 for methods A and C or 470.74 for methods B and D.
(d) Wet density (*)c [kg/m³] Dry density (\frac{c}{1+0.01w}) [kg/m³] * For molds within tolerance, use a constant factor 1059.43 for methods A and C or 470.74 for methods B and D.
* For molds within tolerance, use a constant factor 1059.43 for methods A and C or 470.74 for methods B and D.
* For molds within tolerance, use a constant factor 1059.43 for methods A and C or 470.74 for methods B and D.
Pan No. → (r) Wet soil wt. + tare [g] (s) Dry soil wt. + tare [g] (t) Tare [g]
(r) Wet soil wt. + tare [g] (s) Dry soil wt. + tare [g] (t) Tare [g]
(s) Dry soil wt. + tare [g] (t) Tare [g]
(t) Tare [g]
(u) Dry soil wt. [s-t] [g]
(v) Water wt. [r-s] [g]
(w) Moisture (v (100)) [%]
Dry Density (kg/m ³)
Maximum Dry Density:
kg/m³
Optimum Moisture:


WORKSHEET FOR DETERMINING GRADATION AND ASPHALT CONTENT OF ASPHALT CONCRETE AASHTO T 30, AND MOISTURE CONTENT BY OVEN AND ASPHALT CONTENT BY IGNITION - WFLHD METHODS

oject:									
Sample of					Lot No	Sample No			
Vhere sampled:					Time S	ampled:			
Sampled by:					Date:	Tested by:			
SPHALT CO	NTENT BY	IGNITIO	N						
ported Ticket Inf	Cormation				Recorded D	ata and Calculated Values			
Furnace chamber	r set point, °C				I. Wt. of b	asket assembly and sample before ignition, g			
Total Elapsed Ti	ime				J. Basket a	ssembly tare weight, g			
Initial Sample W	eight, g				K. Initial S	ample Weight, g [I - J]			
Weight Loss dur	ing ignition, g			<u></u>		asket assembly and residual aggregate, g			
Percent Loss, %					_	of residual aggregate, g [L - J]			
Temperature Con	_				_	of residual aggregate after washing, g			
Job Mix Correcti			-		O. Weight lost during washing, g [M - N]				
Corrected Aspha	it Content, %				P. Final Corrected % Asphalt by wt of mix [H - U]				
	1	NALYSIS (A		1		MOISTURE CONTENT (OVEN METHOD)			
Sieve Size	Wt. ¹ Retained	% Retained	% Passing	Target Values	Allowable Deviation	Q. Wt. of sample + container, Initial			
						R. Weight of sample container			
						S. Weight of sample, Initial [Q - R]			
						T. Weight of sample + container, Dry			
						U. Moisture, % [100 x (Q - T) ÷ S]			
						SAND EQUIVALENT (AASHTO T 176)			
						Cylinder No			
						Time (20 min)			
						Sand reading			
						Clay reading			
						Sand Equivalent			
Pan		² Individual	are in grams.	Correction (Calibration) Fac	Average SE value			
		³ Total weigh	nt should be w	ithin 0.2% o	of the weight of re	esidual aggregate			
Washed -75µm (O)		The state of the s				ACES (FLH T 507)			
					actured aggre				
(O)			W. W	eight of No	on-Fractured a				

JOB MIX CORRECTION FACTOR


roject:			Date:
mple #:			
	Asphalt Content:		
	Target % AC (by wt. of mix) 1		
	Target % AC (by wt. of agg.)		
	Three calibration samples are required one at 0.5% above and one at 0.5% be	l. One at the design asphalt celow design asphalt content.	content,
	Tare Weights:		
	Sample Basket Assembly T ₁		
	Mixing Bowl, "Buttered" ² T ₂		
	² Every effort should be made to ensure as nearly as possible the same before a Material Weights:	that the buttered bowl and sp und after mixing each calibrat	poon (if used) weigh tion sample.
	Dry aggregate weight A ₁		
	Dry aggregate weight A ₂		
	Total aggregate weight ³ A _t		
	Asphalt weight B ₁		
	Asphalt weight B ₂		
	Total asphalt weight ³ B _t		
	Sum of all materials $A_t + B_t = C$		
	Wt. of sample basket & mix D		
	Weight of mix $D - T_1 = E$		
	Weight of mix D - T ₁ = E 3 Space is provided for multiple aggregative mixed in a single sample, only one we Job Mix Correction Factor		ver if each trial can be
	Space is provided for multiple aggregation mixed in a single sample, only one we		ver if each trial can be
	³ Space is provided for multiple aggregation mixed in a single sample, only one we Job Mix Correction Factor		ver if each trial can be

⁴ If the results of any of the individual correction factor determinations are not within 0.10 of the mean of the tests performed, that test is considered invalid and another test must be run until at least three valid results are obtained.

