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CHAPTER 9 

9. DECELERATION MODE DEVELOPMENT 

Chapter 7 introduced the concept of driving mode into the study and several sensitivity 
tests were performed for four different definitions, including comparison of modal average emis­
sion rate estimates, HTBR regression tree results, and residual mean deviance. After developing 
the idle mode definition and emission rate in Chapter 8, the next task is dividing the rest of the 
vehicle activity data into driving mode (deceleration, acceleration and cruise) for further analy­
sis. The deceleration mode is examined first. 

9.1 Critical Value for Deceleration Rates in Deceleration Mode 

The first task related to analysis of emission rates in the deceleration mode is identify­
ing critical values for deceleration. The literature indicates that critical values of -1 mph/s and -2 
mph/s should be examined. Because the critical value of “acceleration < -1 mph/s” also includes 
all data that conform with a critical value of “acceleration < -2 mph/s”, comparison of data that 
fall between these two potential cut points is first performed. In summary, these three decelera­
tion bins for analysis include: 

• Option 1: acceleration < -2 mph/s 

• Option 2: acceleration ≥  -2 mph/s & acceleration < -1 mph/s 

• Option 3: acceleration ≥ -1 mph/s & acceleration < 0 mph/s 

If the critical value is set as -1 mph/s for deceleration mode, data falling into option 1 and 
option 2 will be classified as deceleration mode while data falling into option 3 will be classified 
as cruise mode. If the critical value is set as -2 mph/s for deceleration mode, data falling into op­
tion 1 will be classified as deceleration mode while data falling into option 2 and option 3 will be 
classified as cruise mode. 

9-1




Deceleration Pollutants 
Engine Power (brake horsepower (bhp)) 

(0 20) (20 30) (30 40) (40 50) ≥ 50 Total 

Option 1 
NO x 

9322 94 16 5 15 9452 
CO 9558 89 15 4 15 9681 
HC 9483 94 16 5 15 9613 

Option 2 
NO x 

6748 127 101 42 174 7192 
CO 6800 126 99 42 171 7238 
HC 6754 125 99 42 172 7192 

Option 3 
NO x 

6806 950 1062 562 4353 13733 
CO 6782 949 1061 558 4326 13676 
HC 6705 921 1044 541 4212 13423 

Deceleration Pollutants 
Engine Power (brake horsepower (bhp)) 

(0 20) (20 30) (30 40) (40 50) ≥ 50 Total 

Option 1 
NO x 

98.6% 1.0% 0.2% 0.1% 0.2% 100.0% 
CO 98.7% 0.9% 0.2% 0.0% 0.2% 100.0% 
HC 98.6% 1.0% 0.2% 0.1% 0.2% 100.0% 

Option 2 
NO x 

93.8% 1.8% 1.4% 0.6% 2.4% 100.0% 
CO 93.9% 1.7% 1.4% 0.6% 2.4% 100.0% 
HC 93.9% 1.7% 1.4% 0.6% 2.4% 100.0% 

Option 3 
NO x 

49.6% 6.9% 7.7% 4.1% 31.7% 100.0% 
CO 49.6% 6.9% 7.8% 4.1% 31.6% 100.0% 
HC 50.0% 6.9% 7.8% 4.0% 31.4% 100.0% 

Figure 9-1 illustrates engine power distribution for these three options. Figures 9-2 to 9-4 

compare engine power vs. emission rate for three pollutants for three options. Tables 9-1 and 9-2 

provide the distribution for these three options in two ways: by number and percentage.


Table 9-1 Engine Power Distribution for Three Options for Three Pollutants 

Table 9-2 Percentage of Engine Power Distribution for Three Options for Three Pollutants 
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Figure 9-1 Engine Power Distribution for Three Options 

Figure 9-2 Engine Power vs. NOx Emission Rate for Three Options 
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Figure 9-3 Engine Power vs. CO Emission Rate for Three Options 

Figure 9-4 Engine Power vs. HC Emission Rate for Three Options 
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There is little difference in the engine power distributions noted for data falling into op­
tion 1 and option 2 while the power distribution for option 3 is obviously different from option 
1 and option 2 in the above figures and tables. Tables 9-1 and 9-2 show that the engine power is 
more concentrated in the lower engine power regime (< 20 bhp) for data in deceleration mode. 
Tables 9-1 and 9-2 better reflect the power demand of the vehicle in real world in deceleration 
mode. Hence, the critical value is set to -1 mph/s for deceleration mode. 

9.2 Analysis of Deceleration Mode Data 

9.2.1 Emission Rate Distribution by Bus in Deceleration Mode 

After defining vehicle activity data with “acceleration <-1 mph/s” as deceleration mode, 
emission rate histograms for each of the three pollutants for deceleration operations are presented 
in Figure 9-5. Figure 9-5 shows significant skewness for all three pollutants for deceleration 
mode. Inter-bus emission rate variability is illustrated by plotting median and mean NOx, CO, 
and HC emission rates in deceleration mode for each bus in Figures 9-6 to 9-8 and Table 9-3.  
The difference between median and mean is also an indicator of skewness. 

Figure 9-5 Histograms of Three Pollutants for Deceleration Mode 

9-5




Figure 9-6 Median and Mean of NOx Emission Rates in Deceleration Mode by Bus 

Figure 9-7 Median and Mean of CO Emission Rates in Deceleration Mode by Bus 
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Figure 9-8 Median and Mean of HC Emission Rates in Deceleration Mode by Bus 

Table 9-3 Median, and Mean for NOx, CO, and HC in Deceleration Mode by Bus 
NO x 

CO HC 
Bus ID Median Mean Median Mean Median Mean 

Bus 360 0.00325 0.01998 0.00502 0.00814 0.00040 0.00097 
Bus 361 0.00624 0.02206 0.00384 0.00535 0.00079 0.00095 
Bus 363 0.00483 0.01952 0.00446 0.00486 0.00004 0.00008 
Bus 364 0.00324 0.01255 0.00474 0.00586 0.00551 0.00613 
Bus 372 0.00437 0.01924 0.00578 0.00803 0.00161 0.00229 
Bus 375 0.00499 0.01997 0.00410 0.00567 0.00066 0.00085 
Bus 377 0.00414 0.01940 0.00317 0.00630 0.00034 0.00040 
Bus 379 0.02664 0.03457 0.00397 0.00522 0.00078 0.00103 
Bus 380 0.00525 0.01914 0.00359 0.00716 0.00060 0.00072 
Bus 381 0.01666 0.02420 0.00369 0.00452 0.00034 0.00038 
Bus 382 0.01214 0.03541 0.00450 0.00564 0.00073 0.00083 
Bus 383 0.00741 0.02385 0.00322 0.00452 0.00128 0.00172 
Bus 384 0.00828 0.02869 0.00259 0.00411 0.00113 0.00127 
Bus 385 0.02066 0.02118 0.00377 0.00585 0.00088 0.00086 
Bus 386 0.00341 0.01786 0.00406 0.00583 0.00091 0.00120 
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Figures 9-6 to 9-8 and Table 9-3 illustrate that bus 379 has the largest median and the sec­
ond largest mean for NOx emissions, bus 372 has the largest median and the second largest mean 
for CO emissions, while bus 364 has the largest median and mean for HC emissions.  At the 
same time, bus 382 has the largest mean for NOx emissions, and bus 360 has the largest mean for 
CO emissions. The above figures and table demonstrate that although variability exists among 
buses, it is difficult to determine which, if any, bus is a high emitter (i.e., a bus that exhibits ex­
tremely high emission rates under all operating conditions, which also may exhibit significantly 
different emissions responses to operating activity than normal emitters). 

The modeler notices that there is also a small number of some very high HC emis­
sions events noted in deceleration mode. Based on definitions of “acceleration < -1 mph/s”, 
242/16237=1.49 % of data points in deceleration mode for HC are high emissions. This hap­
pened only for HC. This did not occur for NOx and CO. All high HC emissions have been 
coded to determine if they are related to any other parameters. Tree analysis could be used for 
this screening analysis. After screening engine speed, engine power, engine oil temperature, en­
gine oil pressure, engine coolant temperature, ECM pressure, and other parameters, no operating 
parameters appeared to be correlated to these high emissions events. 

High HC emissions distribution by bus and trip are presented in Table 9-4.  Unlike idle 
mode where high HC emissions occurred mainly in three idle segments (bus 360, trip 4, idle seg­
ment 1; bus 360, trip 4, idle segment 38; and bus 372, trip 1, idle segment 1), high HC emissions 
are dispersed among seven different buses and 18 different trips.  Although there is not enough 
evidence to suggest a specific bus is a “high emitter”, bus 364 is worthy of additional attention. 
There are 5284 data points for bus 364 and, among them, 887 data points classified as decelera­
tion mode. There are 408 high HC emissions data points for bus 364 in deceleration mode. The 
percentage of high HC emission for bus 364 is 7.72% (408/5284), while the percentage of high 
HC emissions for bus 364 in deceleration mode is about 21% (193/887). Given the limited avail­
able data, no conclusion could be drawn about high HC emissions in deceleration mode. These 
potential outliers may simply reflect real-world emissions variability for these engines. 

Emission rate behavior as a function of operating mode and power for high-emitting ve­
hicles may differ significantly from normal-emitting vehicles. Since no high-emitting vehicle is 
identified in the AATA data set, it is impossible for the modeler to examine such a difference.  To 
ensure that models are applicable to normal and high-emitters in the fleet, models have to have 
both normal and high-emitters available in the analytical data set. Thus it is important to identify 
high-emitting vehicles and bring them in for testing. 
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Bus ID Number of High HC Events Trip Number of High HC Events 

Bus 360 11 
Bus 360, trip 3 3 
Bus 360, trip 4 8 

Bus 361 1 Bus 361, trip 5 1 

Bus 364 193 
Bus 364, trip 1 46 
Bus 364, trip 2 61 
Bus 364, trip 3 86 

Bus 372 19 

Bus 372, trip 1 6 
Bus 372, trip 2 4 
Bus 372, trip 3 3 
Bus 372, trip 4 6 

Bus 383 11 

Bus 383, trip 1 3 
Bus 383, trip 2 3 
Bus 383, trip 3 2 
Bus 383, trip 4 3 

Bus 384 1 Bus 384, trip 3 1 

Bus 386 6 
Bus 386, trip 1 1 
Bus 386, trip 2 2 
Bus 386, trip 4 3 

Table 9-4 High HC Emissions Distribution by Bus and Trip for Deceleration Mode 

9.2.2 Engine Power Distribution by Bus in Deceleration Mode 

Engine power distribution by bus is shown in Figure 9-9 and Table 9-5.  When the bus is 
decelerating, the engine typically absorbs energy, yielding low engine power, or even negative 
engine power.  Table 9-5 reflects this characteristic of deceleration mode. According to Sensors, 
Inc. report (Ensfield 2001), negative engine power is recorded as zero power in the data, which 
explains the large number of zero power values in the deceleration mode.  The emission rates 
under negative engine power conditions may be signficiantly different from those under positive 
engine power.  Further analysis will examine this question. Moreover, bus 372 has the greatest 
3rd Quartile engine power in deceleration mode, consistent with the finding in idle mode. 
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Bus No Minimum 1st Quartile Median 3rd Quartile Maximum 

Bus 360 0 0 0 3.88 275.40 
Bus 361 0 0 0 5.16 173.10 
Bus 363 0 0 0 6.70 274.90 
Bus 364 0 0 0 0 254.30 
Bus 372 0 0 0 20.41 112.00 
Bus 375 0 0 0 5.84 274.90 
Bus 377 0 0 0 3.33 275.10 
Bus 379 0 0 0 11.77 164.90 
Bus 380 0 0 0 5.19 29.40 
Bus 381 0 0 0 7.19 121.15 
Bus 382 0 0 0 5.84 20.75 
Bus 383 0 0 0 8.51 94.65 
Bus 384 0 0 0 5.86 162.37 
Bus 385 0 0 0 6.00 102.59 
Bus 386 0 0 0 7.18 42.20 

Table 9-5 Engine Power Distributions in Deceleration Mode by Bus 
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Figure 9-9 Histograms of Engine Power in Deceleration Mode by Bus 
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Based on definitions of “acceleration < -1 mph/s”, about 1% of data points with high 
engine power (≥50 bhp) fall in deceleration mode (Table 9-1).  Figure 9-10 illustrates plots of 
engine power vs. vehicle speed, engine power vs. engine speed, and vehicle speed vs. engine 
speed. Figure 9-10 shows that higher engine power always occurred with higher vehicle speed 
and higher engine speed. These data points with higher engine power likely reflect the variabil­
ity of the real world and are all retained in the data set and mode definition to avoid potentially 
biasing results. 

Figure 9-10 Engine Power vs. Vehicle Speed, Engine Power vs. Engine Speed, and Vehicle 

Speed vs. Engine Speed 


9.3 The Deceleration Motoring Mode 

Bus engines absorb energy during the deceleration mode, resulting in low or negative en­
gine power.  According to the Sensors, Inc. report (Ensfield 2001), such negative power was re­
corded as zero power.  The emissions under these negative engine power conditions may be sig­
nificantly different from those under positive engine power conditions, and therefore may need to 
be included in the modeling regime as a separate mode of operation. To examine this possibility, 
deceleration mode data were split into two mode bins for analysis. The first bin includes all data 
points with zero engine power in deceleration mode, termed ‘deceleration motoring mode.’ The 
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remaining data in the deceleration mode, which exhibit positive engine power, are classifi ed as 
deceleration non-motoring mode. The analysis will begin as a comparison of histograms of three 
pollutants between deceleration motoring mode and deceleration non-motoring mode (Figure 
9-11).  Table 9-6 compares the mean, median, and skewness of emission distributions between 
these two modes for the three pollutants. The statistical results for all deceleration data are also 
presented as a reference. Figure 9-11 and Table 9-6 show that lower emission rates are more 
prevalent in the deceleration motoring mode than in the deceleration non-motoring mode. Skew­
ness of emission distributions for deceleration motoring mode is also smaller. 

Figure 9-11 Histograms for Three Pollutants in Deceleration Motoring Mode (a) and Decelera­
tion Non-Motoring Mode (b) 

To test the differences between deceleration motoring mode and deceleration non-mo­
toring mode, a Kolmogorov-Simirnov two-sample test was chosen rather than a standard t-test, 
because the normal distribution assumption was questionable. The Kolmogorov-Smirnov two-
sample test is a test of the null hypothesis that two independent samples have been drawn from 
the same population (or from populations with the same distribution). The test uses the maximal 
difference between cumulative frequency distributions of two samples as the test statistic.  Re­
sults of the Kolmogorov-Smirnov two-sample tests demonstrate that the differences in emission 
rates under deceleration motoring mode and deceleration non-motoring mode are statistically 
significant. 
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NO CO HC 
x 

Deceleration Mode 

Number 16644 16919 16805 
Minimum 0.00001 0.00001 0.00001 
1st Quartile 0.00182 0.00249 0.00039 
Median 0.00611 0.00398 0.00068 
3rd Quartile 0.03155 0.00605 0.00120 
Maximum 1.30640 0.85208 0.04200 
Mean 0.02215 0.00580 0.00118 
Skewness 6.02890 30.6459 5.76530 
Sub-mode 1:Deceleration Motoring Mode 
Number 10925 11304 11240 
Minimum 0.00001 0.00001 0.00001 
1st Quartile 0.00124 0.00269 0.00041 
Median 0.00272 0.00401 0.00067 
3rd Quartile 0.00816 0.00567 0.00110 
Maximum 0.14930 0.20366 0.01425 
Mean 0.00978 0.00528 0.00111 
Skewness 3.08780 12.27120 3.92760 

Sub-mode 2: Deceleration Non-Motoring Mode 

Number 5719 5615 5565 
Minimum 0.00002 0.00003 0.00001 
1st Quartile 0.01973 0.00204 0.00034 
Median 0.03431 0.00384 0.00069 
3rd Quartile 0.05658 0.00741 0.00150 
Maximum 1.30640 0.85208 0.04200 
Mean 0.04576 0.00685 0.00131 
Skewness 5.7018 26.8539 6.8026 

Table 9-6 Comparison of Emission Distributions between Deceleration Mode and Two Sub-
Modes (Deceleration Motoring Mode and Deceleration Non-Motoring Mode) 
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9.4 Deceleration Emission Rate Estimations 

Using the “acceleration < -1 mph/s” cutpoint, about 16% of total data collected are clas­
sified in the deceleration mode. While deceleration emission rates could simply be estimated 
directly by averaging all deceleration mode emission rates, the emission rate distribution is non-
normal. Because lambdas identified by the Box-Cox procedure for the whole dataset and decel­
eration mode subsets are different, and because using a transformation to estimate the mean and 
construct confidence intervals will create other problems, the bootstrap (another class of general 
methods) was used for estimation of the mean and for construction of confidence intervals. The 
bootstrap function in this study resampled the emission rate data 1000 times and computed the 
mean, 2.5%, and 97.5% percentile of each sample. 

The results of the bootstrap analyses indicate that splitting the deceleration mode into 
deceleration motoring mode and deceleration non-motoring mode using the zero engine power 
criteria is warranted. The bootstrap distributions of mean emission rates for deceleration mode, 
deceleration motoring mode, and deceleration non-motoring mode are presented in Figures 9-12 
to 9-14 and Table 9-7.  To illustrate the difference in emission rate estimation between decelera­
tion motoring mode and deceleration non-motoring mode, Figure 9-15 presents bootstrap means 
and confidence intervals for the emission rates of all three pollutants. For reference purposes, 
deceleration mode emission rate estimations are also presented. Table 9-7 and Figure 9-15 show 
that the average emission rate for the deceleration motoring mode is much lower than that for 
deceleration non-motoring mode for all pollutants especially for NOx. 
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Figure 9-12 Bootstrap Results for NOx Emission Rate Estimation in Deceleration Mode 

Figure 9-13 Bootstrap Results for CO Emission Rate Estimation in Deceleration Mode 
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Figure 9-14 Bootstrap Results for HC Emission Rate Estimation in Deceleration Mode 

Figure 9-15 Emission Rate Estimation Based on Bootstrap for Deceleration Mode 
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2.5% 97.5% Average Percentile Percentile 

Deceleration Mode 

Estimation 0.02215 0.00024 0.10919 
NO 0.02161 0.00022 0.10427 

x Confi dence Interval 
0.02268 0.00027 0.11411 

Estimation 0.00580 0.00055 0.02191 
CO 0.00562 0.00051 0.02067 

Confi dence Interval 
0.00598 0.00059 0.02314 

Estimation 0.00118 0.00004 0.00652 
HC 0.00115 0.00004 0.00626 

Confi dence Interval 
0.00121 0.00004 0.00679 

Deceleration Motoring Mode 
Estimation 0.00978 0.00017 0.06540 

NO 0.00945 0.00015 0.06306 
x Confi dence Interval 

0.01010 0.00019 0.06774 
Estimation 0.00529 0.00072 0.01743 

CO 0.00514 0.00068 0.01635 
Confi dence Interval 

0.00543 0.00075 0.01850 
Estimation 0.00111 0.00004 0.00652 

HC 0.00109 0.00004 0.00621 
Confi dence Interval 

0.00114 0.00004 0.00683 
Deceleration Non-Motoring Mode 

Estimation 0.04578 0.00173 0.17187 
NO 0.04457 0.00152 0.16343 

x Confi dence Interval 
0.04698 0.00195 0.18031 

Estimation 0.00686 0.00037 0.02846 
CO 0.00643 0.00033 0.02587 

Confi dence Interval 
0.00728 0.00040 0.03104 

Estimation 0.00131 0.00004 0.00650 
HC 0.00125 0.00003 0.00594 

Confi dence Interval 
0.00137 0.00005 0.00706 

Table 9-7 Emission Rate Estimation and 95% Confidence Intervals Based on Bootstrap for De­
celeration Mode 
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Based on table 9-7, the deceleration emission rate for NOx is set as 0.02215 g/s with 
95% confidence interval (0.00024 to 0.10919), CO as 0.00580 g/s with 95% confi dence interval 
(0.00055 to 0.02191), HC as 0.00118 g/s with 95% confidence interval (0.00004 to 0.00652). 
The deceleration motoring emission rate for NOx is set as 0.00978 g/s with 95% confidence 
interval (0.00017 to 0.06540), CO as 0.00529 g/s with 95% confidence interval (0.00072 to 
0.01743), HC as 0.00111 g/s with 95% confidence interval (0.00004 to 0.00652). The decelera­
tion non-motoring mode emission rate for NOx is set as 0.04578 g/s with 95% confi dence inter­
val (0.00173 to 0.17187), CO as 0.00686 g/s with 95% confidence interval (0.00037 to 0.02846), 
HC as 0.00131 g/s with 95% confidence interval (0.00004 to 0.00650). 

