UNCONTROLLED

Appendix G

Deramus Field Station Sampling Data

	D mesh P	1	4.6	2.9	1.2	2.1	1.2	2.7	o, -	1.4	2.2	ie 		- e	0.4	-1 t	- 9	0.0	2 I C	2.8	3.7	2.1	2.4	2.5	1.8	2.2	0. +		2.0	2.0	1.7	2.0	2.8	1.2	- a	2.9	1.3	1.7	2.4	9.0	0.0	2.7	2.3	2.2	3.4	1.7	4 +	3.5	2.6	3.1	1.4	1.2	4.0	3.2
	40 mesh 200	(ex)	4.6	8.6 -	1.5	3.6	3.6	2.8	4.4	0.1	5.3	5, I	/.	0 0 4 0	0.0	e co	9.9	0.0	1 1	3.4	3.3	2.9	2.1	3.5	2.0	2.6	0.0	0.0	3.7	2.0	2.1	1.9	2.8	3.2	0.0	2.6	0.0	2.5	2.3	1.1 R	0.0	3.1	2.5	2.2	3.7	0.1	3.7	3.8	2.5	3.7	2.0	2.2	4.6	3.1
	00 mesh 1	/or /	19.6	18.7	11.0	12.9	13.3	23.3	26.4	20.0	19.7	21.4	9. LL	0.7	10.2	2.4	101	14.9	15.2	15.7	19.0	14.9	17.6	16.2	10.0	13.8	- + - 0 4 - 1	15.0	160	17.7	10.6	11.2	16.6	13.6	15.0	15.1	15.5	13.1	12.8	13.8	1001	15.3	14.1	27.9	17.5	21.1	18.9 20 E	16.7	21.9	17.3	18.9	13./	18.8	24.3
	40 mesh 1	(~_)	11.6	23.0	14.4	25.0	21.2	21.2	30.5	8.12	23.9	29.2	4.4	/	2.02	0.02	23.1	25.5	20.9	16.3	15.9	23.0	22.3	18.6	10.8	20.2	70.7	10.0	20.0	23.1	12.8	12.1	16.2	20.4	18.4	14.9	20.0	19.9	12.9	12.1	210	14.6	19.8	24.7	15.5	25.0	16.1	15.8	20.3	15.3	25.0	16.1	17.5	19.9
	20 mesh	(~)	14.1	19.4	19.3	28.6	20.9	19.6	20.0	24.0	22.9	27.4	7.92	0.01	010	14.1	22.0	20.7	21.6	19.9	20.8	18.5	17.9	23.9	20.4	20.5	1.02	24.0	22.2	22.1	20.2	22.5	23.5	20.2	20.0	22.8	26.9	21.8	22.2	21.9	16.0	19.4	17.6	16.9	17.0	18.4	1/.6	16.9	19.3	19.8	20.8	24.0	14.5	15.5
	10 mesh	(01)	30.4	12.9	44.0	20.0	34.7	22.3	9.2	20.4	16.9	1/.5	37.2	0.00	0.00	200	21.2	13.7	13.9	26.1	20.0	17.9	10.1	26.8	48.8	18.7	0.0 4 4 7 7 7	0.01	12.5	14.9	42.8	39.4	26.1	18.3	101	22.9	27.5	27.6	32.5	34.3	107	22.9	14.1	8.8	13.2	17.5	10.1	15.3	15.8	17.4	13.2	15.9	6.3	7.6
	silt		0.17	0.16	0.11	0.12	0.07	0.10	0.08	0.0/	0.10	0.05	0.0/	0.00	0.11		0 13	0.21	0.25	0.16	0.18	0.22	0.28	0.09	0.07	0.23	07.0	0.15	0.21	0.19	0.10	0.11	0.12	0.23	0.09	0.20	0.10	0.14	0.15	0.15	0.27	0.22	0:30	0.18	0.30	0.14	0.30	0.28	0.18	0.24	0.20	0.22	0.35	0.27
	a		0.26	0.03	0.06	0.02	0.16	0.13	0.35	0.18	0.61	0.40	0.90	12.0	0.75	0.14	100	0.00	0.45	1.52	0.50	0.87	0.66	1.46	0.76	0.83	0.40	101	0.33	0.24	0.87	0.94	1.62	0.50	1 57	0.85	0.49	0.49	0.95	0.63	2000	3.00	3.41	0.68	1.83	1.01	1.04	2.70	1.82	1.77	0.56	0.27	1.88	1.43
	ď	CFlower	0.23	0.0	0.05	0.02	0.12	0.11	0.33	0.18	0.58	0.39	88.0	0.00	0.4.0		06.0	0.00	0.44	1.48	0.48	0.83	0.63	3 1.40	0.71	0.81	0.40	200	0.32	0.24	0.82	0.91	1.59	0.4/	1 52	0.80	0.44	0.47	0.92	0.61	20.5	2.96	3.38	0.65	1.80	10.98	1.01	2.67	1.77	3 1.73	0.53	0.25	1.86	1.40
