Arsenic Removal from Drinking Water by Adsorptive Media U.S. EPA Demonstration Project at Dummerston, VT Final Performance Evaluation Report

by

Jody P. Lipps Abraham S.C. Chen Sarah E. McCall Lili Wang

Battelle Columbus, OH 43201-2693

Contract No. 68-C-00-185 Task Order No. 0029

for

Thomas J. Sorg Task Order Manager

Water Supply and Water Resources Division National Risk Management Research Laboratory Cincinnati, Ohio 45268

National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268

DISCLAIMER

The work reported in this document was funded by the United States Environmental Protection Agency (EPA) under Task Order (TO) 0029 of Contract No. 68-C-00-185 to Battelle. It has been subjected to the Agency's peer and administrative reviews and has been approved for publication as an EPA document. Any opinions expressed in this paper are those of the author(s) and do not, necessarily, reflect the official positions and policies of the EPA. Any mention of products or trade names does not constitute recommendation for use by the EPA.

FOREWORD

The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future.

The National Risk Management Research Laboratory (NRMRL) is the Agency's center for investigation of technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and ground water; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL's research provides solutions to environmental problems by: developing and promoting technologies that protect and improve the environment; advancing scientific and engineering information to support regulatory and policy decisions; and providing the technical support and information transfer to ensure implementation of environmental regulations and strategies at the national, state, and community levels.

This publication has been produced as part of the Laboratory's strategic long-term research plan. It is published and made available by EPA's Office of Research and Development to assist the user community and to link researchers with their clients.

Sally Gutierrez, Director National Risk Management Research Laboratory

ABSTRACT

This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at Charette Mobile Home Park (CMHP) in Dummerston, Vermont. The objectives of the project were to evaluate: (1) the effectiveness of an Aquatic Treatment Systems (ATS) arsenic removal system in removing arsenic to meet the new arsenic maximum contaminant level (MCL) of 10 μ g/L, (2) the reliability of the treatment system, (3) the required system operation and maintenance (O&M) and operator skills, and (4) the capital and O&M cost of the technology. The project also characterized water in the distribution system and residuals produced by the treatment process.

The ATS system consisted of two parallel treatment trains, each having three 10-in diameter, 54-in tall, sealed polyglass columns connected in series to treat up to 11 gal/min (gpm) of water. Water supplied from three source water wells was chlorinated to provide chlorine residuals and then passed through a 25µm sediment filter and the three adsorption columns in each train. Each adsorption column was loaded with 1.5 ft³ of A/I Complex 2000 adsorptive media, which consisted of an activated alumina substrate and a proprietary iron complex. Based on the design flowrate of 11 gpm through each train, the empty bed contact time (EBCT) in each column was 1 min and the hydraulic loading rate to each column was 20.4 gpm/ft². The actual flowrate was much lower, averaging only 2.8 and 3.3 gpm for Trains A and B, respectively, throughout the evaluation period. A 50% reduction in flow was observed after the 23rd week of operation. The flowrate increased again after the 39th week but fluctuated greatly after this point. As a result, each adsorption column had a much longer EBCT, ranging from 1.6 to 56.1 min throughout the entire study period. The highly variable and low flowrates from the wells might be attributed, in part, to slow recovery rates of the aquifer resulting from a dry summer.

Between June 24, 2005, and October 10, 2006, the system operated at an average of 7.6 hr/day for a total of 3,636 hr, treating approximately 745,000 gal of water which contained 20.8 to 101 μ g/L of arsenic existing predominately as soluble As(V). During the first 34-week-long test run, arsenic concentrations following the lead columns reached 10 μ g/L after treating 5,700 and 5,400 bed volumes (BV) of water through Trains A and B, respectively. (BV was calculated based on 1.5ft³ [or 11.2 gal] of media in an individual column.) Arsenic concentrations reached 10 μ g/L in the system effluent (following the final columns) after treating approximately 17,400 and 17,600 BV through Trains A and B, respectively (or 5,800 and 5,900 BV, respectively, if considering the three columns in each train as one large column).

Media were replaced after approximately 8 months of operation and arsenic concentrations reached 10 μ g/L in the system effluent (after the second lag column) after approximately 15,000 BV and 17,000 BV for Trains A and B, respectively (or 5,000 and 5670 BV, respectively, if considering the three columns in each train as one large column). Arsenic concentrations in the effluent of the new lead columns were around 10 μ g/L at the time of the media changeout.

Arsenic breakthrough occurred sooner than projected (at 40,000 BV in the lead column) by the vendor. It is presumed that relatively high pH values of source water (averaging 7.6), competing anions, such as silica, and higher influent arsenic concentrations (i.e., $41.3 \ \mu g/L$, on average, compared to $30 \ \mu g/L$ observed during the initial site visit) might have contributed, in part, to early arsenic breakthrough from the adsorption columns. The arsenic mass removed by the adsorption media during the two runs ranged between 0.30 and 0.49 μ g of As/mg of dry media per column.

Aluminum concentrations in the treated water following adsorption columns (existing primarily in the soluble form) were approximately 10 to $30 \mu g/L$ higher than those in raw water, indicating leaching of aluminum from the adsorptive media. Leaching of aluminum continued throughout the study period;

however, there was a decreasing trend in aluminum concentration in the treated water during each test run.

Comparison of distribution system sampling results before and after operation of the system showed a significant decrease in arsenic concentrations at two of the three residences. One residence had elevated arsenic concentrations ranging from 16.3 to $26.0 \ \mu g/L$ through the first three months. Starting from the fourth month, all three residences had arsenic concentrations below $3.1 \ \mu g/L$. After the sixth month, arsenic concentrations began to increase and media were changed out after 34 weeks of operation. Arsenic concentrations decreased again after the changeout. The wells were not able to generate enough water to meet the demand of CMHP, so water was hauled in and stored in the 5,500 gal atmospheric storage tank (where water treated from the ATS system was stored). Therefore, distribution sampling was discontinued after April 2006 because the results were not representative of the treated water from the ATS system. Lead and copper levels did not appear to have been impacted by the treatment system.

The capital investment cost of \$14,000 included \$8,990 for equipment, \$2,400 for site engineering, and \$2,610 for installation. Using the system's rated capacity of 22 gpm (or 31,680 gal/day [gpd]), the capital cost was \$636/gpm (or \$0.44/gpd). Annualized capital cost was \$1,321/yr based upon a 7% interest rate and 20 year life. The unit capital cost was \$0.11/1,000 gal assuming the system operated continuously 24 hr/day, 7 days a week at 22 gpm. At the current use rate of 1,565 gal/day, the unit capital cost increased to \$2.31/1,000 gal.

Operation and maintenance (O&M) costs included only incremental cost associated with the adsorption system, such as media replacement and disposal, electricity consumption, and labor. The incremental cost for electricity was negligible. Media replacement of the lead and first lag columns in each Train occurred on February 14, 2006, after 34 weeks of system operation. The cost to replace the four columns was 3,910 for media, labor and travel. This cost was used to estimate the media replacement cost per 1,000 gal of water treated as a function of the media run length to the $10-\mu g/L$ arsenic breakthrough from the third column in series.

DIS	CLA	IMER			ii
FOI	REW	ORD			iii
AB	STRA	CT			iv
FIG	URE	S			vii
TAI	BLES		•••••		vii
AB	BREV	/IATIO	NS AND A	ACRONYMS	ix
AC	KNO	WLEDG	MENTS .		xi
1.0	INTF	RODUC	ΓΙΟΝ		1
	1.1	Backgr	ound		1
	1.2	Treatm	ent Techno	plogies for Arsenic Removal	2
	1.3	Project	Objective	S	2
2.0	SUM	IMARY	AND CO	NCLUSIONS	5
3.0	MAT	TERIAL	S AND M	ETHODS	6
	3.1	Genera	l Project A	.pproach	6
	3.2	System	O&M and	l Cost Data Collection	6
	3.3	Sample	Collection	n Procedures and Schedules	7
		3.3.1	Source W	Vater	7
		3.3.2	Treatmen	t Plant Water	9
		3.3.3	Residual	Solid	9
		3.3.5	Distributi	on System Water	9
	3.4	Sampli	ng Logisti	CS	9
		3.4.1	Preparati	on of Arsenic Speciation Kits	9
		3.4.2	Preparati	on of Sampling Coolers	9
		3.4.3	Sample S	hipping and Handling	
	3.5	Analyti	cal Proced	lures	
10	DECI			USSION	11
4.0	A 1	ULIS A Equility	ND DISC	USSION	11 11
	4.1		Descripti	UII	
		4.1.1	Distribut	on System and Tracted Water Oyality	
	4.0	4.1.2 Traction		on System and Treated water Quanty	12
	4.2	Demosité	ent Proces	s Description	
	4.5	Permitt	ing and Sy		
	4.4	System	Operation	l	1/
		4.4.1	Operation	Newsesses	1/
		4.4.2	Residuals	Management.	
		4.4.3	System/C	Peration, Renability and Simplicity	
			4.4.3.1	Pre- and Post-Treatment Requirements	
			4.4.3.2	System Controls	
			4.4.3.3	Dreventetive Maintenance Astivities	
			4.4.3.4	Chamical/Madia Handling and Investory Desvires at	
	1 5	Cristian	4.4.3.3 Domformer	Chemical/Media manufing and inventory kequirements	
	4.3	J S 1	Tractmen	t Diant Compling	
		4.3.1		t r tant Samping	
			4.3.1.1	AISTIIC	
			4.3.1.1	Silica, Sullate, Dicarbonate and Initrate	
			4.3.1.3	Alullillill	

CONTENTS

	4.5.1.4 Iron and Manganese	
	4.5.1.5 Other Water Quality Parameters	
4.5.2	Spent Media Sampling	
	4.5.2.1 TCLP	
	4.5.2.2 Metals	
4.5.3	Distribution System Water Sampling	
4.6 System	n Cost	
4.6.1	Capital Cost	
4.6.2	Operation and Maintenance Cost	
5.0 REFERENCE	CES	41
APPENDIX A:	OPERATIONAL DATA	A-1
APPENDIX B:	ANALYTICAL DATA TABLES	B-1
APPENDIX C:	ARSENIC MASS REMOVAL CALCULATIONS	C-1

FIGURES

Figure 4-1.	Preexisting Treatment Building at Charette Mobile Home Park	11
Figure 4-2.	Preexisting Pressure Tanks and Booster Pumps	12
Figure 4-3.	Schematic of ATS As/2200CS System with Series Operation	15
Figure 4-4.	Process Flow Diagram and Sampling Locations.	18
Figure 4-5.	As/2200CS System with Adsorption Columns Shown in Foreground and Sediment	
-	Filters Attached to Wall	19
Figure 4-6.	Close-Up View of a Sample Tap (TE), a Pressure Gauge, and Copper Piping at End	
-	of Treatment Train A	19
Figure 4-7.	Average Flowrate of Three Source Wells and the Treatment System	21
Figure 4-8.	Influent Pressure from Three Source Wells	22
Figure 4-9.	Concentrations of Various Arsenic Species Across Entire System	27
Figure 4-10.	Total Arsenic Breakthrough Curves for Treatment Train A, Train B, and Entire	
-	System for Runs 1 and 2	28
Figure 4-11.	Arsenic Mass Removed by Trains A and B During Run 1	29
Figure 4-12.	Silica Concentrations Across Treatment Trains and Entire System	32
Figure 4-13.	Alkalinity, Sulfate and Nitrate Concentrations Across Treatment Trains and Entire	
C	System for Runs 1 and 2	34
Figure 4-14.	Total Aluminum Concentrations Across the Entire System for Runs 1 and 2	34
Figure 4-15.	O&M and Media Replacement Cost (for Replacement of Two Columns at a Time)	40

TABLES

Table 1-1.	Summary of Arsenic Removal Demonstration Sites	
Table 3-1.	Predemonstration Study Activities and Completion Dates	6
Table 3-2.	Evaluation Objectives and Supporting Data Collection Activities	7
Table 3-3.	Sample Collection Schedules and Analyses	8
Table 4-1.	Source and Treated Water Quality Data for Charette Mobile Home Park Site	13
Table 4-2.	Physical and Chemical Properties of A/I Complex 2000 Adsorption Media	14
Table 4-3.	Design Specifications of As/2200CS System	17
Table 4-4.	Summary of As/2200CS System Operations	
Table 4-5.	Summary of Flowrate and Pressure Variations During System Operation	

Summary of Arsenic, Iron, Manganese, and Aluminum Analytical Results	25
Summary of Other Water Quality Parameter Analytical Results	
Arsenic Mass Removed by Columns A through F and Capacity of Media for	
Arsenic	
TCLP Results of a Composite Spent Media Sample	
Spent Media Metals Results	
Summary of Media Capacity for Arsenic	
Distribution System Sampling Results	
Summary of Capital Investment Cost	
Summary of O&M Cost	
	Summary of Arsenic, Iron, Manganese, and Aluminum Analytical Results Summary of Other Water Quality Parameter Analytical Results Arsenic Mass Removed by Columns A through F and Capacity of Media for Arsenic TCLP Results of a Composite Spent Media Sample Spent Media Metals Results Summary of Media Capacity for Arsenic Distribution System Sampling Results Summary of Capital Investment Cost Summary of O&M Cost

ABBREVIATIONS AND ACRONYMS

AAL	American Analytical Laboratories
Al	aluminum
AM	adsorptive media
As	arsenic
ATS	Aquatic Treatment Systems
BV	bed volume(s)
Ca	calcium
C/F	coagulation/filtration
Cl	chlorine
CMHP	Charette Mobile Home Park
Cu	copper
DO	dissolved oxygen
EBCT	empty bed contact time
EPA	U.S. Environmental Protection Agency
F	fluoride
Fe	iron
gpd	gallons per day
gpm	gallons per minute
HIX	hybrid ion exchanger
hp	horsepower
ICP-MS	inductively coupled plasma-mass spectrometry
ID	identification
IX	ion exchange
LCR	(EPA) Lead and Copper Rule
MCI	maximum contaminant laval
MDI	maximum containmant level
MEL	Magnesium Elektron Inc
Mg	magnesium
Mn	manganese
14111	manganese
N/A	not analyzed
Na	sodium
NaOCl	sodium hypochlorite
ND	not detected
NRMRL	National Risk Management Research Laboratory
NSF	NSF International

O&M OIT	operation and maintenance Oregon Institute of Technology
ORD	Office of Research and Development
ORP	oxidation-reduction potential
Dh	land
PO	orthophosphoto
	point of use
nei	pounds per square inch
PSI PVC	polyvinyl chloride
IVC	poryvinyremonde
QA	quality assurance
QA/QC	quality assurance/quality control
QAPP	Quality Assurance Project Plan
RO	reverse osmosis
RPD	relative percent difference
SBMHP	Spring Brook Mobile Home Park
SDWA	Safe Drinking Water Act
S_1O_2	silica
SU ₄	Suirate
515	Severn Trent Services
TCLP	Toxicity Characteristic Leaching Procedure
ТО	Task Order
UV	ultraviolet
VDEC	Vermont Department of Environmental Conservation
VSHA	Vermont State Housing Authority

ACKNOWLEDGMENTS

The authors wish to extend their sincere appreciation to the operator of Charette Mobile Home Park in Dummerston, Vermont, the owner of P^2 Environmental, and the manager of the Vermont State Housing Authority. The operator of the park monitored the treatment system and collected samples from the treatment and distribution system on a regular schedule throughout this reporting period. The owner of P^2 Environmental provided timely communication and assistance in system operation and performed bimonthly arsenic speciation across the treatment trains. This performance evaluation would not have been possible without their support and dedication.

1.0 INTRODUCTION

1.1 Background

The Safe Drinking Water Act (SDWA) mandates that the U. S. Environmental Protection Agency (EPA) identify and regulate drinking water contaminants that may have adverse human health effects and that are known or anticipated to occur in public water supply systems. In 1975, under the SDWA, EPA established a maximum contaminant level (MCL) for arsenic (As) at 0.05 mg/L. Amended in 1996, the SDWA required that EPA develop an arsenic research strategy and publish a proposal to revise the arsenic MCL by January 2000. On January 18, 2001, EPA finalized the arsenic MCL at 0.01 mg/L (EPA, 2001). In order to clarify the implementation of the original rule, EPA revised the rule on March 25, 2003, to express the MCL as 0.010 mg/L (10 μ g/L) (EPA, 2003). The final rule required all community and non-transient, non-community water systems to comply with the new standard by January 23, 2006.

In October 2001, EPA announced an initiative for additional research and development of cost-effective technologies to help small community water systems (<10,000 customers) meet the new arsenic standard, and to provide technical assistance to operators of small systems in order to reduce compliance costs. As part of this Arsenic Rule Implementation Research Program, EPA's Office of Research and Development (ORD) proposed a project to conduct a series of full-scale, on-site demonstrations of arsenic removal technologies, process modifications, and engineering approaches applicable to small systems. Shortly thereafter, an announcement was published in the *Federal Register* requesting water utilities interested in participating in Round 1 of this EPA-sponsored demonstration program to provide information on their water systems. In June 2002, EPA selected 17 out of 115 sites to host the demonstration studies.

In September 2002, EPA solicited proposals from engineering firms and vendors for cost-effective arsenic removal treatment technologies for the 17 host sites. EPA received 70 technical proposals for the 17 host sites, with each site receiving from one to six proposals. In April 2003, an independent technical panel reviewed the proposals and provided its recommendations to EPA on the technologies that it determined were acceptable for the demonstration at each site. Because of funding limitations and other technical reasons, only 12 of the 17 sites were selected for the demonstration project. Using the information provided by the review panel, EPA, in cooperation with the host sites and the drinking water programs of the respective states, selected one technical proposal for each site.

In 2003, EPA initiated Round 2 arsenic technology demonstration projects which were partially funded with Congressional add-on funding to the EPA budget. In June 2003, EPA selected 32 potential demonstration sites and the water system at Charette Mobile Home Park (CMHP) in Dummerston, Vermont, was one of those selected.

In September 2003, EPA again solicited proposals from engineering firms and vendors for arsenic removal technologies. EPA received 148 technical proposals for the 32 host sites, with each site receiving from two to eight proposals. In April 2004, another technical panel was convened by EPA to review the proposals and provide recommendations to EPA with the number of proposals per site ranging from none (for two sites) to a maximum of four. The final selection of the treatment technology at the sites that received at least one proposal was made, again through a joint effort by EPA, the state regulators, and the host site. Since then, four sites have withdrawn from the demonstration program, reducing the number of sites to 28. Aquatic Treatment Systems, Inc's. (ATS's) As/2200CS arsenic treatment system was selected for demonstration at the CMHP site in September 2004.

As of January 2008, 37 of the 40 systems were operational and the performance evaluations of 26 systems were completed.

1.2 Treatment Technologies for Arsenic Removal

The technologies selected for the Round 1 and Round 2 demonstration host sites include 25 adsorptive media (AM) systems (the Oregon Institute of Technology [OIT] site has three AM systems), 13 coagulation/filtration (C/F) systems, two ion exchange (IX) systems, 17 point-of-use (POU) units (including nine under-the-sink reverse osmosis [RO] units at the Sunset Ranch Development site and eight AM units at the OIT site), and one system modification. Table 1-1 summarizes the locations, technologies, vendors, system flowrates, and key source water quality parameters (including arsenic, iron, and pH) at the 40 demonstration sites. An overview of the technology selection and system design for the 12 Round 1 demonstration sites and the associated capital cost is reported in two EPA reports (Wang et al., 2004; Chen et al., 2004), which are posted on the EPA Web site at http://www.epa.gov/ORD/NRMRL/wswrd/dw/arsenic/publications.html.

1.3 Project Objectives

The objective of the Round 1 and Round 2 arsenic demonstration program is to conduct full-scale arsenic treatment technology demonstration studies on the removal of arsenic from drinking water supplies. The specific objectives are to:

- Evaluate the performance of the arsenic removal technologies for use on small systems.
- Determine the required system operation and maintenance (O&M) and operator skill levels.
- Characterize process residuals produced by the technologies.
- Determine the capital and O&M costs of the technologies.

This report summarizes the performance of the ATS system at the CMHP site in Vermont from June 22, 2005 through October 10, 2006. The types of data collected included system operation, water quality data (both across the treatment train and in the distribution system), residuals, and capital and preliminary O&M cost.

				Design	Sourc	e Water Qu	ality
Demonstration				Flowrate	\mathbf{As}	Fe	ЪН
Location	Site Name	Technology (Media)	Vendor	(mdg)	(µg/L)	(µg/L)	(S.U.)
		Northeast/Ohio					
Wales, ME	Springbrook Mobile Home Park	AM (A/I Complex)	ATS	14	$38^{(a)}$	<25	8.6
Bow, NH	White Rock Water Company	AM (G2)	ADI	$20^{(p)}$	39	<25	7.7
Goffstown, NH	Orchard Highlands Subdivision	AM (E33)	AdEdge	10	33	<25	6.9
Rollinsford, NH	Rollinsford Water and Sewer District	AM (E33)	AdEdge	100	$36^{(a)}$	46	8.2
Dummerston, VT	Charette Mobile Home Park	AM (A/I Complex)	ATS	22	30	<25	7.9
Felton, DE	Town of Felton	C/F (Macrolite)	Kinetico	375	$30^{(a)}$	48	8.2
Stevensville, MD	Queen Anne's County	AM (E33)	STS	300	$19^{(a)}$	$270^{(c)}$	7.3
Houghton, NY ^(d)	Town of Caneadea	C/F (Macrolite)	Kinetico	550	$27^{(a)}$	$1,806^{(c)}$	7.6
Newark, OH	Buckeye Lake Head Start Building	AM (ARM 200)	Kinetico	10	$15^{(a)}$	$1,312^{(c)}$	7.6
Springfield, OH	Chateau Estates Mobile Home Park	AM (E33)	AdEdge	$250^{(e)}$	$25^{(a)}$	$1,615^{(c)}$	7.3
		Great Lakes/Interior Plains					
Brown City, MI	City of Brown City	AM (E33)	STS	640	$14^{(a)}$	$127^{(c)}$	7.3
Pentwater, MI	Village of Pentwater	C/F (Macrolite)	Kinetico	400	$13^{(a)}$	$466^{(c)}$	6.9
Sandusky, MI	City of Sandusky	C/F (Aeralater)	Siemens	$340^{(e)}$	$16^{(a)}$	$1,387^{(c)}$	6.9
Delavan, WI	Vintage on the Ponds	C/F (Macrolite)	Kinetico	40	$20^{(a)}$	$1,499^{(c)}$	7.5
Greenville, WI	Town of Greenville	C/F (Macrolite)	Kinetico	375	17	$7827^{(c)}$	7.3
Climax, MN	City of Climax	C/F (Macrolite)	Kinetico	140	$39^{(a)}$	$546^{(c)}$	7.4
Sabin, MN	City of Sabin	C/F (Macrolite)	Kinetico	250	34	$1,470^{(c)}$	7.3
Sauk Centre, MN	Big Sauk Lake Mobile Home Park	C/F (Macrolite)	Kinetico	20	$25^{(a)}$	$3,078^{(c)}$	7.1
Stewart, MN	City of Stewart	C/F&AM (E33)	AdEdge	250	$42^{(a)}$	$1,344^{(c)}$	7.7
Lidgerwood, ND	City of Lidgerwood	Process Modification	Kinetico	250	$146^{(a)}$	$1,325^{(c)}$	7.2
		Midwest/Southwest					
Arnaudville, LA	United Water Systems	C/F (Macrolite)	Kinetico	$770^{(e)}$	$35^{(a)}$	$2,068^{(c)}$	7.0
Alvin, TX	Oak Manor Municipal Utility District	AM (E33)	STS	150	$19^{(a)}$	95	7.8
-	Webb Consolidated Independent School				(a)	10	0
Bruni, TX	District	AM (E33)	AdEdge	40	$56^{(a)}$	<25	8.0
Wellman, TX	City of Wellman	AM (E33)	AdEdge	100	45	<25	7.7
	Desert Sands Mutual Domestic Water				X77		
Anthony, NM	Consumers Association	AM (E33)	STS	320	$23^{(a)}$	39	7.7
Nambe Pueblo, NM	Nambe Pueblo Tribe	AM (E33)	AdEdge	145	33	<25	8.5
Taos, NM	Town of Taos	AM (E33)	STS	450	14	59	9.5
Rimrock, AZ	Arizona Water Company	AM (E33)	AdEdge	$90^{(b)}$	50	170	7.2
Tohono O'odham	Tohono O'odhom Hility, Authority	AM (633)	۸dEdæa	50	33	30/	c o
Welland Xrate AT		ANG (FOO) THE ANG TOOL	20170121	000	70	20	1.0
Valley Vista, AZ	Arizona Water Company	AM (AAFSJU/AKM 200)	Kinetico	31	41	C7>	2.7

Table 1-1. Summary of Arsenic Removal Demonstration Sites

				Design	Source	e Water Qu	ality
Demonstration Location	Site Name	Technology (Media)	Vendor	Flowrate (gpm)	As (µg/L)	Fe (µg/L)	pH (S.U.)
		Far West					
Three Forks, MT	City of Three Forks	C/F (Macrolite)	Kinetico	250	64	<25	7.5
Fruitland, ID	City of Fruitland	IX (A300E)	Kinetico	250	44	<25	7.4
Homedale, ID	Sunset Ranch Development	POU RO ^(f)	Kinetico	75 gpd	52	134	7.5
Okanogan, WA	City of Okanogan	C/F (Electromedia-I)	Filtronics	750	18	69 ^(c)	8.0
		POE AM (Adsorbsia/ARM 200/ArsenX ^{np})					
Klamath Falls, OR	Oregon Institute of Technology	and POU AM (ARM 200) ^(g)	Kinetico	60/60/30	33	<25	7.9
Vale, OR	City of Vale	IX (Arsenex II)	Kinetico	525	17	<25	7.5
	South Truckee Meadows General						
Reno, NV	Improvement District	AM (GFH/Kemiron)	Siemens	350	39	<25	7.4
Susanville, CA	Richmond School District	AM (A/I Complex)	ATS	12	$37^{(a)}$	125	7.5
Lake Isabella, CA	Upper Bodfish Well CH2-A	AM (HIX)	VEETech	50	35	125	7.5
	Golden Hills Community Service						
Tehachapi, CA	District	AM (Isolux)	MEI	150	15	<25	6.9
;		, , , , , , , , , , , , , , , , , , , ,					

Table 1-1. Summary of Arsenic Removal Demonstration Sites (Continued)

AM = adsorptive media process; C/F = coagulation/filtration; HIX = hybrid ion exchanger; IX = ion exchange process; RO = reverse osmosis ATS = Aquatic Treatment Systems; MEI = Magnesium Elektron, Inc.; STS = Severn Trent Services

Arsenic existing mostly as As(III). Design flowrate reduced by 50% due to system reconfiguration from parallel to series operation. Iron existing mostly as Fe(II). Replaced Village of Lyman, NE site which withdrew from the program in June 2006. Facilities upgraded systems in Springfield, OH from 150 to 250 gpm, Sandusky, MI from 210 to 340 gpm, and Arnaudville, LA from 385 to 770 gpm. Including nine residential units. @ £ © £ © £ ®

2.0 SUMMARY AND CONCLUSIONS

Based on the information collected during the 16 months of operation, the following conclusions were made relating to the overall objectives of the treatment technology demonstration study.