9.5 Conclusions and Further Considerations 

In this research, deceleration mode is defined as “acceleration < -1 mph/s”. However the 
emissions under negative engine power are different from those under positive engine power.  
Hence, the deceleration mode is split into deceleration motoring mode and deceleration non-
motoring mode based on engine power. 

Inter-bus variability analysis indicates that bus 372 has the largest 3rd Quartile value for 
engine power among 15 buses in deceleration mode, consistent with the finding in idle mode. At 
the same time, inter-bus variability analysis results show that bus 379 has the largest median and 
the second largest mean for NOx emissions, bus 372 has the largest median and the second larg­
est mean for CO emissions, while bus 364 has the largest median and mean for HC emissions.  
But it is difficult to conclude that these buses should be classified as high emitters or that there 
are any special modes that should be modeled separately as high-emitting modes. 

Some high HC emissions events are noted in deceleration mode. After screening engine 
speed, engine power, engine oil temperature, engine oil pressure, engine coolant temperature, 
ECM pressure, and other parameters, these operating parameters could not be linked to these 
high emissions occurrences. Additional causal variables may be in play that are not included in 
the data available for analysis. 

Based on definitions of “acceleration < -1 mph/s”, about 1% of data points exhibit some­
what unusually high engine power (≥ 50 bhp) in deceleration mode. Analysis shows that higher 
engine power always happened with higher vehicle speed and higher engine speed. These high­
er-power data points likely reflect the variability in real world power demand (perhaps associated 
with operations on grade, which could not be identified in the database). All of these data were 
retained in the model to avoid potentially biasing the results. 
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In summary, the deceleration non-motoring mode emission rate for NOx is set as 0.04578 
g/s, CO as 0.00686 g/s, and HC as 0.00131 g/s. The deceleration motoring emission rate for NOx 
is set as 0.00978 g/s, CO as 0.00529 g/s, and HC as 0.00111 g/s.  Emission rate estimation for the 
deceleration motoring mode is significantly lower than the deceleration non-motoring mode for 
all three pollutants, especially for NOx. 
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CHAPTER 10 

10. ACCELERATION MODE DEVELOPMENT 

After developing the idle mode definition and emission rate in Chapter 8 and deceleration 
mode definitions and emission rates in Chapter 9, the next task is to divide the rest of the data 
into acceleration and cruise mode. This chapter examines the definition of acceleration activity 
and emission rates for acceleration activity. 

10.1 Critical Value for Acceleration in Acceleration Mode 

The first task related to analysis of emission rates in the acceleration mode is identifying 
a critical value for acceleration. Two values were tested: 1 mph/s and 2 mph/s.  Since the critical 
value of “acceleration > 1 mph/s” will include all data under the critical value of “acceleration 
> 2 mph/s”, comparison of data falling between these two potential cut points is conducted first. 
Once selected, the chosen critical value will be used to divide the data into acceleration mode 
and cruise mode. Thus “acceleration > 0 mph/s and acceleration ≤ 1 mph/s” will be another op­
tion. Similarly to analysis for deceleration mode, these three options will be: 

• Option 1: acceleration > 2 mph/s 

• Option 2: acceleration > 1 mph/s and acceleration ≤ 2 mph/s 

• Option 3: acceleration > 0 mph/s and acceleration ≤ 1 mph/s 

Figure 10-1 illustrates engine power distribution for these three options. Figures 10-2 to 
10-4 compare engine power vs. emission rate for three pollutants for three options. Tables 10-1 
and 10-2 provide the distribution for these three options in two ways: by number and percentage. 
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Figure 10-1 Engine Power Distribution for Three Options 

Figure 10-2 Engine Power vs. NOx Emission Rate (g/s) for Three Options 
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Figure 10-3 Engine Power vs. CO Emission Rate (g/s) for Three Options 

Figure 10-4 Engine Power vs. HC Emission Rate (g/s) for Three Options 
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Acceleration Pollutants 
Engine Power (brake horsepower (bhp)) 

(0 50) (50 100) (100 150) (150 200) ≥ 200 Total 
Option 1 NO x 

322 446 852 1229 5870 8719 
CO 319 444 851 1228 5870 8712 
HC 318 440 833 1203 5649 8443 

Option 2 NO x 
613 865 1358 1324 6015 10175 

CO 606 858 1355 1321 6012 10152 
HC 605 843 1328 1287 5824 9887 

Option 3 NO x 
3208 4130 4378 2490 3205 17411 

CO 3190 4105 4362 2487 3185 17329 
HC 3104 3972 4195 2408 3131 16810 

Acceleration Pollutants 
Engine Power (brake horsepower (bhp)) 

(0 50) (50 100) (100 150) (150 200) ≥ 200 Total 

Option 1 NO x 
3.7% 5.1% 9.8% 14.1% 67.3% 100.0% 

CO 3.7% 5.1% 9.8% 14.1% 67.4% 100.0% 
HC 3.8% 5.2% 9.9% 14.2% 66.9% 100.0% 

Option 2 NO x 
6.0% 8.5% 13.3% 13.0% 59.1% 100.0% 

CO 6.0% 8.5% 13.3% 13.0% 59.2% 100.0% 
HC 6.1% 8.5% 13.4% 13.0% 58.9% 100.0% 

Option 3 NO x 
18.4% 23.7% 25.1% 14.3% 18.4% 100.0% 

CO 18.4% 23.7% 25.2% 14.4% 18.4% 100.0% 
HC 18.5% 23.6% 25.0% 14.3% 18.6% 100.0% 

Table 10-1 Engine Power Distribution for Three Options for Three Pollutants 

Table 10-2 Percentage of Engine Power Distribution for Three Options for Three Pollutants 

If the critical value is set as 1 mph/s for acceleration mode, data falling into option 1 and 
option 2 will be classified as acceleration mode while data falling into option 3 will be classi­
fied as cruise mode. If the critical value is set as 2 mph/s for acceleration mode, data falling into 
option 1 will be classified as acceleration mode while data falling into option 2 and option 3 will 
be classified as cruise mode. There is little difference in the engine power distributions noted for 
data falling into option 1 and option 2 while the power distribution for option 3 is obviously dif­
ferent from option 1 and option 2 in the above figures and tables. Table 10-1 and 10-2 show that 
the engine power is more concentrated in higher engine power (≥200 bhp) for data in accelera­
tion mode. Tables 10-1 and 10-2 better reflect the power demand of the vehicle in real world in 
acceleration mode. Hence, the critical value is set as 1 mph/s for acceleration mode. 
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After defining “acceleration > 1 mph/s” as acceleration mode, cruise mode data will 
consist of all of the remaining data in the database (i.e., data not previously classified into idle, 
deceleration, and now acceleration). Unlike idle and deceleration mode, there is a general rela­
tionship between engine power and emission rate for acceleration mode and cruise mode. Even 
though the engine power distribution for acceleration mode is different from that of cruise mode 
(Table 10-3), these two modes share a relationship between engine power and emission rate (Fig­
ure 10-5), although there are potentially some significant differences noted in the HC chart. 

Table 10-3  Engine Power Distribution for Acceleration Mode and Cruise Mode  

Engine Power Distribution 
Pollutants 

(0 50) (50 100) (100 150) (150 200) ≥ 200 All 

Acceleration mode 
NO 935 1311 2210 2553 11885 18894 

x 
Number CO 925 1302 2206 2549 11882 18864 

HC 923 1283 2161 2490 11473 18330 
NO 4.95% 6.94% 11.70% 13.51% 62.90% 100.00% 

x 
Percentage CO 4.90% 6.90% 11.69% 13.51% 62.99% 100.00% 

HC 5.04% 7.00% 11.79% 13.58% 62.59% 100.00% 
Cruise mode 

NO 15885 8988 7173 3536 3792 39374 
x 

Number CO 15834 8940 7145 3529 3770 39218 
HC 15481 8600 6830 3394 3715 38020 
NO 40.34% 22.83% 18.22% 8.98% 9.63% 100.00% 

x 
CO 40.37% 22.80% 18.22% 9.00% 9.61% 100.00% Percentage 
HC 40.72% 22.62% 17.96% 8.93% 9.77% 100.00% 
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Figure 10-5 Engine Power vs. Emission Rate for Acceleration Mode and Cruise Mode 

The relationships between emission rate and power for acceleration mode data will be ex­
plored in this chapter, while the relationships between emission rate and power for cruise mode 
data will be explored in the next chapter. 

10.2 Analysis of Acceleration Mode Data 

10.2.1 Emission Rate Distribution by Bus in Acceleration Mode 

After defining vehicle activity data with “acceleration >1 mph/s” as acceleration mode, 
emission rate histograms for each of the three pollutants for acceleration operations are presented 
in Figure 10-6. Figure 10-6 shows significant skewness for all three pollutants for acceleration 
mode. There are also a small number of some very high HC emissions events noted in accelera­
tion mode. After screening engine speed, engine power, engine oil temperature, engine oil pres­
sure, engine coolant temperature, ECM pressure, and other parameters, no operating parameters 
appeared to be correlated with the high emissions events. 
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Figure 10-6 Histograms of Three Pollutants for Acceleration Mode 

Inter-bus response variability for acceleration mode operations is illustrated in Figures 
10-7 to 10-9 using median and mean of NOx, CO, and HC emission rates. Table 10-4 presents 
the same information in tabular form. The difference between median and mean is also an indi­
cator of skewness. 

Table 10-4 Median and Mean of Three Pollutants in Acceleration Mode by Bus 

NO x 
CO HC 

Bus ID Median Mean Median Mean Median Mean 

Bus 360 0.27729 0.25957 0.06527 0.09217 0.00159 0.00182 
Bus 361 0.30170 0.28125 0.05177 0.08001 0.00184 0.00228 
Bus 363 0.14459 0.14058 0.03836 0.09012 0.00022 0.00039 
Bus 364 0.28948 0.26033 0.03501 0.05650 0.00306 0.00363 
Bus 372 0.17834 0.18627 0.02980 0.03475 0.00250 0.00279 
Bus 375 0.31092 0.28991 0.05929 0.08619 0.00143 0.00176 
Bus 377 0.17827 0.17335 0.04755 0.09612 0.00104 0.00112 
Bus 379 0.17788 0.20883 0.08430 0.10346 0.00222 0.00276 
Bus 380 0.26410 0.26620 0.08238 0.19149 0.00210 0.00253 
Bus 381 0.18011 0.19806 0.07856 0.12646 0.00095 0.00106 
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NO x 
CO HC 

Bus ID Median Mean Median Mean Median Mean 

Bus 382 0.28966 0.29152 0.09234 0.18179 0.00263 0.00272 
Bus 383 0.24419 0.26739 0.05355 0.13112 0.00308 0.00368 
Bus 384 0.18775 0.22139 0.07111 0.17389 0.00401 0.00429 
Bus 385 0.17783 0.21706 0.05141 0.07893 0.00361 0.00384 
Bus 386 0.22674 0.24673 0.10412 0.23806 0.00272 0.00282 

Figure 10-7 Median and Mean of NOx Emission Rates in Acceleration Mode by Bus 
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Figure 10-8 Median and Mean of CO Emission Rates in Acceleration Mode by Bus 

Figure 10-9 Median and Mean of HC Emission Rates in Acceleration Mode by Bus 
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Bus ID Number Min 1st Quartile Median 3rd Quartile Max Mean 

Bus 360 1507 0 162.96 255.57 275.05 275.59 212.04 
Bus 361 545 7.16 131.96 199.58 261.51 275.54 184.46 
Bus 363 1287 0 111.52 200.39 267.06 275.59 180.03 
Bus 364 931 0 142.82 228.25 270.01 275.56 197.27 
Bus 372 728 34.42 145.57 213.51 264.70 275.56 199.81 
Bus 375 1599 0 140.92 259.45 275.13 275.57 205.56 
Bus 377 1751 3.35 166.25 256.89 275.08 275.60 212.09 
Bus 379 1427 0 204.15 264.54 275.18 275.58 233.71 
Bus 380 1823 0 202.69 262.11 275.15 275.54 228.55 
Bus 381 1362 0 139.86 220.00 272.21 275.60 199.20 
Bus 382 691 0 173.36 250.90 275.05 275.58 218.82 
Bus 383 1043 0 161.16 250.37 275.08 275.59 213.70 
Bus 384 1292 0 144.10 213.87 269.50 275.60 198.80 
Bus 385 1377 0 143.51 226.37 274.99 275.55 201.67 
Bus 386 1532 13.81 164.27 244.80 275.06 275.60 215.95 

Figures 10-7 to 10-9 and Table 10-4 illustrate that NOx emissions are more consistent than 
CO and HC emissions. Across the 15 buses, Bus 386 has the largest median and mean for CO 
emissions, while Bus 384 has the largest median and mean for HC emissions.  The above figures 
and table demonstrate that although variability exists across buses, it is difficult to conclude that 
there are any true “high emitters.” That is, the emissions from these buses are not consistently more 
than one or two standard deviations from the mean under normal operating conditions. Meanwhile, 
Bus 363 has the smallest mean and median HC emissions compared to the other 14 buses. 

10.2.2 Engine Power Distribution by Bus in Acceleration Mode 

Engine power distribution in acceleration mode by bus is shown in Figure 10-10 and 
Table 10-5.  When the bus is accelerating, the engine will be required to produce more power.  
Figure 10-10 and Table 10-5 reflect this characteristic of acceleration mode. The distribution 
of engine power in acceleration mode is significantly different from deceleration mode and idle 
mode. Bus 372 has the largest minimum engine power in acceleration mode, consistent with the 
finding for idle mode and deceleration mode. The maximum power values for each bus match 
well with the manufacturer’s engine power rating.  Although variability for engine power distri­
bution exists across buses, it is difficult to conclude that such variability is affected by individual 
buses, bus routes, or other factors. The relationship between power and emissions appears con­
sistent across the buses for acceleration mode. 

Table 10-5 Engine Power Distribution in Acceleration Mode by Bus 
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Engine power distribution also shows that about 0.19% (36/18895) of data points show 
zero load in acceleration mode. For the 36 data points exhibiting zero indicated engine load, 
about 92% (33/36) occurred on roads reported to have zero or negative grade. Due to the inac­
curacy of road grade values, it was not possible to simulate the engine power in this research. 
However, in the real world, linear acceleration with zero load can happen on downhill stretches.  
Application of load based emission rates to predicate engine load will be able to take grade into 
account in the overall modeling framework. Because only 36 data points with zero load were 
included in the acceleration data, it was unnecessary to develop a sub-model for them. Mean­
while, such zero loads in acceleration mode do reflect the variability of acceleration data in the 
real world. 

Figure 10-10 Histograms of Engine Power in Acceleration Mode by Bus 
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 10.3 Model Development and Refinement 

10.3.1 HTBR Tree Model Development 

The potential explanatory variables included in the emission rate model development ef­
fort include: 

• 	 Vehicle characteristics: model year, odometer reading, bus ID (14 dummy variables); 

• 	 Roadway characteristics: dummy variable for road grade; 

• 	 Onroad load parameters: engine power (bhp), vehicle speed (mph), acceleration 
(mph/s); 

• 	 Engine operating parameters: engine oil temperature (deg F), engine oil pressure 
(kPa), engine coolant temperature (deg F), barometric pressure reported from ECM 
(kPa); 

• 	 Environmental conditions: ambient temperature (deg C), ambient pressure (mbar), 
ambient relative humidity (%). 

The HTBR technique is used first to identify potentially significant explanatory variables; 
this analysis provides the starting point for conceptual model development. The HTBR model 
is used to guide the development of an OLS regression model, and not a model in its own right. 
HTBR can be used as a data reduction tool and for identifying potential interactions among the 
variables. Then OLS regression is used with the identified variables to estimate a preliminary 
“fi nal” model. 

These 27 variables were first offered to the tree model.  To arrive at the “best” model, 
various regression tree models were created. The initial model was created by allowing the tree 
to grow unconstrained for the first cut. Once an initial model was created, the supervised tech­
nique in S-PLUS was used to simplify the model by removing the lower branches of the tree that 
explained the least deviance. For application purposes, the resulting tree was examined to ensure 
that the model’s predictive ability was not compromised by allowing the overall amount of devi­
ance to increase signifi cantly. 

The 27 variables include continuous, categorical, and dummy variables. Dummy vari­
ables for buses could be used to indicate the variability of buses. Like the analysis in Chapter 
6, these 15 buses could be treated as a single group for purposes of analysis and model develop­
ment. HTBR technique can examine the potential additional influence of road grade (i.e., above 
and beyond the contribution to power demand) using a dummy variable to represent a grade 
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category (the final model does not include this dummy variable due to the inaccuracy of road 
grade values). Analysis results in Chapter 6 indicate that all environmental characteristics, like 
temperature, humidity and barometric pressure, are moderately correlated with each other.  On 
the other hand, engine operating parameters, like engine oil pressure, engine oil temperature, en­
gine coolant temperature, and barometric pressure reported from ECM, are highly or moderately 
related to on-road operating parameters, like engine power, vehicle speed, and acceleration.  The 
modeler should be aware of such correlations among explanatory variables. 

Although evidence in the literature suggests that a logarithmic transformation is most 
suitable for modeling motor vehicle emissions (Washington 1994; Ramamurthy et al. 1998; 
Fomunung 2000; Frey et al. 2002), this transformation needs to be verified through the Box-Cox 
procedure. The Box-Cox function in MATLAB™ can automatically identify a transforma­
tion from the family of power transformations on emission data, ranging from -1.0 to 1.0. The 
lambdas chosen by Box-Cox procedure for acceleration mode are 0.683 for NOx, 0.094438 for 
CO, 0.31919 for HC. The Box-Cox procedure is used only to provide a guide for selecting a 
transformation, so overly precise results are not needed (Neter et al. 1996). It is often reasonable 
to use a nearby lambda value that is easier to understand for the power transformation. Although 
the lambdas chosen by the Box-Cox procedure are different for acceleration and cruise mode, 
the nearby lambda values are same for these two modes. In summary, the lambda values used 
for transformations are ½ for NOx, 0 for CO (indicating a log transformation), and ¼ for HC for 
acceleration mode. Figures 10-11 to 10-13 present histogram, boxplot, and probability plots 
of truncated emission rates in acceleration mode for NOx, CO, and HC, while Figures 10-14 
to 10-16 present the same plots for truncated transformed emission rates for NOx, CO and HC, 
where a great improvement is noted. 