	Total bading		1.54 0.15	0.20 0.14	0.57 0.05	0.21 0.08	2.27 0.0	1.32 0.08	4.40 0.00	2.96 0.06	6.40 0.00	/.88 0.0	13.6/ 0.06	12.03 0.0	8 81 0 10	0.01	7.34.0.13	4 73 0 20	1 80 0 25	9.33 0.16	2.78 0.17	4.00 0.21	2.31 0.27	16.52 0.08	11.48 0.06	3.66 0.22	7.0 0.2.2	8.34 U.I.	1.57 0.21	1.30 0.18	8.46 0.10	8.37 0.1	13.29 0.12	2.1/0.22	A 96 0 3/	4.28 0.19	5.00 0.05	3.56 0.13	6.21 0.15	4.08 0.15	8.37 0.27	13.46 0.22	11.41 0.3(3.75 0.17	6.07 0.3(6.96 0.14	3.45 0.25	9.56 0.28	10.16 0.17	7.41 0.23	2.83 0.19	2./3 0.2	5.41 0.32	5.31 0.26
	onrecoverable li	(R)	2.6	0.3	0.F	0.7	3.2	1.7	0.1	2.1	2.6	5 5	4.0	0.0	ο. α	7 4	31	0.0		3.5	1.6	3.6	2.2	4.9	4.5	1.7	<u>.</u> c	0.0	0.0	0.6	3.8	2.6	2.8	7.0 7	V	4.1	4.1	1.6	2.2	9.1	30.6	3.7	3.1	2.9	3.6	2.5	0.0	9.0	3.9	4.0	2.2	2.2	3.1	2.8
	Empty Bag No (a) ms	i i	62.5	61.8	61.4	62.7	65.6	83	63.3	6.20	63.9	62.8	97.0	04.0	63.7	- 1-	64.9	69	616	64.4	61.9	64.5	63.4	67.2	66.7	61.2	200	00.0 84 0	55.9	55.6	59.1	58.4	58.4	58.3	4.70 80.8	59.6	63	59.5	59.5	59.6 61	608	59.3	59	58.2	59.2	58.2	58.5	60.3	66.5	66.6	63.8	64.5 63.1	65.4	64.7
	Difference	<i>b</i>	117.4	15.3	43.2	15.8	172.7	100.6	335.1	4.022	487.7	600.1	1041./	81/.U	510.0	306.6	559.6	360.3	137.4	710.9	211.9	304.8	176.1	1258.8	874.4	279.0	0.101	503.9	119.8	98.7	644.4	638.1	1012.8	105.5	523.0	326.2	380.9	271.4	473.1	310.6	638.0	1025.6	869.5	285.9	462.9	530.3	263.1	728.8	774.1	565.0	215.9	208.0	412.2	404.8
	Final Weight	à	177.3	76.8	103.6	77.8	235.1	161.9	396.5	7.982	549.0	661.6	6.2011	2.0/2	580.0	266.6	620.7	419.3	197.9	771.8	272.2	365.7	237.3	1321.1	936.6	338.5	0.022	5601	1747	153.7	699.7	693.9	1068.4	27.122	578 A	381.7	439.8	329.3	530.4	368.3	695.8	1081.2	925.4	341.2	518.5	586.0	318.6	785.5	836.7	627.6	277.5	2/0.3	474.5	466.7
	Tare Weight	ò	59.9	61.5	60.4	62.0	62.4	61.3	61.4	61.3	61.3	61.5	7.19	7 10	- 10 80 0	0.00	611	20.0	60.5	6.09	60.3	60.9	61.2	62.3	62.2	59.5	1.10	0.00 77 0	54.9	55.0	55.3	55.8	55.6	55./	20.7	55.5	58.9	57.9	57.3	57.7	57.8	55.6	55.9	55.3	55.6	55.7	55.5 57.0	56.7	62.6	62.6	61.6	62.3	62.3	61.9
	Bad	- B B D	9901	9902	9903	9904	9905	9066	9907	8908	6066	9910	1188	3312	0014	0010	9916	0017	9918	9919	9920	9921	9922	9923	9924	9925	0788	9028	6666	9930	9931	9932	9933	8934 0035	9800	9937	9938	9939	9940	9941 0042	9943	9944	9945	9946	9947	9948	9949	9951	9952	9954	9955	9956	9958	9959
	Area sampled (ft²)	Ì	250	250	250	250	250	250	250	250	250	250	250	002	020	000	250	250	250	250	250	250	250	250	250	250	220	020	250	250	250	250	250	250	020	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250
	Distance From Access		10	50	06	130	<u>۽</u>	20	130	08	20	<u></u>	ۍ ډ م	1	n u	. u		, w	2	2 v	25	5	25	2	25	5	<u>0</u>	c r	3	25	45	25	s.	2	6 u	25	5	25	2	25	, r	0	5	5	2	5	<u>م</u>	0.00	2	2	2	ъ ч	, v	5