WORKSHEET FOR DETERMINING BULK SPECIFIC GRAVITY OF COMPACTED BITUMINOUS MIXTURES AASHTO T 166

Project: _				So				
Where sar	mpled:							
Sample of	: 							
		I			ed by:		Date:	
(A) Mix	Design M	aximum Specific	c Gravity, AAS	HTO T 209 =				
Sample No.	Height (mm)	Station	(B) Dry Mass in Air (g)	(C) Saturated Surface Dry Mass (g)	(D) Mass in Water (g)	(E) Volume (C - D) (cm³)	(F) Bulk Specific Gravity (B / E)	(G) Percent Compaction (F/A * 100) (%)
Remarks	:		<u> </u>	<u> </u>		<u> </u>		<u> </u>

WORKSHEET FOR A HVEEM ASPHALT CONCRETE MIX DESIGN AASHTO T 246

Project:		Date:	Date:						
Contractor:		Class	Class of mixture:						
Asphalt supplier				Grade	C 1 1.				
Sources for:	Aggregates:			, Miner	val filları				
	Admixtures:	,							
Testing laborato	ry name:			Phone	:				
Testing performe									
Testing reported	hv:								
	SUMN	IARY OF THE PI	ROPOSED J	OB-MIX-FOR	MULA				
_	lt by mass of total mix			pecific gravity of	-				
2. Percent aspha3. Air voids	lt by mass of aggregat			pecific gravity of Oust/asphalt ratio	gravity of mineral filler				
	eral aggregate (VMA)			-	on compression test results:				
	ecific gravity (AASH)	TO T 209)		-	Dry strength, kPa				
•	d plant mixing temper		_		Wet strength, kPa				
7. Effective spec	cific gravity of aggreg	gate		c. Index of	retained strength, 9	%			
8. Stabilometer v	value (AASHTO T 24	6)							
_	TION TARGET VA		app app a		A DGO D DEVON	OVE.			
AL	LOWABLE DEVIA			GRAVITY AND		CKE			
Sieve Sizes	Target Value ² % by Mass Passing	Allowable Deviation ³ %			Coarse Aggregate (AASHTO T 85)	Centrifuge Kerosene Equivalent (AASHTO T 270)			
			Bulk SG			Surface Area: m²/kg			
			Bulk SSD SG						
			Apparent SG			Asphalt % by CKE:			
			Absorption	%	%	%			
I ——									

¹ Asphalt cement content (percent by mass of mix) shall be established to the nearest 0.01 percent.

² Target values to be established by the contractor as part of the JMF. Target value shall be established to the nearest 0.1 percent.

³ Allowable deviations plus or minus from established target values.

WORKSHEET FOR A HVEEM ASPHALT CONCRETE MIX DESIGN (Continued)

Stockpile .	A	Stockpile	Description		Quantity	Represented	l F	Blend Ratio %
Stockpile 1	В							 %
Stockpile	С							 %
Stockpile 1	 D							%
Stockpile 1	 E							%
			Stoc	kpile Gradatio	an .			
Sieve Size	Stockpile A %	Stockpile B%	Stockpile C%	Stockpile D %	Stockpile E %	Blended Stockpile Gradation	Target Values	Specification Limits
								100.0
								97.0 - 100.0
Remarks:								

Form FHWA 1607 (Rev 10-96) Page 2 of 5

WORKSHEET FOR A HVEEM ASPHALT CONCRETE MIX DESIGN (Continued)