Figure 10-11 Histogram, Boxplot, and Probability Plot of Truncated NOx Emission Rate in Ac­
celeration Mode 
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Figure 10-12 Histogram, Boxplot, and Probability Plot of Truncated CO Emission Rate in Acceleration Mode 

Figure 10-13 Histogram, Boxplot, and Probability Plot of Truncated HC Emission Rate in Acceleration Mode 
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Figure 10-14 Histogram, Boxplot, and Probability Plot of Truncated Transformed NOx Emission 

Rate in Acceleration Mode


Figure 10-15 Histogram, Boxplot, and Probability Plot of Truncated Transformed CO Emission 

Rate in Acceleration Mode
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Figure 10-16 Histogram, Boxplot, and Probability Plot of Truncated Transformed HC Emission 
Rate in Acceleration Mode 

10.3.1.1 NOx HTBR Tree Model Development 

Figure 10-17 illustrates the initial tree model used for truncated transformed NOx emis­
sion rate in acceleration mode. Results for the initial model are given in Table 10-6.  The tree 
grew into a complex model, with a considerable number of branches and 36 terminal nodes. Fig­
ure 10-18 illustrates the amount of deviation explained corresponding to the number of terminal 
nodes. 
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Regression tree:

tree(formula = NO .50 ~ model.year + odometer + temperature + baro + humidity + ve
-x
hicle.speed + oil.temperture + oil.press + cool.temperature + eng.bar.press + engine.
power + acceleration + bus360 + bus361 + bus363 + bus364 + bus372 + bus375 + bus377
+ bus379 + bus380 + bus381 + bus382 + bus383 + bus384 + bus385 + dummy.grade, data =

busdata10242006.1.3,

na.action = na.exclude, mincut = 400, minsize = 800, mindev = 0.01)

Variables actually used in tree construction:

[1] “engine.power”  “vehicle.speed” “temperature”   “baro” 
[5] “bus375”        “humidity”      “oil.press”     “odometer” 
[9] “eng.bar.press” “bus379”        “model.year”    “oil.temperture”
Number of terminal nodes: 36 
Residual mean deviance: 0.005538 = 104.4 / 18860
Distribution of residuals:

 Min.    1st Qu.     Median       Mean    3rd Qu.       Max.

 -3.769e-001 -4.176e-002 -4.298e-003 3.661e-017 3.957e-002 8.965e-001


Figure 10-17 Original Untrimmed Regression Tree Model for Truncated Transformed NO  Emis­x
sion Rate in Acceleration Mode 

Table 10-6 Original Untrimmed Regression Tree Results for Truncated Transformed NO  Emis­x
sion Rate in Acceleration Mode 

For model application purposes, it is desirable to select a final model specifi cation that 
balances the model’s ability to explain the maximum amount of deviation with a simpler model 
that is easy to interpret and apply.  Figure 10-18 indicates that reduction in deviation with ad­
dition of nodes after 4, although potentially statistically significant, is very small. A simplified 
tree model was derived which ends in 4 terminal nodes as compared to the 36 terminal nodes in 
the initial model. The residual mean deviation only increased from 104.4 to 151.2 and yielded a 
much more efficient model. Results are shown in Table 10-7 and Figure 10-19.  Based on above 
analysis, an NOx acceleration emission rate model will be developed based upon these results. 
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Figure 10-18 Reduction in Deviation with the Addition of Nodes of Regression Tree for Trun­
cated Transformed NO  Emission Rate in Acceleration Mode x


Figure 10-19 Trimmed Regression Tree Model for Truncated Transformed NOx Emission Rate in 
Acceleration Mode 
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Table 10-7 Trimmed Regression Tree Results for Truncated Transformed NO  Emission Rate in x
Acceleration Mode 
Regression tree:
snip.tree(tree = tree(formula = NOx.50 ~ model.year + odometer + temperature +

baro + humidity + vehicle.speed + oil.temperture + oil.press +
cool.temperature + eng.bar.press + engine.power + acceleration +
bus360 + bus361 + bus363 + bus364 + bus372 + bus375 + bus377 + bus379 + 
bus380 + bus381 + bus382 + bus383 + bus384 + bus385 + dummy.grade,
data = busdata10242006.1.3, na.action = na.exclude, mincut = 400,
minsize = 800, mindev = 0.01), nodes = c(13., 7., 12., 2.))

Variables actually used in tree construction:
[1] “engine.power” “vehicle.speed” “temperature”

Number of terminal nodes: 4 

Residual mean deviance: 0.008002 = 151.2 / 18890

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -4.265e-001 -5.813e-002 -7.517e-004 8.861e-016 5.810e-002 8.710e-001 
node), split, n, deviance, yval

* denotes terminal node

 1) root 18894 247.20 0.4669

2) engine.power<72.3 1397 13.67 0.2581 *


 3) engine.power>72.3 17497 167.70 0.4836

6) vehicle.speed<25.95 13777 121.40 0.4662

12) temperature<20.5 4902 42.44 0.5034 *

 13) temperature>20.5 8875 68.45 0.4456 *

 7) vehicle.speed>25.95 3720 26.60 0.5482 * 

This tree model suggests that engine power is the most important explanatory variable for 
NOx emissions. This result is consistent with previous research results which verified the impor­
tant effect of engine power on NOx emissions (Ramamurthy et al. 1998; Clark et al. 2002; Barth 
et al. 2004). Analysis in the previous chapter also indicates that engine power is correlated with 
not only on-road load parameters such as vehicle speed, acceleration, and grade, but also engine 
operating parameters such as throttle position and engine oil pressure. On the other hand, en­
gine power in this research is derived from engine speed, engine torque and percent engine load. 
Therefore engine power can correlate on-road modal activity with engine operating conditions to 
that extent. This fact strengthens the importance of introducing engine power into the concep­
tual model and the need to improve the ability to simulate engine power for regional inventory 
development. 

HTBR results suggest that temperature may be an important predictive variable for NOx 
emissions under certain conditions. Temperature effects may need to be integrated into new 
models in the form of a temperature correction factor.  But adequate data are not yet available for 
this purpose. For the time being, temperature is removed from consideration in further linear re­
gression model development, but the effect is probably significant and should be examined when 
more comprehensive emission rate data collected under a wider variety of temperature conditions 
are available for analysis. 
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10.3.1.2 CO HTBR Tree Model Development 

Figure 10-20 illustrates the initial tree model used for truncated transformed CO emission 
rate in acceleration mode. Results from the initial model are given in Table 10-8.  The tree grew 
into a complex model with a considerable number of branches and 33 terminal nodes. Figure 10­
21 illustrates the amount of deviation explained corresponding to the number of terminal nodes. 

Figure 10-20 Original Untrimmed Regression Tree Model for Truncated Transformed CO Emis­
sion Rate in Acceleration Mode 

Table 10-8 Original Untrimmed Regression Tree Results for Truncated Transformed CO Emis­
sion Rate in Acceleration Mode 
Regression tree:
tree(formula = log.CO ~ model.year + odometer + temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature +
eng.bar.press + engine.power + acceleration + bus360 + bus361 + bus363 +
bus364 + bus372 + bus375 + bus377 + bus379 + bus380 + bus381 + bus382 + 
bus383 + bus384 + bus385 + dummy.grade, data = busdata10242006.1.3,
na.action = na.exclude, mincut = 400, minsize = 800, mindev = 0.01)

Variables actually used in tree construction:
[1] “engine.power” “humidity” “vehicle.speed” “acceleration”

[5] “odometer” “model.year” “baro” “eng.bar.press”

Number of terminal nodes: 33 

Residual mean deviance: 0.1184 = 2229 / 18830

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max.

 -2.552e+000 -2.001e-001 -1.285e-002 3.025e-017 1.981e-001 1.653e+000


For model application purposes, it is desirable to select a final model specifi cation that 
balances the model’s ability to explain the maximum amount of deviation with a simpler model 
that is easy to interpret and apply.  Figure 10-21 indicated that the reduction in deviation with ad­
dition of nodes after four, although potentially statistically significant, is very small. A simplified 
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tree model was derived which ends in four terminal nodes as compared to the 33 terminal nodes 
in the initial model. The residual mean deviation only increased from 2229 to 3093 and yielded 
a much cleaner model than the initial one. Results are shown in Table 10-9 and Figure 10-22.  
The CO acceleration emission rate model will be developed based upon these results. 

Figure 10-21 Reduction in Deviation with the Addition of Nodes of Regression Tree for Trun­
cated Transformed CO Emission Rate in Acceleration Mode 

Figure 10-22 Trimmed Regression Tree Model for Truncated Transformed CO Emission Rate in 

Acceleration Mode
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Table 10-9 Trimmed Regression Tree Results for Truncated Transformed CO Emission Rate in 
Acceleration Mode 
Regression tree:
snip.tree(tree = tree(formula = log.CO ~ model.year + odometer + temperature +

baro + humidity + vehicle.speed + oil.temperture + oil.press +
cool.temperature + eng.bar.press + engine.power + acceleration +
bus360 + bus361 + bus363 + bus364 + bus372 + bus375 + bus377 + bus379 + 
bus380 + bus381 + bus382 + bus383 + bus384 + bus385 + dummy.grade,
data = busdata10242006.1.3, na.action = na.exclude, mincut = 400,
minsize = 800, mindev = 0.01), nodes = c(12., 7., 2., 13.))

Variables actually used in tree construction:
[1] “engine.power” “vehicle.speed”

Number of terminal nodes: 4 

Residual mean deviance: 0.164 = 3093 / 18860

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -3.019e+000 -2.450e-001 -1.062e-002 -9.774e-017 2.430e-001 1.735e+000 
node), split, n, deviance, yval

* denotes terminal node

 1) root 18864 5309.0 -1.1990

2) engine.power<82.625 1624 560.0 -1.9810 *


 3) engine.power>82.625 17240 3662.0 -1.1250

6) vehicle.speed<19.05 9752 1994.0 -0.9339

12) engine.power<152.965 2335 522.6 -1.2510 *

 13) engine.power>152.965 7417 1163.0 -0.8342 *

7) vehicle.speed>19.05 7488 847.2 -1.3740 * 

This tree model suggested that engine power is the most important explanatory variable 
for CO emissions, consistent with NO  emissions. This tree will be used as reference for linear x
regression model development. 

10.3.1.3 HC HTBR Tree Model Development 

Figure 10-23 illustrates the initial tree model used for the truncated transformed HC emis­
sion rate in acceleration mode. Results for the initial model are given in Table 10-10.  The tree 
grew into a complex model with a considerable number of branches and 30 terminal nodes. 
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Figure 10-23 Original Untrimmed Regression Tree Model for Truncated Transformed HC Emis­
sion Rate in Acceleration Mode 

Table 10-10 Original Untrimmed Regression Tree Results for Truncated Transformed HC Emis­
sion Rate in Acceleration Mode 
Regression tree:
tree(formula = HC.25 ~ model.year + odometer + temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature +
eng.bar.press + engine.power + acceleration + bus360 + bus361 + bus363 +
bus364 + bus372 + bus375 + bus377 + bus379 + bus380 + bus381 + bus382 + 
bus383 + bus384 + bus385 + dummy.grade, data = busdata10242006.1.3,
na.action = na.exclude, mincut = 400, minsize = 800, mindev = 0.01)

Variables actually used in tree construction:
[1] “odometer” “bus377” “bus381” “baro” 
[5] “engine.power” “humidity” “vehicle.speed” “oil.press”
[9] “bus375” “oil.temperture” “acceleration” “bus384” 
[13] “bus364” “model.year”
Number of terminal nodes: 31 
Residual mean deviance: 0.0005694 = 10.42 / 18300
Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -1.004e-001 -1.347e-002 -2.222e-003 1.386e-016 1.091e-002 2.755e-001 

Figure 10-23 and Table 10-12 suggest that the tree analysis of HC emission rates identi­
fied a number of buses that appear to exhibit significantly different emission rates under all load 
conditions than the other buses (i.e., some of the bus dummy variables appeared signifi cant in 
the initial tree splits). Two bus dummy variables split the data pool at the top levels of the HC 
tree model. The first cut point of “odometer > 282096” in the HC tree model could be directly 
replaced by “bus 363 > 0.5”, because only bus 363 has an odometer reading larger than 282096.  

10-23




There were three bus dummy variables that split the first three levels of the HC tree model. 
Although higher emissions were noted for all three pollutants for some of the 15 buses, the divi­
sion was even more obvious for HC emissions (see Figure 10-9 and Table 10-4), consistent with 
the findings in idle and deceleration mode. Although it is tempting to develop different emis­
sion rates for these buses to reduce emission rate deviation in the sample pool, it is diffi cult to 
justify doing so. Unless there is an obvious reason to classify these three buses as high emitters 
(i.e., significantly higher than normal emitting vehicles, perhaps by as much as a few standard 
deviations from the mean), and unless there are enough data to develop separate emission rate 
models for high emitters, one cannot justify removing the data from the data set. Until data exist 
to justify treating these buses as high emitters, the bus dummy variables for individual buses are 
removed from the analyses and all 15 buses are treated as part of the whole data set. 

Another tree model was generated excluding the bus dummy variables, model year, and 
odometer.  This new tree model is illustrated in Figure 10-25 and Table 10-11.  The tree model is 
then trimmed for application purposes, as was done for the NOx and CO models.

       Figure 10-24 Reduction in Deviation with the Addition of Nodes of Regression Tree 
for Truncated Transformed HC Emission Rate in Acceleration Mode 
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Figure 10-25 Trimmed Regression Tree Model for Truncated Transformed HC in Acceleration 

Mode


Table 10-11 Trimmed Regression Tree Results for Truncated Transformed HC in Acceleration Mode

Regression tree:
snip.tree(tree = tree(formula = HC.25 ~ temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature +
eng.bar.press + engine.power + acceleration + dummy.grade, data =
busdata10242006.1.3, na.action = na.exclude, mincut = 400, minsize =
800, mindev = 0.01), nodes = c(2., 6., 15., 14.))

Variables actually used in tree construction:
[1] “baro” “engine.power”

Number of terminal nodes: 4 

Residual mean deviance: 0.001018 = 18.65 / 18330

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -9.502e-002 -2.174e-002 -2.213e-003 9.390e-016 1.844e-002 3.100e-001 
node), split, n, deviance, yval

* denotes terminal node

 1) root 18330 30.840 0.2099

2) baro<969.5 1189 1.239 0.1286 *

 3) baro>969.5 17141 21.210 0.2155


6) engine.power<56.24 850 1.069 0.1682 *
 7) engine.power>56.24 16291 18.140 0.2180


14) baro<989.5 13717 13.970 0.2134 *

15) baro>989.5 2574 2.372 0.2423 *


The new tree model suggests that barometric pressure is the most important explana­
tory variable for HC emission rates. However, this finding is challenged by this fact: among 
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those 1189 data points (baro < 969.5) in the first left branch, 1187 data points belong to bus 363. 
Although this dataset was collected under a wide variety of environmental conditions, the scope 
of barometric pressures was limited for individual buses tested. As reported earlier, Bus 363 
exhibited significantly lower HC emissions that the other buses (see Figure 10-9); the reason is 
not clear at this time. To develop a reasonable tree model given the limited data collected, the 
environmental parameters are excluded from the model until a greater distribution of environ­
mental conditions can be represented in a test data set. With data collected from a more com­
prehensive testing program, environmental variables can be integrated into the model directly, or 
perhaps correction factors for the emission rates can be developed. The secondary trimmed tree 
is presented in Figure 10-26 and Table 10-12. 

Figure 10-26 Secondary Trimmed Regression Tree Model for Truncated Transformed HC Emis­
sion Rate in Acceleration Mode 
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Table 10-12 Secondary Trimmed Regression Tree Results for Truncated Transformed HC Emis­
sion Rate in Acceleration Mode 
Regression tree:
snip.tree(tree = tree(formula = HC.25 ~ engine.power + vehicle.speed +

acceleration + oil.temperture + oil.press + cool.temperature +
eng.bar.press, data = busdata10242006.1.3, na.action = na.exclude,
mincut = 400, minsize = 800, mindev = 0.1), nodes = c(7., 13., 12.))

Variables actually used in tree construction:
[1] “engine.power” “oil.press” “eng.bar.press”

Number of terminal nodes: 4 

Residual mean deviance: 0.00136 = 24.92 / 18330

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -1.178e-001 -2.378e-002 6.119e-004 -4.275e-017 2.231e-002 3.223e-001 
node), split, n, deviance, yval

* denotes terminal node

 1) root 18330 30.840 0.2099

2) engine.power<54.555 988 1.779 0.1559 *


 3) engine.power>54.555 17342 26.020 0.2130

6) oil.press<427.75 12457 18.610 0.2076

12) eng.bar.press<100.249 4989 9.241 0.1937 *

 13) eng.bar.press>100.249 7468 7.763 0.2169 *

 7) oil.press>427.75 4885 6.136 0.2266 * 

This tree model suggests that engine power is the most important explanatory variable 
for HC emissions, consistent with analysis of NO  and CO emission rates. HTBR results also x
suggest that oil pressure and engine barometric pressure may be important predictive variables 
for HC emissions under certain conditions. After excluding engine barometric pressure and oil 
pressure from the tree model, leaving engine power only, the residual mean deviation increased 
slightly from 24.92 to 27.34. While engine operating parameters such as oil pressure and engine 
barometric pressure may impact emissions, such variables are not easy to include in real-world 
models. The final HTBR tree for HC emissions is shown in Figure 10-27 and Table 10-13.  An 
HC acceleration emission rate model will be developed based upon these results. 
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Figure 10-27 Final Regression Tree Model for Truncated Transformed HC and Engine Power in 
Acceleration Mode 

Table 10-13 Final Regression Tree Results for Truncated Transformed HC and Engine Power in 
Acceleration Mode 
Regression tree:

snip.tree(tree = tree(formula = HC.25 ~ engine.power, data = busdata10242006.1.3,

na.action = na.exclude, mincut = 5, minsize = 10,mindev = 0.01), nodes = c(7., 6.,

4., 5.))

Number of terminal nodes: 4 

Residual mean deviance: 0.001492 = 27.34 / 18330

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -1.296e-001 -2.277e-002 8.001e-005 4.271e-016 2.298e-002 3.065e-001 
node), split, n, deviance, yval

* denotes terminal node 

1) root 18330 30.8400 0.2099
2) engine.power<54.555 988 1.7790 0.1559 

4) engine.power<14.825 438 0.6518 0.1360 *

 5) engine.power>14.825 550 0.8171 0.1717 *


 3) engine.power>54.555 17342 26.0200 0.2130

6) engine.power<98.385 1177 1.8580 0.2022 *


 7) engine.power>98.385 16165 24.0100 0.2137 *


10-28




10.3.2 OLS Model Development and Refinement 

Once a manageable number of modal variables have been identified through regression 
tree analysis, the modeling process moves into the phase where ordinary least squares techniques 
are used to obtain a final model. The research objective here is to identify the extent to which 
the identified factors influence emission rates in acceleration mode. Modelers rely on previous 
research, a priori knowledge, educated guesses, and stepwise regression procedures to identify 
acceptable functional forms, to determine important interactions, and to derive statistically and 
theoretically defensible models. The final model will be our best understanding about the func­
tional relationship between independent variables and dependent variables. 

10.3.2.1 NOx Emission Rate Model Development for Acceleration Mode 

Based on previous analysis, truncated transformed NOx will serve as the independent 
variable. However, modelers should keep in mind that the comparisons should always be made 
on the original untransformed scale of Y when comparing the performance of statistical models.  
HTBR tree model results suggest that engine power is the best one to begin with. Linear regres­
sion model with engine power will be developed first, followed by a combined power and ve­
hicle speed model. 