	Tyne of Test	800 10 odf	calibration	alibration/uncontrolled	alibration/uncontrolled	uncontrolled		uncontrolled	uncontrolled	naved anron	uncontrolled	paved apron	uncontrolled payed aprop	uncontrolled	paved apron	calibration	paved apron	alibration/uncontrolled	uncontrolled	paveu aprori	paved apron	uncontrolled	paved apron	uncontrolled	paved apron	uncontrolled	uncontrolled	uncontrolled	gravel apron	gravel apron gravel apron	aravel apron	gravel apron																						
	abida Vahida		pickup	bickup	pickup	bickup	pickup	pickup bickup	hickin	pickup	pickup	nickun	pickup	pickup	pickup	pickup	pickup	pickup	pickup	pickup	pickup	pickin	pickup	pickup	pickup	pickup	pickup	pickup	pickin	pickup	pickup	pickup	pickup	pickup	ump truck	ump truck	ump truck	pickup	pickup	pickup														
	V		6 native	6 native	6 native	6 native	5 native	5 native	.4native	4native	4native	4 native	. Inative	- Inauve	1 sandy	0 condu	Asandv	V sandv	4 sandy	5 native	.5native	.3 sandy	.3 sandy	.0native	.0native	.7 sandy	. / sandy	1 Induve	Asandv	4 sandv	.7native	.7native	.7native	5 sandy	anative	8native	.2 sandy	.2 sandy	5native	5native	7 sandvd	5 native d	.6 sandyd	.7 sandy	.6native	.3sandy	.5native	. Inative	.7 sandy	.1native	.7 sandy	3 sandv	. Inative	.5 sandy
	Moisture	srd 4th Av	4	4	4	4	2 6.0 9	2 6.0 9	0.4 21	0.4	0.4 21	0.4 21	24	47 U	2.	2	17	0	i ς 2 α	4.0 14	4.0 14	9.1 19	9.1 19	25	25	4.5 16	010		2 6	0	19	19	<u>0</u>		200	53	19	19	32	32	- F	5.5 20	1.2 17	11	22	13	57	20	16	32	13	3.1 13	14	10
	Dercent	1st 2nd 3	4.2 4.9	4.2 4.9	4.2 4.9	4.2 4.9	14.310.4	14.310.4	25.018.92	25.018.92	25.018.92	25.018.92	23.624.6	20.024.0	111100	1 0 0 0 0	176171	11 110 0	11 110 0	17.4.12.11	17.4 12.11	19.419.51	19.419.51	24.225.7	24.225.7	17.018.7	1 / .018./	15 704 5	19.317.4	19.317.4	16.822.6	16.822.6	16.822.6	22.818.2	21 216 2	31.216.3	19.2 19.1	19.2 19.1	35.629.4	35.629.4	1981281	21.214.82	15.626.11	13.210.2	24.221.0	14.4 12.1	29.125.9	30.228.0	17.715.7	33.930.2	4.8 5.1	11.416.0	15.812.3	12.8 8.1
	Jumber of Passes		100	100	00	<u>9</u>	001	ê	20	20	20	20	2	200	00	3		86	89	20	20	50	50	54	54	20			3 6	20	50	50	20	202		20	50	50	20	20	3 6	20	50	50	20	20	20	20	20	50	20	50	20	50
