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ABSTRACT

This investigation studies thé short-wavelength buckling (or
the microbuckling) and the interlaminar and inplane shear failures of
multi-directional composite laminates loaded in uniaxial compression.
A laminate model is presented that idealizes each lamina. The fibers
in the lamina are modeled as a plate, and the matrix in the lamina is
modeled as an elastic foundation. The out-of-plane w displacement
for each plate is expressed as a trigonometric series in the half-
wavelength of the mode shape for laminate short-wavelength buckling.
Nonlinear strain-displacement relations are used. The model is
applied to symmetric laminates having linear material behavior. The
laminates are loaded in uniform end shortening and are simply

supported.

A linear analysis is used to determine the laminate stress,
strain, and mode shape when short-wavelength buckling occurs. The
equations for the laminate compressive stress at short-wavelength
buckling are dominated by matrix contributions. The effects of fiber
volume fraction on the compressive stress at short-wavelength buckling

is reported for a laminate with any stacking sequence and any



xvi

thickness. The laminate mode shape at short-wavelength buckling is

discussed.

A nonlinear analysis for laminae with initial imperfections is
used to determine laminate stresses and intérlaminar strains. Results
are presented for imperfection-amplitude-to-lamina-thickness ratios of

0.1 and 0.5. The nonlinear behavior of [02]8, [0/9033, [iNSJS, and
[+45/0/—45/90]S laminates is discussed. Results are presented for

laminate stress, end shortening, and w displacement. The w
displacement gradients cause significant interlaminar shear strains

sz at laminate stresses that are much lower than the laminate stress

at short-wavelength buckling, and the distribution of these strains is
described. The effect of fiber volume fraction on the nonlinear

laminate response is presented for [02]s and [14518 laminates.

A failure criterion for compression-loaded laminates is
discussed. Laminate failure that is initiated by outer-lamina
buckling, by interlaminar shear strains from lamina imperfections, or
by inplane matrix shearing is considered. The laminate strength is

calculated as a function of lamina orientation for [ie]S laminates. A
simple method referred to as the stiffness-ratio method is described

[+]
for predicting the strength of 0 —dominated laminates.



CHAPTER 1

INTRODUCTION

Composite materials are being widely used in a variety of
applications ranging from sporting equipment to primary structures for
commercial transport aircraft. The design of composite structures is
often a combination of traditional practices used for metal structures
and empirical criteria. This design technique is easy to use but
neglects the unique mechanisms that dominate the behavior of composite
structures. The most efficient composite structures are designed
using a thorough understanding of the basic response mechanisms of

these materials.

The uniaxial compressive strength of a composite laminate is a
fundamental property. The mechanics of uniaxial compressive failure
have been studied by mény researchers for unidirectional laminates
having fibers parallel to the loading direction. These laminates fail
when short-wavelength buckling (or microbuckling) of the fibers occurs
or when shear failure at the fiber-matrix interface occurs. Few
similar investigations have been conducted for multi-directional

composite laminates although multi-directional laminates are more
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widely used than unidirectional laminates in composite structural
components. This study investigates the short-wavelength buckling of
multi-directional composite laminates loaded in compression. This
study also addresses the interlaminar shear failures due to short-
wavelength imperfections and the inplane shear failures in these
laminates. The results of this study are reported herein,

1.1 Chronological Review of the Literature

This section reviews the literature on models for predicting
the compressive strength of composite materials. This review focuses
on studies that emphasize the short-wavelength buckling phenomenon and
the interlaminar shear failures due to short-wavelength initial
imperfections. The review is chronological except that similar
subsequent publications by an author are discussed with the first
reference. A summary of the review is found at the end of this

section.

In 1960 Dow and Gruntfest [1] postulated that the compréssive
failure of unidirectional laminates was the result of either of the
following two phenomena: (1) high tensile stresses perpendicular to
the loading direction and at the fiber-matrix interface; or (2)
buckling of the fibers within the matrix. The former phenomenon is
often called transverse tension failure, and the latter phenomenon is

often called microbuckling. An equation to predict the laminate



compressive strength at microbuckling was derived using reference 2
and is based on a model consisting of columns supported by an elastic.
foundation. An empirical constant was included in this equation.

This reference was the first to associate fiber instability with the

i

compressive strength of unidirectional laminates.

Fried [3], Fried and Kaminetsky [4], and Fried [5] studied the
influence of the matrix, the reinforcement, and the matrix-
reinforcement interface on the compressive failure of composite
materials. Experimental results from unidirectional laminates were
reported in reference 3 and led Fried to suggest the following failure
sequence: the reinforcement phase in a composite material carries the
compressive load until the rigid matrix phase yields; upon yielding,
the matrix flows and no longer supports the reinforcement; the
reinforcement buckles; and the composite material fails
catastrophically. The laminate compressive strength was expressed as
a linear function of the matrix yield stress by assuming that (1) the
maximum stress in the matrix is its yield stress and that (2) the
strain in the matrix is the same as the strain in the reinforcement.
In his investigation Fried also identified the straightness of the
reinforcement and the bond between the reinforcement and the matrix as

secondary effects on the compressive strength.

Experimental results in a subsequent study [4] supported

3

Fried's initial conclusions. The results in reference 4 showed that



the compressive strength for unidirectional laminates increases with
increasing matrix yield stress for the materials studied. The yield
stress for each matrix material was presented, but no other properties
(e.g., Young's modulus or shear modulus) of the matrix were

discussed.

Fried [5] also studied the compressive failure of filament

wound [O/9O]S—class laminates. He observed interlaminar cracking in

failed compression épecimens. This failure mode for specimens loaded
in compression was similar to the failure mode for specimens loaded in
interlaminar shear, and Fried assumed that failure was the result of
eronding at the matrix-reinforcement interface for both load cases.
Fried suggested that debonding initiated at voids. Experimental
results showed that laminate compressive strength was inversely
proportional to void content. As discussed in references 3 and 4, the
compressive strength for laminates with very low void contents was

limited by the matrix yield stress.

Leventz [6] studied the influence of fiber diameter on the
compressive strength of glass-epoxy composite materials., Experimental
results showed that the compressive strength was maximized‘using a
0.005-in.-diameter glass fiber. The range of fiber diameters for this
study was from 0.001 inches to 0.010 inches, Leventz reported that
the failure mode for the unidirectional composite materials in his

study appeared to be a combination of fiber instability and matrix



shear failure. He suggested that the laminate compressive strength
was proportional to the square of the fiber diameter although the
experimental results did not support this theory. Leventz reported
that the larger diameter fibers were more collimated than the smaller
diameter fibers, but he did not investigate the influence of fiber

straightness on the laminate compressive strength.

In 1965 Rosen [7] reported on nis classic study of the
compressive failure of unidirectional composite materials, This study
focused on fiber instability in glass-epoxy laminates using a two-
dimensional model. The fibers were modeled as columns supported by an
elastic matrix foundation. Rosen suggested that compressive failure
for a unidirectional composite material occurred when the fibers
buckled into either of two possible short-wavelength modes, the
extension mode or the shear mode. These mode shapes are shown in
figure 1.1. For the extension mode, the deformation of the matrix
material between fibers is extension in the direction perpendicular to
the fibers. For the shear mode, shear deformation occurs in the
matrix material. The wavelength is short compared to the length or
the width of the test specimen for both buckling modes. Using an

energy formulation, Rosen obtained

f m

V.E E 172
UC=2Vf W (1.1)



for the extension mode and

g_ = + 2 (1-2)

for the shear mode where

0, = compressive strength of the unidirectional composite
material

Vf = fiber volume fraction

Em = Young's modulus for the matrix

Ef = Young's modulus for the fiber

Gm = shear modulus for the matrix

h = fiber diameter

St
L3

nalf-wavelength of the buckling mode shape

The magnitude of the second term in equation (1.2) is small compared
to the magnitude of the first term since the half-wavelength is much
larger than the fiber diameter. Neglecting the second term, Rosen

obtained the approximate (and more familiar) equation for the shear

mode

(1.3)




The composite material compressive strength was predicted using the
lower value from equations (1.1) and (1.3). Equation (1.3) gives the

lower prediction for most composite materials.

Rosen recognized that equation (1.3) gave predicted strengths
that were two to three times greater than experimental strengths when
the elastic shear modulus of the matrix was used. He obtainéd more
realistic strength predictions by assuming the matrix shear modulus

was a function of the applied load.

Unlike previous theories, Rosen's analysis did not use
empirical factors for predicting compressive strength. Also, equation
(1.3) illustrates that the composite material compressive strength is
a function of the matrix shear modulus for fiber-instability-initiated

failures.

The results from reference 7 were also included in a
subsequent report by Dow and Rosen [8]. Also, Dow, Rosen, and Hashin
[9] modified equation (1.3) to account for an elastic-perfectly-
plastic response of the matrix. The matrix material was assumed to be
isotropic and incompressible after yielding. The authors of reference

9 obtained

1/2
_ | e B % .y -
Oe = 30-7,) :



where oy is the yield stress of the matrix, and the other variables

are defined above. The use of equation (1.4) is limited since many

matrix materials do not exhibit elastic-perfectly=-plastic behavior.

Ekvall [10] also studied fiber instability for glass-epoxy
laminates loaded in compression. He observed that the matrix’yielded
well before laminate failure. This observation contradicted the
theory in reference 3. Ekvall predicted the buckling wavelength for
fiber instability to be on the order of a fiber diameter, and this

prediction agreed with his expérimental results.

Hayashi [11] reported on a "shear instability failure" for
orthotropic materials. He postulated that such a failure occurred
when a material's flexural rigidity was significantly greater than its
shear rigidity. This concept of a shear-deformation-dominated
instability for orthotropic materials is the same as that discussed by
Rosen [7] for fiber-reinforced composite materials. Hayashi minimized
the potential energy of a compression-loaded orthotropic material and
obtained an expressibn for the strength associated with the shear

instability failure

g: =G (1.5)



where s is the compressive strength and” G is the shear modulus of

the material. The shear modulus for a unidirectional composite
material can be calculated as a function of constituent properties

from

Gm
cc = Gm (1.6)
Vf a; + (1-—Vf)

where Gc is the shear modulus for a unidirectional composite

material and Gf is the shear modulus of the fiber (see reference

12). The other variables are defined in the preceeding paragraphs.
The shear modulus of the fiber is much greater than the shear modulus
of the matrix for most fiber-reinforced composite materials, and the
first term in the denominator éf equation (1.6) can be neglected. The

shear modulus for a unidirectional composite material is approximated

by

(1.7)

When equation (1.7) is substituted into equation (1.5) (Note: G = Gc

for composite materials), equation (1.3) is obtained.
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Independent of Rosen, Schuerch [13] also obtained equations
(1.1) and (1.3) for the short-wavelength buckling of unidirectional
composite materials. Schuerch tested boron-magnesium laminates and

obtained good correlation between theory and experiment.

In 1966 Foye [14] showed that the upper bound for any
material's compressive strength was its shear modulus (cf., equation
(1.5)). Also, he showed that this upper bound could be approximated
by equation (1.3) for unidirectional composite materials. Foye
suggested that differences between experimental strengths and
predicted strengths for composite materials were due to "local
imperfections." He observed fiber instability in randomly located
regions throughout the material. He also modified his compressive
strength predictions by including the effects of voids and matrix

fillers.

Some researchers attempted to isolate fiber instability in a
laminate by studying a single fiber surrounded by matrix. Hermann,
Mason, and Chan [15] developed a beam model that included initial
waviness of the beam. The authors of reference 15 found that the
short-wavelength buckling loads predicted by their model agreed with
similar loads for the extension mode in reference 13. Also. the
response of the model was significantly influenced by the initial
waviness of the beam. Sadowsky, Pu, and Hussain [16] developed a

model to study fiber instability caused by manufacturing-induced



1

residual thermal stresses. The authors of reference 16 predicted the
compressive strain for short-wavelength buckling of the fiber. They
showed that the shear deformation of the fiber had a negligible effect
on the fiber compressive strain at buckling for most composite
materials. The predicted strains appear to be more than an order of

magnitude greater than experimental results.

Crawford [17] studied the compressive behavior of a boron-
polyimide-film layered composite material. Analytical and
experimental results were presented. Crawford modified the analysis
of reference 13 to account for any inplane~load-carrying capability of
the matrix. The inplane axial stiffness of the boron layer was
expressed as a function of the layer's initial waviness. Crawford
suggested that this initial waviness caused interlaminar normal and
shear stresses that resulted in laminate failure prior to short-
wavelength buckling. He predicted the amplitude and half-wavelength
of the initial waviness for this laminate to be approximately five
times and eighty times the thickness of the boron layer,

respectively.

Yue, et al. [18] studied the compressive behavior of Al-CuAl,

eutectic composite materials. The authors of reference 18 expanded

the results of reference 9 to model linear strain-hardened matrix
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materials and obtained reasonable agreement between theoretical and

experimental strengths.

Lager and June [19] used Rosen's results [7] to experimentally
study the effect of matrix modulus and of fiber volume fraction on the
unidirectional compressive strength of boron-epoxy laminates. Two
matrix materials were used to fabricate specimens with fiber volume
fractions ranging from 0.05 to 0.46. The authors of reference 19
modified equations (1.1) and (1.3) by inecluding an "influence
coefficient" that was determined empirically. They used the influence
coefficient to account for softening of the matrix with increasing
applied load. The coefficient was the same for both equations. The
strength of specimens fabricated using the stiffer matrix were higher
than the strength of similar specimens fabricated using the softer
matrix. The experimental strengths for specimens having fiber volume
fractions less than ten percent agreed with the predicted strengths
from modified equation (1.1), and the experimental strengths for
specimens having fiber volume fractions greater than ten percent

agreed with the predicted strengths from modified equation (1.3).

Chung and Testa [20] applied Biot's mechanics of inc¢remental
deformations [21] to a model for fibrous composite materials in their
study of short-wavelength buckling. The model consisted of fiber
beams supported by an elastic matrix foundation. The authors of

reference 20 calculated the laminate stress that buckled fibers into
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either the extension mode or the shear mode (figure 1.1). The
equations for these stresses reduced to Rosen's equations [7] (i.e.,
equations (1.1) and (1.3)) when the buckling wavelength was much
greater than the thickness of the matrix between fibers. The authors
of reference 20 also presented experimental results from specimens
with fiber volume fractions less than 0.10 that agreed with their
analytical results. The equations in reference 20 are useful but much

more difficult to use than the equations in reference 7.

Russian researchers have also predicted the compressive
strength of unidirectional composite materials [22-27]. They obtained
equation (1.5) using nonlinear elasticity theory [22-24,26,27].
Skudra, Kalnays, and Bulavs [25] postulated that the laminate
compressive strength was strictly a function of compressive and shear
failures of the composite material's constituents., Limited

experimental results are also presented in references 24 and 25.

De Ferran and Harris [28] studied the compressive strength of
steel-wire - polyester-resin composite materials. They suggested that
the laminate compressive failure was a function of the wire {(c¢r fiber)
tensile strength and that a simple "rule-of-mixtures™ analysis could
predict the compressive strength. They obtained experimental

strengths that agreed with their predicted strengths although the
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analysis neglects any of the fiber instabilities or matrix failures

documented in previous studies.

Kiusalaas and Jaunzemis [29] also used incremental deformation
theory [21] to study short-wavelength buckling of composite materials.
Their investigation was motivated by the beam-on-an-elastic~foundation
model used by Chung and Testa [20]. Kiusalaas and Jaunzemis derived a
continuum theory for buckling of a laminated medium. The medium
consisted of alternating fiber and matrix layers. The results of

reference 29 reduce to the results of reference 20.

Hayashi [30] and Hayashi and Koyama [31] expanded Hayashi's
previous theory for the compressive strength of orthotropic materials
[11] to unidirectional composite materials., Hayashi [30] assumed that

a compression-loaded composite material fails when the axial stress ir

*
the matrix equals the "shear instability limit" of the matrix, om.

He defined this limit as the shear modulus of the matrix and
calculated the compressive strength of a unidirectional composite
material by assuming equal axial strain in the fiber and the matrix.

Hayashi obtained the rule-of-mixtures equation

*
o, = dpVp + om(1-Vf) ‘ (1.8)
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where cf is the fiber stress corresponding to the axial strain at

failure. The other variables are defined in the preceeding
paragraphs. The fiber had linear elastic material response. This
analysis considers matrix instability (instead of fiber instability)
as the cause of laminate failure. The predicted strengths from
equation (1.8) were compared to experimental strengths in réferences
30 and 31. Only some of the data agreed with the predictions, and no
explanation was given for discrepancies between analytical and

experimental results.

Independent of Hayashi, Orringer [32] also postulated that a
matrix instability could cause compressive failure of composite
materials. Orringer defined a "matrix critical strain™ and calculated
the composite material's strength at this strain using a rule-of-
mixtures equation. He also studied short-wavelength buckling of
fibers. Orringer suggested that "progressive buckling" of the fibers
led to laminate failure. He assumed that the progressive buckling

started at voids or at disbonds within the laminate.