10.3.2.1.1 Linear Regression Model with Engine Power 

Let’s select engine power to begin with, and estimate the model: 

Y = β0 + β1(engine.power) + Error (1.1) 

The regression run yields the results shown in Table 10-14. 
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Table 10-14 Regression Result for NO  Model 1.1 x
Call: lm(formula = NOx.50 ~ engine.power, data = busdata10242006.1.3, na.action =

na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.4093 -0.08133 0.005414 0.07084 0.9344


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.3054 0.0021 147.9391 0.0000 
engine.power 0.0008 0.0000 83.3557 0.0000 

Residual standard error: 0.09781 on 18892 degrees of freedom
Multiple R-Squared: 0.2689
F-statistic: 6948 on 1 and 18892 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

engine.power -0.9387 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

engine.power 1 66.4763 66.47630 6948.175 0
 Residuals 18892 180.7482 0.00957 

These results suggest that engine power explains about 27% of the variance in truncated 
transformed NOx. F-statistic shows that β1 ≠ 0, and the linear relationship is statistically signifi­
cant. To evaluate the model, residual normality is checked by examining quantile-quantile (QQ) 
plot and checking constancy of variance by examining residuals vs. fi tted values. 
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Figure 10-28 QQ and Residual vs. Fitted Plot for NOx Model 1.1 

The residual plot in Figure 10-28 shows a slight departure from linear regression assump­
tions indicating a need to explore a curvilinear regression function. Since the variability at the 
different X levels appears to be fairly constant, a transformation on X is considered.  The reason 
to consider transformation first is to avoid multicollinearity brought about by adding the second-
order of X. Based on the prototype plot in Figure 10-28, the square root transformation and loga­
rithmic transformation are tested. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed to determine which transformation is most effective. 

Y = β0 + β1engine.power(1/2) + Error (1.2) 

Y = β0 + β1log10(engine.power+1) + Error (1.3) 

The result for Model 1.2 will be shown in Table 10-15 and Figure 10-29, while the result 
for Model 1.3 will be shown in Table 10-16 and Figure 10-30. 
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Table 10-15 Regression Result for NO  Model 1.2 x
Call: lm(formula = NOx.50 ~ engine.power^(1/2), data = busdata10242006.1.3,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.4106 -0.07981 0.004093 0.06858 0.9248


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1912 0.0030 63.2141 0.0000 
I(engine.power^(1/2)) 0.0196 0.0002 93.5953 0.0000 

Residual standard error: 0.09455 on 18892 degrees of freedom
Multiple R-Squared: 0.3168
F-statistic: 8760 on 1 and 18892 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

I(engine.power^(1/2)) -0.9738 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 78.3199 78.31986 8760.082 0
 Residuals 18892 168.9047 0.00894 

Figure 10-29 QQ and Residual vs. Fitted Plot for NO  Model 1.2 x
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Table 10-16 Regression Result for NO  Model 1.3 x
*** Linear Model ***


Call: lm(formula = NOx.50 ~ log10(engine.power + 1), data = busdata10242006.1.3,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.4109 -0.07485 0.001841 0.06716 0.9119


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -0.0514 0.0052 -9.7873 0.0000 
log10(engine.power + 1) 0.2291 0.0023 99.6000 0.0000 

Residual standard error: 0.09263 on 18892 degrees of freedom
Multiple R-Squared: 0.3443
F-statistic: 9920 on 1 and 18892 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.9917 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 85.1206 85.12056 9920.161 0
 Residuals 18892 162.1040 0.00858 

Figure 10-30 QQ and Residual vs. Fitted Plot for NO  Model 1.3 x
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The results suggest that by using square root transformed engine power, the model increases 
the amount of variance explained in truncated transformed NOx from about 27% (Model 1.1) to 
about 32% (Model 1.2), while the increase is about 34% (Model 1.3) by using log transformed 
engine power. 

Model 1.3 improves the R2 more than does Model 1.2. The residuals scatter plot for 
Model 1.3 (Figure 10-30) shows a more reasonably linear relationship than Model 1.2 (Figure 
10-29). Figure 10-30 also shows that Model 1.3 does a better job in improving the pattern of 
variance. QQ plot shows general normality with the exceptions arising in the tails. 

10.3.2.1.2 Linear Regression Model with Engine Power and Vehicle Speed 

HTBR tree model results also suggest that vehicle speed may be an important predictive 
variable for emissions under certain conditions. After developing a linear regression model with 
engine power, adding vehicle speed might improve the model predictive ability.  The new model 
is proposed as: 

Y = β0 + β1log10(engine.power+1) + β2vehicle.speed + Error (1.4) 

The result for Model 1.4 is shown in Table 10-17 and Figure 10-31. 
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Table 10-17 Regression Result for NO  Model 1.4 x
Call: lm(formula = NOx.50 ~ log10(engine.power + 1) + vehicle.speed, data =

busdata10242006.1.3, na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.4133 -0.07416 0.004219 0.06303 0.9019 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -0.0195 0.0053 -3.6693 0.0002 
log10(engine.power + 1) 0.2007 0.0025 79.3288 0.0000

 vehicle.speed 0.0019 0.0001 25.1554 0.0000 

Residual standard error: 0.09112 on 18891 degrees of freedom
Multiple R-Squared: 0.3656
F-statistic: 5442 on 2 and 18891 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept) log10(engine.power + 1)

log10(engine.power + 1) -0.9681
vehicle.speed 0.2383 -0.4470 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 85.1206 85.12056 10251.92 0
 vehicle.speed 1 5.2540 5.25404 632.80 0

 Residuals 18891 156.8499 0.00830 
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Figure 10-31 QQ and Residual vs. Fitted Plot for NOx Model 1.4 

The results suggest that by using vehicle speed and transformed engine power, the model 
increases the amount of variance explained in truncated transformed NOx from about 34% 
(Model 1.3) to about 37% (Model 1.4). The residuals scatter plot for Model 1.4 (Figure 10-31) 
shows a more reasonably linear relationship. Figure 10-31 also shows that model 1.4 does a bet­
ter job in improving the pattern of variance. QQ plot shows general normality, with deviation at 
the tails. 

10.3.2.1.3 Linear Regression Model with Dummy Variables 

Figure 10-19 suggests that the relationship between NOx and engine power may be 
somewhat different across the engine power ranges identified in the tree analysis. That is, there 
may be higher or lower NOx emissions in different engine power operating ranges.  One dummy 
variable is created to represent different engine power ranges identified in Figure 10-19 for use in 
linear regression analysis as illustrated below: 

Engine power (bhp) dummy1 
< 72.30 1 
≥ 72.30 0 
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This dummy variable and the interaction between dummy variable and engine power are 
then tested to determine whether the use of the variables and interactions can help improve the 
model: 

Y = β0 + β1log10(engine.power+1) + β2vehicle.speed + β3 dummy1 + (1.5)
β4dummy1 log10(engine.power+1) + β5 dummy1vehicle.speed + Error 

The result for Model 1.5 is shown in Table 10-18 and Figure 10-32. 

Table 10-18 Regression Result for NO  Model 1.5 x
Call: lm(formula = NOx.50 ~ log10(engine.power + 1) + vehicle.speed + dummy1 *
log10( engine.power + 1) + dummy1:vehicle.speed, data = busdata10242006.1.3,

na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.4124 -0.07157 0.003012 0.06319 0.8924 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1439 0.0115 12.4979 0.0000
 log10(engine.power + 1) 0.1281 0.0052 24.8261 0.0000

 vehicle.speed 0.0023 0.0001 28.9191 0.0000
 dummy1 -0.1492 0.0148 -10.0783 0.0000 

dummy1:log10(engine.power + 1) 0.0609 0.0081 7.4995 0.0000
 dummy1:vehicle.speed -0.0035 0.0003 -10.4883 0.0000 

Residual standard error: 0.09022 on 18888 degrees of freedom
Multiple R-Squared: 0.3781
F-statistic: 2297 on 5 and 18888 degrees of freedom, the p-value is 0 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value 

log10(engine.power + 1) 1 85.1206 85.12056 10456.89
 vehicle.speed 1 5.2540 5.25404 645.45

 dummy1 1 1.9017 1.90166 233.62 
dummy1:log10(engine.power + 1) 1 0.3018 0.30180 37.08

 dummy1:vehicle.speed 1 0.8955 0.89546 110.01
 Residuals 18888 153.7510 0.00814 

Pr(F)
log10(engine.power + 1) 0.000000e+000

vehicle.speed 0.000000e+000
dummy1 0.000000e+000

dummy1:log10(engine.power + 1) 1.158203e-009
dummy1:vehicle.speed 0.000000e+000

Residuals 
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Figure 10-32 QQ and Residual vs. Fitted Plot for NOx Model 1.5 

The results suggest that by using dummy variables and interactions with transformed 
engine power and vehicle speed, the model slightly increases the amount of variance explained 
in truncated transformed NOx from about 37% (Model 1.4) to about 38% (Model 1.5). 

Model 1.5 slightly improves the R2 compared to Model 1.4. The residuals scatter plot 
for Model 1.5 (Figure 10-32) shows a slightly more linear relationship. Figure 10-32 also shows 
that Model 1.4 may also do a slightly better job in improving the pattern of variance. The QQ 
plot shows general normality with the exceptions arising in the tails. However, it is important 
to note that the model improvement, in terms of amount of variance explained by the model, is 
marginal at best. 

10.3.2.1.4 Model Discussions 

The performance of alternative models can be evaluated by comparing model predictions 
and actual observations for emission rates. The performance of the model can be evaluated in 
terms of precision and accuracy (Neter et al. 1996). The R2 value is an indication of precision. 
Usually, higher R2 values imply a higher degree of precision and less unexplained variability in 
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MPE = 
1 ∑ 

n 

( yi − y �i ) 
  

n i=1 

model predictions than lower R2 values. The slope of the trend line for the observed versus pre­
dicted values is an indication of accuracy.  A slope of one indicates an accurate prediction, in that 
the prediction of the model corresponds to an observation. Since the R2 and slope are derived by 
comparing model predictions and actual observations for emission rates, these numbers will be 
different from those observed in linear regression models. 

The models’ predictive ability is also evaluated using the root mean square error (RMSE) 
and the mean prediction error (MPE) (Neter et al. 1996). The RMSE is a measure of prediction 
error.  When comparing two models, the model with a smaller RMSE is a better predictor of 
the observed phenomenon. Ideally, mean prediction error is close to zero.  RMSE and MPE are 
calculated as follows: 

2 

1 

1 ( ) 
n 

i i 
i 

RMSE y y
n = 

= −∑ �   Equation (10-1) 

 Equation (10-1)

where:

RMSE: = root mean square error

n: = number of observations

 yi: = observaton y 
ȳ i: = mean of observation y 
MPE: = mean predictive error

 Previous sections provide the model development process from one model to another 
model. To test whether the linear regression with power was a beneficial addition to the regres­
sion tree model, the mean ERs at HTBR end nodes (single value) are compared to the predictions 
from the linear regression function with engine power.  The results of the performance evalua­
tion are shown in Table 10-19.  The improvement in R2 associated with moving toward a linear 
function of engine power is large.  Hence, the use of the linear regression function will provide a 
significant improvement in spatial and temporal model prediction capability.  But this linear re­
gression function might still be improved. Since the R2 and slope in Table 10-19 are derived by 
comparing model predictions and actual observations for emission rates (untransformed y), these 
numbers are different from those obtained from linear regression models. 
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x

Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

Mean ERs 0.00026 1.000 0.10455 0.00001 
Linear Regression (Power) 0.190 0.838 0.09463 0.00428 
Linear Regression (Power5) 0.215 0.901 0.09321 0.00898 
Linear Regression (log(Power)) 0.236 1.012 0.09178 0.00872 
Linear Regression (log(Power)+Speed) 0.268 1.001 0.08982 0.00837 
Linear Regression (log(Power)+Speed+Dummy) 0.280 1.036 0.08912 0.00834 

Two transforms of engine power were tested: square root transformation and log trans­
formation. The results of the performance evaluation are shown in Table 10-19.  Results suggest 
that linear regression function with log transformation performs slightly better.  

The addition of vehicle speed was also tested. The results of the performance evaluation 
are shown in Table 10-19.  Analysis results suggest that a linear regression function for engine 
power and vehicle speed also performs slightly better. 

Since the regression tree modeling exercise indicated that a number of power cutpoints 
may play a role in the emissions process, an additional modeling run was performed. The results 
of the performance evaluation are also shown in Table 10-19.  Analysis results suggest that a 
linear regression function with dummy variables performs slightly better than the model without 
the power cutpoints. 

Table 10-19 Comparative Performance Evaluation of NO  Emission Rate Models 

Although the linear regression function with dummy variables works slightly better than 
the linear regression function with engine power and vehicle speed, it introduces more explanato­
ry variables (dummy variables and the interaction with engine power) and increases the complex­
ity of the regression model. There is only one regression function for Model 1.4 while there are 
two regression functions for Model 1.5. There is also no obvious reason why the engine may be 
performing slightly differently within these power regimes, yielding different regression slopes 
and intercepts. The fuel injection systems in these engines may operate slightly differently under 
low load (near-idle) and high load conditions.  This fuel injection system may be controlled by 
the engine computer.  There may be a sufficient number of low power cruise operations and high 
power cruise operations that are incorrectly classified, and that may be better classified as idle 
or acceleration events (perhaps due to GPS speed data errors). In any case, because the model 
with dummy variables does not perform appreciably better than the model without the dummy 
variables, the dummy variables are not included in the final model selection at this time. These 
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dummy variables are, however, worth exploring when additional data from other engine technol­
ogy groups become available for analysis. Model 1.4 is selected as the preliminary ‘fi nal’ model. 

The next step in model evaluation is to once again examine the residuals for the improved 
model. A principal objective was to verify that the statistical properties of the regression model 
conform with a set of properties of least squares estimators. In summary, these properties require 
that the error terms be normally distributed, have a mean of zero, and have uniform variance. 

Test for Constancy of Error Variance 

A plot of the residuals versus the fitted values is useful in identifying any patterns in the 
residuals. Figure 10-31(c) shows this plot for NOx model. Without considering variance due to 
high emission points and zero load data, there is no obvious pattern in the residuals across the 
fi tted values. 

Test of Normality of Error terms 

The first informal test normally reserved for the test of normality of error terms is a 
quantile-quantile plot of the residuals. Figure 10-31 plot (c) shows the normal quantile plot of the 
NOx model. The second informal test is to compare actual frequencies of the residuals against 
expected frequencies under normality.  Under normality, we expect 68 percent of the residuals 
to fall between ± √MSE and about 90 percent fall between ±1.645 √MSE . Actually, 72.64% of 
residuals fall within the first limits, while 93.79% of residuals fall within the second limits. Thus, 
the actual frequencies here are reasonably consistent with those expected under normality.  The 
heavy tails at both ends are a cause for concern, but are due to the nature of the data set. For 
example, even after the transformation, the response variable is not a true normal distribution. 

Based on the above analysis, the fi nal NO x emission model for cruise mode is: 

NOx = [-0.0195 + 0.201log10(engine.power+1) + 0.0019vehicle.speed]2 

Analysis results support the observation that the fi nal NO x emission model is significantly 
better at explaining variability without making the model too complex. Since there is only one 
engine type, complexity may not be valid in terms of transferability.  This model is specific to the 
engine classes employed in the transit bus operations. Different models may need to be devel­
oped for other engine classes and duty cycles. 
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10.3.2.2 CO Emission Rate Model Development for Acceleration Mode 

Based on previous analysis, truncated transformed CO will serve as the independent 
variable. However, modelers should keep in mind that the comparisons should always be made 
on the original untransformed scale of Y when comparing statistical models.  HTBR tree model 
results suggest that engine power is best to begin with. 

10.3.2.2.1 Linear Regression Model with Engine Power 

Let’s select engine power to begin with, and estimate the model: 

Y = β0 + β1engine.power + Error (2.1) 

The regression run yields the results shown in Table 10-20. 

Table 10-20 Regression Result for CO Model 2.1 
Call: lm(formula = log.CO ~ engine.power, data = busdata10242006.1.3, na.action =
na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-3.151 -0.3515 -0.05231 0.3448 1.453 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -1.8549 0.0100 -185.2318 0.0000 
engine.power 0.0031 0.0000 69.7761 0.0000 

Residual standard error: 0.473 on 18862 degrees of freedom
Multiple R-Squared: 0.2052
F-statistic: 4869 on 1 and 18862 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

engine.power -0.939 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

engine.power 1 1089.300 1089.300 4868.698 0
 Residuals 18862 4220.097 0.224 

The results suggest that engine power explains about 21% of the variance in truncated 
transformed CO. F-statistic shows that β1 ≠ 0, and the linear relationship is statistically signifi­
cant. To evaluate the model, the normality is examined in the QQ plot and constancy of variance 
is checked by examining residuals vs. fi tted values. 
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Figure 10-33 QQ and Residual vs. Fitted Plot for CO Model 2.1 

The residual plot in Figure 10-33 shows a slight departure from linear regression assump­
tions indicating a need to explore a curvilinear regression function. Since the variability at the 
different X levels appears to be fairly constant, a transformation on X is considered.  The reason 
to consider transformation first is avoiding multicollinearity brought about by adding the second-
order of X. Based on the prototype plot in Figure 10-33, the square root transformation and loga­
rithmic transformation were tested. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed to determine which transformation is most effective. 

Y = β0 + β1engine.power^(1/2) + Error (2.2) 

Y = β0 + β1log10(engine.power+1) + Error (2.3) 

The result for Model 2.2 is shown in Table 10-21 and Figure 10-34, while the result for 
Model 2.3 is shown in Table 10-22 and Figure 10-35. 
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Table 10-21 Regression Result for CO Model 2.2 
Call: lm(formula = log.CO ~ engine.power^(1/2), data = busdata10242006.1.3,
na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-2.798 -0.3492 -0.0529 0.3381 1.52 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -2.3146 0.0149 -155.8023 0.0000 
I(engine.power^(1/2)) 0.0793 0.0010 77.1161 0.0000 

Residual standard error: 0.4626 on 18862 degrees of freedom
Multiple R-Squared: 0.2397
F-statistic: 5947 on 1 and 18862 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

I(engine.power^(1/2)) -0.974 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 1272.706 1272.706 5946.896 0
 Residuals 18862 4036.691 0.214 

Figure 10-34 QQ and Residual vs. Fitted Plot for CO Model 2.2 
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Table 10-22 Regression Result for CO Model 2.3 
Call: lm(formula = log.CO ~ log10(engine.power + 1), data = busdata10242006.1.3,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-2.187 -0.3475 -0.05182 0.3313 2.475


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -3.2695 0.0261 -125.3639 0.0000 
log10(engine.power + 1) 0.9152 0.0114 80.0560 0.0000 

Residual standard error: 0.4584 on 18862 degrees of freedom
Multiple R-Squared: 0.2536
F-statistic: 6409 on 1 and 18862 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.9918 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 1346.515 1346.515 6408.966 0
 Residuals 18862 3962.882 0.210 

Figure 10-35 QQ and Residual vs. Fitted Plot for CO Model 2.3 
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The results suggest that by using transformed engine power, the model increases the 
amount of variance explained in truncated transformed CO from about 21% to about 25%. 

Model 2.3 improves the R2 more than does Model 2.2. The residuals scatter plot for 
Model 2.3 (Figure 10-35) shows a more reasonably linear relationship than Model 2.2 (Figure 
10-34). Figure 10-35 also shows that Model 2.3 does a better job in improving the pattern of 
variance. QQ plot shows general normality with the exceptions arising in the tails. 