Ister	2 Pased	-	1 phase1-1	2 phase 1-1	3 phase1-1	4 phase1-1	5 phase1-2	6 phase1-2	7 phase 1-3	8 pnase1-3	9 phase1-3	0 pnase1-3	1 phase 1A-1	2 phase 1A-1	4 nhace 2-2	5 phase 2 2	6 phase 2-4	7 nhase 2-5	8 phase 3-1	9 phase 2-6	0 phase 3-2	1 phase 2-7	2 phase 3-3	3 phase 2-8	4 phase 3-4	5 phase 2-9	7 phase 2-5	R nhase 2-6	9 phase 2-11	0 phase 3-7	1 phase 1A-2	2 phase 3-8	3 phase 2-12	4 phase 2-13	6 phase 2-4	7 phase 3-10	8 phase 2-15	9 phase 3-11	0 phase 2-16	1 phase 3-12	3 phase 2-18	4 phase 2-19	5 phase 2-20	16 phase 4-1	17 phase 4-2	18 phase 4-3	19 phase 4-4	1 phase 4-6	2 phase 4-7	3 phase 4-8	4 phase 4-9	5 phase 4-10 6 phase 4-11	7 phase 4-12	8 phase 4-13

UNCONTROLLED

G-2

TECHNICAL REPORT DATA (Please read instructions on the reverse before completing)									
1. REPORT NO. 2. EPA-600/R-01-031	3. RECIPIENT'S ACCESSI	ON NO.							
^{4. TITLE AND SUBTITLE} Particulate Emission Measurements from Controlled Construction Activities	5. REPORT DATE April 2001 6. PERFORMING ORGANI	IZATION CODE							
7. AUTHORS Gregory F. Muleski and Chatten Cowherd,	8. PERFORMING ORGANI	IZATION REPORT NO.							
9. PERFORMING ORGANIZATION NAME AND ADDRESS Midwest Research Institute 425 Volker Boulevard Kansas City, Missouri 64110-2299	10. PROGRAM ELEMENT 11. CONTRACT/GRANT N 68-D7-0002, V Assignment	^{NO.} O. Vork 2-04							
12. SPONSORING AGENCY NAME AND ADDRESS EPA, Office of Research and Development Air Pollution Prevention and Control Divisio Research Triangle Park, NC 27711	DN EPA/600/13	2/00 2/00 CY CODE							
^{15. SUPPLEMENTARY NOTES} APPCD project officer C. C For details, contact John Kinsey, Mail Dro	. Masser is no longer with p 61, 919/541-4121.	the Agency.							
control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emis- sions of particulate matter with aerodynamic diameters of < 10 micrometers (PM-10) was tested in Beloit, Kansas, during September 1999. The tested operation was scra- per transit. The effectiveness of paved and graveled access aprons on mud/dirt trackout from unpaved truck exit routes was tested in Grandview, Missouri, during November 1999. In the later tests, moisture content and soil type were varied to determine if watering of exit routes, while reducing on-site emissions, might offset the effect of increasing emissions attributable to in-place mud/dirt trackout controls.									
a. DESCRIPTORS	b. IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group							
Pollution Emissions Particles Dust Control Construction Equipment Scrapers	Pollution ControlStationary SourcesFugitive EmissionsParticulateConstruction SitesDirt Roads	13B 14G 05E 13C							
18. DISTRIBUTION STATEMENT Release to Public	19. SECURITY CLASS (This Report) 2 Unclassified 2 20. SECURITY CLASS (This Page) 2 Unclassified 2	21. NO. OF PAGES 176 22. PRICE							
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE	-3								