In 1972 Greszczuk [33,34] reported on his experimental
investigations of the effects of the constituents on the compressive
strength of fiber- and lamina-reinforced composite materials. These
investigations include the most thorough experimentél results to date.
The author varied the matrix material, the fiber material, the fiber -

diameter, the fiber volume fraction of the specimen, the initial
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imperfections (i.e., initial waviness) in the specimen, the specimen
geometry, and the specimen's boundary conditions for unidirectional
fiber-reinforced specimens. Greszczuk performed similar studies for
lémina—reinforced specimens with 6061-T6 aluminum. laminae. He
reported on the influence of constituent properties on the composite
material's compressive failure mode. Short-wavelength buckling of the
reinforcement -occurred when the shear modulus of the matrix was low.
Compressive strength failure of the reinforcement occurred when the
shear modulus of the matrix was high. 1Initial imperfections
significantly decreased the strength of all specimens. The results
presented in references 33 and 34 were also presented in subsequent

reports [35-391].

Suarez, Whiteside, and Hadcock [40] studied the compressive
strength of multi-directional boron-epoxy laminates. This study was
one of the first to investigate lamina instability in multi-
directional laminates. The authors of reference 40 assumed that the
outer-most laminae buckled in a short-wavelength mode; the remainder
of the laminate was treated as an elastic foundation with both
extensional and shearing stiffness. The fibers in the outer-most
laminae were always oriented parallel to the direction of loading
(i.e., O-degree laminae). Some experimental results agreed with
predicted strengths when the initial waviness of the outer laminae was
included in the analysis. The authors assumed that the ratio of

waviness amplitude to lamina thickness ranged from 0.2 to 0.4,
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Filament failure and global instability of the specimen were also

discussed.

Hackett, Tarpy, and Wood [41] studied fiber instability by
performing tests on a single steel wire embedded in a block of epoxy
resin. They obtained the load and stress distribution at buckling
using a photoelastic stress analysis and compared these experimental
results with analytical results they obtained using a finite element
analysis. The authors of reference 41 reported reasonable agreement
between the experimental and the analytical results. This study
illustrates a useful test technique but has limited application to the

short-wavelength buckling of composite laminates.

Lanir and Fung [42] considered the buckling and postbuckling
response of cylindrical columns of matrix reinforced with parallel,
straight fibers. They suggested that the compressive failure of a
unidirectional laminate occurred at a load much greater than the
buckling load of the fiber. They did not consider a short-wavelength
buckling mode as the initial mode shape for the buckled fiber, The
buckling mode shape changed with increasing load (the wavelength
decreased with increasing load). They assumed that failure resulted

from high stresses at the fiber—-matrix interface.

Independent of references 11 and 14, Kao and Pipkin [43]

showed that the critical stress for short-wavelength buckling was
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equal to the shear modulus of the composite material (see equation
(1.5)). They also showed that the shear mode for short-wavelength
buckling was an admissible deformation for fiber-reinforced columns.
This study discusses short-wavelength buckling as a basic response
phenomenon for unidirectional laminates; the compressive failure of

such laminates is not discussed.

Kulkarni, Rice, and Rosen [44,45] modified equation (1.3) to
account for shear deformation of the fiber and for imperfect bonding
at the fiber-matrix interface. They obtained an expression for the

compressive strength of a unidirectional laminate,

1-(1-kK)V G
f m \,
o, = Gm Gm 1 1 Gf Jf (1.9)
1 -(1 - == k) v
Gf f

where Gf is the shear modulus of the fiber and k 1is a bonding

parameter. They defined the range for k as

< 1 (1.10)

where the limits represent no bonding and perfect bonding,

respectively. The authors showed that the compressive strength
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predicted by equation (1.9) was less than the compressive strength

predicted by equation (1.3).

Davis [46,47] included both nonlinear material behavior and
initial waviness of the laminae in his analysis of the compressive
strength of unidirectional composite materials. A moéel consisting of
fiber layers énd matrix layers was analyzéd as a multilayered
Timoshenko beam loaded in compression. The matrix material had a
nonlinear shear stress-strain behavior. Davis measured the initial
waviness of the laminae in his boron-epoxy specimens, and the ratio of
initial waviness amplitude to lamina thickness ranged from 0.2 to 1.6.
He assumed that failure was caused either by delamination or by short-
wavelength of the lamina. Davis referred to thes short-wavelength
bucgling as a shear instability. He found that shear instability was
the dominant cause of failure for these specimens. Compressive
strength bredictions based on equation (1.5) agreed with the

experimental results.

Hanasaki and Hasegawa [48] and Wang [49] independently
conducted studies similar to that conducted by Davis [46]. The
results of references 48 and 49 are also similar to the results of

reference 46.

Evans and Adler [50] suggested that fiber kinking was the

dominant failure mechanism for unidirectional laminates. Kinking
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occurred subsequent to short-wavelength buckling within the laminate.
The authors of reference 50 studied the mechanics of fiber kinking and
obtained a approximate expression for the "ecritical kink formation
stress." They presented experimental results from ﬁhree-dimensional
carbon-carbon woven composite material specimens to illustrate kink

geometry.

Similar to Evans and Adler, Maewal [51] studied the short-
wavelength buckling and postbuckling behavior of unidirectional
laminates in compression. He used a three-layer model consisting of a
fiber layer surrounded by matrix layers to analyze the shear mode
buckling and initial postbuckling of these laminates. Maewal found
that his model predicted a postbuckling stiffness for the laminate
that was approximately one-third of the prebuckling stiffnesé of the
laminate. He suggested that initial waviness of the fiber layer did
not significantly affect the short-wavelength buckling streés. These
results contradict previous studies that show unidirectional laminates
have no postbuckling stiffness and show that initial waviness of the
laminae significantly affects the étress distribution in the laminate

(e.g., reference 46).

Budiansky [52] used the results of the previous two studies
[50,51] in his investigation of fiber kinking. He included matrix
plasticity and initial waviness of the fibers in his analysis of

kinking. Budiansky identified the shear stiffness and shear strength
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of the composite material as the most important parameters affecting
"kink strength." This reference contains a good discussion of the
importance of understanding the role of the matrix and the role of
initial waviness of the fibers in predicting the compressive stréngth

of unidirectional laminates.

Hahn and Williams [53] studied the compressive failure
mechanisms of unidirectional composite materials using a nonlinear
model that included initial waviness of the fiber (called fiber
curvature) and nonlinear material behavior for the matrix. The
authors of reference 53 determined the loading on a single fiber

surrounded by matrix and obtained

o, =V, G (1.11)

for the compressive strength of a unidirectional laminate with a

linear elastic matrix and straight fibers. In equation (1.11) GC is

the composite material shear modulus. A laminate fails when short-
wavelength buckling occurs. Equation (1.11) differs from previous

predictions [7,11] by the factor V Hahn and Williams suggest that

£
this difference is the result of the free body diagram used in the
analysis. As expected, they found that the compressive strength of

composite laminates with matrix material nonlinearity and with initial

waviness of the fiber was less that the compressive strength of
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composite laminates with a linear elastic matrix and straight fibers.
This reference also includes experimental results for compressive
strength as a function of constituent properties. The authors of
reference 53 observed changes in the laminatevfailure mode caused by

changes in the material properties of the matrix.

In summary, researchers have studiéd phe failure mechanisms
for compression-loaded composite laminates for the past twenty-five
years., " Most of these studies have focused on the short-wavelength
buckling of unidirectional laminates and on the interlaminar shear
failures due to lamina imperfections in these lamihates. Researchers
have obtained reasonable correlation between theory and experiment
using geometrically and/or materially nonlinear analyses. The short-
wavelength buckling and shear failures of multi-directional laminates
in compression have received very limited attention. These laminates
were modeled as the outer-most lamina supported by an elastic
foundation, and the short-wavelength buckling of the interior laminae
was neglected. The outer-most laminae always had fibers parallel to
the loading direction. No generél theory exists for analyzing short-
wavelength buckling and shear failures in compression-loaded symmetric

multi-directional laminates.
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1.2 Objective and Scope

The objective of this.investigation is to study the short-
wavelength buckling and the interlaminar shear failure due to short-
wavelength imperfections of multi-directional laminates loaded in
uniaxial compression. The inplane shear failure within anisotropic
laminae is also addressed for these multi-directional laminates. A
model that focuses on these specific phenomena is presented. The
model is used to analyze laminates with orthotropic or anisotropic
laminae. The stacking sequence of each laminate in this study is
symmetric with respect to the laminate's middle surface. A linear
analysis is used to determine the laminate stress, strain, and mode
shape when short-wavelength buckling occurs. A nonlinear analysis
that assumes initially imperfect (i.e., initially wavy) laminae is
used to calculate the laminate stresses and interlaminar strains. The
initial imperfection for each lamina has the same shape as the
laminate's short-wavelength buckling mode. A result of this

investigation is a failure criterion based on short-wavelength

buckling of the laminae and shear failures within the laminate,



Chapter 2

ANALYSIS,

This chapter presents a model for the short-wavelength
buckling and shear response of compression—loaded composite laminates.
The model considers the interlaminar shearing due to short-wavelength
initial imperfections and the inplane shearing in these laminates.

The governing equations of the model are derived from first principles
using an energy formulation. The loading and boundary conditions of
the model are discussed. The solution of the governing equations is
described. A linear analysis is performed to obtain the eigenvalues
and eigenvectors associated with short-wavelength buckling in the
laminate. A nonlinear analysis is performed to obtain the stress

distribution in a laminate with initially imperfect laminae.

2,1 Derivation of the Governing Equations

2.1.1 Model Description

The geometry of a typical laminate is shown in figure 2.1.

The x-y-z coordinate system is referred to as the laminate coordinate

24
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system. The laminate is rectangular having length a and width b.

0
A +8 fiber orientation in the lamina is indicated in the figure.
The laminate is symmetric with respect to the middle surface, the z=0

plane.

The fundamental element for the model in this study is~a
idealized lamina. The cross—sections of a typical lamina and of an
idealized lamina are illustrated in figure 2.2. The typical lamina
has thickness t, and the fibers are modeled as a plate (hereafter
referred as the "fiber-plate") and the matrix is modeled as an elastic
foundation (hereafter referred to as the "matrix-foundation"). The

fiber—-plate and matrix-foundation have uniform thicknesses tf and

tm’ respectively, where

(2.1)

o
|

1
m - 2(1 Vf)t

Vf is the fiber volume fraction of the laminate. Combining equations

(2.1),

t=¢t,+ 2t ’ (2.2)
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Idealized laminae are assembled to form the model for a laminate. The
model for a typical laminate is shown in figure 2.3. The linear
elastic properties used in this analysis are presented in Table 2.1.
The fiber-plate properties are ftypical properties for a graphite4epoxy
lamina. The matrix~-foundation properties are neat resin properties

from reference 54. The typical lamina thickness is 0.0052 inches.

Initial imperfections in the fiber-plate are also included in
the model. Previous authors have referred to these initial
imperfections as initial waviness of the fibers or as fiber curvature.
The initial imperfections in this study have the same shape as the

short-wavelength buckling mode shape for the laminate.

2.1.2 Fiber-Plate Contributions

A geometrically nonlinear plate theory is used for the fiber-
plates. The ith fiber-plate has displacements u(l), v(l), and w(l)

in the x, y, and z directions, respectively. The theory for,the

fiber-plates is derived using the Kirchhoff assumptions:

1. Normals to the undeformed middle surface of each fiber-
plate remain straight, normal, and inextensional during

deformation so that the transverse normal strains ez and
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transverse shearing strains sz and sz in the fiber-plate

may be neglected; and

2. Transverse normal stresses g, in the fiber-plate are

small compared to the other normal stress components and may

be neglected in the stress-strain relations.

The first assumption leads to the following expressions for the fiber-

plate displacements,

Py, = o ey -z G,

v(i)(x,y,g) e (x,y) - Zud) (x,y),y (2.3)
Wy = W
where u(i) ’ v(i) , and w(i) are displacements in the x, y, and 2

directions, respectively, for the middle surface of the ith fiber-
plate, Z is the through-the-thickness coordinate of the fiber-plate

t t

£ £z s £ , and subscripts x and y preceeded by

such that - 5— >

commas denote partial differentiation with respect to x or y. The

(1)°

W displacement is the sum of the displacements due to the initial
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(1)

imperfection of the fiber-plate w, and the displacement due to
loading wfl) si.e.,
(1)° (1)
i :
W (x,y) = wol (x,y) + wgl)(x,y) (2.4)

The expressions for the normal and shear strains in the ith

fiber-plate are

S ), 2 ()

X X

(1) _ (1) = (D)

i i - (i
= + 2z 2.

ey ey <y (2.5)
v )= (1)

Xy Xy Xy

W W’ (1)°
where exl s eyl , and Yx;) are the normal and shearing strains

for the middle surface of the ith fiber-plate, and , and

(i) (1)
K y K
X y

i)

v are the curvatures of the ith fiber-plate. The middle surface

(
K

X
strains are defined using the von Karman nonlinear strain-displacement
relations and include the initial imperfections of the fiber-plate.

These strain-displacement relations assume that the strains are small

compared to unity, that rotations relative to the x and y
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directions are moderately small, and that rotations relative to the =z

direction are negligibly small.

The strain-displacement relations for

the ith fiber-plate are

(i) 1 /.(1))\2 (1) (1)
Sy Y3 ( 1’x) T Wory Wi
(1), 1 (. ()2 . (i) (1)
= v,y + 5 (w1,y) + wo,yw1,y (2.6)
u51) . VSi) . w(})w(f)
X 1 1y
. w(f)w(%)+ w(%)w(f)
°’x 1’y °’y " 1’x

The normal and shearing strains are zero when the fiber-plate is

unloaded.

The curvatures are defined by

D)

X 17xx

(i) _ _ (1)
<y = w1,yy (2.7)
D)o (1)

Xy 17 xy

The initial imperfection does not appear in the definition of the

curvatures since the curvatures are determined by the change in slope

of the middle surface from the initial middle surface geometry.
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Each fiber-plate is homogeneous and has linear elastic
material behavior. A fiber—plate“has specially orthotropic material
symmetry with respect to a principal material coordinate system. This
coordinate system has axes that are parallel (1-axis) and
perpendicular (2-axis) to the fiber orientation in the fiber-plate,

and these axes are illustrated in figure 2.4 for a +8 fiber

-~

o o
orientation (-90 € 8 £ +90 ). The laminate coordinate axes x and ¥y
are also illustrated in the figure. The constitutive relation for a

specially orthotropic fiber-plate is

o QU 9, O €
a5 = Q12 Q22 0 €5 (2.8)
T 0 0 Qg Tio

where {g} and {e} are the inplane stresses and strain, respectively,
and [Q] are the reduced stiffnesses for the fiber-plate. The reduced

stiffnesses are calculated using material properties and

Q11 = E11/(1-v12v21)
Qo = VB (17vy5vy)
Qp = Exp/(1=vy5vy) (2.9)

Qs = 12
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where

E11 = Young's modulus in the direction parallel to the

fibers

322 = Young's modulus in the direction perpendicular to

the fibers

G12 = shear modulus in the 1-2 plane
Vys = major Poisson's ratio

Voy = minor Poisson's ratio

The ith fiber-plate has generally orthotropic material
symmetry with respect to the laminate coordinate system. The

constitutive relation for the ith fiber-plate is

- ~(1) ~ = = = = (1) ~ (1)
Iy Ur Yz Y (" &y
ﬁ o, = = | Gy Ty Ty < & > (2.10)
\_ Txy) N Qe e e _ " nyJ
where {o}(i) are the fiber-plate stresses in the laminate coordinate

system, {e}(i) are defined by equations (2.5) and (2.6), and [6](1)

are the transformed reduced stiffness of the ith fiber-plate. The
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transformed reduced stiffnesses are calculated using equations (2.9)

and

=(i) _ y 2 . 2 .4

Q11 = Q11cos ei + 2(Q12+2Q66)cos 6151n ei + Q2251n ei

=(1 .2 .

Q1;) = (Q11+Q22—4Q66)Sln eicoszei + Q12(81nuei + cosuei)

=(i) _ 4 .2 2 4

Q22 = Q1131n ei + 2(Q12+2Q66)Sln eicos ei + szcos ei

5(1) = (Q,,-Q,.,-2Q..)sin 8 00336 + (Q, ,—Q,,+2Q )sin3e cos @
16 11 ™12 66 i i 12 ~22 66 i i

=(1) 3 3

+2Q66)sin eicos Bi

(Q11-Q12—2Q66)sin eicos ei + {(Q, ,-Q

127 %22

=(1) _ o 2 2 oy 4
Q66 = (Q11+Q22 2Q12 Q66)51n eicos ei + Q66(81n §, + cos ei)

(2.11)

where ei is the fiber orientation of the ith fiber-plate. For

] o .
convenience, fiber-plates with ei= 0 or with ei= 90 are

subsequently referred to as orthotropic fiber-plates. Fiber-plates

with any other ei are subsequently referred to as anisotropic fiber-

plates,

The potential energy of the ith fiber-plate is the sum of the
potential energy of the applied loads and the strain energy of the

fiber-plate. The potential energy of the applied loads is zero for
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this model as discussed in section 2.1.5 Model Loading and Boundary

Conditions. The strain energy of the ith fiber-plate U(;) is
ab tf/2
(1) 1 f J J (1) (1) e D (D) L () (D)
2 -t1/2 y oy z 0z
00 f
(l)Y(l) . (1)Y(1) . (i)Y(i)] &z dy dx
¥z yz XZ Xz Xy Xy

(2.12)

Using the Kirchhoff assumptions, equation (2.12) is simplified to

b tf./2

(1) _ 1 J J oDl o gD (D) L (D (D] 7 gy o
2 %y Xy Xy Y

0 tf/2

O e D

(2.13)

Using equations (2.5) and (2.10), equation (2.13) becomes

bt/ o
[ ] e a2
0 £

~(1), (1) = (D2 =(1),.(1)° = (i).2
Q22 (ey + zxy )T+ Q6 (ny + Zny )T+

2@ (e« 2D+ Tl
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—(1) (1)°, = (1), (1)°, = (1)
(e €4 Kx )(ny + Zny ) +

(i)( (i) K;i))(Yi;) + Exii))}] dz dy dx

(2.14)

Equation (2.14) is integrated with respect to the through-the-

thickness coordinate z to obtain

ab 02 0l 02
gt _ 1 IJ (1) SO A1) (1) . alhy (1) N
fp 2 €x 22 66
00
(1)_(0° (D7, (1) (1) (1)
2(A 12 €x Ey 16 Ex ny ¥
LD DD, (0F ) (17,
hag ey Txy iy % 22 Sy
’)
éé) (1)°, 2(D(l) (1)K(1) D(})K(l)K(l)
XY X y 16 °x Xy
éé)K;l)Ki;))] dy dx (2.15)
where Agi) and Dgi) are the extensional and bending stiffnesses,

respectively, of the ith fiber-plate and are defined by
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t./2

f
(1) (1), _ J =(1) -2, -
(Ajk , Djk ) s ij (1, z7) dz (2.16)
f

The potential energy contribution of each fiber-plate to the total

potential energy of the model is given by equation (2.15).