Performance of the arsenic removal technology for use on small systems:

- A/I Complex 2000 adsorptive media was effective in removing arsenic to below its MCL of 10 μ g/L. The run length to breakthrough at 10 μ g/L, however, was short, ranging from 5,000 to 7,000 bed volumes (BV) for each column according to the two test runs performed. Complete breakthrough following the lead columns occurred at approximately 12,000 BV, resulting in an adsorptive capacity between 0.45 and 0.49 μ g of As/mg of dry media. System breakthrough at 10 μ g/L was between 17,000 and 18,000 BV (or 5,700 and 6,000 BV if considering the three columns in each train as one large column) for both runs. BV was calculated based on the volume of media in each column.
- Arsenic breakthrough from the lead columns occurred much sooner than the 40,000 BV projected by the vendor. It is presumed that relatively high pH values of the source water (averaging 7.7), competing anions, such as silica, and higher-than-expected influent arsenic concentrations (ranging from 20.8 to 101 μ g/L and averaging 41.3 μ g/L) might have contributed to the early arsenic breakthrough. The vendor's estimate was based on an influent arsenic concentration of 30 μ g/L. However, the vendor's arsenic breakthrough also was projected using an empty bed contact time (EBCT) of 1 min/column based on a flowrate of 11 gallons per minute (gpm) per treatment train, compared to the actual EBCT of 1.6 to 56.1 min caused by the lower flowrates experienced by the source water wells.
- Some aluminum (i.e., 10 to $30 \mu g/L$) was observed to leach out from the adsorption columns.

Simplicity of required system O&M and operator skill levels:

- Very little attention was needed to operate and maintain the system. The daily demand on the operator was typically 10 min to visually inspect the system and record operational parameters.
- Operation of the treatment system did not require additional skills beyond those necessary to operate the existing water supply equipment.

Process residuals produced by the technology:

- The system did not require backwash to operate. As a result, no backwash residual was produced.
- The only residual produced by the treatment system was spent media. The media in the lead and first lag columns in each train were replaced on February 14, 2006, after approximately 34 weeks of operation.

Technology Costs:

- Using the system's rated capacity of 22 gal/min (gpm) (or 31,680 gal/day [gpd]), the capital cost was \$636/gpm (or \$0.44/gpd).
- The cost to change out four adsorption columns (lead and first lag column in each train) at a time was estimated to be \$3,910 based on the invoice provided by the vendor.

3.0 MATERIALS AND METHODS

3.1 General Project Approach

Following the predemonstration activities summarized in Table 3-1, the performance evaluation study of the ATS treatment system began on June 22, 2005 and ended on October 10, 2006. Table 3-2 summarizes the types of data collected and considered as part of the technology evaluation process. The overall system performance was evaluated based on its ability to consistently remove arsenic to below the MCL of 10 μ g/L through the collection of water samples across the treatment train. The reliability of the system was evaluated by tracking the unscheduled system downtime and frequency and extent of repair and replacement. Any unscheduled downtime and repair information were recorded by the plant operator on a Repair and Maintenance Log Sheet.

The O&M and operator skill requirements were assessed through quantitative data and qualitative considerations, including the need for pre- and/or post-treatment, level of system automation, extent of preventive maintenance activities, frequency of chemical and/or media handling and inventory, and general knowledge needed for relevant chemical processes and related health and safety practices. The staffing requirements for the system operation were recorded on an Operator Labor Hour Log Sheet.

The cost of the system was evaluated based on the capital cost per gpm (or gpd) of design capacity and the O&M cost per 1,000 gal of water treated. This task required the tracking of the capital cost for equipment, engineering, and installation, as well as the O&M cost for media replacement and disposal, chemical supply, electrical power use, and labor.

Activity	Date
Introductory Meeting Held	September 14, 2004
Project Planning Meeting Held	November 18, 2004
Draft Letter of Understanding Issued	December 2, 2004
Final Letter of Understanding Issued	January 12, 2005
Request for Quotation Issued to Vendor	January 28, 2005
Vendor Quotation Submitted to Battelle	February 28, 2005
Purchase Order Completed and Signed	March 9, 2005
Final Study Plan Issued	April 1, 2005
Engineering Package Submitted to VDEC	April 29, 2005
Permit Issued by VDEC	May 23, 2005
System Installation and Shakedown Completed	June 22, 2005
Performance Evaluation Began	June 22, 2005

 Table 3-1. Predemonstration Study Activities and Completion Dates

VDEC = Vermont Department of Environmental Conservation

3.2 System O&M and Cost Data Collection

The plant operator performed daily, biweekly, and monthly system O&M and data collection according to the instructions provided by the vendor and Battelle. On a regular basis, the plant operator recorded system operational data, such as pressure, flowrate, totalizer, and hour meter readings on a System Operation Log Sheet; checked the sodium hypochlorite (NaOCl) level; and conducted visual inspections to ensure normal system operations. If any problems occurred, the plant operator would contact the

Evaluation Objectives	Data Collection
Performance	-Ability to consistently meet 10 µg/L of arsenic MCL in treated water
Reliability	-Unscheduled system downtime
	-Frequency and extent of repairs including a description of problems,
	materials and supplies needed, and associated labor and cost
System O&M and Operator	-Pre- and post-treatment requirements
Skill Requirements	-Level of system automation for system operation and data collection
	-Staffing requirements including number of operators and laborers
	-Task analysis of preventative maintenance including number,
	frequency, and complexity of tasks
	-Chemical handling and inventory requirements
	-General knowledge needed of relevant chemical processes and health
	and safety practices
Residual Management	-Quantity and characteristics of aqueous and solid residuals generated
	by process
System Cost	-Capital cost for equipment, engineering, and installation
	-O&M cost for chemical and/or media usage, electricity, and labor

Battelle Study Lead, who determined if ATS should be contacted for troubleshooting. The plant operator recorded all relevant information, including the problems encountered, course of actions taken, materials and supplies used, and associated cost and labor incurred on the Repair and Maintenance Log Sheet. On a biweekly basis, the plant operator measured several water quality parameters on-site, including temperature, pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), and residual chlorine, and recorded the data on an On-Site Water Quality Parameters Log Sheet.

The capital cost for the arsenic removal system consisted of the cost for equipment, site engineering, and system installation. The O&M cost consisted of the cost for media replacement, chemical usage, electricity consumption, and labor. Labor for various activities, such as the routine system O&M, troubleshooting and repairs, and demonstration-related work, were tracked using an Operator Labor Hour Log Sheet. The routine system O&M included activities such as completing field logs, replenishing NaOCl solutions, ordering supplies, performing system inspections, and others as recommended by the vendor. The labor for demonstration-related work, including activities such as performing field measurements, collecting and shipping samples, and communicating with the Battelle Study Lead and the vendor, was recorded, but not used for cost analysis.

3.3 Sample Collection Procedures and Schedules

To evaluate system performance, samples were collected from the wellhead, across the treatment plant, and from the distribution system. Table 3-3 provides the sampling schedules and analytes measured during each sampling event. Specific sampling requirements for analytical methods, sample volumes, containers, preservation, and holding times are presented in Table 4-1 of the EPA-endorsed Quality Assurance Project Plan (QAPP) (Battelle, 2004). The procedure for arsenic speciation is described in Appendix A of the QAPP.

3.3.1 Source Water. During the initial visit to the CMHP, one set of source water samples was collected and speciated using an arsenic speciation kit (see Section 3.4.1). The sample tap was flushed for several minutes before sampling; special care was taken to avoid agitation, which might cause unwanted oxidation. Analytes for the source water samples are listed in Table 3-3.

Sample	Sample	No. of	Б		
Туре	Locations	Samples	Frequency	Analytes	Collection Date(s)
Source Water	At Wellhead (IN)	1	Once (during initial site visit)	On-site: pH, temperature, DO, and ORP Off-site: As (total, and soluble), As(III), As(V), Fe (total and soluble), Mn (total and soluble), Al (total and soluble), U (total and soluble), V (total and soluble), V (total and soluble), Na, Ca, Mg, Cl, F, NH ₃ , NO ₃ , NO ₂ , SO ₄ , SiO ₂ , PO ₄ , alkalinity, turbidity, TDS, and TOC	9/14/04
Treatment Plant Water	At Wellhead (IN), after Chlorination (AC), after Each Adsorption Column (TA to TF), and after Entire System (TT)	4-9	Weekly or Biweekly	On-site: pH, temperature, DO, ORP, and Cl ₂ (free and total) ^(b) Off-site: As (total and soluble), As(III), As(V), Fe (total and soluble), Mn (total and soluble), Al (total and soluble), Ca, Mg, F, NO ₃ , SO ₄ , SiO ₂ , PO ₄ , turbidity, and/or alkalinity	06/22/05 , 07/05/05, 07/19/05, 08/03/05, 08/16/05 , 08/29/05, 09/19/05, 09/27/05, 10/04/05, 10/13/05 , 10/25/05, 11/01/05, 11/08/05, 11/28/05, 12/13/05 , 01/05/06, 01/25/06, 01/31/06, 02/15/06, 02/28/06, 03/16/06, 03/29/06, 04/11/06, 04/27/06, 05/10/06, 06/01/06, 06/05/06, 06/22/06, 07/11/06, 07/18/06, 08/02/06, 08/17/06, 09/07/06, 09/18/06, 09/26/06, 10/10/06
Distribution Water	Three LCR Residences	3	Monthly ^(c)	Total As, Fe, Mn, Al, Cu, and Pb, pH and alkalinity	Baseline sampling: 12/07/04, 01/04/05, 02/01/05, 04/05/05, Monthly sampling: 07/27/05, 08/16/05, 09/20/05, 10/13/05, 11/08/05, 12/13/05, 01/26/06, 02/14/06, 04/11/06
Residual Solids	Spent Media from Adsorption Columns	4	Once	TCLP and total Al, As, Cd, Ca, Cu, Fe, Pb, Mg, Mn, Ni, P, Si, and Zn	02/14/06

 Table 3-3. Sample Collection Schedules and Analyses

(a) Abbreviations in parentheses corresponding to sample locations shown in Figure 4-4.

(b) Taken only at AC, TA to TF, and TT.

(c) Four baseline sampling events performed before system startup. Sampling discontinued after April 2006 when water was delivered to site to keep up with demand.

LCR = lead and copper rule; TCLP = toxicity characteristic leaching procedure

Bold font indicates that speciation was performed.

3.3.2 Treatment Plant Water. During the system performance evaluation study, samples were collected by the plant operator weekly or bi-weekly at four to nine locations across the treatment train, including at the wellhead (IN), after chlorination (AC), after each adsorption column (TA to TF), and after the entire system (TT). Speciation was performed for As, Fe, Mn, and Al approximately every other month. On-site measurements for analytes listed in Table 3-3 also were performed during each sampling event.

3.3.3 Residual Solid. Because the system did not require backwash, no backwash residuals were produced during system operations. Spent media samples were collected from each of the columns replaced on February 14, 2006. ATS collected one gallon of sample from each column and shipped the samples to Battelle. Approximately 200 g of the spent media from each container were collected and placed in one container. After being homogenized, one aliquot was tested for TCLP. Another aliquot (approximately 100 g) was air-dried, crushed (using a mortar and pestle), acid-digested, and analyzed for the metals listed in Table 3-3.

3.3.4 Distribution System Water. Samples were collected from the distribution system to determine the impact of the arsenic treatment system on the water chemistry in the distribution system, specifically, the arsenic, lead, and copper levels. Prior to the system start-up from December 2004 to April 2005, four sets of baseline distribution water samples were collected from three residences that were part of the historic sampling network under the Lead and Copper Rule (LCR). Following system startup, distribution system water sampling continued on a monthly basis at the same locations until April 2006 when the Vermont State Housing Authority (VSHA) had to deliver water to meet the Park's demand because the wells were not supplying enough water. The delivered water was stored in the 5,500-gal atmospheric storage tank before being treated by the ATS system for distribution.

Samples were collected following an instruction sheet developed according to the *Lead and Copper Rule Monitoring and Reporting Guidance for Public Water Systems* (EPA, 2002). The dates and times of last water usage before sampling and of sample collection were recorded for calculating the stagnation time. All samples were collected from a cold-water faucet that had not been used for at least 6 hr to ensure that stagnant water was sampled.

3.4 Sampling Logistics

3.4.1 Preparation of Arsenic Speciation Kits. The arsenic field speciation method used an anion exchange resin column to separate the soluble arsenic species, As(V) and As(III) (Edwards et al., 1998). Resin columns were prepared in batches at Battelle laboratories according to the procedures detailed in Appendix A of the EPA-endorsed QAPP (Battelle, 2004).

3.4.2 Preparation of Sampling Coolers. For each sampling event, a sample cooler was prepared with the appropriate number and type of sample bottles, disc filters, and/or speciation kits. All sample bottles were new and contained appropriate preservatives. Each sample bottle was affixed with a preprinted, colored-coded label consisting of the sample identification (ID), date and time of sample collection, collector's name, site location, sample destination, analysis required, and preservative. The sample ID consisted of a two-letter code for the specific water facility, sampling date, a two-letter code for a specific sampling location, and a one-letter code for designating the arsenic speciation bottle (if necessary). The sampling locations at the treatment plant were color-coded for easy identification. The labeled bottles for each sampling location were placed in separate Ziploc[®] bags and packed in the cooler.

In addition, all sampling- and shipping-related materials, such as disposable gloves, sampling instructions, chain-of-custody forms, prepaid/addressed FedEx air bills, and bubble wrap, were included. The chain-of-custody forms and air bills were complete except for the operator's signature and the sample dates and

times. After preparation, the sample cooler was sent to the site via FedEx for the following week's sampling event.

3.4.3 Sample Shipping and Handling. After sample collection, samples for off-site analyses were packed carefully in the original coolers with wet ice and shipped to Battelle. Upon receipt, the sample custodian verified that all samples indicated on the chain-of-custody forms were included and intact. Sample IDs were checked against the chain-of-custody forms, and the samples were logged into the laboratory sample receipt log. Discrepancies noted by the sample custodian were addressed with the plant operator by the Battelle Study Lead.

Samples for metals analyses were stored at Battelle's inductively coupled plasma-mass spectrometry (ICP-MS) laboratory. Samples for other water quality analyses by Battelle's subcontract laboratories, including American Analytical Laboratories (AAL) in Columbus, Ohio, Belmont Labs in Englewood, Ohio, and TCCI Laboratories in New Lexington, Ohio, were packed in separate coolers and picked up by couriers. The chain-of-custody forms remained with the samples from the time of preparation through collection, analysis, and final disposal. All samples were archived by the appropriate laboratories for the respective duration of the required hold time and disposed of properly thereafter.

3.5 Analytical Procedures

The analytical procedures described in Section 4.0 of the EPA-endorsed QAPP (Battelle, 2004) were followed by Battelle ICP-MS, AAL, Belmont Labs, and TCCI Laboratories. Laboratory quality assurance/ quality control (QA/QC) of all methods followed the prescribed guidelines. Data quality in terms of precision, accuracy, method detection limits (MDL), and completeness met the criteria established in the QAPP (i.e., relative percent difference [RPD] of 20%, percent recovery of 80 to 120%, and completeness of 80%). The quality assurance (QA) data associated with each analyte will be presented and evaluated in a QA/QC Summary Report to be prepared under separate cover upon completion of the Arsenic Demonstration Project.

Field measurements of pH, temperature, DO, and ORP were conducted by the plant operator using a WTW Multi 340i handheld meter, which was calibrated for pH and DO prior to use following the procedures provided in the user's manual. The ORP probe also was checked for accuracy by measuring the ORP of a standard solution and comparing it to the expected value. The plant operator collected a water sample in a clean, plastic beaker and placed the Multi-340i probe in the beaker until a stable value was obtained. The plant operator also performed free and total chlorine measurements using HachTM chlorine test kits following the user's manual.

4.0 RESULTS AND DISCUSSION

4.1 Facility Description

The CMHP water system at Dummerston, Vermont, supplied water to approximately 14 mobile homes. The water treatment building, shown in Figure 4-1, was located on Dummerston Station Road. The water source was groundwater from three bedrock supply wells (Wells No. 1, No. 2, and No. 3) installed in 1999. The total combined flowrate from the three wells was estimated to be approximately 22 gpm based on a flow test conducted by the plant operator. The average daily use rate was approximately 2,500 gpd. The preexisting system included a 5,500-gal atmosphere storage tank, two booster pumps, and four pressure tanks (Figure 4-2). The only treatment for the preexisting water system was chlorination via injection of a 0.625% NaOCl solution for disinfection.

Figure 4-1. Preexisting Treatment Building at Charette Mobile Home Park

4.1.1 Source Water Quality. Source water samples were collected on September 14, 2004, and subsequently analyzed for the analytes shown in Table 3-3. The results of the source water analyses, along with those provided by the facility to EPA for the demonstration site selection and those obtained from the Vermont Department of Environmental Conservation (VDEC) are presented in Table 4-1.

Total arsenic concentrations of source water ranged from 7.0 to $30.0 \ \mu g/L$. Based on the September 14, 2004, sampling results, the total arsenic concentration in the source water was $30.0 \ \mu g/L$, of which 28.6 $\mu g/L$ (or 95%) existed as soluble As(V). This speciation result is consistent with the relatively high DO and ORP values of 6.1 mg/L and 212 mV, respectively, measured during sampling.

pH values of source water ranged between 7.8 and 8.1. The vendor indicated that the A/I Complex 2000 media could effectively remove arsenic as long as the pH values of source water were less than 9.0. As such, no pH adjustment was planned at the site.

Figure 4-2. Preexisting Pressure Tanks and Booster Pumps

Concentrations of iron (<25 μ g/L) and other ions in raw water were sufficiently low so pretreatment prior to the adsorption process was not required. Concentrations of orthophosphate and fluoride also were sufficiently low (i.e., <0.1 and <0.2 mg/L, respectively) and, therefore, not expected to affect arsenic adsorption on the A/I Complex 2000 media. Silica concentration was 12.3 mg/L, similar to the level measured in source water at the Spring Brook Mobile Home Park (SBMHP) site in Wales, Maine. Because the A/I Complex 2000 media was shown to be especially selective for silica at the SBMHP site (Lipps et al., 2006), the effect of silica on arsenic adsorption was carefully monitored throughout the study period.

Other water quality parameters as presented in Table 4-1 had sufficiently low concentrations and, therefore, were not expected to affect arsenic adsorption on the A/I Complex 2000 media.

4.1.2 Distribution System and Treated Water Quality. According to a VDEC Sanitary Survey, the distribution system consisted of a looped distribution line constructed of approximately 950 ft of 3-in lead pipe, 850 ft of 2-in polyvinyl chloride (PVC) pipe, and 500 ft of 1-in polyethylene pipe (P² Environmental, 2005).

Compliance samples from the distribution system were collected monthly for bacterial analysis. Under the EPA LCR, samples were collected from customer taps at four residences and the pump station every three years. A summary of the distribution system water sampling results collected by VDEC is presented in Table 4-1. Arsenic concentration measured was $30 \mu g/L$, similar to those in source water. Lead concentrations ranged from the method reporting limit of 5 to $6 \mu g/L$; copper concentrations ranged from the method reporting limit of 30 to $300 \mu g/L$. Radium-226 and Radium-228 were present at 0.2 and 0.5 pCi/L, respectively, which was less than the 5-pCi/L MCL.