10.3.2.2.2 Linear Regression Model with Engine Power and Vehicle Speed 

HTBR tree model results also suggest that vehicle speed may be an important predictive 
variable for emissions under certain conditions. After developing a linear regression model with 
engine power, adding vehicle speed might improve the model predictive ability.  The new model 
is proposed as: 

Y = β0 + β1log10(engine.power+1) + β2vehicle.speed + Error (2.4) 

The result for Model 2.4 will be shown in Table 10-23 and Figure 10-36. 

Table 10-23 Regression Result for CO Model 2.4 
Call: lm(formula = log.CO ~ log10(engine.power + 1) + vehicle.speed, data =

busdata10242006.1.3, na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-2.299 -0.236 -0.02889 0.2281 3.209 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -3.7472 0.0225 -166.3169 0.0000 
log10(engine.power + 1) 1.3412 0.0107 125.1282 0.0000

 vehicle.speed -0.0285 0.0003 -89.0585 0.0000 

Residual standard error: 0.3846 on 18861 degrees of freedom
Multiple R-Squared: 0.4746
F-statistic: 8517 on 2 and 18861 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept) log10(engine.power + 1)

log10(engine.power + 1) -0.9683
vehicle.speed 0.2380 -0.4463 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 1346.515 1346.515 9103.577 0
 vehicle.speed 1 1173.140 1173.140 7931.415 0

 Residuals 18861 2789.742 0.148 
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Figure 10-36 QQ and Residual vs. Fitted Plot for CO Model 2.4 

The results suggest that by using vehicle speed and transformed engine power, the model 
increases the amount of variance explained in truncated transformed CO from about 25% to 
about 47%. 

Model 2.4 tremendously improves the R2 achieved in Model 2.3. The residuals scat­
ter plot for Model 2.4 (Figure 10-36) shows a reasonably linear relationship. Figure 10-36 also 
shows that Model 2.4 does a slightly better job in improving the pattern of variance. QQ plot 
shows general normality with the exceptions arising in the tails. 

10.3.2.2.3 Linear Regression Model with Dummy Variables 

Figure 10-22 suggests that the relationship between CO and engine power may be some­
what different across the engine power ranges identified in the tree analysis. That is, there may 
be higher or lower CO emissions in different engine power operating ranges.  One dummy vari­
able is created to represent different engine power ranges identified in Figure 10-22 for use in 
linear regression analysis as illustrated below: 

Engine power (bhp) Dummy1 
< 82.625 1 
≥ 82.625 0 
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This dummy variable and the interaction between dummy variable and engine power are 
then tested to determine whether the use of the variable and interactions can help improve the 
model. 

Y = β0 + β1log10(engine.power+1) + β2vehicle.speed + β3 dummy1 + (2.5)

β4dummy1 log10(engine.power+1) + β5 dummy1vehicle.speed + Error


The result for Model 2.5 are shown in Table 10-24 and Figure 10-37. 
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Table 10-24 Regression Result for CO Model 2.5 
Call: lm(formula = log.CO ~ log10(engine.power + 1) + vehicle.speed + dummy1 * log10(

engine.power + 1) + dummy1 * vehicle.speed, data = busdata10242006.1.3,
na.action = na.exclude)

Residuals:
 Min 1Q Median 3Q Max 

-2.383 -0.233 -0.02602 0.2235 2.124 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -4.4320 0.0498 -89.0217 0.0000
 log10(engine.power + 1) 1.6746 0.0222 75.4956 0.0000

 vehicle.speed -0.0333 0.0003 -102.3796 0.0000
 dummy1 1.4402 0.0614 23.4537 0.0000 

dummy1:log10(engine.power + 1) -1.0349 0.0321 -32.2634 0.0000
 dummy1:vehicle.speed 0.0414 0.0013 32.8802 0.0000 

Residual standard error: 0.3655 on 18858 degrees of freedom
Multiple R-Squared: 0.5255
F-statistic: 4177 on 5 and 18858 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept) log10(engine.power + 1)

log10(engine.power + 1) -0.9926
vehicle.speed 0.3000 -0.4020 

dummy1 -0.8108 0.8047 
dummy1:log10(engine.power + 1) 0.6864 -0.6915 

dummy1:vehicle.speed -0.0774 0.1038 

vehicle.speed dummy1
log10(engine.power + 1)

vehicle.speed
dummy1 -0.2432

dummy1:log10(engine.power + 1) 0.2780 -0.9559
 dummy1:vehicle.speed -0.2581 0.0018

 dummy1:log10(engine.power + 1)
log10(engine.power + 1)


vehicle.speed

dummy1


dummy1:log10(engine.power + 1)

dummy1:vehicle.speed -0.1467 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 1346.515 1346.515 10079.07 0
 vehicle.speed 1 1173.140 1173.140 8781.31 0

 dummy1 1 23.180 23.180 173.51 0 
dummy1:log10(engine.power + 1) 1 102.793 102.793 769.44 0

 dummy1:vehicle.speed 1 144.430 144.430 1081.10 0
 Residuals 18858 2519.338 0.134 
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Figure 10-37 QQ and Residual vs. Fitted Plot for CO Model 2.5 

Model 2.5 does improve R2 from around 0.47 to around 0.52 by adding the dummy 
variables. The residuals scatter plot for Model 2.5 (Figure 10-37) shows a slightly more linear 
relation. Figure 10-37 also shows that Model 2.5 perhaps may improve the pattern of variance. 
The QQ plot again shows general normality with the exceptions arising in the tails. However, 
it is important to note that the model improvement, in terms of amount of variance explained by 
the model, is not large. 

Then three more dummy variables will be created to represent different engine power and 
vehicle speed ranges in Figure 10-22 and are shown as follow: 

Thresholds Dummy21 Dummy22 Dummy23 
engine.power < 82.625 1 0 0 
engine.power [82.625, 152.96] & vehicle.speed < 19.05 0 1 0 
engine.power ≥ 152.96 & vehicle.speed < 19.05 0 0 1 
engine.power ≥ 82.625 & vehicle.speed ≥ 19.05 0 0 0 

These three dummy variables and the interaction between dummy variables and engine 
power and vehicle speed are added to improve the model. This model will be: 

Y = β0 + β1log10(engine.power+1) + β2 vehicle.speed + β3dummy21 + 
β4 dummy21 log10(engine.power+1) + β5 dummy21 vehicle.speed + β6 dummy22 + 
β7 dummy22 log10(engine.power+1) + β8 dummy22 vehicle.speed + β9dummy23 + (2.6) 

β10dummy23log10(engine.power+1) +β11dummy23 vehicle.speed + Error 
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The results for Mode. 2.6 are shown in Table 10-25 and Figure 10-35. 
Table 10-25  Regression Result for CO Model 2.6 
*** Linear Model *** 
Call: lm(formula = log.CO ~ log10(engine.power + 1) + vehicle.speed + dummy21 *

log10(engine.power + 1) + dummy21 * vehicle.speed + dummy22 * log10(
engine.power + 1) + dummy22 * vehicle.speed + dummy23 * log10(
engine.power + 1) + dummy23 * vehicle.speed, data =
busdata10242006.1.3, na.action = na.exclude)

Residuals:
 Min 1Q Median 3Q Max 

-2.562 -0.2086 -0.02372 0.2012 2.124 
Coefficients: Value Std. Error t value Pr(>|t|)

(Intercept) -3.5895 0.0945 -37.9720 0.0000
 log10(engine.power + 1) 1.1014 0.0389 28.3316 0.0000

 vehicle.speed -0.0150 0.0007 -21.0912 0.0000 
dummy21 0.5978 0.1007 5.9384 0.0000
 dummy22 -1.4856 0.2216 -6.7035 0.0000
 dummy23 -2.3863 0.1632 -14.6202 0.0000 

dummy21:log10(engine.power + 1) -0.4617 0.0448 -10.3020 0.0000
 dummy21:vehicle.speed 0.0231 0.0014 16.8659 0.0000 

dummy22:log10(engine.power + 1) 0.8643 0.1048 8.2494 0.0000
 dummy22:vehicle.speed -0.0194 0.0016 -12.1421 0.0000 

dummy23:log10(engine.power + 1) 1.3505 0.0701 19.2614 0.0000
 dummy23:vehicle.speed -0.0387 0.0012 -30.9943 0.0000 

Residual standard error: 0.3517 on 18852 degrees of freedom
Multiple R-Squared: 0.5609
F-statistic: 2189 on 11 and 18852 degrees of freedom, the p-value is 0
Analysis of Variance Table
Response: log.CO
Terms added sequentially (first to last)

Df Sum of Sq Mean Sq F Value 
log10(engine.power + 1) 1 1346.515 1346.515 10887.89

 vehicle.speed 1 1173.140 1173.140 9485.98
 dummy21 1 23.180 23.180 187.44
 dummy22 1 67.463 67.463 545.50
 dummy23 1 100.345 100.345 811.39 

dummy21:log10(engine.power + 1) 1 35.491 35.491 286.98
 dummy21:vehicle.speed 1 93.450 93.450 755.63 

dummy22:log10(engine.power + 1) 1 3.681 3.681 29.76
 dummy22:vehicle.speed 1 3.564 3.564 28.82 

dummy23:log10(engine.power + 1) 1 12.318 12.318 99.61
 dummy23:vehicle.speed 1 118.804 118.804 960.65

 Residuals 18852 2331.445 0.124 


Pr(F)

log10(engine.power + 1) 0.000000e+000


vehicle.speed 0.000000e+000
dummy21 0.000000e+000
dummy22 0.000000e+000
dummy23 0.000000e+000

dummy21:log10(engine.power + 1) 0.000000e+000
dummy21:vehicle.speed 0.000000e+000

dummy22:log10(engine.power + 1) 4.942365e-008
dummy22:vehicle.speed 8.032376e-008

dummy23:log10(engine.power + 1) 0.000000e+000

 dummy23:vehicle.speed 0.000000e+000

Residuals 
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Figure 10-38 QQ and Residual vs. Fitted Plot for CO Model 2.6 

Model 2.6 does improve the ability to explain variance by another 4% (R2 increases from 
from 0.47 to 0.52 and then to 0.56 by adding the dummy variables). Model 2.6 slightly improves 
R2 compared to Model 2.5. The residuals scatter plot for Model 2.6 (Figure 10-38) shows a more 
reasonably linear relation. Figure 10-38 also shows that Model 2.6 does a better job in improv­
ing the pattern of variance. The QQ plot again shows general normality with the exceptions aris­
ing in the tails. However, it is important to note that the model improvement, in terms of amount 
of variance explained by the model, is small. 

10.3.2.2.4 Model Discussions 

The previous sections outline the model development process from the regression tree 
model, to a simple OLS model, to more complex OLS models. Since the performance of the 
models is evaluated by comparing model predictions and actual observations for emission rates, 
the R2 and slope are different from those in previous linear regression models.  The results of 
each step in the model improvement process are presented in Table 10-26.  The mean emission 
rates at HTBR end nodes (single value) are compared to the results of various linear regres­
sion functions with engine power.  Since the R2 values and slopes in Table 10-26 are derived by 
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

Mean ERs 0.00003 1.000 0.16032 -0.00002 
Linear Regression (Power) 0.0462 1.180 0.16516 0.05229 
Linear Regression (Power0.5) 0.0502 1.227 0.16420 0.05006 
Linear Regression (log(Power)) 0.0553 1.534 0.16455 0.05120 
Linear Regression (log(Power)+Speed) 0.392 2.161 0.14252 0.04211 
Linear Regression (log(Power)+Speed+Dummy Set 1) 0.406 1.765 0.13632 0.03689 
Linear Regression (log(Power)+Speed+Dummy Set 2) 0.437 1.242 0.12565 0.03003 

comparing model predictions and actual observations for emission rates (untransformed y), these 
numbers will be different from those obtained from linear regression models. 

Table 10-26 Comparative Performance Evaluation of CO Emission Rate Models 

The improvement in R2 associated with moving toward a linear function of engine power 
is significant. Hence, the use of the linear regression function will provide a signifi cant improve­
ment on spatial and temporal model prediction capability.  However this linear regression func­
tion might still be improved. 

Results suggest that a linear regression function with log transformation performs slightly 
better than the others and that the use of dummy variables can further improve model perfor­
mance. Although the linear regression function with dummy variables performs slightly better 
than the linear regression function with log transformation, the introduction of more explanatory 
variables (dummy variables and the interaction with engine power) increases the complexity 
of the regression model. As discussed in Section 10.3.2.1.4, there is no compelling reason to 
include the dummy variables in the model since: 1) the models with dummy variables are more 
complex without significantly improving model performance, and 2) there is no compelling en­
gineering reason at this time to support the difference in model performance within these specific 
power regions. Yet, given the explanatory power of the power cutpoint dummy variables (a 10% 
increase in explained variance), additional investigation into why these values are turning out to 
be significant is definitely warranted. It may be wise to include such cutpoints in on-road mod­
els for various engine technology groups. Such dummy variables are, however, worth exploring 
when additional data from other engine technology groups become available for analysis. 

It can be argued that inclusion of the dummy variables for power is warranted.  However, 
Model 2.4 is chosen as the preliminary ‘final’ model based solely upon ease of implementation.  
The next step in model evaluation is to once again examine the residuals for the improved model. 
A principal objective was to verify that the statistical properties of the regression model conform 

10-53




to a set of properties of least squares estimators. In summary, these properties require that the 
error terms be normally distributed, have a mean of zero, and have uniform variance. 

Test for Constancy of Error Variance 

A plot of the residuals versus the fitted values is useful in identifying patterns in the 
residuals. Figure 10-36 plot (a) shows this plot for CO Model 2.4. Without considering variance 
due to high emission points and zero load data, there is no obvious pattern in the residuals across 
the fi tted values. 

Test of Normality of Error Terms 

The first informal test normally reserved for the test of normality of error terms is a 
quantile-quantile plot of the residuals. Figure 10-36 plot (c) shows the normal quantile plot of 
CO Model 2.4. The second informal test is to compare actual frequencies of the residuals against 
expected frequencies under normality.  Under normality, we expect 68 percent of the residuals 
to fall between ± √MSE  and about 90 percent to fall between ± 1.645 √MSE. Actually, 87.35% 
of residuals fall within the first limits, while 92.19% of residuals fall within the second limits. 
Thus, the actual frequencies here are reasonably consistent with those expected under normality. 
The heavy tails at both ends are a cause for concern, but are due to the nature of the data set. For 
example, even after the transformation, the response variable is not the real normal distribution. 

Based on above analysis, final CO emission model for cruise mode is: 

CO = 10[-3.747+1.341log10(engine.power+1) - 0.0285vehicle.speed] 

Analysis results support the observation that the final CO emission model (2.4) is signifi­
cantly better at explaining variability without making the model too complex. Since there is only 
one engine type, complexity may not be valid in terms of transferability.  This model is specific 
to the engine classes employed in the transit bus operations. Different models may need to be 
developed for other engine classes and duty cycles. 

10.3.2.3 HC Emission Rate Model Development for Acceleration Mode 

Based on previous analysis, truncated transformed HC will serve as the independent 
variable. However, modelers should keep in mind that the comparisons should always be made 
on the original untransformed scale of Y when comparing statistical models.  HTBR tree model 
results suggest that engine power is the best one to begin with. 
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10.3.2.3.1 Linear Regression with Engine Power 

Let’s select engine power to begin with, and estimate the model: 

Y = β0 + β1engine.power + Error (3.1) 

The regression run yields the results shown in Table 10-27 and Figure 10-39. 

Table 10-27  Regression Result for HC Model 3.1 
Call: lm(formula = HC.25 ~ engine.power, data = busdata10242006.1.3, na.action =

na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.1285 -0.02417 -0.00003173 0.02467 0.2904


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1840 0.0009 216.4203 0.0000 
engine.power 0.0001 0.0000 32.4947 0.0000 

Residual standard error: 0.03989 on 18328 degrees of freedom
Multiple R-Squared: 0.05447
F-statistic: 1056 on 1 and 18328 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

engine.power -0.938 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

engine.power 1 1.67991 1.679912 1055.908 0
 Residuals 18328 29.15918 0.001591 
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Figure 10-39 QQ and Residual vs. Fitted Plot for HC Model 3.1 

The results suggest that engine power explains about 5% of the variance in truncated 
transformed HC. F-statistic shows that β1 ≠ 0, and the linear relationship is statistically signifi­
cant. To evaluate the model, the normality is examined in the QQ plot and constancy of variance 
is checked by examining residuals vs. fi tted values. 

The residual plot in Figure 10-39 shows a slight departure from linear regression assump­
tions indicating a need to explore a curvilinear regression function. Since the variability at the 
different X levels appears to be fairly constant, a transformation on X is considered.  The reason 
to consider transformation first is to avoid multicollinearity brought about by adding the second-
order of X. Based on the prototype plot in Figure 10-39, the square root transformation and loga­
rithmic transformation are tested. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed to determine which transformation is most effective. 

Y = β0 + β1engine.power(1/2) + Error (3.2) 

Y = β0 + β1log10(engine.power+1) + Error (3.3) 
The result for Model 3.2 is shown in Table 10-28 and Figure 10-40, while the result for 

Model 3.3 is shown in Table 10-29 and Figure 10-41. 
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Table 10-28  Regression Result for HC Model 3.2 
Call: lm(formula = HC.25 ~ engine.power^(1/2), data = busdata10242006.1.3, na.action

= na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.1173 -0.02389 -0.0002473 0.0244 0.2969


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1625 0.0013 127.4341 0.0000 
I(engine.power^(1/2)) 0.0034 0.0001 38.2005 0.0000 

Residual standard error: 0.03948 on 18328 degrees of freedom
Multiple R-Squared: 0.07375
F-statistic: 1459 on 1 and 18328 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

I(engine.power^(1/2)) -0.9735 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 2.27433 2.274333 1459.28 0
 Residuals 18328 28.56475 0.001559 

Figure 10-40 QQ and Residual vs. Fitted Plot for HC Model 3.2 
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Table 10-29 Regression Result for HC Model 3.3 
Call: lm(formula = HC.25 ~ log10(engine.power + 1), data = busdata10242006.1.3,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.1186 -0.02345 -0.00007336 0.02386 0.3004


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1136 0.0022 50.8911 0.0000 
log10(engine.power + 1) 0.0426 0.0010 43.4726 0.0000 

Residual standard error: 0.03906 on 18328 degrees of freedom
Multiple R-Squared: 0.09347
F-statistic: 1890 on 1 and 18328 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.9916 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 2.88268 2.882681 1889.863 0
 Residuals 18328 27.95641 0.001525 

Figure 10-41 QQ and Residual vs. Fitted Plot for HC Model 3.3 
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The results suggest that by using transformed engine power, the model increases the 
amount of variance explained in truncated transformed HC from about 5% to about 9%. 

Model 3.3 improves R2 relative to Model 3.2. The residuals scatter plot for Model 3.3 
(Figure 10-41) also shows a more reasonably linear relation than Model 2.2 (Figure 10-40). Fig­
ure 10-41 also shows that Model 3.3 does a better job in improving the pattern of variance. QQ 
plot shows general normality with the exceptions arising in the tails. 

10.3.2.3.2 Linear Regression Model with Dummy Variables 

Figure 10-26 suggests that the relationship between HC and engine power may differ 
across the engine power ranges. One dummy variable is created to represent different engine 
power ranges identified in Figure 10-26 for use in linear regression analysis as illustrated below: 

Engine power (bhp) Dummy1 

< 54.555 1 

≥ 54.555 0 

This dummy variable and the interaction between dummy variable and engine power are 
then tested to determine whether the use of the variable and interaction can help improve the 
model. 