2.1.3 Matrix—-Foundation Contributions

The matrix~foundations elastically support the fiber-plates.
The ith matrix-foundation is located between the ith and the (i+1)th

(1) V(i) (1)

fiber-plates and has displacements um s Vo s and wm in the x,

y, and 2z directions, respectively. The displacements of the ith
matrix-foundation in this model are a linear function of the

displacements of the adjacent fiber-plates and are defined by

(i) 1 (i+1) 5 (i)
Um (x,y,2) = 2tl [(tm+ Z)u Z=—t /2+ (tm Z)u Z=t /2]
m f £
(i) . 1 (i+1) - (1)
vl (x,y,2) = 5 [(t Dy Zomt g2t = DV = ]
m £ £
WDy, = g [ e 0w e - elP] @i

3
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where the fiber-plate displacements are defined by equations (2.3),
and Z 1is the through-the-thickness coordinate of the matrix-

foundation such that —tm £ Z s tm' Evaluating the fiber-plate

displacements, equations (2.17) become

) G t . .
R o LR DR TR
° t
(1) (1) _-f-' L. (i+1) - _ (1)
Vm + utm [(tm+ Z)w1,y (tm Z)W.‘vy ]
A o L LIRS (I O (2.18)

m

The initial imperfections of the adjacent fiber-plates do not appear
in equations (2.18). Deformation in the matrix-foundation is the

result of displacements due to loading of the adjacent fiber-plates.

The matrix-foundations in this model have extensional
stiffness in the 2z direction and shearing stiffness in the y-z and
x-z planes. The strain-displacement relations for the ith matrix-

foundation are

(1) _ (1)
Cnz " "m’z

(1) _ (1) (i)
mez = Vgt Wy (2.19)
Y(i) - u(i) . w(f)

mxz m'2 m’x



37

Equations (2.18) are substituted into equations (2.19) to obtain

(1) _ 4 . (i+1)_ (1)
®mz = 2t M1 Wl
m
R t . t
(L) _ 1,8 (i+1) f _ sy (1)
mez h 2t L >yt Z)WI’Y + 5 Z)WI'Y]
. t €
(1) _ 1 ..t (1+1) | ¢t =y (1)
nmz_ZRm[(Z +tf'ﬂwﬁx +(24-1"m mwﬂx]

(2.20)

Equations (2.20) show that the strains in the matrix-foundation are
functions of the w displacements of the adjacent fiber-plates. The

constitutive relations for the ith matrix-foundation are

(1) _ _"m (1)
"mz  ~ 12 M2
"m
r;;; - o Y;;; (2.21)
(1) _ 5 )
mxz m mxz

where the matrix-foundation is a linear, elastic, homogeneous material

and

Em = Young's modulus of the matrix
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Gm = shear modulus of the matrix
Vo = Poisson's ratio of the matrix
The strain energy of the ith matrix-foundation U(l) is

m

ab t
(1) _1 Too(1) (1), (D (1), (D) (1) ..
Um S 2 [ J J Oz Cmz T Tmyzmez * mezmez] dz dy ax
00 -t
(2.22)
Using equations (2.20) and (2.21), equation (2.22) becomes
ab ot (i+1)_ (1)
U(i) - 1 { m r 1 ) 1 12 .
m 2 1-y2 t 2t .
00 -t Vm
G t t .
m £ oy (1+1) £ 4 (1)92
I [(5 o+ et 2wy 0+ (v g Dwpi ]
t
m
G t t )
m £ 5y, (1+1) £ - (i)42
- [( Sttt Dwy o (5t Z)w],x] } a2 dy dx
m
(2.23)

Equation (2.23) is integrated with respect to the through-the-

thickness coordinate Z to obtain
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ab
E . .
o0 - ] [ e 10 D2
00 2tm(1-vm)
2 2
G t 8t . 2 L\ 2 2 2
mor, £ m,, (i+1) (1) (i+1) (i)
T (5 2tet v = YWgsy T MG W T W)
2 2
t 4t
£ m,, (i+1) (i) (i+1) (1)
+ 2( 5+ thtm+ _3-)(w1’y w1,y YW w1,x)]} dy dx

(2.24)

The potential energy contribution of the ith matrix-foundation to the
total potential energy of the model is given by equation (2.24) where
i=1,2, ..., (N-1) where N 1is the number of laminae in the
laminate. The two outer-most matrix-foundation layers (figure 2.3) do
not contribute to the potential energy of the model. The strains in
the matrix~foundation result from differences in the w displacements
of the fiber-plates. The outer-most matrix-foundation layers have a

free surface on one side, and ¢, Y , and Y are zero for these
mz myz mxz

layers.

2.1.4 Governing Equations for the Model

The nonlinear equilibrium equations for the model are derived
using the principle of stationary potential energy, i.e., the loaded

model is in equilibrium if its total potential energy 1 is
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stationary. This principle is stated mathematically in terms of the

first variation of the total potential energy as

]
(o]

81 (2.25)

The total potential energy of the model is the sum of the

fiber-plate and the matrix-foundation contributions, or
U(1)

(2.26)

where N 1Is the number of laminae in the laminate. Using equations

(2.6), (2.7), (2.15), (2.24), and (2.26), equation (2.25) becomes

ab N o
oo *

{1 x’ x xy y y’ y xy X
(1) (1) (1) (1) (1 (1) (1)
[D11 w1’xxxx * Z(D * 2D Y 1 XXYYy * D22 w1’yyyy
(1) (1 (1) (1) - (1), (1)
16 Wye XXXY * 4D26 w1’xyyy LN (w 'x )]'

(1, (1) (1) (1) (1) (1)
[Ny (w1.y )], - [N Xy (w )],

E
(1) (1), (1) m (1)y_ (@), _
[N Xy (w y )]. e (W W, )

2 1
2tm(1 vm)
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2 2
G t 8t
m . f m . (1) (1)
th L 2 ' thtm+ 3 )(w1’yy+ wl’xx) *
£2 yt2

(-g + 2t t 4+ _.@)(w(2) (2) )]] (1)

£f'm 3 1’ yy "1 xx

(i) (1) (1) (1) (1) (i)
%22 { 11 %17 XXXX 2(D ZD Ju Y1 xx yy 22 wl’yyyy
(1) (1) (1) (1) (1) (1), (i)
* uD16 1’ xxxy NDZG 1°xyyy [N X (w1 ' )]’

(1), (1, G (1), (1) A0
Iy G wer 01, = o e W,

-y (1) (1)
[ny (w Wt )],
: (1) (1=1)_ _(i+1)
2t (1-v2) ! ! !
m m
2
G t 8t
S B § (1) (1)
—utm [(= + 2t + —-)(2w ryyt )
2 2
t 4t
£ my (11 (i-1) 0 (i+1)
(-5 * 2tftm+ 3 )(w1 'yy w1 XX w1 yy
(i+1) (1) (N)_(N) (N) (N) (N)
17 xx )] 6w1 ¥ [D11 Y10 xxxx” Z(D * 2D Yw Wy XXYY

(N) (N) (N) (N)_(N)  _
22 w1’yyyy 4p 16 T xxxy+ D26 wT’xyyy
(N), (N} (N))] [N(N)(W(N) (N))]

[N 1? x

(w,,

- Ml 0y,
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E
v’ 2t (1-v )
2 2
G t 8t
m, _f m (N) (N)
th L( > " thtm+ 3 )(w1 yy 1’xx)
2
L ut
_g . (N-1), . (N-1) (N) .
(== + 2tet )( 1 v T 1 xx )]] } dy ax
b a
N , LAY . 2D . 2D
) [J Nil)SU(l) dy + j AR TR AT J ARER YA
=1 0 x 0 y 0
b ° a b a a
+ J N(l)év(l) dy - I (l)ﬁw(l) dy - J M(l) (l) dx
Xy 0 X 1'% o y 'y 0
0
SNSIELEE (1), 1), g1, (1), (1)
oM - sw ]+ [ M Ny, ')
Xy 1 olo x’ x xy y X 1 x o
2 2
G t 8t
(1), (1, (1) e, £, (),
N y (W O’ ) utm [( > tht + - -)w1 X

t2 2
£ (2)
( 2 " thtm+ )w1 x] W

a

a

dy + J e oult) .
0 v’y Txy’x

1

(1)(w(1) (1)) (1)(w§1) (1)) .

y
2 2
G t 8¢t
B (L =, (1)
utm [( 5 + 2tpt + 3 )w1,y +
2 b
t 4t N-1 .
(= + 2t.t + --)w(Z) (’)l ax + 3 | I i),
f'm 1= X' X

0



43

) Dl Wy DD D)

xy’ y x 1'% xy 1y
Gt 8t” (0
’-lt [(—' + tht + -—)2w1 % +
2 2 a
t 4t a
f 1 1 i i
(=5 + 2t t + )( ﬁlx s f} ))]awgl) dy + J [Mé%;
0
0
(1) (1), (1), (1) (1) (1), (1)
xy et Ny (wy s ) (w1. O
2
G‘ t 8t
f (1) ,
-)IE- [(— + 2tft + "'_')ZW
2 2
t bt , )
f 1 -1
(—2 + 2tftm+ - (w (1+ ), w1(i'y ))]6w1(1) de}
b
. J M, o) (D ) )y
x’ x Xy y x 1 °’'x
0
2 2
G t 8¢t
T P P J 30+ 2t (0
xy (w ’y) ¥ th L« > " 2tftm+ 3 )w1’x *
2 2 a
t Mt a
f (N~-1) (N (N)
(=5 + 2t.t + = )w1 . Jow dy + j M vyt My

0

N(N)(w§§; (N)) . N(N)( (N) (N)) .

2 2
Gt 8t2

m f (N)
TE_ [(=5 + 2tpt + =3 =) vyt
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2 2

t bt b
f N-1 N
(-5 *2tt -§E)w§,y )]6w§ ) de =0 (2.27)
where the stress resultants for the ith fiber-plate Nii), N(i), and
Mi) are defined by
Xy
(1) _ (1), (1) (1) (1) (1) (1)
Ne 7= Ay Az & 7 Aig Y
(1)_ (1) (1) (1) (1) (1) (1)
Ny = 12 et A22 26 (2.28)
(i) _ (1) (1) A () (1) (1) (1)
Ney = M6 '€ Aoe €y " Pes Y
and the moment resultants for the ith fiber-plate Mii), Msi), and
M(i) are defined by
Xy
(1) _ (1) (1) (1) (1) (1) (1)
M = O W et Dy Mgyt 2R )
(i) _ (1) WSL1) (1) (1) (i) (1)
My = (D Wil ex D22 wl’yy+ 2D26 ) (2.29)
(i) _ (1) (1) (1) (1) (1), (i)
Mxy - (D16 17xx" Dog ¥ v 2Dgg Wy xy)

The summations and

interchanged since

integrations in equations (2.27) can be

the series of potential energy contributions
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consists of continuous functions and is uniformly convergent over the

region 0 $xsa, 02y s<b (see reference 55, p.589).

Equation (2.27) is satisfied when the integrand of the area
integral and when the integrands of the boundary condition integrals
equal zero independently. The governing nonlinear partial
differential equations are obtained from the area integral and are

stated below:

)~ o
Nerx xy y
(i) (i) _
Npry * Neghy = O (2.30)
for i =1
=(1)r (1) (1) (1) (1) _
D [w1 } (w Y1 xx w°’xx)
(1) (1) (1 (1) (1) (1)
(Wir gy Woryy) = My " (Wi y® Worgy!
() (2) (1, (D
b (w w1 ) - G (wl yy 1 xx)
o, (w(z) + w3y L (2.31)

1 vy W10 xx
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for i =2, 3, +.., N-1

B(i)[w§i)] _ N(i)(w(i) + w(i) ) -

17 xx o' xx

N(i)(w(§ + w(f ) - 2N(i)(w(§) + w(f) )+
y 1yy °lyy Xy 17 xy o' Xy

¥ (1)_  (i-1)_  (i+1), _ .* (i) (i) B
E (2w1 W, Wy ) G1(2w1,yy+ 2w1’xx)

¥ (i-1) (i=-1) (i+1) (i+1), _
G2(w1’yy Wik T 1tyy T Wik ) =0
for i = N

=(NJ)r (N) (N), (N} (N)
D [w1 I - Nx (w1’xx+ w°’xx) -

W 0 0 a0

yy “°’yy xy ~1'xy o'xy
¥ (N)_  (N-1), _ . * (N) )
E (w1 e ) G1(w1’yy+ w1’xx)
* (N) (N) | _
GZ(W1’yy+ w1’xx) -

s, ] is an operator defined by

L

=(1) ENEY) (i) (1)
D™ [w] = D11 "y exxx 2(D12 * 2D66 )w’xxyy+

5 (1) o up(d) . upd)

22 w’yyyy 16 w’xxxy 4 26 w’xyyy

(2.32)

(2.33)

(2.34)
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and the constants are defined by

* Em
E = >
2tm(1-\)m)
. G to 8t”
G1 = EE;(E- + thtm+:-§-) (2.35)
2 2
G* = -G—[-n(ctng + 2t t + i"—tln-)
2 Utm 2 f'm

The equations for the boundary condition are obtained from the

boundary condition integrals and are stated below:

for i =1, 2, vee, N

. Y- . 20 b
N(l)Su(l) -0 N(l)su(l) -0
X 0 Xy 0
. 1%b . .\ %ra
ARRF AR Nil)av(?) =0
y 0 y 0
. . a . . b
M(I)SW(}) -0 M(l)aw(}) -0
X 1'x 0 y 1y 0
s . ab
2Mi1)5w§1) =0 (2.36)

0'o
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for i =1

(M (1) (1), (M )
[Mx’x+ 2Mxy’y+ Nx (w1’x+ w°’x) *

(1), (1), (1) X (1) % (2)7. (]2
Ny (M1rg* Wony) * Grugag + Gouys Jowy o 0
(s aul1) o (D, )y

v'y Xy'x Uy 1y y

b

(1), (1 (1) ¥ (1) * (2) (1) _
Ny (Wit Wou ) + G, o+ G2w1,y}6w1 ‘o =0 (2.37)
for 1 =2, 3, ve., N-1
[M(f)+ 2M(iz . N(i)(w(,i)+ w(})) +N(i)(w(§)+ w(}))

x’x xy'y X 1'% ory Xy 1y 'y

£ (1) % (i+1) . (i-1)y7. (D}F

26wy * Gyluyy ey ) Jew, - 0
(), (1), (D) (D (D)) () (), (5)y

y'y xy'x 'y 1’y "o’y xy ~1’x o’y

. i .\ b
* (1) * (i+1) (i=1) (i) B

+ 2(}1w1,y + G2(w1,y tWiy )]Gw1 =0 (2.38)

0

for i = N

(N) (N) ), (N), _(N) Ny, (N)_ _(N)
[M 0+ 2My st N Gyt gy ) 4 N oo (s )

* (N)
FOWh Y

L= G0

G, w, ,
2 °1°x 1 0
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(N) (N) Ny, (N)_ (N) Ny, (N),_ _(N)

[0y M s e N Gag e gy )+ NP Cuae g )

v o) R (7, (N - (2.39)
1" 1y 21y LA = 2.39

0

2.1.5 Model Loading, Boundary Conditions, and Solution
Procedure ’

The model is loaded in compression by uniform end shortening.
No external loads are applied to the model (hence, the potential
energy of the applied loads is zero). This loading enters the
analysis as a u displacement boundary condition for each fiber-plate

and 1s expressed as

uPo,y) -

[
Q

u(i)(a,y)

i
{
[t

The u and v displacement boundary conditions are chosen to
assure that the model remains rectangular during loading. A
rectangular shape is typical for composite laminates in structural
components. These boundary conditions for each fiber-plate are

expressed as
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(1), = (X
u " (x,0) = uo(a)
u(i)(x,b) = u(i)(x,O)
T -
o A u
i 0
v( )(O,y) = (;%‘a)(y ~ g) .
22
v,y - v,y
T -
.\ A u
(Dy 0y = - (H2y.2) Lo
v ' (x,0) = (AT )(2) =
22
v o) = v ix,0)

i=1,2, «., N (2.41)

where AT and A

12 -~ are extensional stiffnesses for the total

N -3

laminate and are defined by

(AT T

N .
_ (1) (1)
120 B5) = 7 (A AT (2.42)

c 12 t22

The v displacement boundary conditions are the result of Poisson
expansion during loading. These boundary conditions prevent an

anisotropic lamina from deforming into a'parallelogram—type shape.
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The model is simply supported on the unloaded edges. These

simple-support boundary conditions are expressed as

atk y=0and y = b

o w0 11,2, N (2.43)

The model with initial imperfections is loaded in the x
direction and deforms into a short-wavelength buckling mode. The
half-wavelength of the model's mode shape A is a laminate property,
and the calculation of A is discussed in section 2.2 Linear
Analysis. This half-wavelength is assumed to be much smaller than the
laminate's length or the laminate's width. The fiber-plates in the
model are assumed to behave as elastically supported semi-infinite
strips causing the w displacement and moment boundary conditions at
x=0 and at x=a to have a negligible effect on the short-wavelength
buckling behavior of the model. The w <displacement and moment
boundary conditions for this model are expressed along node lines of

the mode shape and are
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at X = 0 and at x = A

w§1)= 0 Mii)= 0 ,i=1,2, vuus N (2.44)

where the x-axis is‘parallel to the x-axis and is illustrated in

figure 2.5.