		Facility	Battelle	VDEC	VDEC
		Source	Source	Source	Treated
Parameter	Unit	Water Data ^(a)	Water Data	Water Data	Water Data
Date		-	9/14/04	1999–2004	2000-2004
рН		8.0	7.9	7.8-8.1	N/A
Temperature	°C	N/A	11.1	N/A	N/A
DO	mg/L	N/A	6.1	N/A	N/A
ORP	mV	N/A	212	N/A	N/A
Total Alkalinity (as CaCO ₃)	mg/L	135	137	190-215	N/A
Hardness (as CaCO ₃)	mg/L	188	156	N/A	N/A
Turbidity	NTU	N/A	0.4	0.4-1.8	N/A
TDS	mg/L	N/A	246	200-210	N/A
TOC	mg/L	N/A	<0.7	N/A	N/A
Nitrate (as N)	mg/L	N/A	0.24	< 0.1	N/A
Nitrite (as N)	mg/L	N/A	< 0.01	< 0.002	N/A
Ammonia (as N)	mg/L	N/A	< 0.05	N/A	N/A
Chloride	mg/L	45	51	<0.2–53	N/A
Fluoride	mg/L	N/A	< 0.1	< 0.2	N/A
Sulfate	mg/L	N/A	20.0	17-18	N/A
Silica (as SiO ₂)	mg/L	N/A	12.3	N/A	N/A
Orthophosphate (as PO ₄)	mg/L	0.07	< 0.06	N/A	N/A
As(total)	mg/L	27	30.0	7–28	30.0
As (total soluble)	mg/L	N/A	30.1	N/A	N/A
As (particulate)	mg/L	N/A	< 0.1	N/A	N/A
As(III)	mg/L	N/A	1.5	N/A	N/A
As(V)	mg/L	N/A	28.6	N/A	N/A
Fe (total)	mg/L	17	<25	60–150	N/A
Fe (soluble)	mg/L	N/A	<25	N/A	N/A
Mn (total)	mg/L	N/A	5.1	20-60	N/A
Mn (soluble)	mg/L	N/A	4.2	N/A	N/A
Al (total)	mg/L	N/A	<10	N/A	N/A
Al (soluble)	mg/L	N/A	<10	N/A	N/A
U (total)	mg/L	N/A	2.0	N/A	N/A
U (soluble)	mg/L	N/A	2.0	N/A	N/A
V (total)	mg/L	N/A	0.8	N/A	N/A
V (soluble)	mg/L	N/A	0.6	N/A	N/A
Pb (total)	mg/L	N/A	N/A	<5	<5-6
Cu (total)	mg/L	N/A	N/A	<30	<30–300
Na (total)	mg/L	32	22	17–23	N/A
Ca (total)	mg/L	75	28	23-39	N/A
Mg (total)	mg/L	N/A	21	N/A	N/A
Ra-226	pCi/L	N/A	<1	N/A	0.2
Ra-228	pCi/L	N/A	<1	N/A	0.5
Radon	pCi/L	N/A	N/A	ND-2.8	N/A
Gross Alpha	pCi/L	N/A	N/A	ND-3	N/A

 Table 4-1. Source and Treated Water Quality Data for Charette Mobile Home Park Site

(a) Provided by facility to EPA for demonstration site selection.
 N/A = not analyzed
 ND = not detected

4.2 Treatment Process Description

The ATS As/2200CS adsorption system uses A/I Complex 2000 adsorptive media for arsenic removal. The A/I Complex 2000 adsorptive media consist of activated alumina and a proprietary iron complex. Table 4-2 presents physical and chemical properties of the adsorptive media, which has NSF International (NSF) Standard 61 listing for use in drinking water.

Physical Properties				
Parameter	Value			
Matrix	Activated alumina/iron complex			
Physical Form	Granular solid			
Color	Light brown/orange granules			
Bulk Density (lb/ft ³)	51			
Specific Gravity	1.5			
Hardness (kg/in ²)	14–16			
Particle Size Distribution (mesh)	28×48 (<2% fines)			
Particle Size Distribution (mm)	0.589×0.295			
BET Surface Area (m ² /g)	320			
Attrition (%)	< 0.1			
Moisture Content (%)	< 5			
Chemical Analysis				
Constituent	Value			
$Al_2O_3(\%, dry)$	90.89			
NaIO ₄ (%, dry)	3.21			
$Fe(NH_4)_2(SO_4)_2 \bullet 6H_2O$ (%, dry)	5.90			

Table 4-2. Physical and Chemical Properties ofA/I Complex 2000 Adsorptive Media

The ATS As/2200 CS system is a fixed-bed downflow adsorption system designed for use at small water systems with flowrates of around 22 gpm. Upon exhaustion, the columns containing spent media are dewatered and shipped to ATS's shop in Massachusetts. The spent media can be either disposed of after being subjected to the EPA Toxicity Characteristic Leaching Procedure (TCLP) test or recycled for beneficiary use according to the vendor.

The system at CMHP was configured in series with water being split into two treatment trains. The system was designed for the lead column to be removed upon exhaustion and each of the two lag columns to be moved forward one position (i.e., the first lag column would become the lead column and the second lag column would become the first lag column). A new column loaded with virgin media would then be placed at the end of each treatment train. Figure 4-3 shows a schematic diagram of the system. Major system components are described as follows:

• Chlorine Feed System. Chlorine was injected after water from the three supply wells was combined. The feed system consisted of a 30-gal chemical day tank and a Walchem EZ Series feed pump with a maximum capacity of 1.0 gal/hr. Proper operation of the feed system was tracked by the operator through measurements of free chlorine across the treatment train. To maintain a target level of 0.2 to 0.4 mg/L (as Cl₂) of free chlorine residual, a 0.625% NaOCl solution was used at a rate of 0.44 mL/min when the well pumps were running.

Figure 4-3. Schematic of ATS As/2200CS System with Series Operation

- Sediment Filters. One 25-µm sediment filter was installed at the head of each treatment train. The 6-in × 20-in filters were used to remove any large particles so that they did not flow into and accumulate in the adsorption columns.
- Adsorption Columns. Following the sediment filter, each treatment train had three 10-in × 54-in sealed polyglass columns (by Park International) each loaded with 1.5 ft³ of A/I Complex 2000 media. Each adsorption column had a riser tube and a valved head assembly to control inflow, outflow, and by-pass.
- **Totalizer/Flow Meter.** One Model F-1000 paddlewheel totalizer/flow meter (by Blue-White Industries) was installed on the downstream end of each treatment train to record flowrate and volume of water treated through the treatment train.
- **Storage Tank.** One 5,500 gal atmospheric storage tank was located at the system outlet to provide temporary storage of the treated water.
- **Booster Pumps and Pressure Tanks.** Two preexisting 2-horsepower (hp) multistage centrifugal CR-4 booster pumps (by Grundfos) and three 120-gal WM series captive air pressure tanks (by Well Mate) with a total storage capacity of approximately 500 gal were located after the atmospheric storage tank. The pressure tank/booster pump assembly was used to supply the treated water with the necessary pressure to the distribution system. The on/off settings of the booster pumps were controlled by the low/high pressure switch set at 30/50 pounds per square inch (psi) in the pressure tanks.
- **Pressure Gauges.** One each BII (0-100 psi) pressure gauge was installed at the system inlet just prior to the sediment filter, at the head of each column, and at the system outlet. The pressure gauges were used to monitor the system pressure and pressure drop across the treatment train.
- **Sampling Taps.** Sampling taps made of PVC by US Plastics were located prior to the system and following each adsorption tank for water sampling.

The system was constructed using 1-in copper piping and fittings. The design features of the treatment system are summarized in Table 4-3, and a flow diagram along with the sampling/analysis schedule is presented in Figure 4-4. A photograph of the system installation is shown in Figure 4-5 and a close-up view of an adsorptive media column is shown in Figure 4-6.

4.3 Permitting and System Installation

Engineering plans for the system were prepared by ATS and reviewed by Roberts & Franzoni Engineering, Inc. The plans, consisting of a schematic and a written description of the As/2200CS system, were submitted to VDEC for approval on April 29, 2005. The approval was granted by VDEC on May 23, 2005.

The system was placed in the existing treatment building, shown in Figure 4-1, without any additions or modifications. The As/2200 CS system, consisting of factory-packed adsorption columns and preassembled system valves, gauges, and sample taps, was delivered to the site by ATS on June 21, 2005. The system installation began that same day. The sediment filters were attached to the wall at the head of the treatment trains (Figure 4-5). The media columns were then set into place and plumbed together using copper piping and connections. The mechanical installation was complete on June 22, 2005. Before the

Parameter	Value	Remarks			
Adsorption Columns					
Column Size (in)	$10 \text{ D} \times 54 \text{ H}$	-			
Cross-Sectional Area (ft ² /column)	0.54	-			
Number of Columns	6	3 columns per train, 2 trains in parallel			
Configuration	Series	3 columns in series per train			
Media Type	A/I Complex 2000	Activated alumina/iron complex (See Table 4-2)			
Media Quantity (lbs)	83	Per column			
Media Volume (ft ³)	1.5	Per column			
	Service				
System Flowrate (gpm)	22	11 gpm per train			
Hydraulic Loading Rate (gpm/ft ²)	20.4	-			
EBCT (min)/column	1.0	Per column, 3.0-min total EBCT for 3			
		adsorption columns in each train			
Maximum Use Rate (gpd)	2,500	Based on usage estimate provided by park			
Estimated Working Capacity (BV)	40,100	Bed volumes to breakthrough to $10 \mu g/L$ from			
		lead column			
Throughput to Breakthrough (gal)	450,000	Vendor-provided estimate to breakthrough at 10			
		μ g/L from lead column based on 1.5 ft ³ (11.2			
		gal) of media in lead column			
Estimated Media Life (months)	12	Estimated frequency of media change-out in			
		lead column based on throughput of 1,250 gpd			
		per train			
Backwash					
Backwash	-	No system backwash required			

Table 4-3. Design Specifications of As/2200CS System

system was put online, the system piping was flushed and the columns were filled one at a time to check for leaks. Once all columns were filled, the system operated for a short period with the treated water going to the sewer. After it was determined that the system was operating properly, the first set of system samples and a sample for the total coliform test were collected. Upon receipt of the coliform test result (that indicated absence of bacteria) on June 24, 2005, the treated water was directed to the distribution system.

4.4 System Operation

4.4.1 Operational Parameters. The operational parameters of the system were tabulated and attached as Appendix A. Key parameters are summarized in Table 4-4. From June 22, 2005, through October 10, 2006, the treatment system operated for 3,636 hr based on hour meter readings of the well pumps. The operational time represented a utilization rate of approximately 32% with the well pumps operating an average of 7.6 hr/day. The total system throughput during the first 34-week period was approximately 391,400 gal (or 195,700 per train). After changeout of the first two columns in each treatment train, the system ran for an additional 34 weeks, treating another 353,500 gal (or 176,750 per train) of water. This corresponds to 17,315 and 15,750 BV of water processed through a column containing 1.5 ft³ (or 11.2 gal) of media throughout the first and second 34-week periods, respectively. For the entire system, i.e., six columns in two trains with 9 ft³ (67.2 gal) of media, it treated approximately 5,824 BV and 5,260 BV, respectively, throughout the two 34-week test periods.

Note: After November 8, 2005, only As and SiO₂ analyzed at TA-TF locations and speciation performed bimonthly

Figure 4-4. Process Flow Diagram and Sampling Locations

Figure 4-5. As/2200CS System with Adsorption Columns Shown in Foreground and Sediment Filters Attached to Wall

Figure 4-6. Close-Up View of a Sample Tap (TE), a Pressure Gauge, and Copper Piping at End of Treatment Train A

Except for a few outliers, flowrates of the three source water wells ranged from 0.0 to 3.3 gpm and averaged 0.3 gpm for Well 1; from 0.3 to 3.1 gpm and averaged 1.1 gpm for Well 2; and from 0.9 to 5.0 gpm and averaged 2.8 gpm for Well 3 during the system operation. For unknown reasons, the flowrates of the source water wells reduced more than half after the 23rd week of operation and remained low for approximately 14 weeks. Afterwards, flowrates began to increase again, but were highly variable for the last 31 weeks of the study period (Figure 4-7). Table 4-5 details the fluctuations observed during the three time periods.

Operation Paramet	er	Values				
Media Run		Run 1	Run 2	Both Runs		
Operating Duration		06/24/05-02/13/06	02/15/06-10/10/06	06/24/05-10/10/06		
Total Operating Time (hr)		1,566	2,070	3,636		
Average Daily Operating Time	e (hr/day)	6.7	8.7	7.6		
Average of Influent Pressure [Range] (psi)	12.0 [0.0-30]	9.4 [0.0-25]	10.8 [0.0-30]		
Average Flowrates of Source	Well #1	0.5 [0.0-3.3]	0.3 [0.0-1.7]	0.3 [0.0-3.3]		
Water Wells [Range] (gpm)	Well #2	1.4 [0.3-3.1]	0.9 [0.3-1.9]	1.1 [0.3-3.1]		
	Well #3	3.3 [0.9-5.0]	2.4 [0.9-4.1]	2.8 [0.9-5.0]		
	Combined	6.7 [1.5-9.0]	4.2 [1.3-9.0]	4.2 [1.3-9.0]		
Average Flowrates of	Train A	3.3 [0.2-6.2]	2.4 [0.5-5.1]	2.8 [0.2-6.2]		
Treatment Trains (gpm)	Train B	3.9 [1.3-7.1]	2.6 [0.4-5.5]	3.2 [0.4-7.1]		
	Combined	7.0 [0.2-13.3]	4.8 [0.8-10.5]	6.1 [0.2-13.3]		
Throughput (gal)	Train A	193,700	163,800	357,500		
	Train B	197,700	189,700	387,400		
	Combined	391,400	353,500	744,900		
Throughput (BV per train) ^(a)	Train A	17,140	14,600	31,740		
	Train B	17,490	16,900	34,390		
	Combined	34,630	31,500	66,130		
Average EBCT (min) ^(a) per	Train A	3.4 [1.8-56.1]	4.7 [2.2-22.4]	4.0 [1.8-56.1]		
Column [Range]	Train B	2.9 [1.6-8.6]	4.3 [2.0-28.0]	3.5 [1.6-28.0]		
	Combined	1.6 [0.8-56.1]	2.3 [1.1-14.0]	1.8 [0.8-56.1]		
Average Pressure Losses	Train A	8.4 [0.0-16.0]	5.4 [0.0-14.0]	7.1 [0.0-16.0]		
Across Trains (psi) [Range]	Train B	6.9 [0.0-15.0]	2.1[0.0-9.0]	5.4 [0.0-15.0]		

 Table 4-4.
 Summary of As/2200CS System Operations

(a) Calculated based on 1.5 ft^3 (or 11.22 gal) of media in lead column.

The treatment system showed similar flowrate fluctuations coinciding with those of the wells. The ranges of flowrates for Trains A and B throughout the study period were 0.3 to 6.2 and 0.3 to 7.1 gpm, respectively (compared to the design flowrate of 11 gpm per train) (Figure 4-7). These resulted in EBCT values ranging from 1.8 and 56.1 min per column for Train A and from 1.6 and 28.0 min per column for Train B (compared to the design EBCT of 1.0 min per column or 3.0 min for three columns).

The highly variable flowrates are believed to have been caused, in part, by drying up and slow recovery rates of the source water wells. Based on the average flowrate and average daily operating time, the average daily use rate was approximately 1,647 gpd, which was approximately 66% of that provided by the park. The flowrates also were affected by the influent pressure to the system. Because there was no pressure tank/booster pump prior to the system, influent pressures were typically low, ranging from 0 to 30 psi (Figure 4-8).

The pressure loss across each column ranged from 0 to 20 psi and averaged 3 psi. The total pressure loss across each treatment train (three columns in series) varied between the two runs and the two treatment trains. During Run 1, the treatment trains had an average pressure loss of 6.9 to 8.4 psi. However, in Run 2, Train A had an average pressure loss of 5.4 psi while Train B had an average pressure loss only of 2.1 psi. The average influent pressure at the head of the system from the wells was 12 psi for Run 1 and 9.4 psi for Run 2. The average pressure following the last column in Train A was similar for both Runs 1 and 2 at 3.6 and 4.1 psi, respectively. Train B had a wider variance between Run 1 and Run 2 for the average pressure following the last column with Run 1 average pressure at 5.3 psi and Run 2 average pressure at 9.1 psi. The treated water was fed into a 5,500 gal atmospheric storage tank so that the pressure was

Figure 4-7. Average Flowrate of Three Source Wells and the Treatment System

Date	06/24/05-11/29/05	12/01/06-03/14/06	03/16/06-10/07/06				
Range and Average Flowrates for Each Well and Combined							
Well #1 (gpm)	0.1-3.3 (0.7)	0.0-0.3 (0.2)	0.0-1.7 (0.3)				
Well #2 (gpm)	0.3-3.1 (1.9)	0.3-0.9 (0.8)	0.9-2.8 (2.1)				
Well #3 (gpm)	1.0-5.0 (4.2)	0.9-2.8 (2.1)	0.9-4.1 (2.5)				
Combined (gpm)	1.5-9.0 (6.7)	0.7-3.9 (3.1)	1.1-6.9 (3.7)				
Range and Average Flowrates for Each Train and Combined							
Train A (gpm)	0.6-6.2 (3.6)	0.3-4.6 (1.4)	0.4-5.0 (2.1)				
Train B (gpm)	0.3-7.1 (4.0)	0.2–5.3 (1.7)	0.3-5.5 (2.5)				
Combined (gpm)	0.4–13.3 (8.2)	0.2–9.9 (3.3)	0.6-10.5 (4.8)				
Range and Average Inlet System Pressure							
Inlet System	0-30 (14.9)	0.0-25 (6)	0-23 (9.7)				
Pressure (psi)							

Table 4-5. Summary of Flowrate and Pressure Variations During System Operation

Figure 4-8. Influent Pressure from Three Source Wells

0 psi at the tank and preexisting pressure tanks; booster pumps were used to feed the distribution system from the atmospheric storage tank.

4.4.2 Residuals Management. The only residuals produced by the operation of the As/2200CS treatment system was spent media. The media from the first two columns of each treatment train were replaced on February 14, 2006, after 34 weeks of operation. Because the system did not require backwash, no backwash residuals were produced.

4.4.3 System /Operation, Reliability and Simplicity. One operational difficulty encountered was insufficient water from the three wells used to supply the treatment system. This might have been caused by a low water table resulting from a dry summer in Vermont. There also was an imbalance of flow to the two treatment trains during the first month of the demonstration. Train A was treating approximately 30% more water than Train B. After the first month, flow became more balanced and at the end of the first run, Train A received 49% and Train B received 51% of the water. At the beginning of the second run, Train B was treating more than 75% of the flow. By the end of the evaluation, Train A treated approximately 46% and Train B treated 54% of the water. Additional discussion regarding system operation and operator skill requirement are provided below.

4.4.3.1 *Pre- and Post-Treatment Requirements*. Because arsenic existed predominately as As(V), oxidation of As(III) to As(V) was not required. However, for disinfection purposes, prechlorination was performed using the preexisting chlorine addition system. No other pre- or post-treatment was required for this system.

4.4.3.2 System Controls. The As/2200CS adsorption system was a passive system, requiring only the operation of the supply well pumps to send water through the adsorption columns to the 5,500-gal atmospheric storage tank and booster pumps to supply water to the distribution system. The media columns themselves required no automated parts and all valves were manually activated. The inline flowmeters were battery powered so that the only electrical power required was that needed to run the supply well pumps and booster pumps, which were in place prior to the installation of the ATS treatment system. The system operation was controlled by a float valve in the atmospheric storage tank.

4.4.3.3 *Operator Skill Requirements.* Under normal operating conditions, the skills required to operate the treatment system were minimal. The operation of the system did not require additional skills beyond those necessary to operate the existing water supply system in place at the site.

The CMHP treatment facility is considered by VDEC as a public community water system. A public system is one that has 15 or more service connections or that serves 25 or more people. A community system is one that serves residents on a year-round basis. Individuals who operate or supervise the operation of a public water system in the state of Vermont must possess an operator certificate.

The five classes of water systems in Vermont are Classes 1, 2, 3, 4 and D. Classes 1, 2, 3, and 4 apply to water systems with their own source(s) of supply and Class D applies to systems that distribute water. Class 3 applies to systems that fall under one of the following categories: 1) disinfection by other than chlorine or ultraviolet (UV); 2) sequestering or filtering of manganese or iron; 3) fluoridation; 4) corrosion control; 5) pH control; 6) air stripping; 7) granular activated adsorption; 8) ion exchange; or 9) aeration. Although treatment of arsenic through adsorption is not specifically listed under Class 3, the treatment system falls under Class 3 (VDEC, 2007). The operator at CMHP possesses a Class 3 certification.

4.4.3.4 *Preventative Maintenance Activities*. The only regularly scheduled preventative maintenance activity recommended by ATS was to inspect the sediment filters monthly and replace as necessary. The treatment system operator visited the site approximately three times per week to check the system for leaks, and record flow, volume, and pressure readings.

4.4.3.5 Chemical/Media Handling and Inventory Requirements. NaOCl was used for prechlorination. The operator ordered chemicals as had been done prior to the installation of the treatment system.

4.5 System Performance

The performance of the treatment system was evaluated based on analyses of samples collected from the raw and treated water from the treatment and distribution systems. The system ran from June 22, 2005, through February 14, 2006, when the first two columns in each train (i.e., TA through TD), were changed out. The second set of lag columns (TE and TF) were switched to the lead position and four new columns were added as lag columns. The system operated for an additional 34 weeks before the arsenic levels in the effluent from the system (following the third columns) had reached 10 μ g/L and the study was completed.

4.5.1 Treatment Plant Sampling. Table 4-6 summarizes the arsenic, iron, manganese, and aluminum results from samples collected throughout the treatment plant for the two runs. Table 4-7 summarizes the results of other water quality parameters. Appendix B contains a complete set of analytical results through the 68 weeks of system operation. The results of the treatment plant sampling are discussed below.

4.5.1.1 Arsenic. The key parameter for evaluating the effectiveness of the treatment system was the concentration of arsenic in the treated water. The treatment plant water was sampled on 36 occasions during the 68 weeks of system operation (with duplicate samples taken on three and field speciation performed on eight of the 36 occasions).

Figure 4-9 contains three bar charts each showing the concentrations of total As, particulate As, and soluble As, including As(III) and As(V), across the entire system for Runs 1 and 2. Total As concentrations in raw water ranged from 20.8 to 101 μ g/L and averaged 41.3 μ g/L (Table 4-6). Soluble As(V) was the predominating species, with concentrations ranging from 20.6 to 67.0 μ g/L and averaging 37.5 μ g/L. Soluble As(III) also was present in source water, with concentrations ranging from 0.2 to 3 μ g/L and averaging 1.2 μ g/L. Particulate As was low with concentrations typically less than 1 μ g/L. The influent arsenic concentrations measured during this 68-week period were generally higher than those in the raw water sampled during the initial site visit on September 14, 2004 (Table 4-1).

Arsenic concentrations after the lead columns reached 10 μ g/L at approximately 5,700 BV from Train A (TA) and 5,400 BV from Train B (TB) (Figure 4-10) (note that BV was calculated based on the amount of media, i.e., 1.5 ft³, in each lead column). Arsenic, existing almost entirely of As(V) (Figure 4-9), approached complete breakthrough (concentrations equal to those in the influent) after the lead columns at approximately 12,000 BV. Arsenic breakthrough from the lead columns occurred much sooner than projected by the vendor (i.e., at 40,000 BV). Although the vendor indicated that the media could effectively remove arsenic as long as the pH values were less than 9.0, the relatively high pH values of source water (averaging 7.6; see Table 4-7) might have contributed, in part, to early arsenic breakthrough from the adsorption columns. Influent arsenic concentrations during the 68-week evaluation also were, on average, higher than those collected historically by the facility, Battelle, and VDEC. The vendor-estimated breakthrough was based on approximately 30 μ g/L of As, compared to the average raw water arsenic concentration of 41.3 μ g/L during the 68 weeks of operation. However, the vendor's arsenic breakthrough also was projected using an EBCT of 1 min/column based on a flowrate of 11 gpm per treatment train; this EBCT was much shorter than the actual EBCT and the flowrate was much higher than the actual flowrate (see Table 4-4).