Trial Number ¹	A HVEEM ASPH	ALI CONCRE	2	SIGN (C	3	*)
% Asphalt by mass of total mix	1		2		3	
% Asphalt by mass of total hinx % Asphalt by mass of aggregate						
Specimen height in millimeters				1		
Stabilometer value						
Bulk specific gravity						
Bulk unit mass (kg/m³)						
Max. specific gr. (AASHTO T 209)			<u> </u>			
Max. unit mass (AASHTO T 209)						
Dust/asphalt ratio						
% Air voids						
Voids in mineral aggregate (VMA)						
Trial Number ¹	4		5		6	
01						
% Asphalt by mass of total mix						
% Asphalt by mass of aggregate						
% Asphalt by mass of aggregate Specimen height in millimeters						
% Asphalt by mass of aggregate Specimen height in millimeters Stabilometer value						
% Asphalt by mass of aggregate Specimen height in millimeters Stabilometer value Bulk specific gravity						
% Asphalt by mass of aggregate Specimen height in millimeters Stabilometer value Bulk specific gravity Bulk unit mass (kg/m³)						
% Asphalt by mass of aggregate Specimen height in millimeters Stabilometer value Bulk specific gravity Bulk unit mass (kg/m³) Max. specific gr. (AASHTO T 209)						
% Asphalt by mass of aggregate Specimen height in millimeters Stabilometer value Bulk specific gravity Bulk unit mass (kg/m³) Max. specific gr. (AASHTO T 209) Max. unit mass (AASHTO T 209)						
% Asphalt by mass of total mix % Asphalt by mass of aggregate Specimen height in millimeters Stabilometer value Bulk specific gravity Bulk unit mass (kg/m³) Max. specific gr. (AASHTO T 209) Max. unit mass (AASHTO T 209) Dust/asphalt ratio % Air voids						

¹ Three test trials are required for each asphalt content.

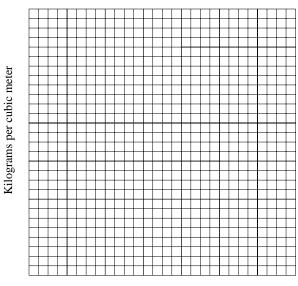
Test Results for Each of the Individual Immersion Compression Test Specimens

Percent aspha	alt cement:								
Specimen ID		Specimen Height (mm)		Bulk Specific Gravity		Air Voids (%)		Compressive Strength (kPa)	
Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet

Averages

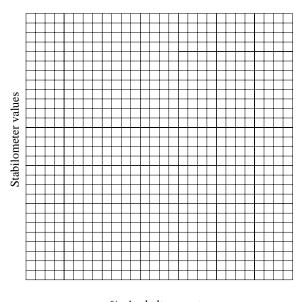
Index of retained strength:	%

WORKSHEET FOR A HVEEM ASPHALT CONCRETE MIX DESIGN (Continued)

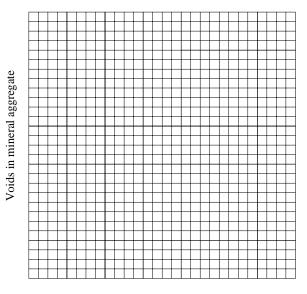

Design Curves for Proposed Job Mix Formula (JMF)