The Kantorovich method [56] is used throughout this study to
obtain solutions to the governing equations that satisfy the boundary
conditions. Each unknown is expressed as a Kinematically admissible
series of the x coordinate. An unknown function in this study has

the general form

f(x,y) = £ (x) + fl(y) + fs(y) sin E% +

»

s

fc(y) cos = (2.45)

where f, and f‘1 are known functions determined from the linear

prebuckling analysis. Equation (2,45) is substituted into the
governing equations, (2.30) to (2.33), and boundary conditions,
(2.41), (2.43), and (2.44), to obtain ordinary differential equations

for the unknowns fs and fc.
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2.2 Linear Analysis

The nonlinear governing equations are linearized to determine
the laminate end shortening when short-wavelength buckling occurs.
This end shortening is also referred to as the critical end shortening

(a°)cr' The linearized equations are also used to determine the

short-wavelength buckling mode shape. The linearized equations are
derived using the adjacent—-equilibrium criterion (see reference 57,
p.27). The fiber-plates have no imperfections in the linear analysis

(1) _

(o]

(i.e., w 0).

Adjacent equilibrium configurations for the fiber-plates are
investigated by adding small increments to the fiber-plate

displacements. The relationships between the displacements prior to

buckling, uél), v;l), and w;l), and the displacements of an adjacent
equilibrium configuration, u(l), v(l), and w(l) are expressed by
(1) (1), -
u uy + gu
vl D g (2.46)

w1(J'.)== w;i)+ 5;1
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where the quantity e«

(1)

displacement wa

is infinitesimally small., The prebuckling w

and its derivatives are zero for the flat ith

fiber—-plate loaded by uniform end shortening.

Equations (2.46) are substituted into equations (2.30) to

(2.33), and the terms of like powers of € sum to zero for arbitrary

€. The zeroth-order terms in € combine to give the linear

prebuckling equilibrium equations for the ith fiber-plate

(iz N(iz, -0
x X xyo'y
(1), y(1)
y°’y Xy©’x 0 (2.47)
where
(i) (1) (1) (1) (1) (1) (i) (1)
Nx° = A Vg Y ALY a'y Ag (ua y+ )
(i)_ (1) (1) (1) (1) (1) (1) (1)
Njo'= Ao gy * A Vo (u a’y’ Va o (2.48)
(1) _ (1) (1) (1) (1) (i), (i) (1)
ny° A16 a'x * A26 Va 'y * A66 (ua’y+ a’ x)

The prebuckling displacements that satisfy the governing equations

(2.47) and the boundary condition equations (2.40) and (2.41) are
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WDy = 5,5
T -
A u
i 12 °
v;l)(x,y) - (;T-)(y -9 = (2.49)
22

The first-order terms in ¢ combine to give the linear postbuckling

equilibrium equations for the inplane loads in the ith fiber-plate

(1) (1) _
x1 X xyt'y
(1) N(i)

y1 v xy1'x - 0 (2.50)

where

(1) ,(1)=(1) (i)=(1) (1) —(1) (1)
Nep = Bp ey Ay v’y (u 'y )
(i) (i)- (1) (1) (1) (1) ( ), —(i)
Noqg= Appu Ao’V (u Vi)
(1) (1) (1) (1) (i) (1) —(1) (i)
ny1 16 26 (u 'y Voo ) (2.51)

and the linear stability equations for the fiber~plates are stated

below:
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for i =1

5(1)[;§1)] V(l)w(1) N(1);(1) 2N(1) =(1)

x° 1'xx  y° "1'yy xy?° ML Xy
*—(1)_ =(2), _ p (1) (1) _

E (w1 w1 ) ( 1 yy 1 xx)

@, @)

ot 1’yy 1’xx) =0 (2.52)

for i = 2, 3, +.s, N-1

gz 2N<l) (1)

‘D-(l)l‘a(l)] (l)w(l) wor
x° 17 xx y°o 1lyy Xy° R Xy

"

(1) | =(1)

+ E (2w(l) -‘;‘51—1)- §§i+1)) - 2G‘ (w yy+ w1yxx)
—(1 1) —(i- 1) —(i+ 1) —(i+1)
+ G (w 'y Wy P W vy W ) = 0 (2.53)
for i = N
_(N)L—(N)] N(N) =(N) N(N)§(¥) N(N)w(N)
x° "1'xx y° "1lyy xy° 1'xy
. YN =) =(N) | =(N) , _
E (w W, ) - G (w Wi yy Wi xx)
(N 1) (N-1)
G (w yy+ 19 ) (2.54)
where Niz), Néz), and N(;) are determined from equations (2.48).

The higher-order terms in ¢ are neglected since ¢ 1is small.
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2.2.1 Orthotropic Fiber—Plates

The short-wavelength mode shape for an orthotropic fiber-plate
is assumed to have half-waves that are normal to the direction of
loading. These half-waves are referred to as "normal waves" and are
illustrated in figure 2.5a. The linear stability equations and
boundary conditions for a model composed of orthotropic fiber-plates

are satisfied by

—(1) _=(i)_, mx .. @y
Wl o= w T'sin =2 sin =% (2.55)
where 5;1) is the amplitude of the normal wave for the ith fiber-

term is zero (see equation

»Iil

plate. The coefficient of the cos

(2.45)), and the extensional stiffnesses, A§é) and Aég), and the

(1) (1)

bending stiffnesses, D16 and D26 , are zero for orthotropic fiber-

plates. Equation (2.55) is substituted into equations (2.51) to
(2.53) to form a system of equations for calculating the model's
critical end shortening and short-wavelength buckling mode shape. The

system of equations is of the form
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(1), = b (1) =(2)

D"+ ¥ < k1(a ) Iw N, =0

-~ u,

(0@ 2 - ke W2 w{D- w3 -0

_Ne1) o Uy Nm1) o(Ne2) —

(D1, of - qu1(3')]"(N 1)_ Nw;N 2)_ NwéN) -0

“(N), % Eg =(N)_ ==(N-1)

D M-k (=) Jing Nw =0 (2.56)

for arbitrary x and y where the constants are defined by

B(i) (1)( ) (D (1) (1))(v)2(v) (1)( )

12 Do (%

- * *_ 7.2 T2
M =E + th(B) + (K) ]
= * ¥ .2 M2
N =E - GZE(B) + (X) 1

T T

A A
_ (1) A2 (1) (1)_ 12 (1)

ko= (A T Az )(A) v (a5 T Ao )(b)

22 22

(2.57)

Non-trivial solutions to equations (2.56) exist if the determinant of

—(1i)

the matrix formed by the coefficients of W is zero. The smallest

value of the normalized end shortening Bola for which this
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determinate is zero is the critical normalized end shortening

(Go/a)cr. The end shortening is normalized by the laminate length,
a. The value (Go/a)cr is an eigenvalue of this system of equations,

and the corresponding eigenvector is the short-wavelength buckling
mode shape of the model. The wavelength of the mode shape is

determined by minimizing (Eo/a)cr with respect to the wavelength.

2.2,2 Anisotropic Fiber-Plates

The short-wavelength mode shape for an anisotropic fiber-plate
can have half-waves that are oriented at an angle ¢ to the
orientation of a normal wave, These half-waves are referred to as
"skewed waves" and are illﬁstrated in figure 2.5b. The form of the w
displacement that satisfies the linear stability equations and
boundary conditions for a model composed of anisotropic fiber-plates

is

-"-l-gl) - W;l)(Y) sin % + w((_:l)(y) cOs % (2-58)

The eigenvalues and eigenvectors for these fiber-plates are obtained
using the Galerkin method [57]. The functions of y for the ith
(i) (i)

fiber~plate, ws and wc , are expanded in a Fourier sine series,
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=(1)

These series satisfy the boundary conditions for W, at y=0 and at

y=b and are expressed as

. M
W(l)= z N(I)Sln -m—“l
3 sm b
m=1
M
(i)_ —(1) nm
Wyl= §=1wcn cos -El (2.59)

where M 1is the number of terms in the series and is an even number,
Equations (2.58) and (2.59) are substituted into equations (2.51) to
(i) (i)

(2.53), and the series expansions for ws and wc are solutions

to these equations if the equations are orthogonal to sin E%X and to

sin 5%1 for each m and n, respectively. The orthogonality

conditions for the ith fiber-plate are stated below:
for i =1

b

(=) =(1)y _ ((1)=(1) _ (1) (1) (1)=(1)
f \D [w1 ] Nx° w1’xx Ny° 1? yy 2N y°w1 Xy
0

=(1)_ 52)) ( (1) =(1) )y -

* E (w 1’ yy Y10 xx

—(2) , =(2) ., mmy _ -
G (w1 yy+ 17 xx)) sin =5 dy =0 m=1, 2, ..., M
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for 1 =2, 3, +.0, N-1

b
=(1)=(i)y _ (1)=(1) _ (1) (1) (i)=(1)
[ (D [w1 ] Nx° w1’xx Ny° 1? yy 2ny° 17 Xy
0
=(1)_ (i-1)_ ~(i+1) —~(1) (1)
+ E (2w W W, ) - ZG (w1 yy+ 1 XX)
=(1=1), =(i=1), =(i+1), =(i*1)yy . W% )
+ G (w vy 17 xx w1,yy W )) sin -Ez dy = Q
m=1, 2, vee, M
for i = N
b
(E(N)[G(N)] _ N(N) —(N) N(N)G(N) _ ZV(N)W(N)
1 x° T1rxx” Nyo WiryyT FxyeM1xy
0
(N) Gl DI PG DRE1¢ DR
¥ w (w 1 ) 1( 1° yy w1’xx)

* =(N-1) , =(N=1)

in BIY =
2( 1 yy Wi ex )] sin = dy 0

m=1, 2, ses, M (2.60)

and

=(1)r=(1) (=01) _ (=01 _ (1)—(1)
J 0" ey ') - Nyo W1rxx Ny° 1ryy 2N xy° Y1 xy
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F(0-5@) LD L)

+
E (w 1'yy 1 XX

=(2) _ =(2) .oonmy o
G, (w1 oyt w1’xx)) sin g+ dy =0 n=1,2, .., M

for i =2, 3, ..., N-1

b -
=(1)r=(1) (1) (i) (1) (1) (i)= (1)
J (D [w1 I- x° Y1rxx” Ny° 1yy 2N xy°"’ Xy
0
=(1i)_ (1-1)_ =(i+1) =(i) , =(1)
+ E (2w W, W ) - 2G (w1 yy+ w1’xx)
=(i-1), =(i- 1), =(i+1) =(i+1) . nm
+ G (w1 vy W T W vy W ey )) sin -SX dy = 0
n=1,2, .o, M
for i = N
b
J FEM M) - gD (=) o (=)
1 X "1'xx  ye Ttlyy xy°w1’xy
0
¥ —(N)_ =(N-1) =(N) |, (N)
E (w1 w1 ) - G (w y S xx)
¥ —(N-1) ., —(N- .
G2(w$,yy) + w§?xl))) sin 9%1 dy = 0
n=171, 2, «0oey M {(2.61)

Equations (2.60) and (2.61) are integrated to obtain 2*M

simultaneous homogeneous equations for each fiber-plate in terms of
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the 2*M undetermined coefficients Wé;)

. The

and W(i)
en

simultaneous equations for the ith fiber—-plate can be expressed as

Logq H 0
H L
even
0 0 L
even
0 0 -H

where the submatrices for the ith fiber-plate are defined by

B * uo
L1_k1(a) 0
0 L k*(a°
3 3a
=(1) _
Lodd = 0 0
0 0

(1)

0
) 0

* Eo
Ls-ks(a—)

f
(ws)

[ (W)

(ws)

(wc)

.

N

odd

even

even

odd

J

L) O »
° s O
LI } O

*
Lem-1)®(u-1)

(1)

uO
)

a

(

= {0}

(1)

(2.62)

(2.63)



f(i)

even

2(1)_

with

6U

0 Lu-ku(;-) 0

0
Hypmhyo(3)

H32—h32(5-) H3u-h3u(5-)

_H(M-1)2'h(M~1)2(£')

* ao
oo (5

Bom-1)M P (M=1)M

)

(1)

(2.64)

(1)

(2.65)

uO
(;—)
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(1) _ (1) (1) (1) T 2 M2 (1) mrw, 4
L, = ( ) + 2(D + 2D, )( ) ( =)= + D, (b )
v Ve oD (@3]
) (i)_ A A
(i)_ 1)_ 212 ,(i)y ;2 (1)_ 12, ,mm,2
k= [(AH AT ALs )( ) (A12 T )(b )]
22 22
(1)_ (1) w43, (1) Ty MOT\2 4mn
Ho'= L4D Di6 (A) MD (= )( )] —_
b{(m™= n°)
AT
p(B) (A(l)- 12 (1))( I 8mn
Bon 16 AT A6 X b 2_ 2)
52 m - n
c(i)= 1, i=1o0or i=N

= 2, otherwise (2.66)

and the sub-vectors for the ith fiber-plate are defined by

- N (1) (., N (1)
s s2 :
ws3 Wsu
(1) (i)
(ws)odd < wsS (w )even < wsé >
ws(M—1) WaM
.

(2.67)
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~ 7\ (1) ~ N (1)
wc1 ch
wc3 Wey
(i) _ . (i) _
(wc)odd_ < Vs > (wc)everf < Vs >
“o(M-1) W oM
. 7 . v

The orthogonality of the trigonometric terms causes coupling between

the (w )(l) and the (w )(l) coefficients and between the
s’ odd c’even

(1)
3" even and the (wc>odd

coefficients. Equations (2.62) lead to an
eigenvalue problem of order 2¥M*¥N for an N-lamina model. This
2¥M¥N system has only M*N unique eigenvalues. The unique

eigenvalues are obtained form equations for the fiber-plates dfuthe

form

('

(1) (i)
odd (ws)odd

==}

ey

|

(wc) = {0} (2.68)

even even
The system of equations for the N-lamina model are shown in figure 2.6
and are labeled equations (2.69). The undefined sub-matrices in

equations (2.69) are
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N1 0 0 o e 0
O N e o @
3 0 0
Nodd= 0 0 N5 o o 0 (2.70)
0 0 0 . N(Mel)
-y o
N2 0 0 « s e 0
0 Nu 0 s e e 0
Neven= 0 0 Ng «=+ O (2.71)
_O 0 0 o o e NM_
with
* *omw.2 T, 2
Nm =E + GZ[(b < o+ (X) ] (2.72)

The N sub-matrix is the result of coupling between adjacent fiber-
plates through the matrix-foundation. Non-trivial solutions to
equations (2.69) exist if the determinant of the matrix of material

properties is zero. The smallest value of Go/a for which this

determinate is zero is (E°/a)cr’ and this value is an eigenvalue of
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equations (2.69). The eigenvector corresponding to (a°/a)cr is used

to determine the short-wavelength buckling mode shape of the model.
Similar to the model with orthotropic fiber-plates, the wavelength of
the mode shape for a model with anisotropic fiber-plates is determined

by minimizing (Eo/a)cr with respect to the wavelength.

2.3 Nonlinear Analysis

The governing nonlinear differential equations are used to
obtain displacements, strains, loads, and stresses for a model with
initially imperfect fiber-plates. The initial imperfections for all
fiber-plates are the same and have the shape of the short-wavelength
buckling mode for the model. The Kantorovich method used in the
linear analysis also is used to obtain solutions to the nonlinear
equations. The unknown functions are expanded in kinematically
admissible trigonometric series in the x-coordinate, and the governing

equations become nonlinear coupled ordinary differential equations.

An approximate solution to the nonlinear coupled ordinary
differential equations is obtained using an algorithm developed by
Lentini and Pereyra [58]. The algorithm is based on Newton's method
and can be used to solve a system of simultaneous first-order
nonlinear ordinary differential equations subject to two-point

boundary conditions. The algorithm uses finite differences to solve
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the differential equations, and adaptive mesh spacings are

automatically produced so that mild boundary layers are detected and
resolved. The difference between successive approximations for each
unknown is calculated. The algorithm iterates until this difference

is less than a specified tolerance.