Based on the breakthrough curves shown in Figure 4-10 and the resulting mass removal data summarized in Table 4-8, the arsenic loading on the adsorption media was estimated to be between 0.45 and 0.49 μ g of As/mg of media in the lead columns. The loading was calculated by dividing the arsenic mass represented by the shaded areas in Figure 4-11 by the amount of dry media (1.5 ft³) in each lead column (see Appendix C). The total arsenic mass removed during Run 1 by the lead columns in Trains A and B (TA

	Sampling	Number of	Concentration (µg/L)			Standard		
Parameter	Location	Samples	Minimum	Maximum	Average	Deviation		
A c (total)	IN	19 [19] ^(a)	28.8 [20.8]	72.2 [101]	42.2 [40.5]	12.7 [21.5]		
	AC	4 [4]	25.7 [21.5]	25.7 [79.7]	25.7 [43.0]	-[21.6]		
As (total)	TA-TF	8–19 [19] ^(a)						
	TT	16 [19]		((b)			
	IN	4 [4]	<0.1 [0.2]	1.2 [10.1]	0.34 [3.5]	0.58 [4.5]		
As	AC	1 [3]	<0.1 [0.3]	< 0.1 [4.4]	<0.1 [1.7]	- [2.3]		
(particulate)	TA-TD	2-3 [0]						
	TT	2 [4]		((b)			
	IN	4 [4]	0.4 [0.2]	3.0 [1.1]	1.8 [0.53]	1.1 [0.4]		
	AC	1 [4]	0.5 [0.2]	0.5 [1.2]	0.5 [0.58]	- [0.4]		
AS (III)	TA-TD	2-3 [0]						
	TT	2 [4]	(b)					
	IN	4 [4]	29.1 [20.6]	44.4 [67.0]	39.3 [35.7]	6.9 [21.4]		
$\Lambda_{S}(\mathbf{V})$	AC	1 [4]	25.5 [20.0]	25.5 [67.0]	25.5 [40.8]	- [20.1]		
AS(V)	TA-TD	2-3 [0]						
	TT	2 [4]		((b)			
	IN	19 [19] ^(a)	<25 [<25]	45.4 [108]	<25 [<25]	7.6 [28.6]		
Fe (total)	AC	1 [4]	<25 [<25]	<25 [<25]	<25 [<25]	-[0]		
10((0(a))	TA-TF	1–13 [3] ^(a)	<25 [<25]	<25 [<25]	<25 [<25]	0.0 [0.0]		
	TT	16 [19] ^(a)	<25 [<25]	<25 [<25]	<25 [<25]	0.0 [0.0]		
	IN	4 [4]	<25 [<25]	<25 [<25]	<25 [<25]	0.0		
Fe (soluble)	AC	1 [4]	<25 [<25]	<25 [<25]	<25 [<25]	- [0.0]		
	TA-TD	2–3 [0]	<25 [-]	<25 ^(c) [-]	<25 ^(c) [-]	$0.0^{(c)}$ [-]		
	TT	2 [4]	<25 [<25]	<25 [<25]	<25 [<25]	0.0 [0.0]		
	IN	19 [19] ^(a)	1.7 [1.9]	35.9 [37.9]	9.0 [10.9]	9.8 [11.8]		
Mn (total)	AC	1 [4]	12.1 [2.5]	12.1 [4.7]	12.1 [3.9]	-[1.1]		
ivin (total)	TA-TF	$1-11 [3]^{(a)}$	<0.1 [<0.1]	0.8 [0.6]	0.2 [0.2]	0.2 [0.2]		
	TT	16 [19] ^(a)	<0.1 [<0.1]	0.3 [1.6]	0.1 [0.3]	0.1 [0.5]		
	IN	4 [4]	<0.1 [1.1[9.5 [3.2]	4.8 [2.3]	4.8 [0.9]		
Mn (soluble)	AC	1 [4]	1.2 [1.6]	1.2 [2.7]	1.2 [2.1]	- [0.5]		
iiiii (soluole)	TA-TD	23 [0]	<0.1 [-]	0.8 [-]	0.3 [-]	0.3 [-]		
	TT	2 [4]	<0.1 [<0.1]	0.2 [0.2]	0.1 [0.2]	0.1 [0.1]		
Al (total)	IN	19 [19] ^{[a)}	<10 [<10]	<10 [<10]	<10 [<10]	0.0 [0.0]		
	AC	1 [4]	<10 [<10]	<10 [<10]	<10 [<10]	- [0.0]		
	TA-TF	$1-11 [2]^{(a)}$	<10 [10.0]	30.3 [16.3]	17.1 [12.0]	5.6 [1.8]		
	TT	16 [19] ^(a)	<10 [<10]	27.4 [20.8]	18.2 [14.2]	6.6 [4.3]		
	IN	4 [4]	<10 [<10]	<10 [<10]	<10 [<10]	0.0 [0.0]		
Al (soluble)	AC	1 [4]	10.2 [<10]	10.2 [<10]	10.2 [<10]	- [0.0]		
	TA-TD	2-3 [0]	<10 [-]	20.8 [-]	13.5 [-]	5.4 [-]		
	TT	2 [4]	14.1 [12.8]	20.9 [17.3]	17.5 [15.5]	4.8 2.0]		

 Table 4-6. Summary of Arsenic, Iron, Manganese, and Aluminum Analytical Results

Duplicate samples included in calculations.

Run 2 analytical results shown in brackets.

(a) Including one duplicate sample.

(b) Statistics not provided; see figure 4-8 for As breakthrough curves.
	Sampling		Number of	C	oncentration/U	nit	Standard
Parameter	Location	Unit	Samples	Minimum	Maximum	Average	Deviation
Allzolinity	IN	mg/L	15 [9]	110 [121]	141 [156]	128 [140]	7.3 [13.1]
Alkannity	TA-TF	mg/L	1-10 [0]	44 [-]	165 [-]	133 [-]	26.8 [-]
(as CaCO ₃)	TT	mg/L	12 [9]	110 [125]	154 [141]	137 [134]	13.7 [4.4]
	IN	mg/L	15 [9]	< 0.1 [< 0.1]	<0.1 [0.3]	<0.1 [0.1]	0.0 [0.08]
Fluoride	TA-TF	mg/L	1-10 [0]	<0.1 [-]	3.7 [-]	0.28 [-]	0.86 [-]
	TT	mg/L	13 [9]	<0.1 [<0.1]	0.1 [0.2]	0.05 [0.07]	0.01 [0.05]
	IN	mg/L	15 [9]	16 [22]	24 [24]	20.3 [22.9]	2.2 [0.7]
Sulfate	TA-TF	mg/L	1-10 [0]	15 [-]	70 [-]	24.6 [-]	12.1 [-]
	TT	mg/L	12 [9]	17 [20]	28 [25]	21.6 [23.3]	2.8 [1.5]
Orthophosphate	IN	mg/L	8 [0]	<0.05 [-]	<0.05 [-]	<0.05 [-]	0.0 [-]
(as PO ₄)	TA-TD	mg/L	2-8 [0]	<0.05 [-]	<0.05 [-]	<0.05 [-]	0.0 [-]
(40 1 0 4)	TT	mg/L	7 [0]	<0.05 [-]	<0.05 [-]	<0.05 [-]	0.0 [-]
Phosphorus	IN	mg/L	8 [9]	<0.03 [<0.03]	<0.03 [<0.03]	<0.03 [<0.03]	0.0 [0.0]
(as P)	TA-TF	mg/L	2–3 [0]	<0.03 [-]	<0.03 [-]	<0.03 [-]	0.0 [-]
(TT	mg/L	6 [9]	<0.03 [<10]	<0.03 [<10]	<0.03 [<10]	0.0 [0.0]
Silica	IN	mg/L	18 [19]	10.6 [10.7]	16.8 [13.3]	12.6 [11.5]	1.4 [0.6]
(as SiO ₂)	TA-TF	mg/L	8–17 [19]	0.4 [0.1]	14.7 [12.5]	9.8 [9.4]	2.4 [2.8]
(TT	mg/L	15 [19]	0.3 [0.2]	10.3 [10.6]	7.0 [7.7]	3.4 [3.1]
	IN	mg/L	15 [9]	<0.05 [<0.05]	0.2 [0.2]	0.11 [0.08]	0.06 [0.06]
Nitrate (as N)	TA-TF	mg/L	1-9[0]	<0.05 [-]	0.10 [-]	0.08 [-]	0.03 [-]
	TT	mg/L	11 [9]	<0.05 [<0.05]	0.4 [0.2]	0.12 [0.11]	0.10 [0.05]
T	IN TA TE	NTU	15 [9]	<0.1 [0.2]	1.3 [0.9]	0.3 [0.4]	0.3 [0.2]
Turbidity	TA-TF	NTU	1-10[0]	<0.1 [-]	1.6 [-]	0.2 [-]	0.3 [-]
	TT	NTU	12 [9]	<0.1 [0.1]	0.5 [0.7]	0.2 [0.4]	0.2 [0.2]
	IN	S.U.	16[10]	7.0 [6.5]	8.4 [8.4]	7.7 [7.5]	0.3 [0.2]
pН	AC	S.U.	4 [8]	7.5 [7.2]	8.1 [8.0]	7.8[7.7]	0.3[0.3]
•	TA-IF	S.U.	I-9[0]	6.5 [-]	8.4 [-]	/.6 [-]	0.6 [-]
		S.U.	13 [10]	6.9 [7.0]	8.3 [8.0]	/.6[/.5]	0.5 [0.3]
		-C	16 [10]	9.1 [7.4]	15.9 [13.5]	12.2 [10.6]	2.3 [2.0]
Temperature	AC	°C	4 [8]	7.7[7.4]	10.7 [12.2]	9.4 [10.2]	1.3[1.5]
-	TA-IF	°C	I-8 [0]	10.7 [-]	16.3 [-]	13.1 [⁻]	2.0 [-]
Erec Chlorine		<u>-С</u>	13 [10]	9.0 [8.8]	17.2 [14.3]	12.9[11.0]	2.8 [1.8]
Free Chiorine	AC	mg/L	/[0]		1.0 [0.4]	0.4 [0.3]	0.4 [0.1]
$(as Cl_2)$		mg/L	12[9]		0.5 [0.4]		0.1[0.1]
1 otal Chlorine	AC	mg/L	/[0]		0.7[0.4]	0.3[0.3]	0.3[0.1]
$(as Cl_2)$		mg/L	8[6]		0.5 [0.4]	0.3 [0.2]	0.2 [0.1]
Total Hardness		mg/L	10[8]	14/[143]	205 [174]	1/3 [136]	15.2 [10.7]
(as CaCO ₃)		mg/L	1-11[0]	143 [-]	211[-]	170[-]	19.0 [-]
		mg/L	13 [8]	150 [140]	214 [1/4]	1/1[160]	17.2 [13.2]
Ca Hardness		mg/L	10[8]	69.5 [72.8]	92.8 [83.7]	80.4 [//./]	0.9[3.3]
(as CaCO ₃)		mg/L	1-11[0]	62.9 [-]	96.2 [-]	/8.9 [-]	<u> </u>
		mg/L	13 [8]	07.0[74.0]	92.6 [81.4]	/9.3 [/8.4]	7.0 [2.8]
Mg Hardness		mg/L	10[8]	//.4 [68.4]	113 [91.7]	92.7 [80.3]	10.0 [8.9]
(as CaCO ₃)	TA-IF	mg/L	1-11[0]	/9.1 [-]		91.5 [-]	
	11	mg/L	13 [8]	82.0 [65.8]	125 [93.1]	91.8 [81.7]	12.1 [11.0]

Table 4-7. Summary of Other Water Quality Parameter Analytical Results

One-half of detection limit used for nondetect samples for calculations.

Run 2 analytical results shown in brackets. Duplicate samples included in calculations.

Figure 4-11. Arsenic Mass Removed by Trains A and B During Run 1

and TB) was estimated to be 16.4 and 15.1 g, respectively. The first set of lag columns (i.e., Column TC and TD or the middle columns) removed an estimated 10.8 and 10.6 g, respectively, which were approximately 32% less than the mass removed by the lead columns. These lag columns did not reach their full capacity for arsenic before they were replaced. The final columns in each train, i.e., TE and TF, removed an estimated 2.9 and 3.4 g, respectively.

During Run 2, Columns TE and TF were moved to the lead position to maximize their usage for arsenic removal. Columns TE and TF removed an estimated 10.0 and 11.5 g, respectively, during Run 2, making their total arsenic mass removal 12.9 and 14.9 g, respectively. The first lag columns (i.e., middle columns, or TA and TB that were rebedded), removed an estimated 10.2 and 11.2 g of arsenic, respectively. The arsenic mass removed by the lead and first lag columns during Run 2 was very similar to that during Run 1. The final columns for Run 2 (i.e., TC and TD) removed an estimated 7.0 and 7.1 g of arsenic, respectively.

Breakthrough curves for the middle and final columns in each train (TC–TF) and the entire system (TT) also are presented in Figure 4-10. Breakthrough curves were plotted based on a BV of 1.5 ft³ for each individual column. Arsenic concentrations from the middle columns (TC and TD) reached 10 μ g/L at approximately 13,000 and 12,500 BV, respectively (or 6,500 and 6,250 BV, respectively, if considering the first two columns in each train as one large column). Arsenic concentrations from the final column in each treatment train (TE and TF) reached 10 μ g/L at approximately 17,400 and 17,600 BV, respectively (or 5,800 and 5,900 BV, respectively, if considering all columns in each train as one large column). Table 4-8 summarizes the arsenic mass removed by each of the columns for the two runs and a detailed calculation of arsenic mass removed is provided in Appendix C.

	Arsenic Mass (Column	Removed (µg) Position)	Capa (µg of As/m	city ^(b) g of media)
Column	Run 1	Run 2	Run 1	Run 2
TA	16,450,288	10,196,282	0.49	0.30
	(Lead)	(First lag)		
TB	15,139,310	11,222,302	0.45	0.33
	(Lead)	(First lag)		
TC	10,849,436	7,000,376 ^(d)	0.32	0.21
	(First lag)	(Second lag)		
TD	10,583,800	7,068,112 ^(d)	0.31	0.21
	(First lag)	(Second lag)		
TE ^(c)	2,937,703	12,955,621 ^(e)	0.09	0.38
	(Second lag)	(Lead)		
TF ^(c)	3,425,869	14,923,362 ^(e)	0.10	0.44
	(Second lag)	(Lead)		

Table 4-8. Arsenic Mass Removed by Columns A through F and
Capacity of Media for Arsenic ^(a)

(a) More detailed tables of calculations provided in Appendix C.

(b) 33,660,400 mg of media in each column based on a bulk density of 51 lb/ft³ and a moisture content of 3%.

(c) Columns switched to lead position during media changeout and new columns added on as lag columns.

(d) Columns not at full capacity for arsenic at end of evaluation.

(e) Combined arsenic mass removal during Run 1 and Run 2.

4.5.1.1 Silica, Sulfate, Bicarbonate and Nitrate. Among the anions analyzed, silica, sulfate, alkalinity (existing primarily as HCO_3^- at pH values between 7.0 and 8.2), and nitrate were present in significant concentrations in raw water (Table 4-7) and potentially could compete with arsenic for adsorptive sites. As shown in Figure 4-12, silica was consistently removed by (and did not reach complete breakthrough from) the adsorption columns throughout the two adsorption runs. However, HCO_3^- , SO_4^{-2-} , and NO_3^- , showed little or no adsorptive capacity on the media (Figure 4-13).

4.5.1.3 Aluminum. As shown in Table 4-6, total aluminum concentrations in source water were below detection. Aluminum concentrations (existing primarily in soluble form) in the treated water following the adsorption columns were about 10 to 30 μ g/L higher than those in raw water, indicating leaching of aluminum from the adsorptive media. With the increase in aluminum concentration following the treatment system, the concentrations, however, were below the secondary drinking water standard for aluminum of 50 to 200 μ g/L. Leaching of aluminum continued throughout the study period; however, there was a decreasing trend in aluminum concentration in treated water throughout the evaluation (Figure 4-14).

4.5.1.4 Iron and Manganese. Iron concentrations, both total and dissolved, were consistently less than the reporting limit of 25 μ g/L in source water and across the treatment trains (Table 4-6). Manganese concentrations in source water also were low, ranging from 1.7 to 37.9 μ g/L and averaging 10.0 μ g/L. Manganese concentrations in the treated water following the adsorption columns were typically below the reporting limit (<1 μ g/L), indicating complete removal of manganese by the adsorptive media.

4.5.1.5 *Other Water Quality Parameters*. Fluoride, orthophosphate, total phosphorus, total chlorine and hardness concentrations remained relatively constant throughout the treatment train.

4.5.2 Spent Media Sampling. Spent A/I Complex 2000 media samples were collected from each lead and first lag columns during media changeout on February 14, 2006. The samples were collected according to Section 3.3.3 for TCLP and total metals analysis and the analytical results are presented in Tables 4-9 and 4-10, respectively.

4.5.2.1 TCLP. The TCLP results indicated that the spent media was non-hazardous and could be disposed of in a sanitary landfill. Barium was the only metal detected by the TCLP test at a concentration of 4.6 mg/L, which is well below the limit of 100 mg/L of Ba.

4.5.2.2 *Metals*. The spent media ICP-MS results indicate that the media removed arsenic as water passed through Columns A and C in Train A and Columns B and D in Train B, as evident by the decreasing arsenic loadings shown in Table 4-10. The arsenic loadings on the spent media based on the ICP-MS results and arsenic breakthrough curves are summarized in Table 4-11. A/I Complex 2000 dry media mass was calculated based on a moisture content of 3% based on results from the spent media analysis.

As expected, arsenic loading on the media was low, amounting to only 0.64 μ g/mg of dry media (on average) on the lead vessels and 0.42 μ g/mg (on average) on the first lag vessels. The arsenic loadings measured on the spent media by ICP-MS were 36% (for the lead columns) and 33% (for the first lag columns) higher than those estimated based on the breakthrough curves. It is unclear what may have contributed to the differences observed.

Besides aluminum, all metals analyzed on the spent media were below 1.0% (by weight). The average aluminum composition was 39%, equivalent to 74% as Al_2O_3 . This amount was significantly lower than the 91% listed in the ATS's material specifications (Table 4-2). The spent media results also showed that

Nitrate

Note: $1 \text{ BV} = 1.5 \text{ ft}^3$ for each column

Figure 4-13. Alkalinity, Sulfate and Nitrate Concentrations Across Treatment Trains and Entire System for Runs 1 and 2

	TCLP
	Concentration
Analyte	(mg/L)
Arsenic	< 0.10
Barium	4.6
Cadmium	< 0.010
Chromium	< 0.010
Lead	< 0.050
Mercury	< 0.0020
Selenium	< 0.10
Silver	< 0.010

Table 4-9. TCLP Results of a CompositeSpent Media Sample

Table 4-10. Spent Media Metals Results^(a)

			Sampling	Location	
Parameter	Unit	TA	TB	TC	TD
Bed Volume	BV^3	17.2	17.5	17.2	17.5
A 1		384,832	374,348	404,135	410,177
Alummum	µg/g	360,951	393,355	404,246	409,579
Arconio		678	606	412	401
Arsenic	µg/g	592	670	413	406
Codmium	u a/a	1.42	1.58	1.81	2.01
Caulinum	µg/g	1.53	1.70	1.92	2.13
Calaium	u a/a	8,986	7,647	9,091	9,029
Calciulii	µg/g	8,721	7,911	9,061	9,057
Coppor		1,413	1,053	181	129
Copper	µg/g	1,368	1,047	178	136
Iron	u a/a	7,387	7,097	5,606	4,907
11011	µg/g	6,570	7,379	5,590	4,955
Lord	u a/a	5.32	3.01	0.85	0.87
Leau	µg/g	4.78	2.95	0.85	0.92
Magnosium	u a/a	1,887	1,805	1,866	1,835
wiagnesium	µg/g	1,891	1,832	1,843	1,763
Manganasa	u a/a	262	169	18.9	38.9
Wanganese	μg/g	239	170	18.3	40.4
Nickol	u a/a	53.6	35.3	9.43	8.75
INICKEI	µg/g	53.2	37.4	8.44	9.03
Phoenhorus		302	351	368	339
rnosphorus	µg/g	320	376	341	352
Silico		392	518	650	611
Silica	µg/g	311	450	674	395
Zine		551	372	<50	<50
Zinc	μg/g	538	370	<50	<50

(a) With analyses of duplicate samples

	Breakthrough Curves ^(a) Table 4-8	Spent Media ^(b) Table 4-10
	μg As/mg o	f dry media
ТА	0.49	0.64
ТВ	0.45	0.64
ТС	0.32	0.41
TD	0.31	0.40

Table 4-11. Summary of Media Capacity for Arsenic

(a) Calculations account for 3% moisture content of A/I Complex 2000 media.

(b) Averages of duplicate samples.

the media had some capacities for positively charged metal ions, such as copper, lead, manganese, nickel, and zinc. For example, zinc in the lead vessels had an average concentration of 0.46 μ g/mg, while zinc was not detected in the first lag vessels above the reporting limit of 0.05 μ g/mg.

4.5.3 Distribution System Water Sampling. Prior to the installation/operation of the treatment system, baseline distribution water samples were collected from three LCR residences on December 7, 2004; January 4, 2005; February 1, 2005; and April 5, 2005. Following the installation of the treatment system, distribution water sampling continued on a monthly basis at the same three locations. The results of the distribution system sampling are summarized in Table 4-12.

As expected, prior to the installation of the arsenic adsorption system, arsenic concentrations in the distribution system were similar to those measured in raw water, ranging from 25.9 to 51.0 μ g/L. After system startup, As concentrations remained elevated from 16.3 to 26.0 μ g/L at Lot 1 and from 4.7 to 11.2 μ g/L at Lot 4 during the first one to three months. Since then, arsenic concentrations decreased to below 3 μ g/L before steadily increasing to 6.8 μ g/L at Lots 1 and 6 and 4.8 μ g/L at Lot 4 just before media changeout. One additional sample was collected two months after the media changeout and the As concentrations were between 1.0 and 2.4 μ g/L. Distribution system water sampling was discontinued after April 2006 when the Park began hauling water in to keep up with demand. The hauled water was mixed with the treated water in the 5,500 gallon storage tank prior to distribution.

Prior to system startup, iron and manganese concentrations in the distribution system were low and similar to those in raw water. Two residences (Lots 4 and 6), however, had elevated iron (as high as $602 \ \mu g/L$) and manganese concentrations (as high as $83.2 \ \mu g/L$). After system startup, iron concentrations were mostly near or below the method reporting limit of $25 \ \mu g/L$, except for two samples taken from Lot 4 that had elevated concentrations of 128 and 346 $\mu g/L$. Manganese concentrations were similar to those of the treated water, except for one sample taken from Lot 1 which had an elevated concentration of $50.1 \ \mu g/L$.

With the exception of two samples collected at Lot 6 prior to system startup, aluminum concentrations were slightly higher in water collected after system startup. Although aluminum concentrations were higher in the distribution system than the source water, the concentrations were well below the secondary MCL of $200 \mu g/L$.