AIR VOIDS

Percent total voids

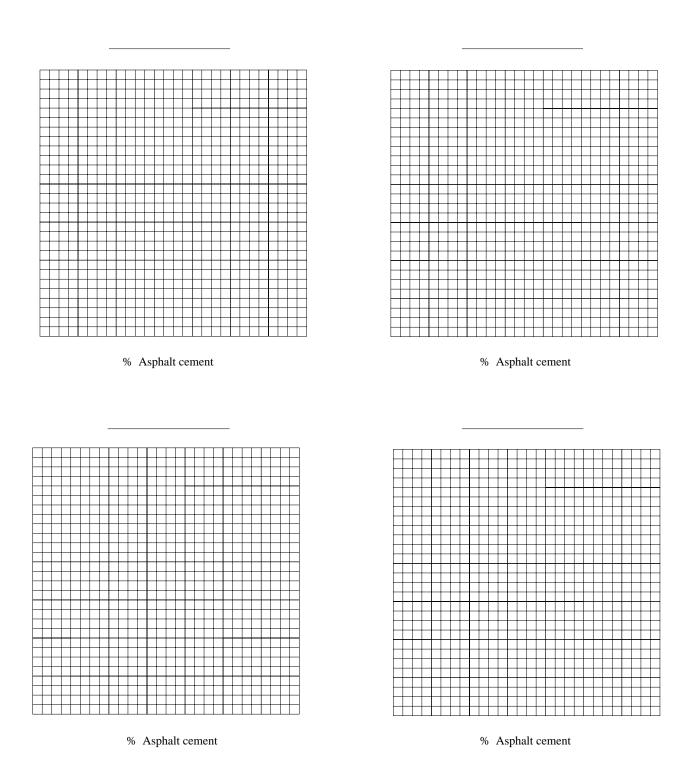

% Asphalt cement

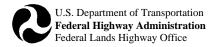
UNIT MASS


% Asphalt cement

STABILOMETER

% Asphalt cement


VMA


% Asphalt cement

WORKSHEET FOR HVEEM ASPHALT CONCRETE MIX DESIGN (Continued)

Design Curves for Proposed Job Mix Formula (JMF)

Form FHWA 1607 (Rev 10-96) Page 5 of 5

MINOR PORTLAND CEMENT CONCRETE MIX DESIGN TRIAL BATCH SUMMARY

Project:					Date:		
Contractor:					C		
Concrete producer:	-			Class of concrete:			
					Mix designation:		
• COMPRESSI	VE STRE	NGTH (28 D	OAY)				
Minimum av	erage streng	gth required 1	(f _{cr})		megapascals (MPa)		
Design streng							
• PROPORTIO							
Material	Specific Gravity (SSD)	SSD Mass per m ³ (kg)	Absolute Volume (m³)	Tolerance %(<u>+</u>)	Admixtures	Dosage per m ³ (mL)	
Cement ²	3.15			1	Air entertainment		
Water	1.00			1	Water reducer		
Coarse aggregate				2	Retarder		
Fine aggregate				2	Color		
Γotal air					Accelerator		
Other					Other		
Totals:		kg	g m	3			
See ACI 214 The water/cement raund cement subtitute.	tio for modifie	ed concrete is the	e ratio of the ma	ass of water to t	he combined masses of portland co	ement	
• SIGNATURE	S						
	Contracto	r:					
	Mix Desig	gner:					

PORTLAND CEMENT CONCRETE MIX DESIGN 1 TRIAL BATCH SUMMARY

Project:					Date:	
Contractor:				Concrete for:		
Concrete producer:					Class of concrete:	
				Mix designation:		
• COMPRESSIV	VE STRE	NGTH (28 I	DAY)			
Minimum aver	rage streng	th required	(fcr)		megapascals (MPa	a)
Design strengt					MPa	,
• PROPORTIONS	S					
Material	Specific Gravity (SSD)	SSD Mass per m ³ (kg)	Absolute Volume (m³)	Tolerance % (±)	Admixtures	Dosage per m (mL)
Cement	3.15			1	Air entrainment	
Water	1.00			1	Water reducer	
Coarse aggregate				2	Retarder	
Fine aggregaté				2	Color	
Total air					Accelerator	
Other					Other	
Totals		kg	m ²	3		
• PROPERTIES Water/cement ra Measured unit r		ss)	kg/m³	Me	neoretical unit mass easured air content easured slump	kg/m³ percent mm
• MEASURED CO Individual 7-da Individual 28-d	y, MPa			,	. Average (7 day): Average (28 day):	MPa MPa
1 For normal mass por 3 See page 5. 4 Bulk SSD. The water/cement ra cement substitute.					the combined masses of portland ce	ment and
• SIGNATURES	Contracto	or:				
	Mix Desi	gner:				

PORTLAND CEMENT CONCRETE MIX DESIGN¹ (Continued) MATERIALS SOURCE SUMMARY

• CEMENT (AASHTO M 85)		
Name and address of cement produce	r:	
Source of manufacture:		
Type of cement:	Materials certification atta	ched: Yes No
• WATER (725.01 and AASHTO	Γ 26)	
Water potable: Yes No	If no, provide the following: Water pH number Chloride concentration Sulphate ion concentration Total solids content	(ppm)(ppm)(%)
• ADMIXTURES Material	Producer and Product Designation	Certification Attached
Air entraining admixture Water reducing admixture, type A Retarding admixture, type B		Yes No
Accelerating admixture, type C Water reducing and retarding admixture, type D		
Water reducing and accelerating admixture, type E		
Water reducing, high range admixture, type F Fly ash, type Ground iron blast-furnace slag		
Silica fume (microsilica) Color additive Other:		

 $^1\!For$ normal mass portland cement concrete (2300 - 2500 kg/m 2).