2.3.1 Orthotropic Fiber-Plates

The nonlinear analysis for models with orthotropic fiber-
plates is similar to the analysis used by Stein [59] for the
postbuckling behavior of orthotropic plates. The displacements in the

present analysis for the ith fiber-plate are expressed as

.\ ° ~u, X : v
S — u;l)(y) sin &
D7 LD ) Dy cos U (2.73)
W1 w,(y) sin %5 + W;i)(y) sin %5

Equations (2.73) are substituted into equations (2.6) and (2.7) to

obtain these expressions for the strains and curvatures:
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u . 12 -
(1) _ _ Yo 2r (i) _2mx . 1,m2 (i) 2nx
x ST a t T ug cos ==+ (A) W (1 + cos -T-)
1,m2 (i) 2mx
* 5()wew (1 + cos =)
o -— —
(1) _ _(yr, (i)' 2m 1, .(1)r2 2mX
gy 1 = Vol * vl cos =+ (W )7(1 = cos >
1o (1), _ X
MR AN (1 cos = )
(07 (1), 2m% _2m (1), 2%
(1 i)' . 2mx n (i)_. 2mx
ny u s osin = TV, sin ==+
T,my (1) (i)' . 2mx 1,7 (i)' .  2mx
3(NWg Twg T osin TE o 5(Pwew T sin
Loy w(Pgin 21X
+5(TIWow T isin =
(1) _ ,m2 (1) . mx
Ke o= (A) w.osin g
K(i) = - w(i)"sin ie.
y 5 A
(1) _ _,em,y (1) X
ey = 4()\)ws cos - (2.74)

7 .
where ( ) denotes differentiation with respect to the y-coordinate.

The stress and moment resultants are expressed as



T

N2 N D gy« N (g cos X
X A
(i)_ (1) (i) 215
Ny = (y) + Ny (y) cos A
(1) _ (1) . 21X
ny xys(y) sin == (2.75)
(iy_ (1) X
MX = st (y) sin X .
(i) (1) ig
My =M " “(y) sin 0
(i) (1) X
MXy = MXYC(Y) co3s =
where
(1) ,(i)-_ E: T\ 2 (1) 1,m2 (i)
Neo = A0 3 u(x) Wyl F () Wewg Tl
A(i)[vgi)' ( (1)') L1 wow él)']
. . . (2 .
(1) (i)p2m (i), 1,m2 (1) 1,72 (1)
Nxc = A11 [X' us * H(X) ws * E(X) w°ws 1+

(D) (D)'_ 1, (1)r2_1 ' (i)'
A vy m gy )T S ww T ]

2
N S T O A A R
Rers U 11,2, (0%, 1302, (1)
1273 "I Vs 2°%7 WV
(1) D7 L (D72 17 0
Nyo = A [Vg jug 2% G 1+
2 -\
(1)e2r (1), 1,m2 ()%, 1,12 (i)
By 5= u 7t g W T+ 5(3)Wow ]



72

N(i) (1)[ (l)' 2n (i) _(%) w(i)w(i)'+

Xys c s s
L@ vl 1y wiult)y
WD oD (2,00 5, (0
i P AL

M(i) (1)(n) (1)

xye (2.76)
Equations (2.74) to (2.76) are used in egquation (2.25) (principal of
stationary potential energy), and the resulting equation is integrated

(1) (1) (1) (1)

over 0 £ x £ A. .For arbitrary suy™, 8v',0, 8v,7, and ew ', the

principle of stationary potential energy requires that the following

differential equations be satisfied:

for i =1, 2, «.., N

21 (1) (1)

T Ve Xys 0

(1)'

y° =0 ; (2.77)
27 N(i) . N(i)'= 0

A Xys yc
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for i =1

+w°)—-

ANE L YRR (1), 1 (1)) (1)
v @A B2l D)ol

SN @My - ojr-st e (2L -
ayi-s3" e (HZP)y - gD @), (2.78)
for i = 2, 3, ...,N
v @A 2D DDyl ) -
Loy i;;< W) - 2ot (DALY -
G;E_B(i°1)'+ (¥)2w21‘1)_ 3(i+1)'+ (§)2w21+1)]
- E*(Zwéi)— wéi—1)- wéi+’)) (2.79)
for i = N
VD' @B @2 )0,
LN My - ey (D% i

G;[-B(N-1)'+ (f)zw;N"1)] - E*(w;N)— wéN’1)) (2.80)

where the previously undefined functions for the ith fiber-plate are
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(0 gD 20 D10,

y ys . Xye y° 2
1y, (1), (i)
2(A)I*nys(wS +w,) (2.81)
(1)_ (1)
8 = Wy

The boundary conditions for this energy formulation are

. b . b
Nil;6uéi) =0 RSRE T Pt
y 0 y 0
. (b . 1y qb
N e g ul ) g (1) ’ =0 (2.82)
yc c ys s
0 0
. b
AR C 2l i=1,2, vouy, N
y s |,

The model remains rectangular during loading and is simply-supported

on the unloaded edges. These boundary conditions are expressed as

at y=0and at y = b

(1)_ (1) _ (1)_ (1) _ (1)_
Ug = vy T NG T M T 0 (2.83)

The equation (2.77) and boundary condition equation (2.83) for Néi)

are éatisfied by N53)= 0 for 1 $1 £ N throughout the region.
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The first-order governing equations for a model with

orthotropic fiber-plates can be expressed as a function of eight

unknowns for each fiber-plate, and these unknowns are u(l), vél),
w(l), B(l), N(l), N(l), M(i), and V(l). The other unknowns are
s ye Xys ys y

expressed as functions of these eight. The eight differential
equations for each fiber-plate are obtained by re-organizing equations

(2.74) and (2.77) to (2.81) and are stated below:

for i =1, 2, e, n

(1)
N
(i)' xys . 2n (i)_1,m, (D) (1) . (i) ' (1)
s T A(i) Y Ve T §(i)(ws B r WoB T Wl )
66
(1) (1)
N 2 .\ A .
(i)' _ye 1T, 1 (i) 12 2n (i)
Ve TTM TP 2 Wof A(i)[A Ut
22 22
1,m2 (1), 1,72 (1)
M(X) ws o ¥ E(X) s ]
m(1) (1) )
(i)' _ ys 12 m2 (i
SN ) A R s
22 22
MESLIACD (2.84)
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ys

for i

LD

y
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2
ALy <'> (1)_ S (1)
(&) (55 (1) r g o g
22 22
HOAD T LMDy
2r, (1)
'(A ) nys
(D 1D 020, LD, !
Vy ()8 5 yc (B W,)
l (i)« (1)
2 xys(x)( ¥o)
= 1
2
_(“) [DE;) M( ), (D(1) Dgé) )(E)Zw(1)] -
RN 1T S s
22 22
(D .
1y @y (1, _1lem2, (1), 12 (1)
EEIE wy) = 2P v = 7 ye
22
(2 -
A 2u
(1)_ 2 ° L, am (1),
AT T T
22
312,05 2))) - gl W@ -
4% WS' Wo ws s
(1) (1) ()
3 s, (- G5 - o s,
N D(1) @)
22 22 22
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D(2) { ‘
_ 22 vmy2 (2),
(1 ;?Ej)kk) LD (2.85)

22

fOP i = 2’ 31 KR} N"“

N2
i) zD(l) () (1)_ 91(;’ 2 (1)
(l '_ v 1 i f i _
v, - (< [—=— NEY N + (D)~ NED ) (5w ]
%22 D22
(1) 1y 501, ALy
- i i i 2 / (1) 12 (l)
AR I RO D= Yy
22
(l) ,)G
(1) _ Ao roo_ 0, 2n (1),
R I CO R - el
22

.82 . : .
%(%)z(wél) + wf)]} - E*(2w(l)— W w(1+1))

S S
(l) (i (i-1)
- 26, [-X- (1 L 1D 2, (1)] -G [fx____
(1) D( i) (1 1)
Dao 22 Do
(1 1) M(1+1)
(1 ‘(f =) (5% =0, e
D
b2 22
D(1+1)
12 2 (1+1)
(- A (2.86)

22
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for i =N
- () J(0%
N)' _,m2 (N) (N)_ 12, m2 (N)y _
LA (€ (=5 (N) Mo ¥ (Dgy ™ N ) (D) ]
22 22
WD 1y, (0, Ny, A
N) N _l,m2, (N ey
2 xys(x)<3 o) Z(A) (ws ){A(N\ vo
22
2
(N) -
A 2u
woqaMND_ 12 o T70 2m (N)
(Ayy°- () RO
22
302 )2+ w1y - g Mo Gy
° S ws
(N) (N) (N 1)
, m,2 (N) z
= iy TP 1 [Dm =
22 22 22
D(N 1)
(1 - = (HZT) (2.87)
DZ2
The function of y for the initial imperfection w, 1is expressed as

wo(y)

where W,

: kil
= w,sin i

(2.88)

is a constant that is input to the analysis.
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2.3.2 Anisotropic Fiber-Plates

The nonlinear analysis for compression-loaded models with
anisotropic fiber-plates is similar to the analysis used by Stein [60]
for the postbuckling behavior of orthotropic plates loaded in combined
compression and shear. The equations in t?e present analysis for the
ith anisotropic fiber-plate are general forms of the equations for thé
ith corthotropic fiber-~plate. The displacements for the ith
anisotropic fiber-plate are expressed as

(1)°  TUeX

i e Wy u Py s B
(i) 21X
U, (y) cos =
v(i) - vgi)(y) R v;i)(y) sin g§5

(1)°

. WX i
W = w°s(y) sin 7- + w, (y) sin =~ +

(y) cos %— (2.89)
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Equations (2.89) are substituted into equations (2.6) and (2.7) to

obtain the following expressions for the strains and curvatures:

SR

o, 2m (D) o 2mx _2x (D), 2mx ,
A

08 S5 T %

%(g)ZEw;i)2+ wéi)2+ (w2152_ wéi)z) cos g§2

2wéi)wéi)sin 2%2] + %(f)széi)w08+ wéi)WOC
+ (w;i) o5 wéi)WOC) cos g%z - (w;i)w°s+
wéi)woC) sin 2%2]

) syt v ) .
v(l) + v(l) sin gnx + v(l) cos 21X +
o s A c A

Ll 2 @lPh2 pl 2
(wéi)')2] cos 2%: + 2wéi)'wéi)'sin E%Z} +
Wél)'w:,c) cos %L: + (w;l)'w;c+

(' e 21X



LD

Xy

(1)
S

(1)
K

(1)

K
xy

= (%)ZEw;i)sin
_ (i)
= [ws sin :

= —2(%)[wéi)'cos fﬁ - wéi)'sin X4
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i)yt (i)t . 2mx i) 21X
u§)+u )s1n-A—+ué)cosT+

2n V(i)cos 2nx _ 2n (i) _. 2mx
A S A

Tomye (1) () (D) (1) (1) (1),
Z(A)[ws wc ws wc * (ws wc

w(i)'w(i)) cos anx (w(i)w(i)'-
s c A s s
(1) (1)'y . 2mx. . 1,m - ()" (i)'
Wl oW, ) sin : 1+ 2(}‘)[wc Wog™ Wl Vo
. (wéi)'”os+ wéi)nwoc) cos 2%5 . (w;i)'wos‘
(i) Lo2mxe L 1wy (1) 7 (1) !
¥ wc w°c) sin A 1 2(A)[ws w°c wc w°s
+ (w(i)w' + w(i)w' } cos aIx (w(i)w' -
s °¢c ¢ °s A s °s
(i) . 2mx
W, woC) sin : ]

X (1) X
+ wC cos X ]

>a|-_-]

. X iy X
X, D" s =1

C

A

(2.90)



The stress and moment

Nii)= Nif)(y) + Ni;)(y) sin 2%2 +vNié)(y) cos

NP w0+ w0 sin 2nx + N ) cos

Ne= Wy w2y sin 2 NEL)(y) cos

Mii)= Mi;)(y) sin %Z + Mii)(y) cos —

Msi)= M;;)(y) sin %2 + M;é)(y) cos %E

Mi;)= Mi;;(y) sin %Z + Mi;i(y) cos %Z

where

WD A0 B 2 (0F 0% 12
wogi 1 e alD D dr (D52, L1
Rl Rl
L DD (D0 L
w°cw;i)'+ w;c éi)— wlswéi))]
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resultants are written as

(w

A
2%

A
21X

A

(2.91)

(1),

°s' s

)21
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xs N x o Ye 2' s ¢ s Woot
(1) (D) (L)' 1, (i)' (i)' (i)'
wc w°s)] * A12 [vs ¥ E(ws Yo +'ws w°c
(1)

R I A

1wy (1) () (D) () L (i) (i)
Z(A)(w ws wc Nc ws w°s wc ]
wéi)w' EENE NS

°s c °¢

(hp2n (1), 11,2, (D2 (D)

(1)_ . 1T
N = A M(A) (ws c

xc 11 ") s

L2 W Doy W)y A(l){vél)

1,7
2°A °s S °c c

l(w' w'(i)t” w' (i)

10, (i)".2 (i)'\2
ﬂ[(ws )= (wc > 2°7°°s's oc'e )}

(1)[u(1) 27 (i)+ 1(3)(W(i)w(i)v+

A s 27 s c

EOLINEO TN C DL ¢ S LI ¢ O

S C °s c °c s °c S

(1))]

Yos'e
u 2 2
(1)_ (1) 2, (1) (1) (1)
ye A12 - a H(X) (ws ¥ ¥e )+ ( ) (w°sws ¥

(1))] R A(l){v(l)

°CC

(1))2 (i) ) ]

4[(w + (w

+ (w

: (1)v ;Cwéi)s} . A(1)[ (i)',
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%(f)(w(i)w(i)'_ EOLINC VR € S AN
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(1)_ (Dp_,2m, (1)_ 1, w2, (1) (i) (1)
Nys = [=(=)u 2()\) (ws LA M
wél) )] + A(l)[v(l) (wéi)'wéi)'+ wéi)'w;C
wéi)vw;s)] . A(l)[ \1) %E Véi)+
%(%)(w(i)w;i)'~ wéi)wéi)'+ w;i)'wos" wgi)'woc
+ w(i)w; - w(i)w; )]
s s ¢ c
VDL 0, L2, (1) NETENN
ye 12 A Yg c
1,712, (i) (i) (i), (i)'
5(1) (w°s s w°c C )1+ A {Vc -
e (D)2, (1)ry2, _ L (1) (i)
ut(ws ) (wC )71 5(Wo g wocwc )}
(1)[ (1)'+ %3 V;i)+ %(E)(w;i)wéi)'+
w(i)'w(i)+ (1)' (1)' W W (1),
s c °s c °c s °c 5
(1)
Wo W )]
(1) (0. Yo 1x2 (D2 (D2 1wz, (1)
Neye™ M6 - S LA 5( ) (MogWg
e 1 e alD i Ttz (018,
GRS I VL S
Temy, (1) (1)1 (i)' (1) (1)'
(A)(ws wc ws wc °s c
, (1)' (1) w (1)]
°c S °c ] °s c
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Ngroe Ayg T=Ehal- T2 Pl WDy
wéi)wos)] . A(l)EV(l)'+ %(W;i)'wéi)'+ w;i)'w;c
L) (Dl 0,0, o,
O OIS
e O - <
L8120, 0+ B
el B2y o Ll T LDy
(1)[ (1) XE ;i)+ l(g)(w(i>wéi)'+
wy i)
w2 o0 @20 Dg;)w(i)" p(D) (1) (D"
(1) (1)( 202 p(D, D op(D @y (1)
M;;)= Dﬁ;)(g)Zw;i) ;;) (e, 2D(1)(“) éi)'
. (1) ()2, (D= p{D (D" (D) gy (D"
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m{i), (i)(w)z (1) (1) (i)', (i)(n) (i)

XyS D26 “s
(1) (1) T (1) (i) (1) (1) T ( )!
Mxyc ( LR 26 ( ) W (2.92)

Equations (2.90) to (2.92) are used in equation (2.25), and the
resulting equation is integrated with respect to x. For arbitrary

(i)’

sul, sull, aull, svl, 5v{D, 6v{D, 6wl ana sulD), the

’ s ? c vy, Gvs ' évc s sws

principle of stationary potential energy requires that these

differential equations are satisfied:

for i =1, 2, ¢eey4 N
(1)' _
Xy° =0
. Ny
2n (D g
A XC Xys
2m (1), (D)
A X3 Xye
(1)'
Y° 0
X Sy
2m (1) ()
A Xye ¥s
3 1
2n ) 7 (2.93)
A Xys ye
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OR'G”\?AL Phaoe=

Hos 5

9E POOR quaL ity

for i =1
(M'_ _(x 2 (1) (1) 1 (1) (1)
Voo = =D BFacle S e,

Tomy2, (1), (1) T (1)
SN e w0 = ol

Xy®

iyl e 10! 5y

5 xyc °a 2 xys
oyl-sg e (AT -
ayl-8 2" (D2 - gD WD)
5;) (w)ZM(l) ( ) (N(1) % Nil))(Wé1)+ WOC) +
SO Gl ) v D))
I R R TR N
err-e{""s (ML -
6 l-600) + (H2() - B - W2 (2.9%)

for i =2, 3, «..,N

(1) 2 (1) (1) (i) (1)
VYS (A) G ) (N 2 xc AL w°s) ¥
10192y (1), (1), (1)
5(;) XS (w o ) (I )[(Nxyo
1 (1))(3(1) ) + 1 N(i)(s(i)+ w, )1 -

2 xyo °¢ 2 Xys "s s
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(i)

*. 7.2 (1)
2G][ B

+ (I) W 1=

*-(1-1)v T _
GZE 8s * (A) ws Bs

NP yerC G R
S S

(' 12y (1)
ye = -0 2 ¥

1 <1> <1> 1
LESR MRat o) + (OHI

Xy®°

1 (1) (i), 1 (1) (1),
2 xyc)(B s) * 2 xys(B

)! (E)Zw(i)

2G [- 5(1 o,

1 -

¥ (i-1)', w2 (i=1)_ _(i+1)!
G2[”BC ¥ (X> Yo Bc
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where the previously undefined functions for the ith fiber-plate are
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The boundary conditions for this energy formulation are
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The model remains rectangular during loading and is simply supported

on the unloaded edges.
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The first-order governing equations for a model with

anisotropic fiber-plates can be

unknowns for each fiber-plate,

expressed as a function of twenty

These unknowns for the ith fiber-plate
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Chapter 3

RESULTS AND DISCUSSICN

This chapter presents results from the analytical model
described in Chapter 2 Analysis for compression-loaded laminates.
Short-wavelength buckling results obtained using the linear analysis
are discussed. These results are compared to the results obtained by

Rosen [ 7] for unidirectiocnal [O]S—class laminates. Laminate end

shortening and stress data for short-wavelength buckling are presented
for several multi-directional laminates. The short-wavelength
buckling mode shapes for the laminates are described. Results
obtained using the nonlinear analysis also are discussed. Each
laminate has laminae with short-wavelength out-of-plane initial
imperfections. The nonlinear behavior of a laminate is described
using laminate end shortening, compressive load, and maximum w
displacement. Shear stress and strain distributions within the

laminate are presented.