One sample collected at Lots 6 and 4 during the baseline sampling exceeded the lead action level of 15 μ g/L (i.e., 37 μ g/L from Lot 6 on January 4, 2005, and 22.1 μ g/L from Lot 4 on December 7, 2004). After system startup, lead concentrations at all distribution locations were below 7.5 μ g/L. Copper values ranged from 17.2 to 138 μ g/L and averaged 63.4 μ g/L prior to system startup and ranged from 1.9 to

Results
Sampling
System 3
Distribution
Table 4-12.

				nე	105	38.6	36.5	17.2	25.9	55.5	35.0	18.9	28.2	20.8	4.5	2.0	15.3	
				Чd	22.1	8.9	7.3	2.5	1.6	7.5	3.6	0.4	2.3	0.4	0.2	0.2	0.6	
				IA	19.8	<10	<10	<10	10.9	17.6	18.5	<10	19.7	18.4	13.2	<10	11.9	
			>	uМ	33.8	13.6	10.4	4.9	4.1	16.6	2.7	1.2	1.1	0.5	<0.1	2.8	4.2	
DS3	ot 4	.CR	Drav	θŦ	602	139	175	25.9	34.4	346	128	<25	48.8	<25	<25	<25	47.1	
	_		1st	sА	51.0	34.0	39.3	33.3	4.7	11.2	6.5	2.9	3.1	2.7	3.4	4.8	2.4	
				Alkalinity	142	132	133	141	132	141	141	145	132	145	134	129	128	
				Hq	7.9	7.8	7.9	7.8	7.6	7.6	7.8	7.7	7.9	8.1	8.1	8.1	7.8	
				Stagnation (214) smiT	8.8	8.9	17.5	20.0	20.3	11.4	7.7	21.4	23.8	10.8	22.5	20.2	10.9	
				nე	18.9	138	43.3	29.6	20.9	29.6	20.9	21.6	18.3	37.1	9.3	6.6	30.0	
				РÞ	0.3	37.0	5.1	0.6	0.7	0.5	0.3	0.3	0.6	0.9	1.3	<0.1	0.2	
				IA	<10	82.2	53.4	10.9	11.9	13.9	14.1	13.9	12.9	12.6	22.4	<10	24.2	
			,	uΜ	1.7	83.2	10.6	0.8	0.2	0.5	< 0.1	0.2	0.1	0.1	2.9	< 0.1	0.3	
)S2	ot 6	CR	Drav	θ٦	<25	339	43.9	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	
			1st	гA	29.0	40.8	34.3	30.6	2.5	2.5	2.1	1.5	0.8	1.2	4.2	6.8	1.2	
				Yinils Alkalinity	142	132	138	132	132	132	150	145	110	145	130	133	128	
				Hq	7.8	7.8	7.5	T.T	7.6	7.6	7.7	7.7	7.5	8.0	8.1	8.0	7.8	
				Stagnation (213) Stagnation	11.8	13.0	12.0	11.8	12.3	12.5	12.8	13.0	11.4	11.3	10.5	5.8	10.6	
				nე	82.0	85.9	84.9	81.3	32.3	72.3	82.5	18.8	33.6	16.5	9.2	1.9	26.2	
				РÞ	2.2	4.0	2.5	1.2	1.0	2.2	1.3	0.3	1.4	0.2	0.1	<0.1	1.3	
				IA	<10	<10	<10	<10	15.9	<10	<10	15.4	56.6	54.1	48.6	<10	17.8	
			M	uМ	4.1	3.7	2.2	0.8	50.1	6.7	0.6	0.3	1.0	0.1	<0.1	<0.1	0.5	
DS1	Lot 1	LCR	t Dra	θŦ	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	
			1s	sА	27.7	25.9	30.8	30.7	16.3	26.0	20.0	1.0	0.9	1.3	3.5	6.8	1.0	
				Yinils Alkalinity	142	136	138	132	110	110	141	154	132	141	125	133	133	
				Hq	7.9	7.7	7.3	7.7	8.2	8.2	7.6	7.7	7.3	7.9	7.9	8.1	7.8	
				Stagnation (rs/) 9miT	20.5	12.0	16.0	11.0	14.0	8.8	11.0	NA	0.7	0°.L	8.0	9.9	6.5	
	Address	Sample Type	Flushed / 1st Draw	Sampling Date	12/7/2004	1/4/2005	2/1/2005	4/5/2005	7/27/2005	8/16/2005	9/20/2005	10/13/2005	11/8/2005	12/13/2005	1/26/2006	2/14/2006	4/11/2006	A = not available.
		No of	Samuling	Events	BL1	BL2	BL3	BL4	1	2	3	4	5	9	L	8	6	NS = not sampled; N

37

Lead action level = 15 µpl.; copper action level = 1.3 mg/L The unit for analytical parameters is µg/L except for alkalinity (mg/L as CaCO₃). BL = Baseline Sampling

 $82.5 \mu g/L$ and averaged $25.7 \mu g/L$ after system startup. All samples analyzed for copper were below the action level of 1.3 mg/L. The pH and alkalinity remained relatively constant throughout distribution system water sampling.

4.6 System Cost

The cost of the system was evaluated based on the capital cost per gpm (or gpd) of design capacity and the O&M cost per 1,000 gal of water treated. This included the tracking of the capital cost for the treatment system such as equipment, engineering, and installation and the O&M cost for chemical supply, electrical power usage, and labor. No cost was incurred for building and discharge-related infrastructure improvements. If required, this cost would have been funded by the demonstration site and would not be included in the following cost analyses.

4.6.1 Capital Cost. The capital investment for equipment, site engineering, and installation was \$14,000 (see Table 4-13). The equipment cost was \$8,990 (or 64% of the total capital investment), which included \$4,060 for the treatment system mechanical hardware, \$2,880 for the A/I Complex 2000 adsorption media (i.e., $320/\text{ft}^3$ or 5.82/lb to fill six columns), and 2,050 for the vendor's labor and shipping cost.

The engineering cost included the cost for the preparation of the system layout and footprint, design of the piping connections to the distribution tie-in points, and assembling and submission of the engineering plans for the permit application (Section 4.3). The engineering cost was \$2,400, which was 17% of the total capital investment.

The installation cost included the cost to unload and install the treatment system, complete the piping installation and tie-ins, and perform the system start-up and shakedown (Section 4.3). The installation costs were \$2,610, or 19% of the total capital investment.

Using the system's rated capacity of 22 gpm (or 31,680 gpd), the capital cost was \$636/gpm (or \$0.44/gpd). The capital cost of \$14,000 was converted to an annualized cost of \$1,321/yr using a capital recovery factor of 0.09439 based on a 7% interest rate and a 20-yr return. Assuming that the system was operated 24 hr a day, 7 days a week at the design flowrate of 22 gpm to produce 11.6 million gal of water per year, the unit capital cost would be \$0.11/1,000 gal. However, since the system was operated an average of 7.6 hr/day with an average daily use rate of 1,565 gal/day (see Table 4-4), producing approximately 571,200 gal of water per year, the unit capital cost was increased to \$2.31/1,000 gal at this reduced rate of production.

4.6.2 Operation and Maintenance Cost. The O&M cost for the As/2200CS treatment system includes only incremental cost associated with the adsorption system, such as media replacement and disposal, chemical supply, electricity, and labor (Table 4-14).

For a three-column system operating in series, the media in the lead column is ideally replaced when the arsenic concentration in the lead column effluent equals the raw water concentration, but before the arsenic concentration following the final lag column reaches the $10 \mu g/L$ target value. Once the lead column is exhausted, the first and second lag columns are moved up to the lead and first lag positions and a column containing new media is placed in the final lag position. This method allows the media's capacity for arsenic to be fully utilized before its replacement. If the media exhibits a sharp adsorption front (with a typical S-shaped breakthrough curve) and if the anticipated run length is relatively short, replacement may be more cost-effective to wait until the first two or all three columns in the treatment train need to be replaced. At Dummerston, the first two sets of columns (lead and first lag) were changed out on February 14, 2006, after 34 weeks of operation. The cost of the changeout for four columns (i.e.,

			% of Capital
Description	Quantity	Cost	Investment Cost
Equipm	ent Cost		
Adsorption Media Columns	6	\$720	-
A/I Complex 2000 Adsorptive Media (ft ³)	9	\$2,880	-
25-µm Sediment Filters	2	\$750	-
Piping and Valves	1	\$1,020	-
Flow Totalizers/Meters	2	\$1,120	-
Hour Meters	3	\$450	
Procurement, Assembly, Labor	1	\$1,600	-
Freight	1	\$450	-
Equipment Total	_	\$8,990	64%
Enginee	ring Cost		
Design/Scope of System (hr)	10	\$1,500	-
Travel and Miscellaneous Expenses	1	\$300	-
Subcontractor Labor	_	\$600	
Engineering Total	-	\$2,400	17%
Installa	tion Cost		
Plumbing Supplies/Parts	1	\$500	-
Vendor Installation Labor (hr)	10	\$1,300	
Vendor Travel (day)	2	\$710	_
Subcontractor Travel	-	\$100	-
Installation Total	-	\$2,610	19%
Total Capital Investment	_	\$14,000	100%

Table 4-13. Summary of Capital Investment Cost

Table 4-14. Summary of O&M Cost

Cost Category	Value	Remarks
		Amount of water processed through both Trains
Volume Processed (gal)	391,400	during Run 1
	Media Replaceme	nt and Disposal
Media (\$/ft ³)	517	For replacement media
		Amount of media in four columns (i.e., two lead
Media Volume (ft ³)	6.0	and two first lag columns)
Total Media Replacement (\$)	3,100	Vendor invoice
Labor (\$)	260	Vendor invoice
Travel and Delivery (\$)	550	Vendor invoice
Subtotal (\$)	3,910	Vendor invoice
Media Replacement and Disposal	See Figure 4-15	Based upon media run length at 10-µg/L arsenic
(\$/1,000 gal)		breakthrough from third adsorption column
	Chemical	l Usage
Chemical (\$)	0.000	No additional chemical required
	Electr	icity
Electricity (\$/1,000 gal)	0.001	Electrical cost assumed negligible
	Lab	or
Average Weekly Labor (hr)	1	10 min/day, 3 day/week
Labor Cost (\$)	340	17 hr at \$20/hr
Labor Cost (\$/1,000 gal)	0.87	_
Total O&M cost (\$/1,000 gal)	See Figure 4-14	Based upon media run length at 10-µg/L arsenic
		breakthrough from third column

two sets of the lead and first lag columns) was \$3,910 (see cost breakdown in Table 4-4). The spent media was returned to ATS and sold for use in another product; therefore, there was no additional cost for disposal of spent media. By averaging the media replacement cost (i.e., \$3,910) over the life of the media, the cost per 1,000 gal of water treated was plotted as a function of the media run length in BV. To be consistent with the operational data, the media run length in BV was calculated by dividing the system throughput through each train by the quantity of media in the lead column, i.e., 1.5 ft³ (or 11.2 gal). As shown in Figure 4-15, the unit media replacement cost is \$9.96/1,000 gal for a media run length of 17,500 BV (or 195,700 gal per train or 391,400 gal for the entire system).

Sodium hypochlorite was added to the water prior to the installation of the system so the cost was not tracked for the chemical addition. There were no additional electrical requirements added by ATS with the exception of the hour meters on each well. The well pumps and booster pumps were in place at the treatment building prior to the installation of the treatment system. Therefore, the electrical cost associated with the system operation was assumed to be negligible.

The routine, non-demonstration-related labor activities consumed about 10 min/day, 3 day/week as noted in Section 4.4.3. Therefore, the estimated labor cost was \$0.87/1,000 gal of water treated (Table 4-14).

The unit O&M cost is driven by the cost to replace the spent media and is a function of the media run length (see Figure 4-15). As shown in this figure, the unit O&M cost would be \$10.87/1,000 gal for a media run length of 17,500 BV or treating 391,400 gal of water.

Note: 1 BV = 1.5 cf of media in one column

Figure 4-15. O&M and Media Replacement Cost (for Replacement of Four Columns at a Time)

5.0 REFERENCES

- Battelle. 2004. *Revised Quality Assurance Project Plan for Evaluation of Arsenic Removal Technology*. Prepared under Contract No. 68-C-00-185, Task Order No. 0029, for U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.
- Chen, A.S.C., L. Wang, J.L.Oxenham, and W.E. Condit. 2004. Capital Costs of Arsenic Removal Technologies: U.S. EPA Arsenic Removal Technology Demonstration Program Round 1. EPA/600/R-04/201. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.
- Edwards, M., S. Patel, L. McNeill, H. Chen, M. Frey, A.D. Eaton, R.C. Antweiler, and H.E. Taylor. 1998. "Considerations in As Analysis and Speciation." *J. AWWA*,90(3): 103-113.
- EPA. 2001. National Primary Drinking Water Regulations: Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring. *Federal Register*, 66:14:6975.
- EPA. 2002. Lead and Copper Monitoring and Reporting Guidance for Public Water Systems. EPA/816/R-02/009. U.S. Environmental Protection Agency, Office of Water, Washington D.C.
- EPA. 2003. Minor Clarification of the National Primary Drinking Water Regulation for Arsenic. *Federal Register*, 40 CFR Part 141.
- Lipps, J.P., A.S.C. Chen, and L. Wang. 2006. Arsenic Removal from Drinking Water by Adsorptive Media, U.S. EPA Demonstration Project at Spring Brook Mobile Home Park in Wales, ME. Six-Month Evaluation Report. EPA/600/R-06/090. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.
- P² Environmental. E-mail communication dated February 27, 2005 between Battelle and Patricia Beavers at P² Environmental.
- VDEC. Personal communication with David Webb on April 9, 2007.
- Wang, L., W.E. Condit, and A.S.C. Chen. 2004. Technology Selection and System Design: U.S. EPA Arsenic Removal Technology Demonstration Program Round 1. EPA/600/R-05/001. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.

APPENDIX A

OPERATIONAL DATA

		Supply Well	Hour Meter 2	L .	Freatment Trai	n A	L	Freatment Trai	n B		System	
		Cumulative			Cumulative	Cumulative Bed		Cumulative	Cumulative Bed	Total Cumulative	Total Cumulative Bed	
		Hour Meter Reading	Operational Hours	Flow Rate	Volume Treated	Volumes Treated	Flow Rate	Volume Treated	Volumes Treated	Volume Treated	Volumes Treated	Avg Flowrate
w eek No.	Date	hr	hr	gpm	gal	ΒV	gpm	gal	BV	gal	BV	gpm
-	06/23/05	9.1					System w	as bypassed				
1	06/24/05	12.9	3.8	0.00	263.4	23	0.00	236.2	21	499.6	22	0
	06/27/05	37.2	24.3	4.54	3134.2	279	4.42	1876.7	168	4973.4	221	3.1
	06/28/05	43.1	5.9	4.10	4032.7	359	4.26	2437.4	217	6470.1	288	4.2
ç	06/29/05	48.1	5.0	2.62	4913.2	438	1.81	3223.7	286	8111.3	361	5.5
1	06/30/05	50.6	2.5	4.97	5583.5	498	5.52	3776.9	333	9276.7	413	7.8
	07/01/05	55.3	4.7	4.32	6602.5	588	4.32	4682.4	413	11188.1	498	6.8
	07/02/05	58.5	3.2	5.18	7237.8	645	5.79	5210.2	464	12448	554	6.6
	07/04/05	74.7	16.2	4.76	90606	810	5.25	6414.2	572	15504.8	691	3.1
	07/05/05	79.9	5.2	2.62	10156.7	905	2.49	7874	702	18030.7	803	8.1
ç	07/06/05	84.1	4.2	2.87	10995.5	980	2.44	8082.5	720	19078	850	4.2
n	07/07/05	MN	NM	5.42	11745.2	1047	6.21	8436.5	752	20181.7	668	MN
	07/08/05	96.6	12.5	4.03	12750.6	1136	4.38	9282.1	827	22032.7	982	3.9
	01/09/05	101.9	5.3	2.24	13914.9	1240	1.28	10062.1	268	23977	1068	6.1
	07/11/05	118.0	16.1	4.09	15355	1369	4.43	10930	974	26285	1171	2.4
	07/12/05	130.2	12.2	4.49	16337.9	1456	5.03	11384	1015	27721.9	1235	2.0
~	07/13/05	135.2	5.0	2.62	17248.9	1537	2.23	12136.5	1082	29385.4	1309	5.5
t	07/14/05	138.8	3.6	5.15	17801	1587	5.93	12524	1116	30325	1351	4.4
	07/15/05	145.4	9.9	4.92	18794	1675	5.59	13238	1180	32032	1427	4.3
	07/16/05	150.6	5.2	4.48	19710	1757	5.07	14015	1249	33725	1502	5.4
	07/18/05	172.0	21.4	0.83	21918	1953	0.00	15279	1362	37197	1658	2.7
	07/19/05	192.0	20.0	0.40	22663	2020	0.00	15279	1362	37942	1691	0.6
v	07/20/05	201.2	9.2	0.52	23453	2090	0.00	15461	1378	38914	1734	1.8
c	07/21/05	210.8	9.6	2.79	24355	2171	2.64	15759	1405	40114	1788	2.1
	07/22/05	220.3	9.5	2.02	25509	2274	0.00	16365	1459	41874	1866	3.1
	07/23/05	224.9	4.6	4.23	25972	2315	4.60	16524	1473	42496	1894	2.3
	07/25/05	236.9	12.0	4.01	27746	2473	4.46	17826	1589	45572	2031	4.3
	07/26/05	241.7	4.8	4.62	28590	2548	5.25	18506	1649	47096	2099	5.3
9	07/27/05	245.2	3.5	4.79	29248	2607	5.54	19141	1706	48389	2156	6.2
>	07/28/05	247.7	2.5	5.39	29856	2661	6.14	19792	1764	49648	2212	8.4
	07/29/05	251.6	3.9	5.11	30653	2732	5.90	20618	1838	51271	2285	6.9
	07/30/05	254.0	2.4	5.71	31240	2784	6.64	21246	1894	52486	2339	8.4

tion
perat
O
System
Ŋ
)ai
f
0 A
- Summar
F
>
Dummerston
I
.=
H
Σ
U
at
č
G
Ľ
n.
tio
ra
nst
- DC
en
Q
nic
se
Ĭ.
\checkmark
AA

		Supply Well	Hour Meter 2		Treatment Trai	in A		Treatment Tra	in B		System	
		Cumulative Hour Motor	Onorational	тор	Cumulative	Cumulative Bed Volumos	Flow	Cumulative Volume	Cumulative Bed Volumos	Total Cumulative Volume	Total Cumulative Rod Volumos	Ava
Week		Reading	Hours	Rate	Treated	Treated	Rate	Treated	Treated	Treated	Treated	Flowrate
No.	Date	hr	hr	gpm	gal	BV	gpm	gal	BV	gal	BV	gpm
	08/01/05	258.8	4.8	4.88	32670	2912	5.57	22858	2037	55528	2475	10.6
	08/02/05	260.7	1.4	5.43	33252	2964	6.27	23522	2096	56774	2530	14.8
L	08/03/05	262.8	2.1	5.67	33952	3026	5.81	24322	2168	58274	2597	11.9
-	08/04/05	264.5	1.7	5.69	34485	3074	6.50	24932	2222	59417	2648	11.2
	08/05/05	265.9	1.4	6.21	34951	3115	7.08	25507	2273	60458	2694	12.4
	08/06/05	268.2	2.3	5.50	35688	3181	6.32	26302	2344	61990	2762	11.1
	08/08/05	281.2	13.0	2.27	38160	3401	2.23	28868	2573	67028	2987	6.5
8	08/09/05	289.9	8.7	1.74	39155	3490	1.30	29504	2630	68659	3060	3.1
	08/14/05	320.6	30.7	4.45	43426	3870	5.16	33403	2977	76829	3424	4.4
	08/17/05	335.3	14.7	4.41	46110	4110	5.19	36249	3231	82359	3670	63
6	08/19/05	343.6	8.3	4.8	47570	4240	5.63	37823	3371	85393	3805	6.1
	08/20/05	349.4	5.8	4.15	48773	4347	4.87	39162	3490	87935	3919	7.3
10	08/27/05	376.4	27	3.15	54360	4845	3.75	45330	4040	06966	4443	7.3
01	08/28/05	379.1	2.70	2.75	55015	4903	2.97	46070	4106	101085	4505	8.6
11	08/29/05	382.7	3.6	4.97	55680	4963	5.80	46805	4172	102485	4567	6.5
11	09/01/05	395.4	12.7	4.45	58366	5202	5.21	49832	4441	108198	4822	7.5
17	09/08/05	421.0	25.6	3.57	63652	5673	4.1	55492	4946	119144	5309	7.1
14	09/10/05	430.9	9.9	2.53	65655	5852	2.76	58060	5175	123715	5513	7.7
	09/12/05	437.1	6.2	4.82	66815	5955	5.70	59377	5292	126192	5624	6.7
13	09/15/05	448.9	11.8	4.93	69190	6167	5.91	62080	5533	131270	5850	7.2
	09/17/05	456.7	7.8	3.52	70877	6317	4.04	64023	5706	134900	6012	7.8
	09/27/05	504.6	47.9	3.47	79269	7065	4.05	73666	6566	152935	6815	6.3
15	09/28/05	511.0	6.4	1.72	80353	7162	1.9	74960	6681	155313	6921	6.2
	09/29/05	514.1	3.1	4.45	80820	7203	5.25	75445	6724	156265	6964	5.1
	10/03/05	537.3	23.2	2.53	85029	7578	2.96	80311	7158	165340	7368	6.5
16	10/05/05	543.5	6.2	2.69	86105	7674	3.2	81548	7268	167653	7471	6.2
	10/08/05	610.4	66.9	0	88468	7885	0	82784	7378	171252	7632	0.9
	10/11/05	621.7	11.3	2.98	90515	8067	3.48	85165	7590	175680	7829	6.5
17	10/12/05	626.9	5.2	3.46	91446	8150	4.13	86253	7687	177699	7919	6.5
	10/14/05	635.9	9.0	5.21	92810	8272	6.1	87791	7825	180601	8048	5.4
	10/17/05	648.9	13.0	4.01	95282	8492	4.73	90615	8076	185897	8284	6.8
18	10/20/05	662.3	13.4	4.35	97585	8697	5.2	93223	8309	190808	8503	6.1
	10/22/05	671.0	87	5 15	99146	8837	6 11	02050	8469	194166	8653	64

		Supply Well	Hour Meter 2		Treatment Tra	in A		Treatment Tra	in B		System	
		Cumulative			Cumulative	Cumulative Bed		Cumulative	Cumulative Bed	Total Cumulative	Total Cumulative Bed	
Week		Hour Meter Reading	Operational Hours	Flow Rate	Volume Treated	Volumes Treated	Flow Rate	Volume Treated	Volumes Treated	Volume Treated	Volumes Treated	Avg Flowrate
No.	Date	hr	hr	gpm	gal	BV	gpm	gal	BV	gal	BV	gpm
10	10/24/05	682.9	11.9	4.97	101107	9011	5.85	97249	8667	198356	8839	5.9
61	10/26/05	693.6	10.7	3.07	102973	9178	3.79	99449	8864	202422	9020	6.3
	10/31/05	713.6	20.0	4.53	106521	9494	5.36	103520	9226	210041	9360	6.3
20	11/02/05	718.7	5.1	5.33	107784	9606	6.21	104978	9356	212762	9481	8.9
	11/04/05	726.5	7.8	4.48	109647	9772	5.23	107129	9548	216776	0996	8.6
	11/07/05	737.1	10.6	2.95	112837	10057	3.41	109887	9794	222724	9925	9.4
21	11/10/05	749.1	12.0	5.14	114255	10183	6.07	112423	10020	226678	10102	5.5
	11/11/05	752.8	3.7	3.13	115121	10260	3.67	113429	10110	228550	10185	8.4
	11/14/05	769.6	16.8	4.43	117705	10491	5.31	116456	10379	234161	10435	5.6
22	11/16/05	T.TTT	8.1	3.33	119370	10639	3.98	118410	10553	237780	10596	7.4
	11/19/05	793.8	16.1	2.45	122048	10878	2.95	121612	10839	243660	10858	6.1
73	11/22/05	805.9	12.1	4.53	124135	11064	5.40	124112	11062	248247	11062	6.3
C7	11/26/05	827.6	21.7	2.71	127650	11377	3.23	128301	11435	255951	11406	5.9
	11/29/05	857.4	29.8	1.67	130728	11651	1.92	131846	11751	262574	11701	3.7
24	12/01/05	875.7	18.3	NM	MN	MN	MN	MN	MN	NM	MN	NM
	12/03/05	892.6	35.2	1.38	133941	11938	1.56	135440	12071	269381	12004	2.1
	12/05/05	912.7	37.0	1.63	135688	12093	2.05	137403	12246	273091	12170	1.7
25	12/08/05	938.6	25.9	1.25	138004	12300	1.33	140006	12478	278010	12389	3.2
	12/10/05	963.8	21.2	0.63	139937	12472	0	142197	12674	282134	12573	3.2
	12/14/05	994.8	35.0	1.45	142815	12729	1.63	145542	12972	288357	12850	3.0
26	12/15/05	1004.2	9.4	1.35	143840	12820	1.5	146437	13051	290277	12935	3.4
	12/16/05	1016.0	11.8	1.43	144911	12915	1.72	147605	13156	292516	13035	3.2
	12/19/05	1043.9	27.9	0.63	146251	13035	0.00	148567	13241	294818	13238	1.4
27	12/20/05	1054.1	10.2	1.85	148778	13260	2.17	150613	13424	299391	13342	7.5
	12/22/05	1072.7	18.6	MN	149837	13354	NM	151736	13524	301573	13439	2.0
	12/28/05	1132.8	60.1	0.55	153950	13721	0	156124	13915	310074	13818	2.4
28	12/30/05	1148.7	15.9	1.75	155318	13843	2.01	157556	14042	312874	13942	2.9
	12/31/05	1157.1	8.4	0.00	156065	13910	0	158336	14112	314401	14010	3.0
	01/02/06	1178.8	21.70	1.95	157878	14071	2.35	160250	14283	318128	14177	2.9
29	01/03/06	1187.4	8.6	1.27	158560	14132	1.33	160947	14345	319507	14238	2.7
	01/04/06	1196.9	9.5	1.40	159375	14205	1.5	161766	14418	321141	14311	2.9