Y = β0 + β1log10(engine.power+1) + β2 dummy1 + β3dummy1 log10(engine.power+1) + Error (3.4) 

The results for Model 3.4 are shown in Table 10-30 and Figure 10-42. 
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Table 10-30 Regression Result for HC Model 3.4 
Call: lm(formula = HC.25 ~ log10(engine.power + 1) + dummy1 * log10(engine.power +
1), data = busdata10242006.1.3, na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.1278 -0.02305 0.0002278 0.0231 0.314 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1734 0.0042 41.4191 0.0000
 log10(engine.power + 1) 0.0171 0.0018 9.4715 0.0000

 dummy1 -0.0643 0.0062 -10.3151 0.0000 
dummy1:log10(engine.power + 1) 0.0195 0.0039 4.9731 0.0000 

Residual standard error: 0.03873 on 18326 degrees of freedom
Multiple R-Squared: 0.1084
F-statistic: 742.8 on 3 and 18326 degrees of freedom, the p-value is 0 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value 

log10(engine.power + 1) 1 2.88268 2.882681 1921.331
 dummy1 1 0.42377 0.423774 282.449 

dummy1:log10(engine.power + 1) 1 0.03711 0.037107 24.732
 Residuals 18326 27.49553 0.001500 

Pr(F)
log10(engine.power + 1) 0.000000e+000

dummy1 0.000000e+000
dummy1:log10(engine.power + 1) 6.647205e-007

Residuals 
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Figure 10-42 QQ and Residual vs. Fitted Plot for HC Model 3.4 

The results suggest that by using transformed engine power and speed, the model only in­
creases the amount of variance explained in truncated transformed HC from about 9% to about 10%. 

Model 3.4 slightly improves R2 relative to Model 3.3. The residuals scatter plot for Model 
3.4 (Figure 10-42) is not appreciably better nor does Model 3.4 do a better job in improving the pat­
tern of variance. The QQ plot still shows general normality with the exceptions arising in the tails. 

10.3.2.3.3 Model Discussions 

The previous sections outline the model development process from regression tree 
model, to a simple OLS model, to more complex OLS models. To test whether the linear regres­
sion with power was a beneficial addition to the regression tree model, the mean ERs at HTBR 
end nodes (single value) were compared to the predictions from the linear regression function 
with engine power.  The results of the performance evaluation are shown in Table 10-31.  The 
improvement in R2 associated with moving toward a linear function of engine power is nearly 
imperceptible. Hence, the use of the linear regression function will provide almost no signifi­
cant improvement over spatial and temporal model prediction capability.  This linear regression 
function might still be improved. Since the R2 and slope in Table 10-31 are derived by compar­
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

Mean ERs 0.000090 1.000 0.0019072 0.00000022 
Linear Regression (Power) 0.0166 0.979 0.0019879 0.00061206 
Linear Regression (Power0.5) 0.0214 0.749 0.0019311 0.00040055 
Linear Regression (log(Power)) 0.0281 0.864 0.0019249 0.00040884 
Linear Regression (log(Power) + Dummy) 0.0367 1.060 0.0019151 0.00040366 

ing model predictions and actual observations for emission rates, these numbers will be different 
from those obtained from linear regression models. 

Table 10-31 Comparative Performance Evaluation of HC Emission Rate Models 

Results suggest that the linear regression function with log transformation performs 
slightly better than the others and that the use of dummy variables can further improve model 
performance, but again there is almost no perceptible change in terms of explained variance. 
Although the linear regression function with log transformation and dummy variables performs 
slightly better than linear regression function with log transformation alone, the revised model 
introduces additional explanatory variables (dummy variables and the interaction with engine 
power) and increases the complexity of regression model without significantly improving the 
model. As discussed in Section 10.3.2.1.4, there is no compelling reason to include the dummy 
variables in the model, given that: 1) the second model is more complex without significantly 
improving model performance, and 2) there is no compelling engineering reason at this time to 
support the difference in model performance within these specific power regions. These dummy 
variables are, however, worth exploring when additional data from other engine technology 
groups become available for analysis. 

Model 3.3 is recommended as the preliminary ‘final’ model (although one might argue 
that using the regression tree results directly would also probably be acceptable). The next step 
in model evaluation is to once again examine the residuals for the improved model. A principal 
objective was to verify that the statistical properties of the regression model conform to a set of 
properties of least squares estimators. In summary, these properties require that the error terms 
be normally distributed, have a mean of zero, and have the same variance. 

Test for Constancy of Error Variance 

A plot of the residuals versus the fitted values is useful in identifying any patterns in 
the residuals. Figure 10-41 plot (b) is residuals vs. fit for HC Model 3.3. Without considering 
variance due to high emission points and zero load data, it can be seen that there is no obvious 
pattern in the residuals across the fi tted values. 
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Test of Normality of Error terms 

The first informal test normally reserved for the test of normality of error terms is a 
quantile-quantile plot of the residuals. Figure 10-40 plot (d) shows the normal quantile plot of of 
HC Model 3.2. The second informal test is to compare actual frequencies of the residuals against 
expected frequencies under normality.  Under normality, we expect 68 percent of the residuals to 
fall between ±√MSE and about 90 percent to fall between ± 1.645 √MSE . Actually, 84.83% of 
residuals fall within the first limits, while 93.60% of residuals fall within the second limits. Thus, 
the actual frequencies here are reasonably consistent with those expected under normality.  The 
heavy tails at both ends are a cause for concern, but this is due to the nature of the data set. For 
example, even after the transformation, the response variable is not the real normal distribution. 

Based on above analysis, final HC emission model for cruise mode is: 

HC = [0.114+ 0.0426log10(engine.power+1)]4 

10.4 Conclusions and Further Considerations 

In this research, acceleration mode is defined as “acceleration >1 mph/s”. Data not 
considered to be in idle, deceleration or acceleration mode will be deemed to be in cruise mode. 
Compared to cruise mode activity, the engine power is more concentrated in higher engine power 
ranges (≥ 200 bhp) for acceleration mode activity. 

Inter-bus variability analysis indicated that some of the 15 buses are higher emitters than 
others (especially noted for HC emissions). However, none of the buses appears to qualify as a 
traditional high-emitter, which would exhibit emission rates of two to three standard deviations 
above the mean. Hence, it is difficult to classify any of these 15 buses as high emitters for mod­
eling purposes. At this moment, these 15 buses are treated as a whole for model development. 
Modelers should keep in mind that although no true high-emitters are present in the database, 
such vehicles may behave significantly different than the vehicles tested.  Hence, data from high-
emitting vehicles should be collected and examined in future studies. 

Some high HC emissions events are noted in acceleration mode. After screening engine 
speed, engine power, engine oil temperature, engine oil pressure, engine coolant temperature, 
ECM pressure, and other parameters, no variables were identified that could be linked to these 
high emissions events. These events may represent natural variability in on-road emissions, or 
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some other variable (such as grade or an engine variable that is not measured) may be linked to 
these events. 

Engine power is selected as the most important variable for three pollutants based on 
HTBR tree models. This finding is consistent with previous research results which verifi ed the 
important role of engine power (Ramamurthy et al. 1998; Clark et al. 2002; Barth et al. 2004). 
The HC relationship is significant but fairly weak. Analysis in previous chapters also indicates 
that engine power is correlated with not only on-road load parameters such as vehicle speed, 
acceleration, and grade, but also potentially with engine operating parameters such as throttle po­
sition and engine oil pressure. On the other hand, engine power in this research is derived from 
engine speed, engine torque and percent engine load. 

The regression tree models suggest that some other variables, like oil pressure and en­
gine barometric pressure, may also impact the HC emissions. Further analysis demonstrates that 
by using engine power alone one might be able to achieve explanatory ability similar to using 
engine power and other variables. To develop models that are efficient and easy to implement, 
only engine power is used to develop emission models. However, additional investigation into 
these variables is warranted as additional detailed data from engine testing become available for 
analysis. 

Given the relationships noted between engine indicated HP and emission rates, it is 
imperative that data be collected to develop solid relationships in engine power demand models 
(estimating power demand as a function of speed/acceleration, grade, vehicle characteristics, 
surface roughness, inertial losses, etc.) for use in regional inventory development and microscale 
impact assessment. 

In summary, the modeler recommends the following acceleration emission models: 

NOx = [-0.0195 + 0.201log10(engine.power+1) + 0.0019vehicle.speed]2 

CO = 10[-3.747 + 1.341log10(engine.power+1) - 0.0285vehicle.speed] 

HC = [0.114 + 0.0426log10(engine.power+1)]4 
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Pollutants 
Engine Power Distribution 

(0 50) (50 100) (100 150) (150 200) ≥ 200 All 
Number NO x 15885 8988 7173 3536 3792 39374 

CO 15834 8940 7145 3529 3770 39218 
HC 15481 8600 6830 3394 3715 38020 

Percentage NO x 40.34% 22.83% 18.22% 8.98% 9.63% 100.00% 
CO 40.37% 22.80% 18.22% 9.00% 9.61% 100.00% 
HC 40.72% 22.62% 17.96% 8.93% 9.77% 100.00% 

­

CHAPTER 11 

11. CRUISE MODE DEVELOPMENT 

After developing idle mode definition and emission rate in Chapter 8, deceleration mode 
definition and emission rate in Chapter 9, and acceleration emission model in Chapter 10, the 
next task will be to develop cruise mode. 

11.1  Analysis of Cruise Mode Data 

After dividing the database into idle mode, deceleration mode, and acceleration mode, 
cruise mode data will be all of the remaining data in the database (i.e., data not previously clas­
sified into idle, deceleration, and acceleration). Unlike the idle and deceleration modes, there is 
a general relationship between engine power and emission rate for acceleration mode and cruise 
mode. The engine power distribution for data collected in the cruise mode is provided in Table 
11-1. 

Table 11-1 Engine Power Distribution for Cruise Mode  

Emission rate histograms for each of the three pollutants for cruise operations are pre
sented in Figure 11-1.  Figure 11-1 shows significant skewness for all three pollutants for cruise 
mode. Some high HC emissions events are noted in cruise mode. After screening engine speed, 
engine power, engine oil temperature, engine oil pressure, engine coolant temperature, ECM 
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pressure, and other parameters, no operating parameters appeared to correlate with the high emis­
sions events. 

Figure 11-1  Histograms of Three Pollutants for Cruise Mode 

11.1.1 Engine Rate Distribution by Bus in Cruise Mode 

Inter-bus response variability for cruise mode operations is illustrated in Figures 11-2 to 
11-4 using median and mean of NOx, CO, and HC emission rates. Table 11-2 presents the same 
information in tabular form. The difference between median and mean is also an indicator of 
skewness. 
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Figure 11-2  Median and Mean of NOx Emission Rates in Cruise Mode by Bus 

Figure 11-3 Median and Mean of CO Emission Rates in Cruise Mode by Bus 
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Figure 11-4 Median and Mean of HC Emission Rates in Cruise Mode by Bus 

Table 11-2 Median and Mean of Three Pollutants in Cruise Mode by Bus 
NOx CO HC 

Bus ID Median Mean Median Mean Median Mean 
Bus 360 0.11666 0.14506 0.01618 0.02891 0.00120 0.00146 
Bus 361 0.18479 0.18507 0.01091 0.01389 0.00122 0.00135 
Bus 363 0.05924 0.07384 0.00534 0.01341 0.00012 0.00021 
Bus 364 0.12779 0.14644 0.01259 0.01875 0.00237 0.00343 
Bus 372 0.09092 0.09936 0.01262 0.01704 0.00181 0.00236 
Bus 375 0.13714 0.16103 0.01254 0.02383 0.00121 0.00146 
Bus 377 0.11139 0.11094 0.01454 0.02559 0.00064 0.00075 
Bus 379 0.12570 0.15673 0.01394 0.02298 0.00151 0.00195 
Bus 380 0.16713 0.18183 0.01994 0.04532 0.00110 0.00148 
Bus 381 0.09227 0.11789 0.01074 0.02505 0.00060 0.00080 
Bus 382 0.14987 0.16698 0.01342 0.02544 0.00130 0.00155 
Bus 383 0.16355 0.18468 0.00921 0.01949 0.00126 0.00198 
Bus 384 0.11597 0.13933 0.00934 0.01903 0.00181 0.00221 
Bus 385 0.10244 0.13024 0.01266 0.02066 0.00187 0.00205 
Bus 386 0.12254 0.13632 0.01147 0.02197 0.00129 0.00167 
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Bus ID Number Min 
1st 

Quartile Median 3rd 
Quartile Max Mean 

Bus 360 1653 0 14.68 71.25 169.03 275.46 97.70 
Bus 361 3140 0 70.13 108.12 140.28 296.91 107.16 
Bus 363 3286 0 10.46 47.19 112.37 275.55 71.45 
Bus 364 2575 0 14.47 64.30 130.62 275.51 85.56 
Bus 372 2278 0 30.13 68.23 118.10 275.49 79.77 
Bus 375 2890 0 23.19 72.09 142.47 275.54 94.36 
Bus 377 1647 0 17.93 118.01 210.27 275.50 121.33 
Bus 379 2544 0 43.51 102.68 165.04 275.57 110.84 
Bus 380 1242 0 18.85 91.07 187.71 275.56 109.41 
Bus 381 2537 0 6.72 49.18 113.81 275.46 70.68 
Bus 382 1208 0 32.39 81.02 124.97 275.55 89.42 
Bus 383 3062 0 29.42 77.95 141.19 275.53 90.85 
Bus 384 3638 0 21.82 61.20 115.75 275.46 72.69 
Bus 385 3327 0 11.86 48.80 102.91 275.47 68.20 
Bus 386 4539 0 19.24 53.43 94.38 275.30 61.66 

Figures 11-2 to 11-4 and Table 11-2 illustrate that NOx emissions are more consistent than 
CO and HC emissions. Across the 15 buses, Bus 380 has the largest median and mean for CO 
emissions, while Bus 364 has the largest median and mean for HC emissions.  The above figures 
and table demonstrate that although variability exists across buses, it is difficult to conclude that 
there are any true “high emitters” in the database. This conclusion is consistent with the result 
for the other three modes. As was also noted in the acceleration mode data, Bus 363 has the 
smallest mean and median HC emissions compared to the other 14 buses. 

11.1.2 Engine Power Distribution by Bus in Cruise Mode 

Engine power distribution in cruise mode by bus is shown in Figure 11-5 and Table 11-3. 
Bus 361 has the largest 1st quartile engine power in cruise mode while Bus 377 has the largest 
median and 3rd quartile engine power in cruise mode. The maximum power values for each bus 
match well with the manufacturer’s engine power rating.  Although variability for engine power 
distribution exists across buses, it is difficult to conclude that such variability is affected by indi­
vidual buses, bus routes, or other factors. The relationship between power and emissions appears 
consistent across the buses for acceleration mode. 

Table 11-3 Engine Power Distribution in Cruise Mode by Bus 

11-5




Figure 11-5 Histograms of Engine Power in Cruise Mode by Bus 
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11.2  Model Development and Refinement 

11.2.1 HTBR Tree Model Development 

The potential explanatory variables included in the emission rate model development ef­
fort include: 

Vehicle characteristics: model year, odometer reading, bus ID (14 dummy variables) 

Roadway characteristics: dummy variable for road grade; 

Onroad load parameters: engine power (bhp), vehicle speed (mph), acceleration (mph/s); 

Engine operating parameters: engine oil temperature (deg F), engine oil pressure (kPa), 
engine coolant temperature (deg F), barometric pressure reported from ECM (kPa); 

Environmental conditions: ambient temperature (deg C), ambient pressure (mbar), ambi­
ent relative humidity (%). 

HTBR technique is used first to identify potentially significant explanatory variables and 
this analysis provides the starting point for conceptual model development. The HTBR model 
is used to guide the development of an OLS regression model, rather than as a model in its 
own right. HTBR can be used as a data reduction tool and for identifying potential interactions 
among the variables. Then OLS regression is used with the identified variables to estimate a 
preliminary “fi nal” model. 

Although evidence in the literature suggests that a logarithmic transformation is most 
suitable for modeling motor vehicle emissions (Washington 1994; Ramamurthy et al. 1998; 
Fomunung 2000; Frey et al. 2002), this transformation needs to be verified through the Box-Cox 
procedure. The Box-Cox function in MATLAB™ can automatically identify a transforma­
tion from the family of power transformations on emission data, ranging from -1.0 to 1.0. The 
lambdas chosen by the Box-Cox procedure for cruise mode are 0.40619 for NOx, 0.012969 for 
CO, 0.241 for HC. The Box-Cox procedure is only used to provide a guide for selecting a trans­
formation, so overly precise results are not needed (Neter et al. 1996). It is often reasonable to 
use a nearby lambda value that is easier to understand for the power transformation. Although 
the lambdas chosen by the Box-Cox procedure are different for acceleration and cruise modes, 
the nearby lambda values are same for these two modes. In summary, the lambda values used 
for transformations are ½ for NOx, 0 for CO (indicating a log transformation), and ¼ for HC 
for cruise mode. Figures 11-6 to 11-8 present the histogram, boxplot, and probability plots of 
truncated emission rates in cruise mode for NO , CO, and HC, while Figures 11-9 to 11-11 pres-x
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ent the same plots for truncated transformed emission rates for NOx, CO and HC, where a great 
improvement is noted. 

Figure 11-6 Histogram, Boxplot, and Probability Plot of Truncated NOx Emission Rates in Cruise Mode 
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Figure 11-7 Histogram, Boxplot, and Probability Plot of Truncated CO Emission Rate in Cruise Mode 

Figure 11-8 Histogram, Boxplot, and Probability Plot of Truncated HC Emission Rate in Cruise Mode 
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Figure 11-9 Histogram, Boxplot, and Probability Plot of Truncated Transformed  NOx Emission 

Rate in Cruise Mode


Figure 11-10 Histogram, Boxplot, and Probability Plot of Truncated Transformed CO Emission 

Rate in Cruise Mode
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Figure 11-11 Histogram, Boxplot, and Probability Plot of Truncated Transformed HC Emission 
Rate in Cruise Mode 

11.2.1.1 NO x HTBR Tree Model Development 

Figure 11-12 illustrates the initial tree model used for the truncated transformed NOx 
emission rate in cruise mode. Results for the initial model are given in Table 11-4.  The tree 
grew into a complex model, with a considerable number of branches and 32 terminal nodes. Fig­
ure 11-13 illustrates the amount of deviation explained corresponding to the number of terminal 
nodes. 
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Figure 11-12 Original Untrimmed Regression Tree Model for Truncated Transformed NOx Emission

Rate in Cruise Mode


Figure 11-13 Reduction in Deviation with the Addition of Nodes of Regression Tree for Truncated 
Transformed NO Emission Rate in Cruise Mode x


11-12




         
     
    

                      

Table 11-4 Original Untrimmed Regression Tree Results for Truncated Transformed NO  Emis­x
sion Rate in Cruise Mode 
Regression tree:

tree(formula = NOx.50 ~ model.year + odometer + temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature + eng.bar.press + en

gine.power + acceleration + bus360 + bus361 + bus363 + bus364 + bus372 + bus375 +

bus377 + bus379 + bus380 + bus381 + bus382 + bus383 + bus384 + bus385 + dummy.grade,

data = busdata10242006.1.4, na.action = na.exclude, mincut = 400, minsize = 800,

mindev = 0.01)
Variables actually used in tree construction:
[1] “engine.power” “dummy.grade” “baro” “oil.press”
[5] “humidity” “vehicle.speed” “temperature” “bus372” 
[9] “odometer” “model.year”
Number of terminal nodes: 32 
Residual mean deviance: 0.005398 = 212.4 / 39340
Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-4.634e-001 -4.130e-002 -1.265e-003 -1.315e-016 3.646e-002 1.180e+000 

For model application purposes, it is desirable to select a final model specifi cation that 
balances the model’s ability to explain the maximum amount of deviation with a simpler model 
that is easy to interpret and apply.  Figure 11-7 indicates that reduction in deviation with addition 
of nodes after four, although potentially statistically significant, is very small. A simplifi ed tree 
model was derived which ends in four terminal nodes as compared to the 37 terminal nodes in 
the initial model. The residual mean deviation only increased from 210.2 to 298.9 and yielded 
a much cleaner model than the initial one. Results are shown in Table 11-5 and Figure 11-14.  
Based on above analysis, NOx cruise model will be developed based on this result. 
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Figure 11-14 Trimmed Regression Tree Model for Truncated Transformed NO  Emission Rate in x
Cruise Mode 

Table 11-5 Trimmed Regression Tree Results for Truncated Transformed NO  Emission Rate in x
Cruise Mode 
Regression tree:

snip.tree(tree = tree(formula = NOx.50 ~ model.year + odometer + temperature + baro

+ humidity + vehicle.speed + oil.temperture + oil.press + cool.temperature + eng.

bar.press + engine.power + acceleration + bus360 + bus361 + bus363 + bus364 + bus372

+ bus375 + bus377 + bus379 + bus380 + bus381 + bus382 + bus383 + bus384 + bus385 + 

dummy.grade, data = busdata10242006.1.4, na.action = na.exclude, mincut = 400,minsize

= 800, mindev = 0.01), nodes = c(5., 4., 6., 7.))