The last section of this chapter discusses failure prediction
for compression-loaded laminates. A failure criterion is described
and applied to the analytical results from the present model. The

failure mode is predicted for several laminates. Approximate

106
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o]
equations for predicting the compressive failure of 0 -dominated

laminates are presented.

All results were obtained using the central scientific
computing complex at NASA Langley Research Center. The results of the
linear analysis were obtained using Cyber 170 series computers. The
analysis of an eight-layer model required a maximum execution time of
1000 seconds. This long execution time is the result of the number of
iterations required by the solution algorithm to determine the minimum
compressive stress for short-wavelength buckling and the corresponding
half-wavelength of the mode shape. The analysis of the eight-layer
model required approximately 39,500 decimal memory locations. The
results of the nonlinear analysis were obtained using a Cyber 205
vector processing computer. This analysis had a maximum of forty-one
finite difference stations. The ratio of the maximum distance between
adjacent stations to the plate width was 0.05 when using all forty-one
stations. An error tolerance was specified for each unknown in the
nonlinear analysis since the results of this analysis arevapproximate.'
This specified tolerance was approximately one percent of the maximum
calculated value for each unknown. The execution time for a nonlinear
analysis for a single load case of a four-layer model with orthotropic
fiber-plates was approximately twenty-five seconds. The execution
time for a single load case of a eight~layer model with anisotropic
fiber—-plates was approximately 390 seconds. Ten ihcremental load

cases were used for a typical nonlinear analysis. The analysis of
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these four-layer and eight-layer models required approximately 1 X 106

memory locations and 4 X 106 memory locations, respectively.

3.1 Short-Wavelength Buckling

3.1.1 Comparison with Rosen's Results

Rosen's studies [7] included the short-wavelength buckling of

the [O]s—class laminates used in structural applications. These

laminates had fiber volume fractions greater than 0.30 and buckled
into the shear mode shape shown in figure 1.1. He assumed that the
laminates failed when short-wavelength buckling occurred and suggested
that the compressive strength for these laminates was proportional to
the matrix shear modulus as indicated in equation (1.3). The fiber's

]
elastic properties had a negligible effect on the predicted strength.

The analysis used in this study can be simplified to obtain
Rosen's results. All fiber-plates have the same w displacement for

the shear mode shape; equation (2.55) becomes

>1

=(1) o T aga DX oW
W, (x,y) = W, sin &= sin EX (3.1)
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where Wy is a constant. The characteristic equation for determining
the short-wavelength buckling of an N-lamina [O]S—class laminate is

obtained from equations (2.56) and is expressed as

{Diz)(§)4+ 2(D§;)+ 2D(1) T2, M\ 2 (1)(E)H+

66 %) (5 * Do (§

T, A (1)_ ,(Dy,1,2, °m 2,2
(5')(;?' App = Ay T gy 270D
22 m
T 247127 (1) m (i)+ (i)y,my2,1m,2
5) 11700 ()T 20Dy e 2D (T
T Al G
(1), myb4, oy d2 (1) (D)y,my2, _m .. .
Do (p) + (35 )(AT 127 A O sl
22 m
20,2, (T\2,7(N=2)_
Ztm) [(A) + (b) ]] =0 (3.2)
Equation (3.2) is satisfied if
ENEIEN (1), ,n(1)y, 12,12
D.; (;) + 2(D12 + 2066 )(X) (b) +
- T
A G
(1) (my4, (2012 () W)y m2, ‘o
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22

2r TN\ 2 7T\2
2tm) [(i) + (g) l1=0 (3.3)
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or if

D@ 20D+ 20l (H2EHZ 0} (D

5oAL () (12, %
(E')(;T' Ao ™ Ay N5 Tt T (Tt 28y )2 L )2+
22 -
T2
2 = 0 (3.4)

Equation (3.3) determines the critical end shortening for short-
wavelength buckling of the ith fiber-plate when i = 2, 3, ..., N-1,
i.e., interior fiber-plates. Rosen's analysis considers interior
fibers. The bending stiffness terms in equation (3.3) are negligible
compared to the loading and matrix-foundation terms, and the ¢ritical

normalized end shortening is expressed as

u, AT G
2y L2 () Gt m
(a )cr (AT e S T
22 m
2 A2
Ztm) {1 + (5) 13 (3.5)

where this negative normalized end shortening corresponds to a
compressive strain. The half-wavelength of the buckling mode shape A

2

is much smaller than the laminate width b so that the (%) term in

(o Eod

equation (3.5) is negligible. The half-wavelength is discussed in
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detail in section 3.1.1 Laminate Mode Shapés., Equations (2.1) and
(2.2} for thicknesses and fiber volume fraction are substituted into
equation (3.5).' The constitutive equation for the ith fiber-plate
also is substituted into equation (3.5), and the compressive stress in

the ith fiber-plate is

. V.G
(1) _ _f™m
UX = 1 - Vf. (306)

The compressive stress in the composite laminate is

0, = T | (3.7)

Equation (3.7) is the same as the equation (1.3) obtained by Rosen.

The analysis used in this study both simplifies to Rosen's
classic results and provides new results for the short-wavelength
buckling of compression-loaded laminates. Equation (3.4) determines
the critical end shortening for short-wavelength buckling of the ith
fiber-pla;e when i = 1 or when i = N, i.e., the outer-most fiber-
plates in the model. Rosen's analysis does not specifically considefL
the outer-most fibers. The compressive stress in the composite

laminate when the outer laminae buckle in a short-wavelength mode is
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derived using the same procedure as used above, This compressive

stress is expressed as

G
m

0, = ETT-:-vzj (3.8)

Equations (3.7) and (3.8) show the dominant role of the matrix in
determining short-wavelength buckling response. The fiber-plates are
so thin that their bending stiffnesses are negligiblé compared to the
foundation extensional and shearing stiffnesses of the matrix. The
compressive stress for short-wavelength buckling is a function of how
the fiber-plate is supported. An interior fiber-plate is supported on
two sides by matrix~foundation. The compressive stress determined by
equation (3.8) is half the compressive stress determined by equation
(3.7) because the outer-most fiber-plates are supported on only one

side by matrix-foundation.

The short-wavelength buckling of a [O]S-class laminate may be

a sequence of buckling of the outer laminae. Outer-lamina buckling
can occur when the outer-most laminae are not supported by test
fixtures or specimen end tabs. The amplitude of the short-wavelength
buckling mode shape may be large enough to cause matrix failure that
leads to delamination. When one pair of outer laminae buckles and

delaminates, the adjacent laminae become the "new" outer laminae and
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subsequently buckle and delaminate. The failure of a [O]s-class

laminate is characterized by this progressive shori-wavelength
buckling and delamination of the outer laminae. The characteristic
"brooming" failure mode for these laminates 1s evidence of progressive

buckling and delamination.

3.1.2 Laminate Compressive Stresses and Strains

The discussion in the previous section describes values that
bound the compressive stress from the present model for the short-

wavelength buckling of [O]S-class laminates. The bounds for the

compressive stress result from allowing the interior laminae and the
outer-most laminae to buckle independently. The general form for the
present analysis requires all laminae to buckle simultaneously into
the laminate's short-wavelength mode. The normalized compressive
stress from the present analysis as a function of the number of
laminae in the laminate is shown figure 3.1. The compressive stress
is normalized by the stress obtained from Rosen's analysis given by
equation (3.7), and the laminate fiber volume fraction is 0.55. A
two-lamina model focuses on outer-laminae buckling and gives the same
value as equation (3.8) for the compressive stress from the present
analysis. As the number of laminae in the laminate increases, the
normalized compressive stress for short-wavelength buckling

asymptotically approaches unity. A twenty-lamina model is similar to
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Rosen's model and predicts a compressive stress at short-wavelength
buckling within five percent of the compressive stress from equation
(3.7). The significance of the behavior in figure 3.1 is that
consistent results using the present analysis for determining the
stress at short-wavelength buckling in different laminates require the

laminates to have the same number of laminae.

The laminate compressive stresses and strains for short-
wavelength buckling of several two-lamina, four-lamina, and eight-
lamina laminates are presented in Tables 3.1, 3.2, and 3.3,

respectively. The critical normalized end shortening Eo/a is equal

to the laminate compressive strain for short-wavelength buckling. The
half~-wavelengths for the mode shapes are also included in the tables
and are discussed in the next section on laminate mode shapes. The
results in Table 3.1 show that these stresses are affected by laminate
anisotropy. A combination of bending and inplane stiffnesses (see

Hé;) and hé;), respectively, in equations (2.66)) cause the
compressive stress for a [+30]s laminate to be thirteen percent less
than the compressive stress for a [O]S laminate. Similar laminates

with more than two laminae have the same differences in compressive

stresses observed in Table 3.1. The compressive stress for a [90]s

laminate is approximately the same as the compressive stress for a

[O]S laminate. These two specially-orthotropic laminates demonstrate
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that matrix-foundation components dominate the laminate compressive

stress. All compressive stresses for the four—lamina laminates (Table

3.2) are approximately the same. These laminates do not have the A?6

T . .
and A26 inplane stiffness terms that affect the compressive stress

of some two-lamina laminates., The matrix-foundation components
dominate the compressive stresses for the four-lamina laminates. The

compressive stresses in Table 3.3 for the [Oujs’ [(iﬁS)JS, [+45/0/~
&5/90]3, and [9O/+HS/O/—45]S laminates are approximately the same.

The matrix-foundation components dominate the compressive stress for

these laminates. The compressive stresses for the [O/zUS/QO]s and
[O/+M5/9O/-—M5]S laminates are thirteen percent lower than the

compressive stress for the [OM]s laminate. These lower stresses may

o]
be due to the laminates having 0 laminae as the outer-most laminae

o
and not having any interior 0 laminae.

The effect of fiber volume fraction on the normalized
compressive stress for short-wavelength buckling is shown in figure
3.2. The compressive stress is normalized by the compressive stress
for short-wavelength buckling of a laminate with fiber volume fraction
equal to 0.55. The normalized compressive stress is determined for

0.25 5 Vo = 0.85 which includes most all composite laminates in

structural applications. These results agree with similar results by
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Rosen [7]. The results from the present adalysis show that the curve
in figure 3.2 determines the compressive stress for short-wavelength

buckling of a laminate with any stacking sequence and any thickness.

3.1.3 Laminate Mode Shapes

The laminate mode shape at short-wavelength buckling has half-
waves that are either normal or skewed to the direction of loading.
Also, the shear mode (see figure 1.1) is predicted for all the
symmetric laminates in this study. The mode shapes for several
laminates are shown in figures 3.3 to 3.9, The skew angle is denoted

as ¢. The mode shape for the [O]s laminate has normal waves and is

illustrated in figure 3.3. A similar mode shape is predicted for all
balanced, symmetric laminates. The only difference among these mode

shapes is the half-wavelength A. The mode shapes for the [+1O]S,
[+20]S, [+3O]S, [+45]s, [+60]s, and [+80]S laminates have skewed waves

and are illustrated in figures 3.4 to 3.9, respectively. The skew
angle is plotted as a function of the fiber orientation in figure 3.10
for these laminates., Generally, the skew angle is not the same as the

fiber orientation. The skew angle increases to a maximum at

o
approximately 6 = 45 . The laminate mode shape at short-wavelength

buckling is affected by the fiber-plate bending stiffnesses in
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contrast to the compressive stress which is unaffected by these
bending stiffnesses. The bending stiffness contribution to the mode

shape is discussed in the next paragraphs.

The half-wavelength of the mode shape for a [O]s-class

laminate is determined exactly using equations (3.3) and (3.4). The
compressive strain (normalized end shortening) in these equations is

minimized with respect to the half-wavelength A to obtain

_ -1 T4, 1 m 32 -1/4
A= Tr[(D”) [D,, () +-——2(1_Vf)(b> 1] (3.9)

where

cgl) is defined as (see equation (2.6))

oD

1, outer-lamina buckling

2, inner-lamina buckling (3.10)

The half-wavelength of the mode shape for any laminate can be
determined approximately by numerically minimizing the compressive
strain with respect to 1. The compressive strain as a function of
is shown in figure 3.11 for several laminates. The compressive strain
for the four-lamina laminates decreases rapidly to a minimum and

increases very gradually as the half-wavelength increases. The
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minimum compressive strains are observed easily by expanding the
ordinate in the regioh of interest and re-plotting the results as

shown in figure 3.12 for a [02]s laminate. The compressive strain for
the [0/¢M5/90]S laminate in figure 3.11 decreases rapidly to a minimum

and then increases rapidly in the neighborhood of the minimum as the
half-wavelength increases. The minimum compressive strain for this
laminate is clearly shown in figure 3.11. The half-wavelengths for
two-, four~, and eight-lamina laminates are presented in Tables 3.1,

3.2, and 3.3, respectively.

The half-wavelength as a function of fiber orientation ¢ |is

shown in figures 3.13 and 3.14 for [+e]s laminates and [iejs

o o
laminates, respectively. The results in figure 3.13 for 0 £ 6 £ 90

show that the half-wavelength increases slightly and decreases. The
slight increase may be the effect of anisotropy on laminate behavior
discussed previously for compressive stress, The decrease is similar

to the behavior of D11 as a function of 8. Egquation (3.9) shows

that D11 is used to calculate the half-wavelength. The results in

Q o
figure 3.14 for 0 <8 £ 90 show that the half-wavelength

decreases. The [te]s laminate behavior is not affected by the inplane
anisotropic terms that influence the [+e]s laminate behavior. The

behavior in figure 3.14 may also reflect the influence of D11 on the
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half-wavelength., The half-wavelength as a function of the laminate
fiber volume fraction is shown in figure 3.15. The response for the

[02]s and [iusjs laminates is used in the figure as typical behavior.

The half-wavelength increases with increasing fiber volume fraction
for both laminates. Specifically, the half-wavelength for these

laminates with Vf = 0.85 1is approximately twice the half-wavelength

for the corresponding laminates with V_ = 0.25.

£

The half-wavelength results of the present study may explain
the scatter in compressive strength data for composite laminates. The
range of half-wavelengths for the buckling of laminates with

Vf = 0;55 in this study is from 0.0140 inches to 0.2255 inches. Most

of the half-wavelengths are on the order of 0(10_1) inches. Some
compression test methods for composite laminates use specimens with
short test sections (e.g., 0.50 in., [61]) or require elaborate
fixtures that completely support the test specimen along the length
[62]. These methods may inhibit the natural failure mode for a
laminate that deforms in a short-wavelength buckling mode shape.
These methods may cause the half-wavelength to be less than the half-
wavelength corresponding to the minimum compressive strain if short-
wavelength buckling ever occurs. The results in figure 3.11 show that
significantly higher compressive strains can occur if the half-
wavelength is 0.1 inch less than the half-wavelength corresponding to

the minimum compressive strain,
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3.2 Nonlinear Behavior

The nonlinear behavior of four laminates is presented in this
section. The laminate nonlinear behavior is the result of short-
wavelength out-of-plane initial imperfections in each lamina., The

laminate orientations are [02]8, [0/9015, [i45]s, and [+M5/0/—45/9O]S.

These laminates illustrate the range of application for the present

analysis. Specifically, these laminates illustrate:

[02]S Orthotropic laminae, unidirectional laminate

[0/90]S Orthotropic laminae, multi-directional
laminate

[:MS]S Anisotropic laminae, multi-directional
laminate

[+M5/0/-M5/9O]S Orthotropic and anisotropic laminae, multi-

directional laminate

The nonlinear laminate behavior is discussed for two imperfection-~

amplitude~to~lamina-thickness ratios Go/t. These ratios are
o

w /t = 0.1 and Eo/t = 0,5. The imperfection amplitudes for

anisotropic fiber=-plates, ;03 and ;00’ are simplified by letting
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;°s= Wo o= W,. ALl fiber-plates have the same imperfection. The shape

of the imperfection is the same as the short-wavelength buckling mode

shape for the laminate.