D
ň
Ŀ.
nt
2
$\boldsymbol{\boldsymbol{\Theta}}$
n
<u>.</u>
at
er
đ
\circ
В
Ē
NS.
Ś
N
ail
õ
Ę
0
N
1a
H
E
2
Ľ
E
-
Ξ
stor
erstor
nerstor
nmerstor
ummerstor
Dummerstor
n Dummerstor
in Dummerstor
HP in Dummerstor
1HP in Dummerstor
MHP in Dummerstor
CMHP in Dummerstor
at CMHP in Dummerstor
t at CMHP in Dummerstor
ect at CMHP in Dummerstor
oject at CMHP in Dummerstor
Project at CMHP in Dummerstor
n Project at CMHP in Dummerstor
ion Project at CMHP in Dummerstor
ation Project at CMHP in Dummerstor
ration Project at CMHP in Dummerstor
stration Project at CMHP in Dummerstor
onstration Project at CMHP in Dummerstor
monstration Project at CMHP in Dummerstor
bemonstration Project at CMHP in Dummerstor
Demonstration Project at CMHP in Dummerstor
ic Demonstration Project at CMHP in Dummerstor
snic Demonstration Project at CMHP in Dummerstor
senic Demonstration Project at CMHP in Dummerstor
Arsenic Demonstration Project at CMHP in Dummerstor
A Arsenic Demonstration Project at CMHP in Dummerstor
PA Arsenic Demonstration Project at CMHP in Dummerstor

	Avg Flowrate	gpm	2.9	2.7	3.0	3.0	2.9	2.9	3.1	2.7	3.1	3.0	3.0	3.8	2.8	3.0		0.0	1.6	2.0	1.3	0.3	1.5	1.8	1.5	0.4	0.3	NM	2.5	NM	2.2	5.3	6.4	2.3
System	Total Cumulative Bed Volumes Treated	BV	14763	14822	14970	15277	15432	15510	15858	16029	16187	16625	16847	16965	17181	17315		0	47	107	169	182	318	450	531	571	615	NM	878	NM	1187	1531	1615	1660
	Total Cumulative Volume Treated	gal	331291	332616	335942	342830	346306	348046	355861	359694	363253	373065	378053	380704	385539	388550		0	1055	2396	3791	4083	7132	10088	11921	12806	13811	NM	19712	NM	26633	34360	36232	37241
in B	Cumulative Bed Volumes Treated	BV	14874	14931	15084	15395	15551	15628	15976	16152	16316	16767	16999	17100	17349	17490		0	71	151	207	230	414	638	802	880	970	NM	1257	1562	1704	2076	2172	2261
Treatment Trai	Cumulative Volume Treated	gal	166885	167529	169237	172737	174481	175341	179256	181227	183062	188130	190730	191858	194659	196234	eout	0	796	1692	2320	2584	4645	7161	8994	9879	10883	NM	14107	17531	19115	23297	24365	25374
-	Flow Rate	gpm	1.32	2.17	2.18	1.39	1.99	0	2.68	1.61	2.3	2.39	2.51	3.22	2.62	2.64	edia Change	1.46	1.94	0.77	0.00	0.00	2.86	2.63	2.19	0.79	0.00	5.27	2.3	3.12	3.33	4.28	3.69	3.48
in A	Cumulative Bed Volumes Treated	BV	14653	14714	14858	15160	15314	15393	15740	15906	16060	16483	16695	16831	17012	17140	M	0	23	63	131	134	222	261	261	261	261	NM	500	NM	670	986	1058	1058
Treatment Trai	Cumulative Volume Treated	gal	164406	165087	166705	170093	171825	172705	176605	178467	180191	184935	187323	188846	190880	192316		0	259	704	1471	1499	2487	2927	2927	2927	2928	NM	5605	NM	7518	11063	11867	11867
	Flow Rate	gpm	1.30	1.91	1.91	1.40	1.82	0.39	2.33	1.49	2.07	2.11	2.12	2.73	2.23	2.22		1.62	0.94	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00	4.59	2.01	2.73	0.00	0.00	0.00	0.00
Hour Meter 2	Operational Hours	hr	58.4	8.1	18.7	38.4	19.8	10.1	42.6	23.3	18.9	54.3	28.1	11.7	29.1	16.5		18.8	10.8	11	17.3	18.2	34.7	28.1	20	42	59.3	0	40	38.3	13.8	24.2	4.9	7.4
Supply Well	Cumulative Hour Meter Reading	hr	1255.3	1263.4	1282.1	1320.5	1340.3	1350.4	1393	1416.3	1435.2	1489.5	1517.6	1529.3	1558.4	1574.9		1593.7	1604.5	1615.5	1632.8	1651	1685.7	1713.8	1733.8	1775.8	1875.1	1875.1	1900.5	1938.8	1952.6	1976.8	1981.7	1989.1
		Date	01/10/06	01/11/06	01/13/06	01/17/06	01/19/06	01/20/06	01/25/06	01/27/06	01/29/06	02/04/06	02/07/06	02/08/06	02/11/06	02/13/06	02/14/06	02/15/06	02/16/06	02/17/06	02/19/06	02/20/06	02/23/06	02/26/06	02/28/06	03/02/06	03/06/06	03/07/06	03/10/06	03/14/06	03/16/06	03/21/06	03/22/06	03/23/06
	i	Week No.		30			31			32		33		34			•	35	C C				36		37	10		38		30	60		40	

		Supply Well	Hour Meter 2		Treatment Tra	in A		Treatment Tra	in B		System	
						Cumulative			Cumulative	Total	Total Cumulative	
		Cumulative Hour Meter	Onerational	Flow	Cumulative Volume	Bed	Flow	Cumulative Volume	Bed Volumee	Cumulative Volume	Bed Volumes	A vo
Wool-		Reading	Hours	Rate	Treated	Treated	Rate	Treated	Treated	v ouune Treated	Treated	Flowrate
week No.	Date	hr	hr	gpm	gal	BV	gpm	gal	BV	gal	BV	gpm
	03/27/06	2008.3	19.2	3.92	14156	1262	4.65	28797	2567	42953	1914	5.0
41	03/31/06	2028.1	19.8	4.07	17153	1529	4.63	32124	2863	49277	2196	5.3
	04/01/06	2031.2	3.1	4.53	17748	1582	5.05	32774	2921	50522	2251	6.7
	04/05/06	2061.2	30	2.62	21446	1911	2.87	36954	3294	58400	2602	4.4
42	04/06/06	2068.9	T.T	2.48	2223	1981	2.80	37843	3373	60066	2677	3.6
	04/07/06	2076.8	7.9	3.51	22869	2038	4.00	38577	3438	61446	2738	2.9
	04/11/06	2108.2	31.4	2.63	24203	2157	3.05	42304	3770	66507	2964	2.7
43	04/13/06	2124.6	16.4	2.72	25718	2292	3.07	44226	3942	69944	3117	3.5
	04/15/06	2130.7	6.1	3.87	26677	2378	4.38	45304	4038	71981	3208	5.6
44	04/18/06	2150.3	19.6	2.58	29582	2637	2.78	48545	4327	78127	3482	5.2
t t	04/21/06	2178.2	27.9	2.17	32248	2874	2.27	51373	4579	83621	3726	3.3
	04/25/06	2215.7	37.5	2.50	35473	3162	2.63	54801	4884	90274	4023	3.0
45	04/27/06	2233	17.3	2.17	37010	3299	2.48	56491	5035	93501	4167	3.1
	04/29/06	2253	20	2.03	38503	3432	2.29	58286	5195	96789	4313	2.7
46	05/03/06	2291	38	2.08	41429	3692	2.25	61707	5500	103136	4596	2.8
P	05/05/06	2311	20	2.00	42757	3811	2.13	63464	5656	106221	4734	2.6
LV	05/10/06	2327	48	1.07	47006	4189	6.0	67753	6039	114759	5114	3.0
ŕ	05/11/06	2367	8	2.13	47725	4254	2.23	68492	6104	116217	5179	3.0
48	05/15/06	2430	63	0.49	50701	4519	0.38	71245	6350	121946	5434	1.5
р Н	05/18/06	2459	29	1.45	53268	4748	1.61	73842	6581	127110	5664	3.0
	05/22/06	2499	40	0.00	56691	5053	0	77468	6904	134159	5979	2.9
49	05/24/06	2517	18	1.35	58201	5187	1.52	79151	7054	137352	6121	3.0
	05/26/06	2547	20	0.00	59475	5301	0	80465	7172	139940	6236	2.2
50	05/29/06	2550	13	3.39	60054	5352	3.47	81072	7226	141126	6289	1.5
00	05/31/06	2601	40	1.63	62572	5577	1.29	83558	7447	146130	6512	2.1
51	06/07/06	2667	77	1.92	67568	6022	1.94	88775	7912	156343	6967	2.2
57	06/13/06	2711	44	0.99	73313	6534	0.68	94908	8459	168221	7496	4.5
1	06/15/06	2722	11	2.72	74747	6662	2.98	96496	8600	171243	7631	4.6
53	06/19/06	2745	23	3.58	<i>7777</i> 2	6932	4.01	99857	8900	177629	7916	4.6
2	06/23/06	2770	25	3.00	81181	7235	3.4	102322	9120	183503	8177	3.9
54	06/28/06	2796	26	3.15	84847	7562	3.48	106369	9480	191216	8521	4.9
5	06/30/06	2815	19	2.83	86725	7730	3.18	108468	9667	195193	8698	3.5

Supply Well Hour	Supply Well Hour	Hour	Meter 2		Treatment Trai	n A		Treatment Train B			System	
Cumulative Hour Mater Operational Flow Volume	Cumulative Cumulative Volume	Cumulative Conceptional Flow Volume	Cumulative Volume	Cumulative Volume		Cumulative Bed Volumes	Flow	Cumilativa Valuma	Cumulative Bed Volumos	Total Cumulative Volume	Total Cumulative Bed	Åva
Reading Hours Rate Treated	Reading Hours Rate Treated	Hours Rate Treated	Rate Treated	Treated		Treated	Rate	Treated	Treated	Treated	Treated	Flowrate
Date hr gpm gal	hr hr gpm gal	hr gpm gal	gpm gal	gal		BV	gpm	gal	BV	gal	BV	gpm
07/03/06 2835 20 2.09 89110	2835 20 2.09 89110	20 2.09 89110	2.09 89110	89110		7942	2.33	111081	0066	200191	8921	4.2
07/05/06 2851 16 3.31 90609	2851 16 3.31 90609	16 3.31 90609	3.31 90609	90609		8076	3.68	112765	10050	203374	9063	3.3
07/08/06 2878 27 2.51 93211	2878 27 2.51 93211	27 2.51 93211	2.51 93211	93211		8308	2.66	115508	10295	208719	9301	3.3
07/13/06 2927 49 2.31 97548	2927 49 2.31 97548	49 2.31 97548	2.31 97548	97548		8694	2.48	120031	10698	217579	9696	3.0
07/14/06 2937 10 2.13 98450	2937 10 2.13 98450	10 2.13 98450	2.13 98450	98450		8775	2.33	121003	10785	219453	9780	3.1
07/15/06 2948 11 2.13 99404	2948 11 2.13 99404	11 2.13 99404	2.13 99404	99404		8860	2.25	122016	10875	221420	9867	3.0
07/18/06 2974 26 1.05 101630	2974 26 1.05 101630	26 1.05 101630	1.05 101630	101630		9058	1.15	124394	11087	226024	10072	3.0
07/21/06 3004 30 1.14 104127	3004 30 1.14 104127	30 1.14 104127	1.14 104127	104127		9280	1.17	127000	11319	231127	10300	2.8
07/22/06 3012 8 2.27 104843	3012 8 2.27 104843	8 2.27 104843	2.27 104843	104843		9344	2.25	127735	11385	232578	10364	3.0
07/25/06 3037 25 2.39 106299	3037 25 2.39 106299	25 2.39 106299	2.39 106299	106299		9474	2.48	129896	11577	236195	10526	2.4
07/27/06 3059 22 0.83 108207	3059 22 0.83 108207	22 0.83 108207	0.83 108207	108207		9644	0.75	131852	11752	240059	10698	2.9
07/29/06 3079 20 2.17 109939	3079 20 2.17 109939	20 2.17 109939	2.17 109939	109939		9798	2.19	133634	11910	243573	10854	2.9
07/31/06 3097 18 2.55 111466	3097 18 2.55 111466	18 2.55 111466	2.55 111466	111466		9935	2.69	135183	12048	246649	10991	2.8
08/02/06 3115 18 2.35 113091	3115 18 2.35 113091	18 2.35 113091	2.35 113091	113091		10079	2.5	136846	12197	249937	11138	3.0
08/03/06 3135 20 0.79 114747	3135 20 0.79 114747	20 0.79 114747	0.79 114747	114747		10227	0.72	138550	12348	253297	11288	2.8
08/09/06 3182 47 2.38 118666	3182 47 2.38 118666	47 2.38 118666	2.38 118666	118666		10576	2.45	142575	12707	261241	11642	2.8
08/11/06 3199 17 0.00 120104	3199 17 0.00 120104	17 0.00 120104	0.00 120104	120104		10704	0	144241	12856	264345	11780	3.0
08/12/06 3209 10 2.13 120994	3209 10 2.13 120994	10 2.13 120994	2.13 120994	120994		10784	2.27	144942	12918	265936	11851	2.7
08/16/06 3246 37 1.72 124025	3246 37 1.72 124025	37 1.72 124025	1.72 124025	124025		11054	1.71	147949	13186	271974	12120	2.7
08/22/06 3302 56 0.58 128742	3302 56 0.58 128742	56 0.58 128742	0.58 128742	128742		11474	0	152559	13597	281301	12536	2.8
08/25/06 3333 31 1.27 131218	3333 31 1.27 131218	31 1.27 131218	1.27 1.31218	131218		11695	1.8	154740	13791	285958	12743	2.5
08/26/06 3339 6 0.49 131747	3339 6 0.49 131747	6 0.49 131747	0.49 131747	131747		11742	0.38	155570	13865	287317	12804	3.8
09/11/06 3468 129 2.18 145804	3468 129 2.18 145804	129 2.18 145804	2.18 145804	145804		12995	2.25	165147	14719	310951	13857	3.1
09/14/06 3490 22 4.61 145192	3490 22 4.61 145192	22 4.61 145192	4.61 145192	145192		12940	5.03	169557	15112	314749	14026	2.9
09/15/06 3498 8 4.51 146450	3498 8 4.51 146450	8 4.51 146450	4.51 146450	146450		13053	4.88	170879	15230	317329	14141	5.4
09/19/06 3517 19 5.01 149677	3517 19 5.01 149677	19 5.01 149677	5.01 149677	149677		13340	5.45	174264	15532	323941	14436	5.8
09/21/06 3530 13 2.07 151597	3530 13 2.07 151597	13 2.07 151597	2.07 151597	151597		13511	2.37	176323	15715	327920	14613	5.1
09/23/06 3544 14 2.27 153185	3544 14 2.27 153185	14 2.27 153185	2.27 153185	153185		13653	2.44	178082	15872	331267	14762	4.0
09/25/06 3558 14 1.80 154604	3558 14 1.80 154604	14 1.80 154604	1.80 154604	154604		13779	2.05	179638	16011	334242	14895	3.5
09/27/06 3576 18 2.17 15631	3576 18 2.17 156315	18 2.17 156315	2.17 15631;	156315		13932	2.21	181526	16179	337841	15055	3.3
09/30/06 3598 22 4.53 15845	3598 22 4.53 15845	22 4.53 15845	4.53 158455	158455		14123	5.1	183818	16383	342273	15253	3.4
10/05/06 3631 33 1.55 16238	3631 33 1.55 16238	33 1.55 16238	1.55 16238	16238	5	14473	1.65	188134	16768	350516	15620	4.2
10/06/06 3640 9 1.91 163187	3640 9 1.91 163187	9 1.91 163187	1.91 163187	163187		14544	2.02	189010	16846	352197	15695	3.1
10/07/06 3645 5 3.53 163778	3645 5 3.53 163778	5 3.53 163778	3.53 163778	163778		14597	3.92	189651	16903	353429	15750	4.1

APPENDIX B

ANALYTICAL DATA TABLES

ΓV
Dummerston,
Sampling,
Long-Term
from l
Results
Analytical
Table B-1.

		F	3.7	110	<0.1	22	0.1	<0.0 5	3.7	0.1	6.5	17.2	•	•	0.0	0.0	197	92.6	105	0.6	0.8	<0.1	0.4	0.4	<25	<25	0.1	0.2	22.9	20.9
		₽		136	<0.1	20	0.1	<0.0<	6.7	<0.1	NA ^{(d}	NA ^{(d}	•		•	•	206	96.2	110	0.6	0.8	<0.1	0.5	0.4	<25	<25	0.2	0.2	24.6	20.0
		тс		132	<0.1	21	0.1	<0.0 5	6.5	<0.1	NA ^{(d}	NA ^{(d}	-	,		•	203	94.2	109	0.6	0.7	<0.1	0.5	0.2	<25	<25	0.4	0.3	27.9	20.8
38/16/05		TB	3.2	123	<0.1	20	0.1	<0.0 5	10.5	0.1	6.9	14.5				-	209	96.0	113	3.1	3.3	<0.1	0.5	2.8	<25	<25	0.1	0.2	18.9	16.7
•		TA	4.1	119	<0.1	19	0.1	<0.0 5	10.4	0.6	8.4	14.8				ı	211	95.4	116	2.1	2.2	<0.1	0.6	1.6	<25	270	0.1	0.1	30.3	16.0
		AC	,			,	,			,					0.0	0.0	,												•	
		Z	,	119	<0.1	20	0.1	<0.0 5	13.3	0.1	8.1	12.8		-	-		205	92.8	112	46.6	46.8	<0.1	2.3	44.4	<25	<25	8.4	8.4	<10	<10
		F	2.6	128	<0.1	23	0.1	<0.05	2.2	<0.1	7.6	16.0			0.3	NA ^(d)	214	88.8	125	0.9	•				<25		0.1		27.4	
		TB	2.2	128	<0.1	22	0.1	<0.0 5	9.2	<0.1	7.5	12.3					183	88.1	95.1	1.2			-	•	<25		<0.1		17.9	
8/03/05		TΑ	3.0	123	<0.1	23	0.1	<0.0 5	8.7	<0.1	7.4	12.3					169	82.2	87.1	1.2					<25		<0.1		18.6	
)		AC	•	•	-						-				0.3	0.0					•	•	-	•		•	•			
		z		123	<0.1	23	0.2	<0.0 5	12.2	0.2	7.5	15.7					183	89.5	93.8	61.9					<25		4.4		<10	
		F	1.7	145	<0.1	28	0.4	<0.05	1.1	0.5	7.0	16.0			0.2	NA ^(d)	164	80.2	83.4	13.7 ^(c)					<25		0.3		26.7	
9/05		TB	1.4	145	<0.1	24	0.1	<0.0 5	7.3	0.4	7.2	17.1					165	82.2	82.5	6.3 ^(c)					<25		0.3		23.5	
07/1		TA	2.0	132	<0.1	24	0.1	<0.05	6.6	0.7	7.0	16.3					161	81.0	80.0	4.4 ^(c)					<25		0.2		23.0	
		z	,	132	<0.1	23	0.1	<0.0 5	11.8	1.3	7.0	15.6		•		ı	159	80.1	78.7	52.3					<25		13.4		<10	
		F	0.8	132	0.1	21	,	<0.0 5	0.3	0.1	7.0	15.2			0.3	NA ^{(d}	164	73.7	90.2	0.3					<25		0.3		12.1	
5/05		TB	0.7	132	<0.1	23		<0.0 5	5.1	0.1	NA ^{(d}	NA ^{(d}					177	79.3	97.4	0.3			-	•	<25		0.3		22.5	
01/0		TA	0.9	141	<0.1	23		<0.0	4.7	<0.1	7.6	11.9					172	80.1	91.9	0.3					<25		0.2		22.9	
		z	ı	132	<0.1	21		<0.0 5	12.0	0.4	7.8	15.9					177	85.5	91.8	39.9					<25		4.2		<10	
		TB		44 ^(c)	3.2 ^{(c}	59 ^(c)	0.1	<0.0 5	0.6	1.6	6.6	14.0	5.8	322			188	74.0	114	0.6	0.5	<0.1	0.5	<0.1	<25	<25	0.8	0.8	<10	<10
06/22/05		TA		47 ^(c)	3.7 ^{(c}	70 ^(c)	0.1	<0.0 5	0.4	<0.1	6.5	14.2	5.6	449		ı	169	69.0	100	0.7	0.7	<0.1	0.5	0.1	<25	<25	0.8	0.8	<10	<10
		Z	•	110	<0.1	20	0.1	<0.0 5	12.9	0.3	7.7	13.9	5.8	173	•	-	178	83.9	94.4	44.3	45.0	<0.1	3.0	42.1	<25	<25	9.7	9.5	<10	<10
	tion	Unit	10^3	mg/L ^(a)	mg/L	mg/L	mg/L	mg/L ^(b)	mg/L	NTU	S.U.	ာ	mg/L	тV	mg/L	mg/L	mg/L ^(a)	mg/L ^(a)	mg/L ^(a)	hg/L	hg/L	µg/L	hg/L	hg/L	hg/L	µg/L	hg/L	hg/L	hg/L	hg/L
Sampling Date	Sampling Loca	Parameter	Bed Volume	Alkalinity	Fluoride	Sulfate	Nitrate (as N)	Orthophosphate	Silica (as SiO2)	Turbidity	Hq	Temperature	DO	ORP	Free Chlorine	Total Chlorine	Total Hardness	Ca Hardness	Mg Hardness	As (total)	As (soluble)	As (particulate)	(III) SY	As (V)	Total Fe	Soluble Fe	Total Mn	Soluble Mn	Total AI	Soluble Al

ଟିତ୍ତିଶ

As CaCO₃. As PO₄. Rerun results were similar. Data is questionable. Water quality measurement not recorded by operator.

(Continued)
L
Dummerston,
Sampling,
Long-Term
Results from I
Analytical
Table B-1.