Variables actually used in tree construction:

[1] “engine.power”

Number of terminal nodes: 4 

Residual mean deviance: 0.007591 = 298.9 / 39370

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-4.643e-001 -5.592e-002 3.280e-004 -4.143e-016 5.370e-002 1.179e+000 
node), split, n, deviance, yval

* denotes terminal node 

1) root 39374 1095.00 0.3360
2) engine.power<52.525 16280 160.50 0.1831 
4) engine.power<19.05 9222 47.70 0.1252 *
 5) engine.power>19.05 7058 41.36 0.2588 *

 3) engine.power>52.525 23094 285.90 0.4438 
6) engine.power<109.555 10186 81.41 0.3791 *
 7) engine.power>109.555 12908 128.40 0.4948 * 
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This tree model suggests that engine power is the most important explanatory variable 
for NOx emissions. This finding is consistent with previous research results which verifi ed the 
important effect of engine power on NOx emissions (Ramamurthy et al. 1998; Clark et al. 2002; 
Barth et al. 2004). Analysis in previous chapter also indicates that engine power is correlated not 
only with onroad load parameters such as vehicle speed, acceleration, and grade, but also with 
engine operating parameters such as throttle position and engine oil pressure. On the other hand, 
engine power in this research is derived from engine speed, engine torque and percent engine 
load. So engine power can connect onroad modal activity with engine operating conditions to 
that extent. This fact strengthens the importance of introducing engine power into the concep­
tual model and the need to improve the ability to simulate engine power for regional inventory 
development. 

11.2.1.2 CO HTBR Tree Model Development 

Figure 11-15 illustrates the initial tree model used for truncated transformed CO emis­
sion rate in cruise mode. Results for initial model are given in Table 11-6.  The tree grew into 
a complex model with a considerable number of branches and 65 terminal nodes. Figure 11-16 
illustrates the amount of deviation explained corresponding to the number of terminal nodes. 
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Figure 11-15 Original Untrimmed Regression Tree Model for Truncated Transformed CO Emis­
sion Rate in Cruise Mode 

Figure 11-16 Reduction in Deviation with the Addition of Nodes of Regression Tree for Trun­
cated Transformed CO Emission Rate in Cruise Mode 
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Table 11-6 Original Untrimmed Regression Tree Results for Truncated Transformed CO Emis­
sion Rate in Cruise Mode 
Regression tree:
tree(formula = log.CO ~ model.year + odometer + temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature +
eng.bar.press + engine.power + acceleration + bus360 + bus361 + bus363 +
bus364 + bus372 + bus375 + bus377 + bus379 + bus380 + bus381 + bus382 + 
bus383 + bus384 + bus385 + dummy.grade, data = busdata10242006.1.4,
na.action = na.exclude, mincut = 400, minsize = 800, mindev = 0.01)

Variables actually used in tree construction:
[1] “engine.power” “oil.press” “baro” 
[4] “cool.temperature” “vehicle.speed” “acceleration” 
[7] “humidity” “odometer” “dummy.grade”
[10] “temperature” “eng.bar.press” “model.year”
[13] “oil.temperture”
Number of terminal nodes: 65 
Residual mean deviance: 0.1089 = 4265 / 39150
Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-2.335e+000 -1.783e-001 -1.233e-002 1.869e-016 1.691e-001 2.013e+000 

For model application purposes, it is desirable to select a final model specifi cation that 
balances the model’s ability to explain the maximum amount of deviation with a simpler model 
that is easy to interpret and apply.  Figure 11-16 indicates that reduction in deviation with addi­
tion of nodes after 4, although potentially statistically significant, is very small. A simplified 
tree model was derived which ends in 4 terminal nodes as compared to the 67 terminal nodes in 
the initial model. The residual mean deviation only increased from 4265 to 5698 and yielded a 
much more efficient model. Results are shown in Table 11-7 and Figure 11-17.  The CO cruise 
emission rate model will be based upon these results. 
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Figure 11-17 Trimmed Regression Tree Model for Truncated Transformed CO Emission Rate in 
Cruise Mode 

Table 11-7 Trimmed Regression Tree Results for Truncated Transformed CO Emission Rate in 
Cruise Mode 
Regression tree:
snip.tree(tree = tree(formula = log.CO ~ model.year + odometer + temperature +

baro + humidity + vehicle.speed + oil.temperture + oil.press +
cool.temperature + eng.bar.press + engine.power + acceleration +
bus360 + bus361 + bus363 + bus364 + bus372 + bus375 + bus377 + bus379 + 
bus380 + bus381 + bus382 + bus383 + bus384 + bus385 + dummy.grade,
data = busdata10242006.1.4, na.action = na.exclude, mincut = 400,
minsize = 800, mindev = 0.01), nodes = c(4., 6., 7., 5.))

Variables actually used in tree construction:
[1] “engine.power”

Number of terminal nodes: 4 

Residual mean deviance: 0.1453 = 5698 / 39210

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-2.679e+000 -2.065e-001 -7.150e-003 -4.942e-015 2.041e-001 2.452e+000 
node), split, n, deviance, yval

* denotes terminal node 

1) root 39218 8170.0 -1.944
2) engine.power<114.355 27187 4482.0 -2.076


4) engine.power<15.445 8414 1639.0 -2.321 *

5) engine.power>15.445 18773 2115.0 -1.967 *


3) engine.power>114.355 12031 2147.0 -1.646

6) engine.power<181.235 7220 1146.0 -1.753 *

7) engine.power>181.235 4811 797.8 -1.487 *
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This tree model suggested that engine power is the most important explanatory variable 
for CO emissions. This finding is consistent with NOx emissions. This tree will be used as refer­
ence for linear regression model development. 

11.2.1.3 HC HTBR Tree Model Development 

Figure 11-18 illustrates the initial tree model used for truncated transformed HC emis­
sion rate in cruise mode. Results for initial model are given in Table 11-8.  The tree grew into a 
complex model with a considerable number of branches and 61 terminal nodes. 

Figure 11-18 Original Untrimmed Regression Tree Model for Truncated Transformed HC Emis­
sion Rate in Cruise Mode 
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Table 11-8 Original Untrimmed Regression Tree Results for Truncated Transformed HC Emis­
sion Rate in Cruise Mode 
Regression tree:
tree(formula = HC.25 ~ model.year + odometer + temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature +
eng.bar.press + engine.power + acceleration + bus360 + bus361 + bus363 +
bus364 + bus372 + bus375 + bus377 + bus379 + bus380 + bus381 + bus382 + 
bus383 + bus384 + bus385 + dummy.grade, data = busdata10242006.1.4,
na.action = na.exclude, mincut = 400, minsize = 800, mindev = 0.01)

Variables actually used in tree construction:
[1] “bus363” “bus364” “engine.power”
[4] “oil.temperture” “odometer” “oil.press”
[7] “humidity” “cool.temperature” “bus381”
[10] “bus377” “baro” “temperature”
[13] “bus372” “vehicle.speed” “dummy.grade”
[16] “bus385”
Number of terminal nodes: 56 
Residual mean deviance: 0.0008147 = 30.93 / 37960
Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-1.862e-001 -1.595e-002 -3.021e-003 -1.297e-018 1.230e-002 2.886e-001 

Figure 11-18 and Table 11-8 suggest that the tree analysis of HC emission rates identi­
fied a number of buses that appear to exhibit significantly different emission rates under all load 
conditions than the other buses (i.e., some of the bus dummy variables appeared as signifi cant in 
the initial tree splits). Two bus dummy variables split the data pool at the first two levels of the 
HC tree model. This same result was noted for these buses in the acceleration mode. Although 
variability exists for three pollutants across 15 buses, the division was even more obvious for HC 
emissions (see Figure 11-4 and Table 11-2).  Although it is tempting to develop different emis­
sion rates for these buses to reduce emission rate deviation in the sample pool, it is diffi cult to 
justify doing so. Unless these is an obvious reason to classify these three buses as high emitters 
(i.e., significantly higher than normal emitting vehicles, perhaps by as much as a few standard 
deviations from the mean), and unless there are enough data to develop separate emission rate 
models for high emitters, one cannot justify removing the data from the data set. Until such 
data exist to justify treating these buses as high emitters, the bus dummy variables for individual 
buses are removed from the analyses and all 15 buses are treated as part of the whole data set. 

Another tree model was generated excluding the bus dummy variables. However, odom­
eter reading also had to be excluded because the previous “Bus 363<0.5” tree cutpoint was 
replaced by “odometer>282096” (i.e., was identically correlated to the same bus). This new tree 
model is illustrated in Figure 11-19 and Table 11-9.  The tree model is then trimmed for applica­
tion purposes, as was done for the NO  and CO models. x
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Figure 11-19 Trimmed Regression Tree Model for Truncated Transformed HC Emission Rate in 
Cruise Mode 

Table 11-9 Trimmed Regression Tree Results for Truncated Transformed HC Emission Rate in 
Cruise Mode 
Regression tree:
snip.tree(tree = tree(formula = HC.25 ~ temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature +
eng.bar.press + engine.power + acceleration + dummy.grade, data =
busdata10242006.1.4, na.action = na.exclude, mincut = 400, minsize =
800, mindev = 0.01), nodes = c(15., 28., 2., 29., 6.))

Variables actually used in tree construction:
[1] “baro” “engine.power” “oil.temperture”

Number of terminal nodes: 5 

Residual mean deviance: 0.001207 = 45.87 / 38020

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-1.328e-001 -2.037e-002 -3.530e-003 1.177e-015 1.609e-002 3.256e-001 
node), split, n, deviance, yval

* denotes terminal node

 1) root 38020 71.970 0.1876

2) baro<968.5 2957 2.349 0.1082 *

 3) baro>968.5 35063 49.420 0.1943


6) engine.power<12.645 6821 13.850 0.1750 *

7) engine.power>12.645 28242 32.420 0.1989

14) oil.temperture<192.1 26727 29.900 0.2005

28) baro<980.5 11265 9.610 0.1918 *


 29) baro>980.5 15462 18.820 0.2068 *

15) oil.temperture>192.1 1515 1.244 0.1706 * 
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The new tree model suggests that barometric pressure is the most important explanatory 
variable for HC emission rates. However, this finding is challenged by the fact that all the 2957 
data points in the first left hand branch of the tree (barometric pressure < 968.5) belong to Bus 
363. Although this dataset was collected under a wide variety of environmental conditions, the 
scope of barometric pressure was limited for individual buses tested. As reported earlier, Bus 
363 exhibited significantly lower HC emissions than the other buses (see Figure 11-4), but the 
reason is not clear at this time. To develop a reasonable tree model given the limited data col­
lected, the environmental parameters are excluded from the model until a greater distribution of 
environmental conditions can be represented in a test data set. With data collected from a more 
comprehensive testing program, environmental variables can be integrated into the model direct­
ly, or perhaps correction factors for the emission rates can be developed.  The secondary trimmed 
tree is presented in Figure 11-20 and Table 11-10. 

Figure 11-20 Secondary Trimmed Regression Tree Model for Truncated Transformed HC in 

Cruise Mode
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Table 11-10 Trimmed Regression Tree Results for Truncated Transformed HC in Cruise Mode 
Regression tree:
snip.tree(tree = tree(formula = HC.25 ~ engine.power + vehicle.speed +

acceleration + oil.temperture + oil.press + cool.temperature +
eng.bar.press, data = busdata10242006.1.4, na.action = na.exclude,
mincut = 400, minsize = 800, mindev = 0.01), nodes = c(6., 5., 7.,
4.))

Variables actually used in tree construction:
[1] “eng.bar.press” “oil.press” “engine.power”

Number of terminal nodes: 4 

Residual mean deviance: 0.00148 = 56.27 / 38020

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-1.310e-001 -2.290e-002 -2.164e-003 1.281e-015 1.942e-002 3.220e-001 
node), split, n, deviance, yval

* denotes terminal node 

1) root 38020 71.970 0.1876
2) eng.bar.press<99.9348 10827 24.640 0.1656
4) oil.press<345.25 4965 10.870 0.1400 *
5) oil.press>345.25 5862 7.754 0.1873 *

 3) eng.bar.press>99.9348 27193 40.010 0.1963
6) engine.power<13.975 5879 12.660 0.1786 *
7) engine.power>13.975 21314 24.990 0.2012 * 

The tree model excluding bus dummy variables, odometer readings, and environmental 
conditions is shown in Figure 11-20 and Table 11-11.  This final tree model suggests that engine 
power is the most important explanatory variable for HC emissions. This finding is consistent 
with analysis of NOx and CO emission rates. Although engine operating parameters such as oil 
pressure might impact emissions, such variables are not easy to implement in real-world models. 
After excluding engine barometric pressure and oil pressure from the tree model, leaving en­
gine power only, the residual mean deviation increased slightly from 56.27 to 65.56.    The final 
HTBR tree for HC emissions is shown in Figure 11-21 and Table 11-11.  HC cruise emission rate 
model will be developed based upon these results. 
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Figure 11-21 Final Regression Tree Model for Truncated Transformed HC and Engine Power in 
Cruise Mode 

Table 11-11 Final Regression Tree Results for Truncated Transformed HC and Engine Power in 
Cruise Mode 
Regression tree:
snip.tree(tree = tree(formula = HC.25 ~ engine.power, data =

busdata10242006.1.4, na.action = na.exclude, mincut = 400, minsize =
800, mindev = 0.01), nodes = c(11., 10., 3.))

Number of terminal nodes: 4 
Residual mean deviance: 0.001725 = 65.56 / 38020
Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-1.372e-001 -2.070e-002 -6.875e-004 1.742e-015 2.090e-002 3.309e-001 
node), split, n, deviance, yval

* denotes terminal node

 1) root 38020 71.970 0.1876
2) engine.power<15.335 8298 21.630 0.1666

4) engine.power<0.265 4617 9.741 0.1757 *

 5) engine.power>0.265 3681 11.020 0.1551

10) engine.power<7.875 1746 3.849 0.1390 *

 11) engine.power>7.875 1935 6.311 0.1697 *


 3) engine.power>15.335 29722 45.660 0.1934 *
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11.2.2 OLS Model Development and Refinement 

Once a manageable number of modal variables have been identified through regression 
tree analysis, the modeling process moves into the phase in which ordinary least squares tech­
niques are used to obtain a final model. The research objective here is to identify the extent to 
which the identified factors influence emission rate in cruise mode. Modelers rely on previous 
research, a priori knowledge, educated guesses, and stepwise regression procedures to identify 
acceptable functional forms, to determine important interactions, and to derive statistically and 
theoretically defensible models. The final model will be our best understanding about the func­
tional relationship between independent variables and dependent variables. 

11.2.2.1 NO x Emission Rate Model Development for Cruise Mode 

Based on previous analysis, truncated transformed NOx will serve as the independent 
variable. However, modelers should keep in mind that the comparisons should always be made 
on the original untransformed scale of Y when comparing the performance of statistical models.  
HTBR tree model results suggest that engine power is the best one to begin with. 

11.2.2.1.1 Linear Regression Model with Engine Power 

Let’s select engine power to begin with, and estimate the model: 

Y = β0 + β1(engine.power) + Error (1.1) 
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The regression run yields the results shown in Table 11-12 and Figure 11-22. 

Table 11-12 Regression Result for NO  Model 1.1 x
Call: lm(formula = NOx.50 ~ engine.power, data = busdata10242006.1.4, na.action =

na.exclude)

Residuals:


 Min 1Q Median 3Q Max 
-0.5717 -0.06302 0.006377 0.06653 1.259 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1815 0.0007 242.8528 0.0000 
engine.power 0.0018 0.0000 274.7573 0.0000 

Residual standard error: 0.09765 on 39372 degrees of freedom
Multiple R-Squared: 0.6572
F-statistic: 75490 on 1 and 39372 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

engine.power -0.7526 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

engine.power 1 719.8396 719.8396 75491.58 0
 Residuals 39372 375.4263 0.0095 

The results suggest that engine power explains about 66% of the variance in truncated 
transformed NOx. F-statistic shows that β1 ≠ 0, and the linear relationship is statistically signifi­
cant. To evaluate the model, residual normality is examined in the QQ plot and constancy of 
variance is checked by examining residuals vs. fi tted values. 
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Figure 11-22 QQ and Residual vs. Fitted Plot for NOx Model 1.1 

The residual plot in Figure 11-22 shows a departure from linear regression assumptions 
indicating a need to explore a curvilinear regression function. Since the variability at the differ­
ent X levels appears to be fairly constant, a transformation on X is considered. The reason to 
consider transformation first is to avoid multicollinearity brought about by adding the second-or­
der of X. Based on the prototype plot in Figure 11-22, the square root transformation and loga­
rithmic transformation are tested. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed to determine which transformation is most effective.  

Y = β0 + β1engine.power(1/2) + Error (1.2) 

Y = β0 + β1log10(engine.power+1) + Error (1.3) 

The result for Model 1.2 is shown in Table 11-13 and Figure 11-23, while the result for 
Model 1.3 is shown in Table 11-14 and Figure 11-24. 
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Table 11-13 Regression Result for NO  Model 1.2 x
Call: lm(formula = NOx.50 ~ engine.power^(1/2), data = busdata10242006.1.4,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 
-0.5007 -0.04881 -0.0008896 0.05047 1.22 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.0874 0.0008 104.1024 0.0000 
I(engine.power^(1/2)) 0.0311 0.0001 342.3056 0.0000 

Residual standard error: 0.08364 on 39372 degrees of freedom
Multiple R-Squared: 0.7485
F-statistic: 117200 on 1 and 39372 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

I(engine.power^(1/2)) -0.8649 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 819.8002 819.8002 117173.2 0
 Residuals 39372 275.4656 0.0070 

Figure 11-23 QQ and Residual vs. Fitted Plot for NO  Model 1.2 x
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Table 11-14 Regression Result for NO  Model 1.3 x
Call: lm(formula = NOx.50 ~ log10(engine.power + 1), data = busdata10242006.1.4,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 
-0.4047 -0.06677 -0.002155 0.06107 1.182 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.0306 0.0012 25.5525 0.0000 
log10(engine.power + 1) 0.1895 0.0007 279.4403 0.0000 

Residual standard error: 0.09656 on 39372 degrees of freedom
Multiple R-Squared: 0.6648
F-statistic: 78090 on 1 and 39372 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.9135 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 728.1347 728.1347 78086.87 0
 Residuals 39372 367.1311 0.0093 

Figure 11-24 QQ and Residual vs. Fitted Plot for NO  Model 1.3 x
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The results suggest that by using square root transformed engine power, the model in­
creases the amount of variance explained in truncated transformed NOx from about 66% (Model 
1.1) to about 75% (Model 1.2), while remaining about 66% (Model 1.3) by using log trans­
formed engine power. 