3.2.1 Displacements and Inplane Stresses

The nonlinear behavior of a [02]s laminate with initial

imperfections is shown in figure 3.16., The ordinate is the laminate
compressive.stress normalized by the laminate compressive stress for
short-wavelength buckling. The abscissa is the laminate end
shortening normalized by the laminate end shortening for short-

wavelength buckling., The laminate response for Go/t = 0, (no initial

imperfections) is included for comparison with the laminate response

for wW,/t = 0.1 and 0.5. The results in the figure show that this

laminate behaves like a wide column, i.e., the slope of each response
curve (laminate stiffness) approaches zero as the end shortening is

increased. This change in stiffness is dramatic for the laminate with
Wo/t = 0., but is more gradual for the laminates with Qo/t = 0.1 and

0.5. A maximum compressive stress that corresponds to the maximum
load=-carrying capacity of the laminate is defined by this wide-column

response, The maximum stresses for laminates with ﬁo/t = 0.1 and 0.5
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are approximately five and twenty-five percent lower, respectively,

than the maximum stress for the laminate with Ww,/t = 0.

0
The stress resultant NX for a 0 lamina is plotted in
figure 3.17 for u,/(u,) .= 0.5, 0.8, and 1.0. The laminate end

shortening for short-wavelength buckling is (E°)cr’ The initial

imperfection for the [02]s laminate is wW,/t = 0.5. The results in

the figure are typical of a plate with an out-of-plane initial
imperfection. The stress resultant at the edges of the lamina

(y/b = 0. and y/b = 1,) is greater than the stress resultant at the
center of the lamina (y/b = 0.5). The difference between the stress
resultants for these locations increases as the laminate end
shortening increases. The stress resultant at the edges is more than
twenty-five percent greater than the stress resultant at the center

when u°/(u°)cr= 1.0.

o
The w displacement for the outer-most O lamina along

X = A/2 is plotted in figure 3.18 for u,/(u,) .= 0.5, 0.8, and 1.0.
The initial imperfection for this laminate is ﬁo/t = 0.5. Again, the

results in the figure are typical for a plate with an out-of-plane
initial imperfection, The shape of this w-displacement curve is

approximately parabolic for ﬁ;/(ao)cp= 0.5. This shape changes as
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u,/(u,) . increases. For u,/(u,) = 1.0, the magnitude of the

(1

slope, w,y , is very large near the lamina edges and the w

displacement is approximately constant for 0.3 £ y/b g 0.7.

The maximum w displacement as a function of end shortening

for a [02]S laminate is shown in figure 3.19. The laminate response

for w,/t 0. is included for comparison with the laminate response

for w, /t 0.1 and 0.5. The maximum w displacement occurs at

y = b/2 as illustrated in figure 3.18. The results in figure 3.19
show that significantly large w displacements occur for the
imperfect laminates, The w displacement is approximately equal to a

lamina thickness for the laminate with w,/t = 0.1 for
ﬁo/(ﬁo)cr= 1.0 and almost equal to two lamina thicknesses for the

laminate with W,/t = 0.5 for u,/(u,) = 1.0. These large w

displacements produce large interlaminar shear stresses as discussed

in section 3.2.2 Interlaminar Strains,

The nonlinear behavior for a [O/9O]s laminate with initial

imperfections is shown in figures 3.20 and 3.21. Laminate compressive
stress as a function of laminate end shortening is plotted in figure
3.20, This multi-directional laminate has the same wide—column
behavior as the unidirectional laminate (ef., figure 3.16). The

maximum stresses for [0/90]S laminates with w,/t = 0.1 and 0.5 are
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approximately seven and twenty-eight percent lower, respectively, than

the maximum stress for this laminate with w_ /t = 0. These
differences are similar to those observed for the corresponding [02]S

laminates. The maximum w displacement as a function of end

shortening for a [0/901S laminate is shown in figure 3.21. The

results in this figure for the multi-directional laminate are
approximately the same as the results in figure 3.19 for the

3

unidirectional laminate, Generally, the results for the [0/90]S

laminates are approximately the same as the corresponding results for

the [02]s laminates.

The nonlinear behavior for a [iusjs laminate with initial

imperfections is shown in figure 3.22. The normalized laminate
compressive stress is plotted as a function of normalized laminate end

shortening for u,/(u,) S 1.0. Results for u,/(u,) > 1.0 did not

converge to within the specified tolerances. The mode shape for
short-wavelength buckling of this laminate changes from having normal

waves to having skewed waves for u,/(u,) > 1.0. The lack of

convergence is caused by the changing mode shape. The results in the
figure approach the wide~column behavior discussed previously. The

maximum compressive stresses in the figure for [iusjs laminates with
Cg/t = 0.1 and 0.5 are approximately five and twelve percent lower,

respectively, than the compressive stress for short-wavelength
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buckling of this laminate with Wo/t = 0, The results for the [iusjs
laminate with ;%/t = 0.1 are approximately the same as the results
for similar [OZJS and [O/QO]s laminates. The results for the [¢M5]S
laminate with Ww,/t = 0.5 suggest that this imperfection has less
effect on the compressive stress of a [iMBJS laminate than on the

compressive stresses of [02]s and [0/90]S laminates.

o
The Nx and ny stress resultants for a 45 lamina are

plotted in figure 3.23 for u,/(u,)

or” 0.25 and 0.50. The initial

imperfection for this [¢M5]S laminate is w,/t = 0.5. Laminates with
E°/(E°)cr> 0.50 have compressive stresses more than an order of
magnitude greater than the typical compressive strength for a [:MS]S

laminate, and results for these laminates are not included in the

figure, The maximum NX occurs at the laminate edges although NX

is approximately constant across the laminate width, The stress

resultant ny is constant across the laminate width. The stress
resultant Nx i1s more than twice ny for both values of Eo/(ﬁo)cr;

however, ny is sufficient to initiate failure within the laminate,

and this failure is discussed in the section on laminate failure

predictions.
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Results for the w displacements in the [iusjs laminates are
presented in figures 3.24 and 3.25. The w displacement for the

0 .
outer-most 45 lamina along x = A/2 1is plotted in figure 3.24 for

U, /(U,) .= 0.25 and 0.50. The initial imperfection for this laminate
is w,/t = 0.5. The shape of these w-displacement curves is
approximately parabolic for both values of E°/(E°)cr' The maximum w

displacement as a function of end shortening is shown in figure 3.25.

The laminate response for w_/t

o 0. 1is coincident with the ordinate.

The laminate response for Ww,/t = 0.1 and for w,/t = 0.5 are

presented also. Significantly large w displacements occur for the
imperfect laminates. The maximum w displacement is greater than 1.5

lamina thicknesses for the laminate with w,/t = 0.1 for
UO/(GO)CP= 1.0 and is approximately equal to two lamina thicknesses
for the laminate with w_/t = 0.5 for Eo/(ﬁo)cr= 0.9. These w

]

displacements are larger than the corresponding w displacements for

the [0213 and [0/90]S laminates because the axial bending stiffness

for the [iHSJS laminates is less than the axial bending stiffness for

the Oo—dominated laminates.

The nonlinear behavior for a [+R5/O/—45/90]s laminate with

initial imperfections is shown in figure 3.26. The normalized
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laminate compressive stress is plotted as a function of normalized

laminate end shortening for 30/(ﬁo)cr$ 1.0. Results for
ﬁo/(ﬁo)cr> 1.0 did not converge to within the specified tolerances.

The lack of convergence is caused by changes in the laminate short-
wavelength mode shape and is similar to the lack of convergence noted

for the {¢M5JS results. The results in the figure approach the wide-

column behavior discussed previously. The maximum compressive

stresses in the figure for [+115/O/--Ll5/90]s laminates with w,/t = 0.1

and 0.5 are approximately seventeen and thirty-six percent lower,
respectively than the compressive stress for short-wavelength buckling

of this laminate with Go/t = 0, These differences for an eight-

lamina laminate are larger than the corresponding differences for the

four-lamina laminates and are related to laminate thickness,

Q
The Nx and ny stress resultants for a 45 lamina are

plotted for wu,/(u,), = 0.25 in figure 3.27 and for U, /(u,) = 0.50

0
in figure 3.28. The corresponding Nx values for a 0 lamina also
are plotted in the figures. The initial imperfection for the laminate

—— o] Q
is w,/t = 0.5. The maximum Nx in the 0 and 45 1laminae occurs at

o
the laminate edges. For the 45 lamina NX is approximately constant

across the laminate width, and ny is constant across the laminate



width. The difference between Nx for the O° lamina and Nx for the

]
45 lamina is approximately the same as the difference between the

corresponding axial stiffnesses.

Results for the w displacements in the [+M5/O/-MS/9O]S
laminates are presented in figures 3.29 and 3.30. The w

] -—
displacement for the outer-most lamina (45 lamina) along x = A/2 is

plotted in figure 3.29 for E°/(E°)cr= 0.25 and 0.50. The initial
imperfection for this laminate is ﬁo/t = 0.,5. The shape of these w-

displacement curves is approximately parabolic for both values of

a°/(a°)cr‘ The maximum w displacement as a function of end

shortening is shown in figure 3.30. The laminate response for

z
~

(g
1]

0. 1is coincident with the ordinate. The laminate response for

b

~

ot
]

0.1 and for W, /t = 0.5 are presented also. The results are

plotted using the same scale as that in figures 3.19, 3.21, and 3.25
and indicate that the w displacements for the eight—-lamina laminate
are much smaller than the w displacements for the four-lamina
laminates. The w displacements for the eight-lamina laminate are
only one-quarter to one-third the w displacements for the four-
lamina laminates. The w displacements for the eight-lamina laminate

are smaller than the w displacements for the four~lamina laminates
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because the axial bending stiffness for the eight-lamina laminate is

greater than the axial bending stiffness for the four-lamina laminate.

3.2.2 Interlaminar Strains

The strains in each matrix-foundation are expressed in
equations (2.20) as functions of the w displacements of the adjacent
fiber~plates. These strains are interlaminar normal and shearing

(1)

strains. The interlaminar normal strain €z is negligible for all

the cases in this study since the deformation of every laminate is
dominated by the shear mode (see figure 1.1). This deformation also

. . . i
causes the interlaminar shear strains Yéy;

(1)

mxz

and Y to be

constant within each matrix-foundation region. These strains are
largest at the interface between the two outer laminae because the
gradients of the w displacements are largest at this interface. The

interlaminar shear strains are represented by sz and sz and are

reported for the interface between the two outer laminae in subsequent

discussion. The maximum sz occurs along X =m/2, m=1, 2,
3, ... (see figure 2.5a) since the w,y component to this shear
strain has a maximum along these lines., The maximum sz occurs

along nodal lines, Xx =nA, n =20, 1, 2, ... (see figure 2.5a) since

the w,x component to this shear strain has a maximum along these
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lines., These interlaminar strains are caused by the geometrically
nonlinear behavior of the laminae and are different from the
interlaminar strains that result from lamina material property

differences [63].

Interiaminar shear strain distributions in a [02]s laminate

are shown in figures 3.31, 3.32, and 3.33, The strains in figures

3.31 and 3.32 are for Go/(ﬁo)cr= 0.30 and 0.60, respectively, and for

Go/t = 0.1. The results in the figures show that the magnitude of

sz is a maximum at the laminate edges. The maximum and minimum

values for w,y occur at y/b = 0. and 1., respectively. The results
in the figures also show that sz has a parabolic distribution

across the laminate width and is a maximum at the laminate center.

The maximum value for w,x oecurs at y/b = 0.5. The strains in figure

3.33 are for u,/(u,) .= 0.30 and for w,/t = 0.5. The behavior for

Yoz and Y, for w,/t = 0.5 is approximately the same as the

behavior for sz and Yx for Wo/t = 0,1; however, the maximum

z

sz and the maximum sz at Qo/t = 0.5 are greater than the maximum
Y z and the maximum sz’ respectively, for both load cases at

W,/t = 0.1. The w,/t = 0.5 imperfection causes interlaminar strains

for 4,/(u,) .= 0.3 that are greater than the interlaminar strains
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for w,/t = 0.1 at twice the load level. The maximum Yoy

approaches four percent at an end shortening that is only thirty
percent of the end shortening at short-wavelength buckling. The

results in figures 3.31 to 3.33 also illustrate that the maximum sz

is more than an order of magnitude greater-than the maximum sz.

Results for sz only are presented subsequently.

0 [+]
The sz distribution at the 0 /90 interface in a [0/90]s
o] [o]
laminate is shown in figure 3.34 and at the +45 /-U45 interface in a
[iMSJS laminate is shown in figure 3.35. Both laminates are loaded to
Uo/(ﬁc)cr= 0.20, and the results in the figures are similar. These
results are also similar to the sz results in figures 3.31 and 3.33

for a [02]s laminate with u°/(u°)cr= 0.30.

] o
The v . distribution at the +45 /0 interface in a
[+M5/O/—45/90]s laminate is shown in figure 3.36. The laminate is
loaded to Go/(ﬁo)cr= 0.10. The results in the figure are similar to

those reported for the four-lamina laminates except that this laminate

is loaded only to u,/(u,) .= 0.10. The w, ~ component to Y = for
the [+45/O/-45/9O]S laminate is large because the wavelength of the

mode shape for this laminate is extremely small, i.e., A = 0.0477 in.
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(Table 3.3). The w-gradients for this laminate are large although the
w displacements are small (figure 3.30) when compared to similar

results for the four-lamina laminates.

3.2.3 Effects of Fiber Volume Fraction

The fiber volume fraction Vf affects the short-wavelength

buckling behavior of compression-loaded laminates. The effect of Vf

on the compressive stress at short~wavelength buckling and on the
half-wavelength of the buckling mode are illustrated in figures 3.2
and 3.15, respectively.

The fiber volume fraction also affects the nonlinear behavior
of compression~loaded laminates with short-wavelength imperfections.
The nonlinear results reported in the preceeding paragraphs are for

laminates with Vf= 0.55. This section examines the behavior of

laminates with Vf= 0.45 and with Vf= 0.65. These Vf bound

the typical laminates with structural applications. Typical results

are presented in the following paragraphs for [02]s and [ius]s

laminates.

The effect of Vf on the behavior of [02]S laminates is shown
in figures 3.37 to 3.39. Laminate compressive stress as a function of

the laminate end shortening is presented in figure 3.37. The laminate
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it

response for Wo/t 0. 1is included for comparison with the laminate

it

response for W,/t = 0.1 and 0.5. The results for V_= 0.45 and

f

Vf= 0.65 1in this figure bound the results for Vf= 0.55 1in figure

3.16. The laminates with Vf= 0.65 are the stiffest, as expected. The

effect of fiber volume fraction on laminate compressive-stress versus

end-shortening response is more significant for Wo/t = 0.5 than for

W,/t = 0.1. The compressive stress for V.= 0.65 with

Eo/(ﬁo)cr= 1.0 1is more than ten percent greater than the compressive
stress for V.= 0.45 with u,/(u,) = 1.0 when W,/t = 0.5. Similar
results differ by two percent when Uo/t = 0.1. The maximum w

displacement as a function of laminate end shortening is shown in

figure 3.38. These results also bound the results for Vf= 0.55 1in

figure 3.19. Significantly large w displacements are observed for
this laminate at each fiber volume fraction. The w displacements

for Vf= 0.45 are greater than or equal to a lamina thickness for

w ./t = 0.,1. The w displacements for Vf = 0.65 are greater than or

equal to 1.5 lamina thicknesses for w,/t = 0.5. The laminates with

Vf= 0.65 have the largest W displacements of the laminates studied

because the matrix-foundation regions are thinnest for Vf= 0.65.

This thin region may allow large w displacements for the fiber-

plates. The interlaminar shear strain distribution across the
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laminate is plotted in figure 3.39 for u,7(u,) .= 0.30. The

corresponding results for Vf= 0.55 are plotted in figures 3.31 and

3.33. The effect of fiber volume fraction on sz is more

significant for ;o/t = 0.5 than for w_ /t = 0.1. The YXZ for

[+]

Vf= 0.65 at y/b = 0.5 1is more than fOriy-three percent greater than

Y., for Ve=10.45 at y/b =0.5 when w,/t = 0.5. Similar results

differ by twenty-eight percent when ﬁo/t = 0.1. The large w

displacements shown in figure 3.38 may lead to large w~gradients that

contribute to Y .
XZ

The effect of Vf on the behavior of [tusjs laminates is shown

in figures 3,40 to 3.42. Laminate compressive stress as a function of
the laminate end shortening is presented in figure 3.40. The results

in this figure for Vf= 0.45 and Vf= 0.65 are within five percent

of the results in figure 3.22 for Vf= 0.55. The laminates with

Vf= 0.65 are the stiffest, The effect of fiber volume fraction on

the results in figure 3.40 is noticeable but not significant because a

change in V has a noticeable but not significant change in the

f
axial extensional stiffness for this laminate, The maximum w
displacement as a function of laminate end shortening is shown in

figure 3.41. The laminate response for Qo/t = 0. 1s coincident with

the ordinate. These results are also very similar to the results in



135

figure 3.25 for Vf= 0.55. Significantly large w displacements are

observed for this laminate at each fiber volume fraction, and the

largest w displacements occur in laminates with V_= 0.65. The

f

interlaminar shear strain distribution across the laminate at the

] o - ——
+45 /-45 interface is plotted in figure 3.42 for uo/(u°)cr= 0.30.