	£		132	<0.1	21.5	' 3	0.1	•		<10	8.9		0.3	(0)	NA	NA		ı	174	•	80.9 -	93.4 -	1.1	1.1	<0.1	0.5	0.6	<25	<25	<0.1	<0.1	14.0	?	12.5	
	TC		132	<0.1	23.1	' .	0.1			<10	8.8		0.1	(0)	NA	NA	•	ı	173	•	80.3 -	92.4 -	0.9 -	0.7	0.2	0.6	0.1	<25	<25	<0.1	<0.1	13.4	; '	14.9	
/05	TB	7.7	154	<0.1 -	30.0	' 2	0.1			<10	10.5	-	0.1		8.0	11.1			157	•	72.8	84.2 -	33.4 -	31.3	2.2	0.8	30.5	<25	<25	<0.1	<0.1	11.9	· ·	12.3	
10/13	TA	8.2	163	<0.1	45.4	' .	0.1			<10	10	-	0.1	· .	8.0	11.1			152			32.1 -	31.4 -	29.8	1.6	0.7	29.1	<25	<25	<0.1	≤0.1	11.8	2	11.3	
	AC			•	•	,				•			1			`	0.7	0.7												•	•			`	
	Z		132	<0.1 -	20.3	' 2	1.0			<10	1.8	-	0.2		8.1 	1.8		1	177	•		95.4 -	13.0 -	13.1	<0.1	1.5	t1.6	<25	<25	5.1	1.4	<10	> .	<10	
	e	2	41	0.1 <	7.5 2	- L	c0.0	- 10	cn		3.3 1	-	0.1	- (0)	A	A ^(c)	A ^(c)	A ^(c)	28		80.00 80.00 100	4.0	.6 2	-	• •		-	- 25		0.1		6.1		- -	
0/04/0	<u> </u>	3 7	2 1	1	5	L	 		ດ ∼		1 8		v L	(0)	N	C N	Z	Z	33	,	2	7 8	2					v د		v T		5 1(
	¥	7.8	13	.0× 	14.	' d	°.0 ∨	' ¢	°.∩ ×	'	11.	'	ò	'	N	NA	•	'	15	•	.07	82.	- 10	'	'	'	'	Ϋ́'	'	0× '	'	15.	<u>;</u> '	'	
	F	6.8	154	<0.1 <0.1	17.3	17.3	40.05		<0.05 <0.05		8.6	8.6	<0.1	0.3	NA	NA	NA ^(c)	NA ^(c)	155	100	71.0 67.6	83.6 82.4	0.5 0.6	•				<25 <25	1	40.1 1.0		21.9	20.6	•	
/05	TB	6.6	154	<0.1 <0.1	17.8	17.9	30.0>	20.05	<0.05 <0.05	ı	12.8	13.1	<0.1	0.1	NA	NA ^(c)		ı	143	145	62.9 65.5	79.7 79.1	19.7 19.8			ı	ı	<25 <25	1	40.1 107		15.5	15.9		
09/27	TA	7.1	163	6.1 6.1	6.9	7.1	0.05	0.00	0.05 0.05	,	3.1	13	60.1 2		NA C	IA ^(c)			146	14/	55.2 36.0	30.6 31.3	6.9 8.0					<25 <25		0.1 1.0		3.3	3.8	-	ator.
			32	1.0	0.0	, , , , , , , , , , , , , , , , , , ,	0. 0. 1.0	00. V	02 02 02		4.4	.7	۰ ۲.	· (0)		A ^(c)				4	. 2.	 	4.0					 52		о +		10	20	_	by opera
		-	1:	V V	1	¢,	Ş ¢	N C	9 8		12	12	00		۶ N	.8 N	2	2		Ĩ	6. 6.	-1 99 91	1 30		_	_	_	ທ 77 V		2 0	1	v T	' V	_	ecorded
	F	0	'		1	'	'	'		'	'	'	1	' i	<u> </u>	^(c) 11.	0.:	0.:	3 17	'	78/	1 92.	8	'	'	1	1	ю 10	1	1	'	0 23.		'	ent not r
/19/05	Ξ	5.8	'		'	1	•	'		'	•	'	•	' i	7.6	NA	'	1	15	'		83.	, 14.	'	'	1	1	Ϋ́'	1	₽	'	23.	; '	'	easurem
<u>30</u>	ΤA	6.4	•		ı	'	•	'		'	•	'	•	' '	7.8	NA	•	ı	155	•		83.6	12.6 -	'	•	'	'	<25	1	, 0 V	'	14.7		•	uality m
	Z		•		ı	'	·	'		·	•	'	ı	' 1	C./	12.7	•	ı	147	•	69.5 -	77.4 -	72.2	•	•	ı	ı	<25	1	35.9	ı	<10	, , ,	'	Water q
	F	4.6	132	0.1 -	23.3	(D) Y (C)	0.1	- C	GU.U>	ı	8.3	•	<0.1	' r	9.1	16.2	0.3	0.4	171	•	83.7 -	87.2 -	- E.0			ı	ı	<25	ı	<0.1	1	26.5	· ·	•	(p)
	TB	4.4	132	0.1	21.2	(p) v	0.1	- LO	GU.U>	,	14.6		0.1	' I	c./	13.5		'	193	•	91.8	101 -	7.8 -					<25		<0.1	,	17.0	? '	-	nable.
8/29/05	TA	5.0	132	0.1	21.2	(p) •).1%	- L	c0.05	,	14.7		<0.1	, (1.2	13.7			191	•	89.0 -	102 -	6.0 -					<25 -		<0.1	,	16.6	, ; '	-	e duestio
0	AC		-			,			v 	,	•	-	•				0.3	0.4							-					•	,				As PO ₄ . Data are
	z		123	:0.1 -	1.1	(D)		- L	cn.n	,	6.8		0.2	. !	1.1	3.8		0.4	191			103 -	6.9 -			1	1	<25 -		4.1	,	<10	> .		(b) , similar.
	it	33	L ^(a) ,	٦ <	7 7		ה ר		v (a)	Ļ	1	/L		-			/L	۲L	ر (a)		۲ _(a)	ر (a)	ر ۲	ر ۲	٦/	۲L	۲L	• ~	ر ۲	_	ر ۲			ر ۲	lts were
Date	ocation Un	10⁄	mg/i	mg.	ma ma	D	mg		/bm	/Brl		ĥ	NT	0	N.	\mathcal{S}	mg	mg	mg/l	,	mg/l	/bm	/brl	/6n	hg/	hg/	hg/	'nд	/6rl	лди	na/		βų	/brl	: CaCO ₃ . •run resu
Sampling	Sampling Lo Parameter	Bed Volume	Alkalinity	Fluoride	Sulfate		Nitrate (as N)		Orthophosphate	Total P	Silica (as SiO3)	01110a (as 2102)	Turbidity		Hd	Temperature	Free Chlorine	Total Chlorine	Total Hardness		Ca Hardness	Mg Hardness	As (total)	As (soluble)	As (particulate)	As (III)	As (V)	Total Fe	Soluble Fe	Total Mn	Soluble Mn		Total AI	Soluble Al	(a) As (c) Re

IN = influent; TA = after Tank A; TB = after Tank B; TC = after Tank C; TD = after Tank D; TT = after combined effluent; NA = Not available

Sampling Da	ate			0/25/05					÷	1/01/05							11/08	/05			
Sampling Loca Parameter	ation Unit	Z	AC	ТА	TB	F	z	TA	TB	TC	₽	ΤE	ΤF	Z	TA	TB	TC	₽	TE	Ŧ	F
Bed Volume	10^3			9.0	8.7	8.8		9.5	9.2				9.3		10.0	9.7					9.9
Alkalinity	mg/L ^(a)	141		141	136	136	132			132	136	132	132								
Fluoride	mg/L	<0.1	•	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	<0.1	<0.1								
Sulfate	mg/L	24		22	22	22	18.5			20.7	20.6	20.8	20.6								
Nitrate (as N)	mg/L	0.1		0.1	0.1	0.2	0.1			0.1	0.1	0.1	0.1	,	ı	·	,				
Total P	hg/L	<10		<10	<10	<10	<10			<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Silica (as SiO2)	mg/L	10.6		10.2	10.3	7.3	12.4			10.0	10.0	8.4	8.3	11.8	10.9	11.5	9.0	9.1	7.5	7.3	7.4
Turbidity	NTU	<0.1		0.1	0.2	0.1	0.2			<0.1	<0.1	<0.1	<0.1	,	,		,				
Hd	S.U.	8.2		8.2	8.2	8.1	8.1			8.0	8.1	8.1	8.1	8.0			•	·	•		8.3
Temperature	S	11.0		10.7	10.6	12.9	11.7			11.8	11.6	11.3	11.7	11.9	ı			•	•		11.7
Free Chlorine	mg/L	ı	1.0	,		0.3								,	ı	·	,	ı	•		0.3
Total Chlorine	mg/L		0.3			0.5															
Total Hardness	mg/L ^(a)	166		165	164	174	194			165	167	168	171	,	ı	ı	,		•		
Ca Hardness	mg/L ^(a)	79.5	,	77.2	77.0	83.4	81.0		,	79.1	81.0	80.8	82.1	,		,	,	,			ı
Mg Hardness	mg/L ^(a)	86.6		87.6	86.5	90.3	113			85.7	86.5	87.3	88.9					•	•		
As (total)	hg/L	57.8		30.8	32.1	0.6	32.9	30.8	30.7	1.2	2.5	0.3	0.4	56.2	30.1	30.4	1.4	2.3	0.2	0.2	0.2
Total Fe	hg/L	<25		<25	<25	<25	<25			<25	<25	<25	<25	<25	ı	·	,	ı	•		<25
Total Mn	hg/L	4.1		<0.1	<0.1	<0.1	4.1			<0.1	0.2	0.2	0.3	5.6				•	•		<0.1
Total AI	hg/L	<10	,	13.5	14.0	20.8	<10		,	15.6	15.8	18.3	18.5	<10	ı	I					18.1

As CaCO₃ (a)

	Ц	14.5	141	<0.1	22	0.1	<10	9.5	0.2	7.8	10.5	0.4	0.4	162	78.8	83.3	1.6			•		<25		<0.1		11.2	•
	Ħ	•	•	•	•	•	•	9.8	•	•	•	•			•		1.8									'	
	TE	•	•	•	•	•	•	9.9	•	•	•	•	•	•	•		0.9	•	•	•	•			-		•	
	₽		•		-	•	•	11.2	-	•	-	•	•	•	-		19.5		ı					-			
1/05/06	10		•	•	•	•		10.9	•		•		•	•	•	-	16.7	•		-	•	-	•	-	-		
0	B	14.5	•	•	-	•	•	11.1	-	•	-	•	-		-		33.3					•	•	-	•		
	ΤA	14.3	•	•	-	•		11.7	-		-	•	-	•	-	-	33.4	•		•	•	-	-	-	-		
	AC		•		•	•	•	•	•	7.7	6.6	0.4	0.4	•	•		•						•			•	
	Z		132	<0.1	21	0.1	<10	12.7	0.3	7.1	9.1	•	-	176	83.9	92.2	29.9		ı			<25		6.4		1.6	
	Ш	12.6	•	•	-	•	•	9.2	-	7.9	10.4	0.1	0.1		-	-	0.7	0.6	0.1	0.5	<0.1	<25	<25	0.1	<0.1	14.8	14.1
	ΤF		•			•	•	9.2		•		•		•			0.7		ı								
	TE	•	•	•	•	•	•	9.3	•	•	•	•	•	•	•	•	0.6	•	•		•					•	
	₽	•	•	•	•	•	•	10.4	•	•	•	•	•	•	•	•	13.3	•	'	•	•	•	•	•	•	•	
2/13/05	TC		•	•	•	•	•	10.3	•	•	•			•	•		6.6		·					•			
,	TB	12.7	•	•		•	•	11.9						•		-	35.5	-	-	-	-	-	•	-	-		
	ТА	12.5	•			•		11.6								-	37.0	-	-	-	-	-	-	-			
	AC									7.7	10.7	0.1	0.3				25.7	26.0	<0.1	0.5	25.5	<25	<25	12.1	1.2	<10	10.2
	N		•			•		12		7.3	10.7					-	30.8	29.6	1.2	0.4	29.1	<25	<25	1.7	<0.1	<10	<10
	Π	11.7	136	<0.1	21	0.1	<10	8.2	0.4	7.7	10.5	0.5	0.4	172	73.2	98.5	1.3					<25		<0.1		16.5	
	ΤF		•		-			8.6	-		-				-		1.3						-	-			
	ΤE		•	•	•	•	•	8.3	•	•	•	•	•	•	•		1.3	•		•	•		•	•			
(q)	1	•	•	•	•	•	•	9.7	•	•	•	•	•	•	•	'	8.3	•	•	•	•	•	•	•	•	•	
8/2005	TC	•	•	•	'	•	•	9.7	'	•	'	•	•	•	'	'	5.6	'		'	'	'	•	'	'	'	
11/2	TB	11.8	•	•		•	•	10.8		•		•		•			38.9		ı	•		'		•	'		
	ТА	11.6	•	•	•	•	•	11.6	•		•	•	'	•	•		37.3			•		•	•	•	•	•	,
	AC		•			•	•	,		7.6	10.7	0.5	0.4	•					ı								
	Z		132	<0.1	20.8	0.1	<10	12.4	0.7	7.8	10.2	•	-	165	72.4	92.9	40.2					<25	•	11.9	•	<10	
ate	ation Unit	10^3	mg/L ^(a)	mg/L	mg/L	mg/L	hg/L	mg/L	NTU	S.U.	S	mg/L	mg/L	mg/L ^(a)	mg/L ^(a)	mg/L ^(a)	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	µg/L
Sampling D	Sampling Loc Parameter	Bed Volume	Alkalinity	Fluoride	Sulfate	Nitrate (as N)	Total P	Silica (as SiO2)	Turbidity	Hq	Temperature	Free Chlorine	Total Chlorine	Total Hardness	Ca Hardness	Mg Hardness	As (total)	As (soluble)	As (particulate)	As (III)	As (V)	Total Fe	Soluble Fe	Total Mn	Soluble Mn	Total AI	Soluble AI

(a) AS CACOS.
 (b) Water quality measurements were taken on 11/27/2005.

T (Continued)
\geq
, Dummerston,
තු
Samplin
n
Ig-Terr
5
Ĩ
from
S
tesul
Ě
tical
J,
Ana
Ϊ.
ä
Table]

	Ħ	0.0							•			0.2			•	7.1	10.4	0.1	0.3		•					0.1.	<25		1.6		13.8		
	Ħ											10.6					-								1	- ' '				,			
	비										,	10.6			-		-								, I	- '		-		,			
	₽								•		,	0.5			•	•	-				•							-		,			
2/15/06	TC							•			,	0.7			-		-				•	•				0				,			
:0	ШB	0.0						•	•			<0.2					-									ю. -							
	TA	0.0										<0.2			-		-									0				,			
	AC										,				-	7.7	9.2	0.1	0.2									•					
	z										,	11.7			-	7.3	9.5									24.1	<25	-	5.4	,	<10		
	F	16.3	139 130	200	- 0.	21	21	0.1	0.1	<10	<10	9.6 	10.3	0.3	0.3	7.8	9.9	0.3	0.3	172	160	81.2	1.1.1	90.8	04.0	3.7 4.3	<25	<25	<0.1	<0.1	10.5	<10	
	Ħ										,	10.1	10.0		-		-									4.0 5.4		-		,			
	Ë										,	0.0	0.1		-		-									 9.4		-		,			
	Ð											0.3	0.5 、		-		-	-								.0.9 1.7		-		,			
31/06	ບ											9.9 1	0.1		-	-	-	-	-						, 1	1.0		-		,			
01/	, P	5.4						-				1.7 9	1.6		-	-	-								, 1	7.5 2		-	-	,			
·	۲ ۲	5.2 10										.2	1.				-	-								ν. ο. ν. ο.							
	L C	- 16										· - ·	-		-	.5	.4											-	-				
	₹ N	-	27 27	1	. 1.0	1.1	0.8	0.2	0.2	10	10	1.5	2.1	.4	.4	.2 7	9.7 9			57	65	1.7		5.7	t 0	0.00 0.00	25	25	3.9	5.5	10	10	
	E	5.8		, ,	/ v	- 2	-	-	-	•	•	0.3 1	-		-	0.0	3 9.0	.4	.4	-	-		ο		- C	ה פו היים	25 <	•	0.1 6		3.5	•	
	- E	- 1										.8 1(-	- 8	- 0	-	-								·	-	v ·		÷		
	TE											9.8 6			•	,	-	1								3.2		•					
	₽											10.6					-									24.2							
25/06	TC										,	10.9			-		-	-												,			
01/	TB	5.9										. 6.0					-	-								ν '				,			
	TA	5.7 1										1.2 1			-		-									 		-		,			
	₽C	- 1									,	-			-	3.1	7.7											-	-	,			
	z											1.8			-	3.4 8	9.2 7									0.4 '	5.4	-	4.5	,	10) ₃ .
	r i	^3	L ^(a)		%۲		۲ ۲	۳L	1	-	ĩ	/۲ ا			>		0	//L	//L	L ^(a)	1	L ^(a)		L ^(a)		ہ ۲	4	ŗ	л 1 ₃	Į	۲ ۲	Į	s CaCC
g Date	Locatio Un	10	/ɓɯ		ЪС	8	Ĵ	bm		2	ກ	bm	,	ΤN		S.) ₀	дш	бш	ma/	2	/gm	'	/gm		бrl	=	ກ 1	na)) ይ	na	0) E	(a) A
Samplin	Sampling Parameter	Bed Volume	Alkalinity		Fluoride	Culfato	oullate	Nitrate (as	N)	Total D	- 0101	Silica (as	SIU2)	Turbidity	function i	Hq	Temperature	Free Chlorine	Total Chlorine	Total	Hardness	Ca		Mg Hardness		As (total)	Total Ea	1 0101 1	Total Mn		Total AI		

Sampling D	Jate					02/28/0	9							00	3/16/06								03/2	59/0 6				
Sampling Lot	cation	Z	AC	TA	ΠB	TC	£	Ξ	Ħ	F	Z	AC	TA.	[2	TC	-	н Ц	۲ 		Z	۔ ن	LA T	L B	۲ د	- 0	н 		F
Parameter	Unit		2		!			!	:		:	2									2			,				-
Bed Volume	10^3		•	0.3	0.8		•	•		0.5			.0	2.0			-	-	4		, <u> </u>	.5 2	8	·			2.	-
Alkalinity	mg/L ^(a)	122 ^(b)	•	•						132										53						'	14	11
Fluoride	mg/L	<0.1	•		,		•	•		<0.1						<u> </u>	-	-	v √).1		-				'	0>	1.
Sulfate	mg/L	22	•	•	,			•		24					•		-	•	. 23	3.2		•				'	23	8.0
Nitrate (as N)	mg/L	0.1	•	•						0.1									° ∙	.05		•				'	0	τ.
Total P	hg/L	<10	•	•						<10					•		-	•	v	10		•		·			۲ ۲	10
Silica (as SiO2)	mg/L	11.1	•	4.7	4.5	1.1	1.1	11.2	11.3	1.1	11.6		7.2	7.1 :	3.0 3.	2 1(0.6 1(0.7 3.	3	1.2		7.6 7.	6 4	6 4.	1 10	.9 10	.7 5.	4
Turbidity	NTU	0.2	•	•	,			•		0.6					•		-	•	0	e.		•				'	0.	7
Hq	S.U.	8.4	7.7	•						7.3									- 7	6.	8.						7.	7
Temperature	°	7.4	7.4	•	,			•		8.8					•		-	•	6	.5 5	8.0	•				'	13	.1
Free Chlorine	mg/L		0.2		'					0.2						_	-	-		-	1.2	-				'	0.	5
Total Chlorine	mg/L		0.2		,	,				0.2	,		,					· -		- C	.2					-	0.	.2
Total Hardness	mg/L ^(a)					'	•			ı	,		,					·	-11	57						-	16	35
Ca Hardness	mg/L ^(a)	•			,						,			,	•		-		. 72	2.8		•				'	76	8.8
Mg Hardness	mg/L ^(a)				'											_	-		. 8	4.4						'	88	8.6
As (total)	hg/L	28.4		0.3	0.3	0.3	0.3	10.9	13.2	0.3	22.4		0.6 ().5 (0.4 O.	5 1	1.3 12	2.0 0.2	5 47	7.2	-	0.2	2 0	.2 0.	1 15	.9 17	.1 0.	2
Total Fe	hg/L	<25	•		,					<25	<25			,	•		-	V -	25	25	,	-				'	2>	25
Total Mn	hg/L	9.9	•		'	'				<0.1	15.5				•			-02	.1 12	4.8						'	0.	.3
Total AI	hg/L	<10	•		'	'	•			13.0	<10				•			- 20	8.0	10				<u> </u>			18	8.0
																												1

As CaCO₃. Sample reanalyzed outside of hold time. e) (a)

(Continued)
ΓV
Dummerston,
Sampling,
ong-Term
Results from I
Analytical
Table B-1.

		<i>.</i>						-		~	6	~	~				~					10		-		6		
	F	5.2	,	'	'	•	'	8.4		8.0	10.	0.3	0.3		•	•	0.3	'	'	'	'	<25	'	~0>	'	19.	'	
	ΤF		,	•		,	•	11.8		•		•	•		•	•	24.1	•	ı			•	,		•	•	•	
	TE					,		12.5									23.9			,							•	
6	Ð		,	•		•		8.1			•	•	•				0.3				•	•	,	•	,	•	•	
05/10/0	TC		,	•		•		8.7	•	•	•	•	•		•		0.3				•	•	•	•	,	,	•	
	TB	6.0		•		•	•	10.3	•	•	•	•	•		•	•	1.7	•	•	'	•	•	•	•	•	•	•	
	TA	4.2	•	•				10.7	•		•	•	•				1.6				•	•	•	•				
	AC									8.0	10.5	0.3	0.3							,	•							
	Z	-						13.3		7.5	10.3						29.0			,		84.7		5.5		<10		
	F	4.3	138	<0.1	23	0.1	<10	7.3	0.1	7.8	11.2	0.4	0.4	162	80.5	81.0	<0.1					<25		<0.1		13.5		
	TF	-					,	11.5					,				24.8											
	TE		,					11.7									25.0			,								
	D		,					8.1									<0.1		1									
1/27/06	TC		,					7.6									<0.1		1									
04	TB	5.0						9.4									<0.1		1									
	TA	3.3	,					9.8									<0.1	-	ı									
	AC		,							7.5	11.2	0.4	0.4							,			,					
	Z		133	<0.1	24	0.1	<10	11.4	0.2	8.0	10.3			154	78.9	75.1	28.7			,	•	<25		1.9		<10		
	F	3.1	,					5.8		7.8	9.7	0.1	0.1				0.7	9.0	<0.1	0.4	0.2	<25	<25	1.4	0.2	16.3	15.3	
	ΤF	-				,		10.6									24.7		ī			<25		<0.1		10.4		
	TE		,					10.8									23.7			,		<25	,	<0.1		10.0		
	£	-	,					6.1									0.5		,			<25		0.1		14.6		
4/11/06	тс	•	,					6.0									0.6		,	,		<25	,	0.1		16.3		
70	TB	3.8				,		8.8									0.7		1	,		<25		<0.1		12.4		
	TA	2.2						9.0									0.7		ı			<25		0.1		12.2		
	AC	-						11.5		7.9	9.8	0.4	0.4				32.8	32.5	0.3	0.6	31.9	<25	<25	3.8	2.5	<10	<10	
	Z	-						11.6		7.4	8.5						32.7	32.6	0.2	0.5	32.0	<25	<25	3.4	2.3	<10	<10	o. O.
	on Unit	0v3	g/L ^(a)	ng/L	ng/L	ng/L	J/br	. J/gu	UTU	s.U.	°C	ng/L	ng/L	g/L ^(a)	g/L ^(a)	g/L ^(a)	: J/br	: J/br	J/br	J∕L	: J/Br	J/br	J/br	J/br	J/Br	- T/Br	J/br	As CaC
ng Date	g Locatic r L	e 1	E	-	-	с 		-	2		re	ne n	-	E	ss m	ss m	-	1 (€	i)	-	-		1		1	1	-	(a)
Sampli	Samplinç Parameter	Bed Volum	Alkalinity	Fluoride	Sulfate	Nitrate (as N)	Total P	Silica (as SiO2)	Turbidity	Hd	Temperatui	Free Chlorir	Total Chlorine	Total Hardness	Ca Hardnes	Mg Hardne	As (total)	As (soluble	As (particulate	(III) SY	As (V)	Total Fe	Soluble F€	Total Mn	Soluble Mr	Total Al	Soluble Al	

IN = influent; TA = after Tank A; TB = after Tank B; TC = after Tank C; TD = after Tank D; TT = after combined effluent; NA = Not available