PORTLAND CEMENT CONCRETE MIX DESIGN¹ (Continued) MATERIALS SOURCE SUMMARY

11 1	oducer:		
Location of material	source:		
Material type:	Gravel	Crushed gravel	Crushed stone Crushed blast furnace slag
Grading no.:			
Sieve Analysis:			Properties:
Sieve	Percent		
Designation	Passing	Specification	(1) Coal and lignite(%) (0-0.5) ³
50 mm			(2) Deleterious chert (%) (0-3) ³
37.5 mm			(3) Sodium sulfate soundness 2 (%) $(0-12)^3$
25.0 mm			(4) Clay lumps and friable particles (%) (0-2) ³
19.0 mm			(5) LA abrasion, grading, % loss (0-40)
12.5 mm			(6) Bulk specific gravity
9.5 mm			(7) Absorption (%)
4.75 mm			(8) Bulk SSD specific gravity
2.36 mm			(9) Dry rodded unit mass(kg/m³)
1.18 mm			(10) Minus /5 μ m (%) (0-1)
			(11) Adherent fines (%) (0-1) ³
			(12) Other
• FINE AGGREG	·	•	
Name of supplier/pro			
Name of supplier/pro			
		sand	Natural sand Blend
Location of material	source:	sand	
Location of material Sieve Analysis:	source: Manufactured		Natural sand Blend Properties:
Location of material	source:	Accumulative	Properties:
Location of material Sieve Analysis: Sieve Designation	source: Manufactured Percent		Properties: (1) Clay lumps (%) (0-3) ³
Sieve Analysis: Sieve Designation 9.5 mm	source: Manufactured Percent	Accumulative	Properties: (1) Clay lumps (%) (0-3) ³ (2) Coal and lignite (%) (0-1) ³
Sieve Analysis: Sieve Designation 9.5 mm 4.75 mm	source: Manufactured Percent	Accumulative	Properties: (1) Clay lumps (%) (0-3) ³ (2) Coal and lignite (%) (0-1) ³ (3) Sodium sulfate soundness ² (%) (0-10) ³
Sieve Analysis: Sieve Designation 9.5 mm 4.75 mm 2.36 mm	source: Manufactured Percent	Accumulative	Properties: (1) Clay lumps (%) (0-3) ³ (2) Coal and lignite (%) (0-1) ³
Sieve Analysis: Sieve Designation 9.5 mm 4.75 mm 2.36 mm 1.18 mm	source: Manufactured Percent	Accumulative	Properties: (1) Clay lumps (%) (0-3) ³ (2) Coal and lignite (%) (0-1) ³ (3) Sodium sulfate soundness ² (%) (0-10) ³ (4) Sand equivalent value, alt. 2 (>75) ³
Sieve Analysis: Sieve Designation 9.5 mm 4.75 mm 2.36 mm 1.18 mm 600 µm	source: Manufactured Percent	Accumulative	Properties: (1) Clay lumps (%) (0-3) ³ (2) Coal and lignite (%) (0-1) ³ (3) Sodium sulfate soundness ² (%) (0-10) ³ (4) Sand equivalent value, alt. 2 (>75) ³ (5) Bulk specific gravity (6) Bulk SSD specific gravity (7) Absorption (%)
Sieve Analysis: Sieve Designation 9.5 mm 4.75 mm 2.36 mm 1.18 mm 600 µm 300 µm	source: Manufactured Percent	Accumulative	Properties: (1) Clay lumps (%) (0-3) ³ (2) Coal and lignite (%) (0-1) ³ (3) Sodium sulfate soundness ² (%) (0-10) ³ (4) Sand equivalent value, alt. 2 (>75) ³ (5) Bulk specific gravity (6) Bulk SSD specific gravity (7) Absorption (%)
Sieve Analysis: Sieve Designation 9.5 mm 4.75 mm 2.36 mm 1.18 mm 600 µm	source: Manufactured Percent	Accumulative	Properties: (1) Clay lumps (%) (0-3) ³ (2) Coal and lignite (%) (0-1) ³ (3) Sodium sulfate soundness ² (%) (0-10) ³ (4) Sand equivalent value, alt. 2 (>75) ³ (5) Bulk specific gravity (6) Bulk SSD specific gravity

 $^{^1}$ For normal mass portland cement concrete (2300 - 2500 kg/m 2). 2 At five cycles. 3 Specification limits.