The corresponding results for Vf= 0.55 are plotted in figure 3.35.

The Y. for Vf= 0.65 at y/b = 0.5 1is more than thirty percent

z
greater than the Y . for V.= 0.65 at y/b = 0.5 when W/t = 0.5,

Similar results are observed when w, /t = 0.1. The large w

displacements shown in figure 3.41 may lead to large w-displacement

gradients that contribute to sz'

3.3 Laminate Failure Predictions

3.3.1 Dominant Mechanisms

This section applies the results of the present analysis for
the short-wavelength buckling response and for the geometrically
nonlinear response of a laminate to the failure of compression-loaded
laminates. Specifically, laminate failure initiated by outer-lamina
buckling, by interlaminar shear strains from lamina imperfections, or

by inplane shearing stresses is considered. Outer-lamina buckling
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occurs at an outer-lamina stress determined by equation (3.8). This
phenbmenon is independent of the fiber orientation of the outer
laminae since short-wavelength buckling behavior is dominated by the
matrix contributions. This phenomenon is not observed for many
laminates because other mechanisms dominate their failure. An example
of such a mechanism is interlaminar shearing caused by lamina short-
wavelength imperfections. A simple maximum-shear-strain c¢riterion is
used in this study to predict failure due to this mechanism. The
shear strain for matrix failure is used for this maximum shear strain.
The nonlinear analysis is used to calculate the laminate compressive
stress for this interlaminar shearing failure. Another mechanism that
may dominate laminate failure i1s the inplane shearing at the fiber-
matrix interface and in the epoxy matrix between fibers. This inplane
shearing has been referred to as matrix shearing and has been shown to

initiate failure in compression-loaded [iusjs—class laminates [64], A

simple maximum-shear-stress criterion is used in this study to predict
failure due to matrix shearing. The nonlinear analysis derived herein
also is used to calculate the laminate compressive stress for inplane

shear failure.

The compressive strength 9 is shown as a function of lamina
orientation in figure 3.43 for [ie]s laminates. The laminate

compressive strength is normalized by the compressive stress for

short-wavelength buckling of a [02]s laminate, i.e., o,= 433.5 ksi
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(Table 3.2). Short-wavelength buckling of the outer laminae occurs at

‘oc/oo= 0.66 (289.6 ksi) for all © and is indicated by the horizontal

line in the figure. The axial compressive stress for laminate failure
by short-wavelength buckling of the outer laminae is less than five

percent greater than the compressive stress for interlaminar shear

o 1+
failure when 0 £ 8 £ 15 . Laminate failure due to interlaminar

shearing for laminates with Wo/t = 0.1 and for laminates with
W,/t = 0.5 1is plotted in the figure for a maximum shear strain

(sz)max= 0.036 [54]. The laminate compressive strength due to

interlaminar shearing decreases as 8 1increases. Laminate failure
due to matrix shearing is plotted in the figure for a maximum shear

) = 13.8 ksi

stress in the principal material coordinate system ( max-

T2
[64]. The laminate compressive strength due to matrix shearing

[+] [+]
approaches infinity for 8 near 0 and for 8 near 90 . Results for

] o]
inplane matrix shearing are plotted for 10 s 9 £ 85 . The results

in figure 3.43 suggest that laminate failure for [ie]S laminates may
be due to short-wavelength buckling of the outer laminae for

00 S8 <15 when W,/t < 0.1, The initial imperfections w,/t < 0.1
are very small and may rarely occur in typical laminatesf Laminate

failure for [ie]s laminates is due to interlaminar shearing for

¢} 0 ——
0 £8 <15 when w,/t 2 0.1. The compressive strength due to
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interlaminar shearing is a function of w,/t. The results in the

figure also suggest that laminate failure is due to inplane matrix

c Le]
shearing for 15 £ 0 £ 75 . The compressive strength due to matrix

shearing is not a function of Wo/t. Results from the present model

0 o
for 75 <8 £ 90 are not applicable to laminate failure. Typical

failure in these laminates appears to be initiated by compressive
failure of the matrix. The present model treats the matrix as an
elastic foundation and axial loading of the matrix~foundation is not
considered. Nevertheless, the present model predicts laminate

failures initiated by outer-lamina buckling, by interlaminar shearing,

o 0
or by inplane matrix shearing for 0 £ 6 £ 75 . The present model is
unique in its ability to predict the compressive strength as a
function of short-wavelength buckling and shear failures for such a

variety of laminates.

. [+]
3.3.2 Simple Equations for 0 -Dominated Laminates

Q
Many laminates used in structural applications have 0O

laminae, and the behavior of these laminae often dominates the
e}
behavior of the laminate. Such laminates are referred to as 0 -
o
dominated laminates., Some examples of 0 -dominated laminates are

o
[0/90]s and [0/:45/90]8. The compressive failure of a 0 ~dominated
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laminate can be predicted by determining the failure of the 0o

laminae.

Q
compressive strength of 0 1laminae,

show that many [O]S—class laminates

This failure mode can cause failure

A simple method can be used

[¢]
of 0 -dominated laminates.

The present analysis can be used to determine the

and the results in figure 3.43

fail due to interlaminar shearing.

o
of 0 laminae in a laminate.

to predict the compressive failure

The method is referred to herein as the

stiffness-ratio method and is outlined as follows:

o
Determine the compressive strength of a 0 lamina by using

the results from the present analysis in figure 3.43;
o
Calculate the load in the 0 laminae of the given laminate

0
when the 0 laminae will failj

Calculate the load in all other lamina of the given

o
laminate when the 0 laminae will fail by using

|23

{«n]
Ead
<D

(3.11)

U
=1

—

where



140

O
i

load in a ¢—-oriented lamina

[+]
load in a 0 lamina

"0
[}

Exe= Young's modulus in the x-~direction for a g-oriented

lamina (see figure 2.4)

E is determined from [12]

X0
2v
El— = El- cosue + (El- ol 12)cosze sin29
X8 11 12 IR
+ El- sinue (3.12)
22
where E11, E22, G12, and Vio are lamina properties in

the principal material coordinate system;
4, Sum the loads of all laminae to determine the laminate
failure load;

5. Calculate the laminate compressive strength.

The stiffness~ratio method assumes that the laminate is loaded by
uniform end shortening (i.e., constant strain) and that the laminate

has linear stress-strain behavior.
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The stiffness-ratio method results in a simple equation for

o
the compressive strength of a 0 ~dominated laminate

g N ]
0 T (i)
0 = ., E (3.13)
lam N E11 i=1 X8
where
O am” compressive strength of the laminate
[+
0y = compressive strength of a 0 lamina
N = number of laminae in the laminate

The predicted laminate strength using equation (3.13) is compared to

o
the experimental strength for three 0 -dominated laminates in Table

3.4, All laminates have Vf= 0.55, and the compressive strength of a

o
0 lamina is determined using figure 3.43 with oe/o°= 0.45, The

experimental strengths are typical results from extensive testing.

The agreement between predicted strength and experimental strength for
this limited number of laminates is excellent. The maximum difference
between the predicted strengths and the experimental strengths is less

than five percent,



Chapter 4

CONCLUSIONS

4.1 Concluding Remarks

This investigation studies the sho;t—wavelength buckling (or
microbuckling) of multi-directional composite laminates loaded in
uniaxial compression. This investigation also studies the
interlaminar shear failures due to short-wavelength initial
imperfections for the laminae and the inplane shear failures in these
laminates. A laminate model is presented that idealizes each lamina.
The fibers in the lamina are modeled as a plate, and the matrix in the
lamina is modeled as an elastic foundation. The model is applied to
symmetric laminates having linear material behavior. The laminates
are leoaded in uniform end shortening and are simply supported on all

edges.

The present model is used to determine linear and nonlinear
laminate responses. A linear analysis is derived to determine the
short-wavelength buckling response of composite laminates, The out-
of-plane w displacement for each plate is expressed as a

trigonometric series in the half-wavelength of the mode shape for

142
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laminate short-wavelength buckling. Results from this linear analysis
are also compared to previous results for unidirectional laminates.
The present linear analysis for laminates with no initial
imperfections is generalized to obtain a nonlinear analysis fer the
response of laminates with short-wavelength initial imperfections.
This nonlinear analysis is derivéd using Aonlinear strain-displacement
relations, The results of the present linear and nonlinear analyses

are used to develop a compressive failure criterion for composite

laminates.

The present linear analysis is used to determine the laminate
stresses, strains, and mode shape for short-wavelength buckling of
several different laminates. The compressive stress that corresponds
to short-wavelength buckling from this analysis for any symmetric
laminate simplifies to the critical compressive stress for short-
wavelength buckling from previous studies for unidirectional
laminates, The equations for the laminate compressive stress
corresponding to short-wavelength buckling are dominated by matrix
contributions. The compressive stress corresponding to short-
wavelength buckling of the outer laminae is half the compressive
stress that corresponds to short-wavelength buckling of the intefior
laminae. The short-wavelength buckling and delamination of these

outer laminae characterize the compression failure of [0]s~class

laminates. The compressive stress that corresponds te short-

wavelength buckling of some quasi-isotropic laminates is lower than
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the compressive stress that corresponds to'short—wavelength buckling

of unidirectional laminates with the same number of laminae. This

lower stress may be due to these quasi-isotropic laminates having Oo

laminae as the outer-most laminae and not having any interior

Oolaminae. The compressive stress that corresponds to short-
wavelength buckling is a function of fiber volume fraction, and this
compressive stress is determined from a single curve. All laminates
in this study buckle into the short-wavelength shear mode. This mode
shape is dominated by interlaminar shearing, and extensional
deformations between laminae are negligible. Allkbalanced, symmetric
laminates have mode shapes with half-waves oriented normal to the
direction of applied load. Most of the half-wavelengths for short-

wavelength buckling are on the order of O(TO-1

Y. The magnitude of
these half-wavelengths may influence the experimental compressive
strengths for composite materials, Some compressive test methods for
composite materials may inhibit the natural failure mode for a
laminate by supporting the test specimen along the length iﬁ a manner
that suppresses or prevents short-wavelength buckling. The degree of

specimen support for different test methods may contribute to the

scatter in compressive strength data for composite laminates,

The nonlinear analysis for laminae with short-wavelength
initial imperfections is used to determine laminate stresses and

interlaminar strains. This analysis provides the capability to
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calculate these stresses and strains for a variety of laminates. The

nonlinear behavior of four laminates with orientations of [02]5,
[O/QO]S, [tus]s, and [+145/O/-'-45/9O]S is discussed. The initial

imperfection for each lamina have the same shape as the laminate's
short-wavelength buckling mode, and results are presented for
imperfection-amplitude~to-lamina-thickness ratios of 0.1 and 0.5. The
compressive-stress verses end-—shortening behavior for all laminates is
similar to the behavior of a wide column, The wide~column response
for each composite laminate defines a maximum compressive stress that
corresponds to the maximum load=carrying capacity Qf the laminate.

The distribution of the lamina inplane stress resultants, Nx and
ny, across each lamina is_discussed. The stress resultant Nx at
the edges of the lamina is greater than NX at the center of the
lamina. The stress resultant ny is constant across the lamina
width. The stress resultant NX is larger than the stress resultant
ny, as expected; however, ny is sufficient to initiate failure
within some laminates. The interlaminar shear strains due to the

initial imperfections are calculated. The L displacement

gradients cause significant interlaminar shear strains sz' The

interlaminar shear strains sz are greater than 0.03 for laminate

compressive loadings that are less than thirty percent of the laminate

loading for short-wavelength buckling of some laminates. The sz
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for each laminate is largest between the outer two laminae. The
effects of fiber volume fraction on the nonlinear laminate response

are presented for [02]S and [ius]s laminates. The laminate stiffness
and the maximum sz in the laminate increase as the fiber volume

fraction increases.

A fajilure criterion for compression-loaded laminates is
presented, Laminate failures that initiate by outer-lamina buckling,
by interlaminar shear strains from lamina imperfections, or by inplane
matrix shearing are included in the criterion. The present linear
analysis is used to calculate the compressive stress that corresponds
to outer=lamina buckling, and the present nonlinear analysis is used
to calculate the compressive stress that corresponds to the
interlaminar and inplane shear failures. The laminate strength is

calculated as a function of lamina orientation for [16]8 laminates.
[s] 0o
Compressive failure of [ie]S laminates for 0 £ 8 < 15 is due to

outer-lamina buckling when Wo/t < 0.1 and is due to interlaminar

shearing when Eo/t 2 0.1. Compressive failure of these laminates for

o o
15 £8 75 is due to inplane matrix shearing. Results from the

o
present analysis are not applicable for 8 > 75 . The failure of
L]
[te]s laminates with 6 > 75 appears to be initiated by compressive

failure of the matrix, and this type of failure is not considered in
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the present model. A simple method called the stiffness-ratio method

is introduced for predicting the strength of O°~dominated laminates.
The stiffness—ratio method uses results from the present nonlinear
analysis, and the difference between predicted strengths and
experimental strengths is less than five percent for a limited number

of laminates,

4,2 Recommendations for Future Studies

An analytical study of short-wavelength buckling and shear
failures in symmetric composite laminates has been described.
Recommendations for future studies are grouped in three categories:
analytical extensions; additional experimental verification; and
applications of the present theory. A useful analytical extension to
this study would be to generalize the present theory to unsymmetric
laminates. Such laminates are being considered for use in the next
generation of commercial transport aircraft structures. Another
useful analytical extension would be to include material nonlinearity
in the present theory. Material properties may be a function of the
compressive load level. These properties are also affected by the
residual thermal stresses in the laminate and the operating
temperature of the composite structure, The formulation of the

present theory is sufficiently general that these analytical
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extensions could be included by modifying the strain energy

expressions.,

Additional experimental verification of the present analytical
results is needed. The effect of the compression test method on a
laminate's compressive strength and failure mode should be evaluated.

A study of compression-loaded [ie]S laminates might focus on the
short~wavelength buckling and shear failure mechanisms that were

[«}
described for these laminates., An experimental study of 0 ~dominated
laminates is needed to better evaluate the stiffness~ratio method for

predicting the compressive strength of these laminates,

The present theory may be applied in current research.
Interleaved materials are currently being considered as one of the
next generation of composite materials, These materials have soft
adhesive layers that are used (or interleaved) between stiff composite
layers. Laminates of interleaved materials are similar to the model
in the present analysis, i.e., alternating soft and stiff layers. The
present theory may be very useful for predicting the failure
mechanisms in laminates of interleaved materials. The present theory
also may be useful for understanding the compressive behavior of woven
composite laminates. The initial imperfections due to weaving are
known and may dominate the compressive response of these laminates.

An investigation of the unique failure mechanisms of woven composite

laminates needs to be conducted.
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Table 2.1. Typical elastic properties for the graphite-epoxy
fiber-plate and matrix-foundation.

Fiber - Plate

Longitudinal Young's modulus,-E1J, Msi 18f50
Transverse Young's modulus, E22, Msi 1.64
Shear modulus, G12, Msi 0.87
Major Poisson's ratio, Vio 0.30
Minor Poisson's ratio, Voy 0.O3Jr

Matrix =~ Foundation [54]

Young's modulus, Em’ Msi 0.59
Shear modulus, Gm’ Msi 0.26
Poisson's ratio, Vi 0.36

Tcalculated using the reciprocal relation

<
N
—

Viz =

1" 22

tr3
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Table 3.1. Short~wavelength buckling results for selected

two-lamina laminates.

Laminate Compressive Compressive Half~-
Orientation Stress, ksi Strain Wavelength,
in.
ol 289.6 0.0157 0.2158
[+10]s 283.1 .0165 .2188
[+3O]S 251.4 .0342 .2255
[+451 253.7 .0848 .2066
[+60]s 279.7 L1484 L1540y
[+80]s 287.4 LATH .1189
[9O]S 287.5 .1753 LA177
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Table 3.2. Short-wavelength buckling results for selected
four-lamina laminates.
Laminate Compressive Compressive Half~-
Orientation Stress, ksi Strain Wavglength,
: in,

0,1 433.5 0.0234 0.1905
[£10] 433.4 .0253 .1910
[i3O]S 432.7 .0589 1703
[£45] 431.9 44y . 1450
[16013 431.2 .2289 1173
[1801S 430.8 .2610 .0969
[90]s 430.8 .2627 .0973
[0/90]S 431.6 L0426 .1336
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Table 3.3. Short-wavelength buckling results for selected
eight~lamina laminates.

Laminate Compressive Compressive Half
Orientation Stress, ksi Strain Wavelength,
in.
(0,3 505. L 0.0273 0.1854
L(£45) ] 503.7 .1684 L1371
(0/£45/90] 438.8 .0589 L0140
[0/+45/90/-45:Is 437.2 .0587 .0182
[+45/0/~15/90] 501.2 .0675 LOUT7
[9O/+M5/O/~M5]S 503.6 .0678 .1336
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Table 3.4. Laminate compressive strengths.

Laminate Predicted Experimental Differencef,
Orientation Strength, ksi Strength, ksi percent
(o], 195.1 204 - 4.4
[0/90]S 106.2 110 - 3.5
[0/¢45/9o]s 64.9 66 - 1.7

T (predicted) - (experimental)

(experimental)
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