	Ħ	8.3	134		<0.1	•	25		0.1		<10		9.5		0.2				174		81.2		93.1		0.3 -		•			<25		,	0.2			17.8			
	ΤF							-				-	11.7					-							29.5 -														
-	ΤE		,					-	ı	-		-	11.8			,						,			29.4			,				,				,	,	•	
	₽		,						,				9.4												0.2		•	,				,	•				•	•	
6/22/06	тс				,			•				•	9.7							•				•	0.2		•				•					,	•	•	
8	TB	9.1							,				10.5					ı							10.3 -			,				,							
	TA	7.2											10.7											,	10.7 -			,				,					,	•	
	AC							-		-		-						-						,					-										
	R		138		<0.1		23	-	0.1		<10	-	11.4		0.3				171		79.3		91.7		50.7 -			,	-	27.7		,	36.6			<10		•	
	F	6.9							,				9.3				7.7	12.6							0.3	0.3	<0.1	0.2	0.1	<25		<25	<0.1		<0.1	<10	,	12.8	
-	ŦF				,			-		-		-	11.3												22.9			,				,						•	
	ΤE								,				11.9											,	23.7 -			,				,					,		
-	₽		,		,				,				8.9			,									0.2			,				,				,	,		
/05/06	тс					•				-			8.8			,	-							,	0.3				-							,			
90	Ħ	7.7						-				-	10.3					-							5.8														
	ΤA	5.8											10.8												4.7			,				,							
-	AC									-			11.7				7.7	12.2							21.5 -	20.2	1.3	0.2	20.0	<25		<25	4.7		2.7	<10	,	<10	
	z								,				11.3				7.5	12.4							20.8	20.8	<0.1	0.2	20.6	48.6		<25	5.9		3.2	<10	,	<10	
	Ħ	6.6	133	133	<0.1	<0.1	24	24	0.2	0.2	<10	<10	8.0	8.2	0.3	0.3	7.0	14.3	140	143	74.0	76.5	65.8	66.8	0.3 0.2			,		<25	<25	,	<0.1	<0.1		11.4	11.8		
	ΤF		,		,								10.8	10.3		,									24.6 24.5			,	-			,				,	,		
-	TE							-				-	11.5	10.9		,		-						,	23.6			,				,							
	₽				,								9.0	8.4		,	-							,	0.2			,				,		,	,		,		
5/01/06	TC				,								8.5	8.2		,	-							,	0.2 0.2											,		•	
õ	TB	7.4				•				•			10.0	9.6		,	-								5.5 5.5			,				,							
	ТА	5.6								,		-	10.2	9.2		,		-				,			6.0 5.6													•	
	AC									•					•	,											•										•	•	
	R		150	150	<0.1	<0.1	23	22	<10	<10	<10	<10	11.2	10.7	0.3	0.4	6.5	12.7	143	147	74.3	77.2	68.4	69.5	23.0 24.8		•	,		<25	<25	,	3.1	3.9		<10	<10	•	
te	tion Unit	10^3	ma/L ^(a)	,	ma/l	1	//um	п.9, г	//	нg/г	//um	п.9, г	ma/L	,	NTU		S.U.	°	mc/1 ^(a)	ы. В. н.	ma/l ^(a)	1	mg/L ^(a)	,	hg/L	hg/L	hg/L	hg/L	hg/L	1/011	ч Л	hg/L	1/011	ч Л	hg/L	ua/L	l D	hg/L	s CaCO ₃ .
Sampling Da	Sampling Loca Parameter	Bed Volume	Alkalinity		Fluoride	000	Sulfate	oquique	Nitrate (ac N)	ואווומוב (מא או	Total P	1 0001	Silica	(as SIUZ)	Turbidity		Hq	Temperature	Total Hardness		Ca Hardness		Mg Hardness		As (total)	As (soluble)	As (particulate)	As (III)	As (V)	Total Fe	101011	Soluble Fe	Total Mn		Soluble Mn	Total Al		Soluble AI	(a) A:

IN = influent; TA = after Tank A; TB = after Tank B; TC = after Tank C; TD = after Tank D; TT = after combined effluent; NA = Not available

	F	11.0						9.6		VA ^(b)	VA ^(b)	VA ^(b)				1.1	1.1	<0.1	0.3	0.9	<25	<25	0.2	0.2	16.7	17.3
	Ë							1.5		-	-	-				5.3		•			,					-
								1.0 1			-			-		4.5 3	-	-		-	-		-	-		
	- -							.7 1.								.8 8.										
2/06	2							9.9								1.3 0	-									
08/0	ഇ	1.8						0.6								0.2										
	<u>₹</u>	9.6 1						0.5 1								0.9 2										
	۔ ب							.8		(q)	(q)					.7 2	.3	4.	e.	.0	25	25	.5	8.	10	10
	<							3 10	-	/N (q)	/N (q)	-		-		6 71	3 67	3 4	3 0	0 67	ۍ ۲	2 V	9 2	2	`v O	َب ٥
	Z	'	'	•	'	•	•	11.	•	NA	NA.	•	•	-	'	69.	67.	2.3	0.3	67.	Ŷ	Ŷ	1.9	2.5	Ý	ž
	F	10.2	125	<0>	20	0.1	<10	9.4	0.5	7.5	13.3	0.3	171	80.6	90.7	0.6	•	'	'	'	<25	'	0.1	'	<10	'
	Ħ	•	•	•	•	•	•	11.4	•	•	•	•	•	•	•	36.0	•	•	•	'	•	•	•	•	•	'
	Ħ	•	•			•	•	11.4	•	•	•	•	•	•		35.7	-	-	•			•	•		•	'
8/06	₽		•					10.0				•				0.5	•									•
07/1	TC	,	•			•	•	9.6	•	•	-	•	•	-	•	0.7	•		-		•	-	-	•	-	'
	TB	11.1	•					10.5								17.8										•
	TA	9.0						10.9	•			•		•		17.6								•		•
	Z		121	<0.1	v	0.2	<10	12.1	0.5	7.7	12.7	•	162	77.4	84.4	61.8					61.6		37.9		<10	•
	F	9.5						9.5		7.7	13.5	0.3				0.3					<25		0.1		11.3	•
	Ħ							11.2								29.0					<25		0.1		10.7	
	Ë							11.3	•		•			•		30.1	-	,			<25		0.1		10.8	
90	£							. 6.6								0.3					<25		0.6		1.9	
07/11/(0	2							9.7								0.4				-	:25		0.2		2.2	
		D.4						0.5								2.3 (-	25 <		.6 (1.0 1	
		4 1(1(.5 15					25 <		.6		.4	
	-	ø						0 10			. 5	•		•		3 12		•	•	•	5 <2	•	.0 6	•	0 11	
	≤	'	a)	'	'	'	'	- 12.		.7.	13.		a)	a) -	a)	29.	'	'	'	'	42	'	3.5	'	V	'
Date	ocation Unit	10^3	mg/L ⁶	mg/L	mg/L	mg/L	hg/L	mg/L	NTU	S.U.	°0	mg/L	mg/L ^{(;}	mg/L ⁽	mg/L ^{(;}	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L
Sampling	Sampling Lo Parameter	Bed Volume	Alkalinity	Fluoride	Sulfate	Nitrate (as N)	Total P	Silica (as SiO2)	Turbidity	Hq	Temperature	Free Chlorine	Total	Hardness	Ca	Hardness	бW	Hardness	(III) SA	As (V)	Total Fe	Soluble Fe	Total Mn	Soluble Mn	Total AI	Soluble AI

(b) Water quality measurements not recorded by operator.

Sampling I	Date				08/17	90/2							170/60	90							09/18	90/			
Sampling Lo	cation	2	٩	£	د ۲	f	ĥ	H	F	2	ŕ	f	د ۲	f	Ľ	Ļ	F	2	ŕ	f	د ۲	Ê	Ļ	Ë	F
Parameter	Unit	2	¥-	<u>a</u>	د	2	U -	L	=	Z	H	<u>a</u>	<u>د</u>	2	U -	L	-	Z	H	<u>0</u>	د -	2	-	L -	=
Bed Volume	10^3		10.2	12.5					12.1		12.5	14.3					13.5		13.1	15.5	•				14.4
Alkalinity	mg/L ^(a)	140	•						136									156							135
Fluoride	mg/L	<0.1	•						<0.1									0.3							0.2
Sulfate	mg/L	23		•					22									23							24
Nitrate (as N)	mg/L	0.1	•						0.1									<0.05							<0.05
Total P	hg/L	<10							<10									<10							<10
Silica (as SiO2)	mg/L	11.4	11.3	11.4	10.2	10.6	12.1	11.5	9.7	10.9	9.8	10.2	9.5	9.6	6.0	11.0	9.4	11.7	11.4	11.0	10.5	10.2	11.2	10.8	10.3
Turbidity	NTU	0.6		•					0.4									0.9							0.6
Hq	S.U.	NA ^(b)							NA ^(b)	NA ^(b)							NA ^(b)	7.2							7.3
Temperature	S	NA ^(b)	•						$NA^{(b)}$	NA ^(b)							NA ^(b)	12.0							11.3
Free Chlorine	mg/L	•	•	•					0.3								NA ^(b)								NA ^(b)
Total	mg/L ^(a)	156	•						172									174							153
Hardness	mg/L ^(a)	77.8	•						81.4									83.7							76.3
	mg/L ^(a)	78.3		•					90.9									90.6							76.7
	hg/L	33.2	25.4	24.6	2.9	1.9	35.8	36.0	2.5	37.8	23.5	24.0	5.0	3.5 2	29.1	30.5	4.4	101	29.3	28.2	7.4	5.4	38.6	39.9	6.6
Ma Llordnocc	hg/L	<25	,	•					<25	<25							<25	108		•					<25
	hg/L	4.4						ı	<0.1	6.7							<0.1	33.2	•					1	<0.1
Total AI	hg/L	<10							14.4	<10							15.4	27.6	•						11.8
(a) As Cá	ico ₃ .																								

(b) Water quality measurements not recorded by operator.

(F)
ē
D
ij
n
Ū
<u> </u>
E
Ľ.
5
LS
Je
E
E
ā
5
 20
E
d
I
Š
n
L
Ŀ
5
ũ
୍
Ξ
E
Ľ
÷
Its
, Li
ĕ
2
al
ii.
X
al
P
\mathbf{V}
Γ.
~
ol
a
Ξ

Sampling Date					0	9/26/06								10/10	90/0			
Sampling Locatic	uo	3	ÚV	< +	Q	ر ۲	Ĺ	Ļ	Ļ	Þ	Z	¢	0 H	ر ۲	F	Ļ	Ë	þ
Parameter	Unit	1	24	5	<u>-</u>	2	2	-	-	-	Ĩ	-	<u>-</u>	2	<u>د</u>	4	-	:
Bed Volume	10^3		,	13.8	16.1					14.9		14.9	17.2				•	16.0
Silica (as SiO2)	mg/L	11.8	12.4	11.0	11.5	11.0	10.6	12.1	11.4	10.6	11.0	10.8	10.8	10.0	10.9	10.8	11.7	10.5
Hd	S.U.	NA ^(a)	NA ^(a)							$NA^{(a)}$	$NA^{(a)}$							$NA^{(a)}$
Temperature	ပ	NA ^(a)	NA ^(a)							$NA^{(a)}$	$NA^{(a)}$,				$NA^{(a)}$
As (total)	hg/L	34.4	45.8	22.3	23.0	8.2	6.9	32.2	31.8	7.1	71.3	31.0	30.7	12.4	10.9	43.4	42.2	12.0
As (soluble)	hg/L	24.3	45.4							7.1	ı	ı	ı	,		ı		ı
As (particulate)	hg/L	10.1	0.4	,	,		,		ı	<0.1	,	,	ı	,		,		,
As (III)	hg/L	1.1	1.2	,	,	,	,		,	1.2	,	,	,	,		,		,
As (V)	hg/L	23.2	44.3	,	,		,		ı	5.9		,		,		,		
Total Fe	hg/L	<25	<25	ı	ı		,	ı	ı	<25	<25	<25	<25	<25	<25	<25	<25	<25
Soluble Fe	hg/L	<25	<25			ı	,		ı	<25	ı	I	ı	ı	ı	ı	ı	I
Total Mn	hg/L	3.1	4.7	,	,		,		ı	0.4	9.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Soluble Mn	hg/L	1.1	1.6	,	,		,		ı	0.2	ı	ı	ı	,		ı		ı
Total AI	hg/L	<10	<10				•		,	18.4	<10	,	ı	,		•		14.5
Soluble Al	hg/L	<10	<10	ı		ı		ı		16.4	ı		ı	ı	ı		ı	I
/-/ ///-///																		

(a) Water quality measurements not recorded by operator.

APPENDIX C

ARSENIC MASS REMOVAL CALCULATIONS
Train A

		Run	1	
	С			
Volume Treated (BV) ^(a)	Raw	After Column A	Difference	Mass Removed (µg) ^(b)
0.0	44.3	0.7	43.6	-
900	39.9	0.3	39.6	1,589,991
1,100	52.3	4.4	47.9	2,043,758
1,000	61.9	1.2	60.7	2,305,996
1,100	46.6	2.1	44.5	2,457,181
900	36.9	6.0	30.9	1,440,929
1,400	72.2	12.6	59.6	2,690,329
700	30.4	16.9	13.5	1,086,536
1,100	43.0	31.4	11.6	586,266
800	57.8	30.8	27.0	655,701
500	32.9	30.8	2.1	308,952
500	56.2	30.1	26.1	299,397
1,600	40.2	37.3	2.9	985,251
Total A	Arsenic Re	emoved by C	olumn A	16,450,288

		Run	12	
	Co	ncentration	(µg/L)	
Volume Treated (BV) ^(a)	After Column E	After Column A	Difference	Mass Removed (µg) ^(b)
0.0	6.7	1.0	5.7	-
300	10.9	0.3	10.6	103,834
500	11.3	0.6	10.7	226,141
700	15.9	0.2	15.7	392,402
800	23.7	0.7	23.0	657,400
1,200	25.0	0.05	25.0	1,221,796
800	23.9	1.6	22.3	802,640
1,400	23.6	6.0	17.6	1,186,123
300	23.7	4.7	19.0	233,148
1,300	29.4	10.7	18.7	1,040,671
1,300	30.1	12.5	17.6	1,002,025
600	35.7	17.6	18.1	424,829
1,000	34.5	20.9	13.6	673,113
900	35.8	25.4	10.4	458,651
1,700	29.1	23.5	5.6	577,561
900	38.6	29.3	9.3	284,746
1,000	32.2	22.3	9.9	407.690
1,000	43.4	31.0	12.4	473,515
Total	Arsenic Re	moved by C	olumn A	10,196,282

Run 1

	Co			
Volume Treated (BV) ^(a)	After Column A	After Column C	Difference	Mass Removed (µg) ^(b)
0	2.1	0.7	1.4	-
4,100	16.9	0.5	16.4	1,549,646
1,100	31.4	0.9	30.5	1,095,454
1,300	30.8	1.2	29.6	1,659,001
500	30.1	1.4	28.7	618,967
1,600	37.3	5.6	31.7	2,052,039
900	37.0	9.9	27.1	1,123,695
2,000	33.4	16.7	16.7	1,860,085
1,800	27.3	20.7	6.6	890,548
Total	Arsenic Ren	noved by Col	lumn C	10,849,436

	Co	ncentration	(µg/L)	
Volume Treated (BV) ^(a)	After Column A	After Column C	Difference	Mass Removed (µg) ^(b)
0	0.6	0.4	0.2	-
700	0.2	0.2	0	2,973
800	0.7	0.6	0.1	1,699
1,200	0.05	0.05	0	2,548
800	1.6	0.3	1.3	22,083
1,400	6.0	0.2	5.8	211,065
300	4.7	0.3	4.4	64,976
1,300	10.7	0.2	10.5	411,300
1,300	12.5	0.4	12.1	623,851
600	17.6	0.7	16.9	369,469
1,000	20.9	1.3	19.6	775,036
900	25.4	2.9	22.5	804,551
1,700	23.5	5.0	18.5	1,479,999
900	29.3	7.4	21.9	772,063
1,000	22.3	8.2	14.1	764,419
1,000	31.0	12.4	18.6	694,347
Tota	l Arsenic Re	moved by Co	olumn C	7,000,376 ^(c)

Run 2

Run 1

Volume	Concentration (µg/L)			
Treated (BV) ^(a)	After Column C	After Column E	Difference	Mass Removed (µg) ^(b)
0	1.2	0.3	0.9	-
500	1.4	0.2	1.2	22,296
1,600	5.6	1.3	4.3	186,858
900	9.9	0.6	9.3	259,902
2,000	16.7	0.9	15.8	1,065,939
1,300	23.6	3.2	20.4	999,265
500	20.7	3.1	17.6	403,443
	Total Arsenic Removed by Column E			2,937,703

Note: Amount of mass removed before vessel was moved to the lead position for Run 2.

Volume	Concentration (µg/L)			
Treated (BV) ^(a)	Raw	After Column E	Difference	Mass Removed (µg) ^(b)
	Amount remo	wed from Run 1		2,937,703
500	20.7	3.1	17.6	403,443
900	24.1	6.7	17.4	668,866
300	28.1	10.9	17.2	220,407
500	22.4	11.3	11.1	300,459
700	47.2	15.9	31.9	630,221
800	32.7	23.7	9.0	684,579
1,200	28.7	25.0	3.7	323,604
800	29.0	23.9	5.1	149,486
1,400	23.0	23.6	-0.6	133,773
300	20.8	23.7	-2.9	0
1,300	50.7	29.4	21.3	507,914
1,300	29.3	30.1	-0.8	565,882
600	61.8	35.7	26.1	322,330
1,000	69.6	34.5	35.1	1,299,512
900	33.2	35.8	-2.6	621,090
1,700	37.8	29.1	8.7	220,195
900	101.0	38.6	62.4	1,358,754
1,000	34.4	32.2	2.2	1,371,707
1,000	71.3	43.4	27.9	639,139
	Total Ar	senic Removed	by Column E	12,955,621

Run 2

Note: Amount of mass removed from both Run 1 and Run 2.

Train B

		Run 1		
Volume	С	oncentration	n (μg/L)	
Treated (BV) ^(a)	Raw	After Column B	Difference	Mass Removed (µg) ^(b)
0.0	44.3	0.6	43.7	-
700	39.9	0.3	39.6	1,238,146
700	52.3	6.3	46.0	1,272,332
800	61.9	1.2	60.7	1,812,521
1,000	46.6	3.1	43.5	2,212,567
1,200	36.9	7.8	29.1	1,849,893
1,400	72.2	14.8	57.4	2,571,419
800	30.4	19.7	10.7	1,156,820
1,100	43.0	33.4	9.6	474.152
1,000	57.8	32.1	25.7	749,555
500	32.9	30.7	2.2	296,212
500	56.2	30.4	25.8	297,274
2,100	40.2	38.9	1.3	1,208,418
Total A	Arsenic Re	emoved by C	olumn B	15,139,310

	Co	ncentration	(µg/L)	
Volume Treated (BV) ^(a)	After Column F	After Column B	Difference	Mass Removed (µg) ^(b)
0	10.7	0.9	9.8	-
800	13.2	0.3	12.9	385,606
900	12.0	0.5	11.5	466,295
1,000	17.1	0.2	16.9	603,041
1,100	24.7	0.7	24.0	955,311
1,400	24.8	0.05	24.8	1,449,210
800	24.1	1.7	22.4	800,941
1,200	24.6	5.5	19.1	1,057,446
600	22.9	5.8	17.1	461,199
1,300	29.5	10.3	19.2	1,002,025
1,400	29.0	12.3	16.7	1,067,213
600	36.0	17.8	18.2	444,637
1,200	35.3	20.2	15.1	848,505
900	25.4	24.6	0.8	303,856
1,300	30.5	24.0	6.5	201,509
800	39.9	28.2	11.7	309,165
1,000	31.8	23.0	8.8	435,294
1,000	42.2	30.7	11.5	431,047
Tota	l Arsenic Re	moved by Co	olumn B	11,222,302

Run 2

Run 1

	Co			
Volume Treated (BV) ^(a)	After Column B	After Column D	Difference	Mass Removed (µg) ^(b)
0	3.1	0.8	2.3	-
4,100	19.7	0.6	19.1	1,863,058
1,100	33.4	1.1	32.3	1,200,562
1,300	30.7	2.5	28.2	1,670,042
500	30.4	2.3	28.1	597,733
1,600	38.9	8.3	30.6	1,994,283
900	35.5	13.3	22.2	1,009,033
2,000	33.3	19.5	13.8	1,528,837
1,300	31.3	24.2	7.1	576,924
500	27.3	20.9	6.4	143,329
Total	Arsenic Ren	noved by Col	umn D	10,583,800

		Run 2		
	Co	Concentration (µg/L)		
Volume Treated (BV) ^(a)	After Column B	After Column D	Difference	Mass Removed (µg) ^(b)
0	0.5	0.5	0	
1,000	0.2	0.1	0.1	2,123
1,100	0.7	0.5	0.2	7,007
1,400	0.05	0.05	0	5,945
800	1.7	0.3	1.4	23,782
1,200	5.5	0.2	5.3	170,720
600	5.8	0.2	5.6	138,869
1,300	10.3	0.2	10.1	433,383
1,400	12.3	0.3	12.0	656,975
600	17.8	0.5	17.3	373,291
1,200	20.2	0.8	19.4	935,139
900	24.6	1.9	22.7	804,551
1,300	24.0	3.5	20.5	1,192,493
800	28.2	5.4	22.8	735,541
1,000	23.0	6.9	16.1	825,997
1,000	30.7	10.9	19.8	762,295
Tota	l Arsenic Re	moved by Co	olumn D	7,068,112 ^(c)

Run 1	
-------	--

Volume	Concentration (µg/L)			
Treated (BV) ^(a)	After Column D	After Column F	Difference	Mass Removed (µg) ^(b)
0	2.5	0.4	2.1	-
500	2.3	0.2	2.1	44,591
1,600	8.3	1.3	7.0	309,165
900	13.3	0.7	12.6	374,565
2,000	19.5	1.8	17.7	1,286,771
1,300	24.2	4.6	19.6	1,029,629
500	20.9	4.6	16.3	381,148
	Total Arse	3,425,869		

Note: Amount of mass removed before vessel was moved to the lead position for Run 2.

Volume	Concentration (µg/L)			
Treated (BV) ^(a)	Raw	After Column F	Difference	Mass Removed (µg) ^(b)
Amo	ount of mass re	3,425,869		
1,200	24.1	10.7	13.4	756,774
800	28.1	13.2	14.9	480,734
900	22.4	12.0	10.4	483,495
1,000	47.2	17.1	30.1	859,971
1,100	32.7	24.7	8.0	889,911
1,400	28.7	24.8	3.9	353,756
800	29.0	24.1	4.9	149,486
1,200	23.0	24.6	-1.6	84,086
600	20.8	22.9	-2.1	0
1,300	50.7	29.5	21.2	527,237
1,400	29.3	29.0	0.3	639,139
600	61.8	36.0	25.8	332,522
1,200	69.6	35.3	34.3	1,531,385
900	33.2	25.4	7.8	804,551
1,300	37.8	30.5	7.3	416,821
800	101	39.9	61.1	1,161,916
1,000	34.4	31.8	2.6	1,352,596
1,000	71.3	42.2	29.1	673,113
	Total Arse	14,923,362		

Run 2

Ľ

Note: Amount of mass removed from both Run 1 and Run 2. (a) 1 BV = 1.5 ft³ = 11.22 gal = 42.46771 L (b) Mass Removed (μ g) = average difference in concentration (μ g/L) x Volume Treated (BV) x 42.4677 (L/BV) (c) Column did not reach capacity before end of evaluation. Media in each column = 33,660,400 mg based on a bulk density of 51 lb/ft³ and a moisture content of 3%.