PORTLAND CEMENT CONCRETE MIX DESIGN¹ (Continued) DATA FOR COMPUTING THE COEFFICIENT OF VARIATION OF BATCHES

		7-Day Compressive Strengths (MPa)			28-Day Compressive Strengths (MPa)				
Batch No.	Date Batched	Cyl. 1	Cyl. 2	Cyl. 3	Average (\bar{x})	Cyl. 1	Cyl. 2	Cyl. 3	Average (\bar{x})
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									

 $^{^1}$ For normal mass portland cement concrete (2300 - 2500 kg/ ${\rm \mathring{m}}^{}$).

$$\overline{X} = \frac{3 x}{N} = \frac{(MPa)}{N} = \frac{(MPa)}{N (N-1)} = \frac{N (3 (X^2) - (3 X)^2)}{N (N-1)} = \frac{(MPa)}{N (N-1)}$$

Where:

X = The 28-day batch average of at least 2 cylinders (3 preferred).

= The mean of the averages of 28-day compressive results.

s = The sample standard deviation of the 28-day batch averages.

N = The number of batches sampled.

PORTLAND CEMENT CONCRETE MIX DESIGN¹ (Continued) DETERMINATION OF MINIMUM MIX DESIGN COMPRESSIVE STRENGTH

• MINIMUM MIX DESIGN COMPRESSIVE STRENGTH (fcr)

Computed values from page 4:

$$\overline{X}$$
 = ______ (MPa) s = _____

Where:

s = The sample standard deviation of the 28-day compressive strength test results from page 4.

 \overline{X} = The mean of the 28-day compressive strength test results from page 4.

 $V = The coefficient of variation^2$ expressed as a decimal and calculated as follows:

$$V = \frac{s}{\overline{X}} = \frac{or \ 0.15}{s}$$

$$f_{cr} = \frac{f'_{c}}{1 - kV} = \frac{1 - 1.28()}{1 - 1.28()} = \frac{(Mpa)}{}$$

Where:

f'c = The 28-day design compressive strength specified in the contract.

k = A constant (1.28) for a probability that not more than 1 in 10 tests will fall below the specified compressive strength (f 'c).

¹ For normal mass portland cement concrete (2300 - 2500 kg/ $\frac{3}{m}$).

² Use 0.15 for the coefficient of variation when there is insufficient test data available.

$\textbf{PORTLAND CEMENT CONCRETE MIX DESIGN}^{\,1} \, (\texttt{Continued}) \\$ LABORATORY TRIAL BATCH MIX DESIGN SUMMARY

Description	Equivalent Batch Masses (SSD mass/m³)				
Materials:	Batch 1	Batch 2	Batch 3	Batch 4	Batch 5
Cement (kg)					
Water (kg)					
Coarse aggregate (kg)					
Fine aggregate (kg)					
Air entrainer (mL)					
Water reducer (mL)					
High range water reducer (mL)					
Other					
Properties:					
Water/cement ratio					
Theoretical unit mass (kg/m³)					
Measured unit mass (kg/m³)					
Measured air content (%)					
Measured slump ² (mm)					
Ambient temperature (°C)					
Concrete temperature (°C)					
Measured Compressive Strengths (MPa):					
Individual 7-day					
Individual 7-day					
Individual 7-day					
Average (7-day)					
Individual 28-day					
Individual 28-day					
Individual 28-day					
Average (28-day)					

 $^{^1}$ For normal mass portland cement concrete (2300 - 2500 kg/m 2). Measure slump values on concrete before and after addition of high range water reducer if used.

WFLHD-298 (Rev. 8/00)

Contractor's Delegation of Authority (Authorized Signatures)

GENERAL INSTRUCTIONS: Please submit this information in single copy promptly to avoid payment delays. Please advise us promptly if any changes are made in the authorization or delegations show below.

Contract No:					
Project Number/Name:					
Item *	Name	Signature			
* Please use this key when completing the "Item" column: 1 - This individual is authorized to sign directives, including suspend and resume orders. (Please include at least one representative who will be available at the work site.) 2 - Authorized to sign contract modifications. 3 - Authorized to sign the final voucher.					
Date:	Name/Title: (must be the same individual who signed the contract)	Signature:			