Model 1.2 improves the R2 more than does Model 1.3. The residuals scatter plot for 
Model 1.2 (Figure 11-23) shows a more reasonably linear relation than Model 1.3 (Figure 11-24). 
Figure 11-23 also shows that Model 1.2 does a better job in improving the pattern of variance.  
QQ plot shows a kind of normality except two tails. 

11.2.2.1.2 Linear Regression Model with Dummy Variables 

Figure 11-14 suggests that the relationship between NOx and engine power may be 
somewhat different across the engine power ranges identified in the tree analysis. That is, there 
may be higher or lower NOx emissions in different engine power operating ranges.  One dummy 
variable is created to represent different engine power ranges identified in Figure 11-14 for use in 
linear regression analysis as illustrated below: 

Engine power (bhp) Dummy1 
< 52.525 1 
≥ 52.525 0 

This dummy variable and the interaction between dummy variable and engine power are 
then tested to determine whether the use of the variables and interactions can help improve the 
model. 

Y = β0 + β1 engine.power(1/2) + β2 dummy1 + β3 dummy1engine.power(1/2) + Error (1.4) 

The result for Model 1.4 is shown in Table 11-15 and Figure 11-25. 
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Table 11-15 Regression Result for NO  Model 1.4 x
Call: lm(formula = NOx.50 ~ engine.power^(1/2) + dummy1 * engine.power^(1/2), data =

busdata10242006.1.4, na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 
-0.4812 -0.04778 0.0001059 0.04843 1.195 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1581 0.0024 65.9078 0.0000
 I(engine.power^(1/2)) 0.0254 0.0002 122.2468 0.0000

 dummy1 -0.0682 0.0026 -25.9438 0.0000 
I(engine.power^(1/2)):dummy1 0.0020 0.0003 6.1264 0.0000 

Residual standard error: 0.08224 on 39370 degrees of freedom
Multiple R-Squared: 0.7569
F-statistic: 40850 on 3 and 39370 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept) I(engine.power^(1/2)) dummy1

I(engine.power^(1/2)) -0.9742
dummy1 -0.9123 0.8888 

I(engine.power^(1/2)):dummy1 0.6175 -0.6339 -0.8171 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 819.8002 819.8002 121203.8 0.000000e+000
 dummy1 1 8.9202 8.9202 1318.8 0.000000e+000 

I(engine.power^(1/2)):dummy1 1 0.2539 0.2539 37.5 9.073785e-010
 Residuals 39370 266.2915 0.0068 
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Figure 11-25 QQ and Residual vs. Fitted Plot for NOx Model 1.4 

The results suggest that by using dummy variables and interactions with transformed en­
gine power, the model increases the amount of variance explained in truncated transformed NOx 
from about 75% (Model 1.2) to about 77% (Model 1.4). 

Model 1.4 slightly improves the R2 more than does Model 1.2. The residuals scatter plot 
for Model 1.4 (Figure 11-25) shows a slightly more reasonably linear relation.  Figure 11-25 
shows that Model 1.4 may also do a slightly better job in improving the pattern of variance. The 
QQ plot shows general normality with the exceptions arising in the tails. However, it is impor­
tant to note that the model improvement, in terms of amount of variance explained by the model, 
is marginal at best. 

11.2.2.1.3 Model Discussion 

Previous sections provide the model development process from one OLS model to an­
other OLS model. To test whether the linear regression with power was a benefi cial addition 
to the regression tree model, the mean ERs at HTBR end nodes (single value) are compared to 
the predictions from the linear regression function with engine power.  The results of the per­
formance evaluation are shown in Table 11-16.  The improvement in R2 associated with moving 
toward a linear function of engine power is tremendous. Hence, the use of the linear regression 
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

Mean ERs 0.00003 1.000 0.12008 -0.000006 
Linear regression (power) 0.529 0.814 0.08542 0.01031 
Linear regression (power^0.5) 0.614 0.975 0.07494 0.00707 
Linear regression (log(power)) 0.587 1.287 0.08043 0.00933 
Linear regression (power^0.5) w/dummy 
variables 0.627 1.011 0.07372 0.00704 

­

function will provide a significant improvement in spatial and temporal model prediction capa­
bility.  However this linear regression function might still be improved. Since the R2 and slope 
in Table 11-16 are derived by comparing model predictions and actual observations for emission 
rates (untransformed y), these numbers are different in linear regression models. 

Two transforms of engine power were tested: square root transformation and log trans­
formation. The results of the performance evaluation are shown in Table 11-16.  These results 
suggest that linear regression function with square root transformation performs slightly better. 

Given that the regression tree modeling exercise indicated that a number of power cut-
points may play a role in the emissions process, an additional modeling run was performed. The 
results of the performance evaluation are shown in Table 11-16.  Analysis results suggest that the 
linear regression function with dummy variable performs slightly better than the model without 
the power cutpoints. 

Table 11-16 Comparative Performance Evaluation of NOx Emission Rate Models 

Although the linear regression function with dummy variables performs slightly bet
ter than linear regression function with square root transformation, more explanatory variables 
(dummy variable and the interaction with engine power) are introduced and the complexity of 
the regression model increases. There is only one regression function for Model 1.2 while there 
are two regression functions for Model 1.4. There is also no obvious reason why the engine 
may be performing slightly differently within these power regimes, yielding different regression 
slopes and intercepts. The fuel injection systems in these engines may operate slightly different­
ly under low load (near-idle) and high load conditions.  The fuel injection system may be con­
trolled by the engine computer, or there may be a sufficient number of low power cruise opera­
tions and high power cruise operations that are incorrectly classified, and may be better classified 
as idle or acceleration events (perhaps due to GPS speed data errors). In any case, because the 
model with dummy variables does not perform appreciably better than the model without the 
dummy variables, the dummy variables are not included in the final model selection at this time. 
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These dummy variables are, however, worth exploring when additional data from other engine 
technology groups become available for analysis. Model 1.2 is selected as the preliminary ‘final’ 
model. 

The next step in model evaluation is to once again examine the residuals for the improved 
model. A principal objective was to verify that the statistical properties of the regression model 
conform to a set of properties of least squares estimators. In summary, these properties require 
that the error terms be normally distributed, have a mean of zero, and have uniform variance. 

Test for Constancy of Error Variance 

A plot of the residuals versus the fitted values is useful in identifying any patterns in the 
residuals. Figure 11-23 plot (b) shows this plot for NOx model 1.2. Without considering vari­
ance due to high emission points and zero load data, there is no obvious pattern in the residuals 
across the fi tted values. 

Test of Normality of Error terms 

The first informal test normally reserved for the test of normality of error terms is a quan­
tile-quantile plot of the residuals. Figure 11-23 plot (d) shows the normal quantile plot of NOx 
model 1.2. The second informal test is to compare actual frequencies of the residuals against 
expected frequencies under normality.  Under normality, we expect 68 percent of the residuals 
to fall between ±√MSE  and about 90 percent to fall between ± 1.645 √MSE. Actually, 81.79% 
of residuals fall within the first limits, while 94.05% of residuals to fall within the second limits. 
Thus the actual frequencies here are reasonably consistent with those expected under normality.  
The heavy tails at both ends are a cause for concern, but are due to the nature of the data set. For 
example, even after the transformation, the response variable is not a true normal distribution. 

Based on the above analysis, the fi nal NO x emission rate model selected for cruise mode is: 

NOx = (0.087 + 0.0311(engine.power)(1/2))2 

Analysis results support the observation that the fi nal NO x emission model is significantly 
better at explaining variability without making the model too complex. Since there is only one 
engine type, complexity may not be valid in terms of transferability.  This model is specific to the 
engine classes employed in the transit bus operations. Different models may need to be devel­
oped for other engine classes and duty cycles. 
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11.2.2.2 CO Emission Rate Model Development for Cruise Mode 

Based on previous analysis, truncated transformed CO will serve as the independent 
variable. However, modelers should keep in mind that the comparisons should always be made 
on the original untransformed scale of Y when comparing statistical models.  HTBR tree model 
results suggest that engine power is the best one to begin with. 

11.2.2.2.1 Linear Regression Model with Engine Power 

Let’s select engine power to begin with, and estimate the model: 

Y = β0 + β1engine.power + Error (2.1) 

The regression run yields the results shown in Table 11-17 and Figure 11-26. 

Table 11-17 Regression Result for CO Model 2.1 
Call: lm(formula = log.CO ~ engine.power, data = busdata10242006.1.4, na.action =
na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-2.779 -0.2088 -0.01417 0.2153 2.376 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -2.2230 0.0030 -751.4277 0.0000 
engine.power 0.0033 0.0000 125.1304 0.0000 

Residual standard error: 0.3859 on 39216 degrees of freedom
Multiple R-Squared: 0.2853
F-statistic: 15660 on 1 and 39216 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

engine.power -0.7525 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

engine.power 1 2331.251 2331.251 15657.62 0
 Residuals 39216 5838.839 0.149 

These results suggest that engine power explains about 29% of the variance in truncated 
transformed CO. F-statistic shows that β1 ≠ 0, and the linear relationship is statistically signifi­
cant. To evaluate the model, the normality is examined in the QQ plot and constancy of variance 
is checked by examining residuals vs. fi tted values. 
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Figure 11-26 QQ and Residual vs. Fitted Plot for CO Model 2.1 

Although the residual plot in Figure 11-26 shows a linear relationship between engine 
power and truncated transformed CO, square root transformation and logarithmic transformation 
are tested to see whether transformation would be useful to improve the model. Scatter plots 
and residual plots based on each transformation should then be prepared and analyzed to decide 
which transformation is most effective. 

Y  = β0 + β1engine.power(1/2) + Error (2.2) 

Y = β0 + β1log10(engine.power+1) + Error (2.3) 

The results for Model 2.2 are shown in Table 11-18 and Figure 11-27, while the results 
for Model 2.3 are shown in Table 11-19 and Figure 11-28. 
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Table 11-18 Regression Result for CO Model 2.2 
Call: lm(formula = log.CO ~ engine.power^(1/2), data = busdata10242006.1.4,

na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-2.679 -0.2124 -0.01769 0.2178 2.319 

Coefficients:

 (Intercept)
I(engine.power^(1/2)) 

Value Std. Error 
-2.3645 0.0039 
0.0526 0.0004 

t value 
-610.0636 
125.3638 

Pr(>|t|)
0.0000 
0.0000 

Residual standard error: 0.3857 on 39216 degrees of freedom
Multiple R-Squared: 0.2861
F-statistic: 15720 on 1 and 39216 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

I(engine.power^(1/2)) -0.8646 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 2337.466 2337.466 15716.09 0
 Residuals 39216 5832.624 0.149 

Figure 11-27 QQ and Residual vs. Fitted Plot for CO Model 2.2 
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Table 11-19 Regression Result for CO Model 2.3 
Call: lm(formula = log.CO ~ log10(engine.power + 1), data = busdata10242006.1.4,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-2.636 -0.2225 -0.0167 0.2193 2.308


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -2.4326 0.0050 -489.4690 0.0000 
log10(engine.power + 1) 0.3031 0.0028 107.5567 0.0000 

Residual standard error: 0.4011 on 39216 degrees of freedom
Multiple R-Squared: 0.2278
F-statistic: 11570 on 1 and 39216 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.9132 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 1861.106 1861.106 11568.45 0
 Residuals 39216 6308.983 0.161 

Figure 11-28 QQ and Residual vs. Fitted Plot for CO Model 2.3 
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The results suggest that by using transformed engine power, the model retains the amount 
of variance explained in truncated transformed CO at about 29% (Model 2.2), and even decreas­
es to 23% (Model 2.3). 

Considering two kinds of transformation, Model 2.2 improves the R2 more than does Model 
2.3. The residuals scatter plot for Model 2.2 (Figure 11-27) shows a more reasonably linear re­
lationship than Model 2.3 (Figure 11-28).  Figure 11-27 also shows that Model 2.2 does a better 
job of improving the pattern of variance comparing with Model 2.3. The QQ plot shows a kind of 
normality except for the two tails. Model 2.1 and Model 2.2 are both acceptable at this point. 

11.2.2.2.2 Linear Regression Model with Dummy Variables 

Figure 11-17 suggests that the relationship between CO and engine power may be some­
what different across the engine power ranges identified in the tree analysis. That is, there may 
be higher or lower CO emissions in different engine power operating ranges.  One dummy vari­
able is created to represent different engine power ranges identified in Figure 11-17 for use in 
linear regression analysis as illustrated below: 

Engine power (bhp) Dummy1 
<114.355 1 
≥114.355 0 

This dummy variable and the interaction between dummy variable and engine power are 
then tested to determine whether the use of the variable and interactions can help improve the 
model. 

Y = β0 + β1 engine.power(1/2) + β2 dummy1 + β3 dummy1 engine.power(1/2) + Error (2.4) 

The regression yields the results shown in Table 11-20 and Figure 11-29. 
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Table 11-20 Regression Result for CO Model 2.4 
*** Linear Model *** 

Call: lm(formula = log.CO ~ engine.power^(1/2) + dummy1 * engine.power^(1/2), data =
busdata10242006.1.4, na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-2.714 -0.2081 -0.01473 0.2136 2.37 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -2.6690 0.0250 -106.5896 0.0000
 I(engine.power^(1/2)) 0.0772 0.0019 41.2399 0.0000

 dummy1 0.3472 0.0254 13.6516 0.0000 
I(engine.power^(1/2)):dummy1 -0.0338 0.0020 -17.0016 0.0000 

Residual standard error: 0.3836 on 39214 degrees of freedom
Multiple R-Squared: 0.2936
F-statistic: 5432 on 3 and 39214 degrees of freedom, the p-value is 0 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 2337.466 2337.466 15881.03 0
 dummy1 1 18.325 18.325 124.50 0 

I(engine.power^(1/2)):dummy1 1 42.545 42.545 289.05 0
 Residuals 39214 5771.754 0.147 

Figure 11-29 QQ and Residual vs. Fitted Plot for CO Model 2.4 
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

Mean ERs 0.000005 1.000 0.047559 0.0000002 
Linear regression (power) 0.0880 1.422 0.04622 0.00749 
Linear regression (power0.5) 0.0899 1.984 0.04662 0.00804 
Linear regression (log(power)) 0.0659 2.560 0.04736 0.00866 
Linear regression (power0.5) w/dummy variables 0.0915 1.657 0.04634 0.00777 

Model 2.4 improves R2 only marginally and retains the amount of variance explained in 
truncated transformed CO at about 29%, same as Model 2.1 and Model 2.2. Model 2.4 slightly 
improves R2 more than does Model 2.2. The residuals scatter plot for Model 2.4 (Figure 11-29) 
shows a reasonably linear relationship. Figure 11-29 also shows that Model 2.4 does a good job 
of improving the pattern of variance. QQ plot shows general normality with the exceptions aris­
ing in the tails. These three models (Model 2.1, Model 2.2, and Model 2.4) are all acceptable. 

11.2.2.2.3 Model Discussion 

The previous sections outline the model development process from a regression tree 
model, to a simple OLS model, to more complex OLS models. Since the performance of the 
models is evaluated by comparing model predictions and actual observations for emission rates, 
the R2 and slope are different from those in previous linear regression models.  The results of 
each step in the model improvement process are presented in Table 11-21.  The mean emission 
rates at HTBR end nodes (single value) are compared to the results of various linear regression 
functions with engine power.  Since the R2 and slope in Table 11-21 are derived by comparing 
model predictions and actual observations for emission rates (untransformed y), these numbers 
are different from those encountered in linear regression models. 

Table 11-21 Comparative Performance Evaluation of CO Emission Rate Models 

The improvement in R2 associated with moving toward a linear function of engine power 
is significant. Hence, the use of the linear regression function will provide a signifi cant improve­
ment in spatial and temporal model prediction capability.  However, this linear regression func­
tion might still be improved. 

Results suggest that a linear regression function with square root transformation performs 
slightly better than the others and that the use of dummy variables can further improve model 
performance. However, given the marginal improvement in R2, one could argue that use of the 
engine power may be just as reasonable considering the slope, RMSE, and MPE. Although the 
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linear regression function with dummy variables performs slightly better than other linear re­
gression models, more explanatory variables (dummy variables and the interaction with engine 
power) are introduced and the complexity of regression model increases. As discussed in Section 
11.2.2.1, there is no compelling reason to include the dummy variables in the model, given that:  
1) the second model is more complex without significantly improving model performance, and 2) 
there is no compelling engineering reason at this time to support the difference in model perfor­
mance within these specific power regions. These dummy variables are, however, worth explor­
ing when additional data from other engine technology groups become available for analysis. 

Considering all four parameters together, Model 2.1 is recommended as the preliminary 
‘final’ model.  The next step in model evaluation is to once again examine the residuals for the 
improved model. A principal objective was to verify that the statistical properties of the regres­
sion model conform to a set of properties of least squares estimators. In summary, these proper­
ties require that the error terms be normally distributed, have a mean of zero, and have uniform 
variance. 

Test for Constancy of Error Variance 

A plot of the residuals versus the fitted values is useful in identifying patterns in the 
residuals. Figure 11-26 plot (b) shows this plot for CO Model 2.1.  Without considering variance 
due to high emission points and zero load data, there is no obvious pattern in the residuals across 
the fitted values. 

Test of Normality of Error Terms 

The first informal test normally reserved for the test of normality of error terms is a 
quantile-quantile plot of the residuals. Figure 11-26 plot (c) shows the normal quantile plot of 
CO model 2.1. The second informal test is to compare actual frequencies of the residuals against 
expected frequencies under normality.  Under normality, we expect 68 percent of the residuals 
to fall between ± √MSE and about 90 percent to fall between ± 1.645 √MSE. Actually, 95.20% 
of residuals fall within the first limits, while 96.97% of residuals fall within the second limits. 
Thus the actual frequencies here are reasonably consistent with those expected under normality.  
The heavy tails at both ends are a cause for concern, but these tails are due to the nature of the 
data set. For example, even after the transformation, the response variable is not the real normal 
distribution. 

Based on the above analysis, the final CO emission rate model for the cruise mode is: 

CO = 10(-2.223+0.0033engine.power) 
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11.2.2.3 HC Emission Rate Model Development for Cruise Mode 

Based on previous analysis, truncated transformed HC will serve as the independent 
variable. However, modelers should keep in mind that the comparisons should always be made 
on the original untransformed scale of Y when comparing statistical models.  Previous analysis 
results suggest that engine power is the best one to begin with. 

11.2.2.3.1 Linear Regression Model with Engine Power 

Let’s select engine power to begin with, and estimate the model: 

Y = β0 + β1engine.power + Error (3.1) 

The regression run shows the results in Table 11-22 and Figure 11-30. 

Table 11-22 Regression Result for HC Model 3.1 
Call: lm(formula = HC.25 ~ engine.power, data = busdata10242006.1.4, na.action =

na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.123 -0.0212 0.00002295 0.02228 0.3279


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1769 0.0003 537.0480 0.0000 
engine.power 0.0001 0.0000 43.0656 0.0000 

Residual standard error: 0.04248 on 38018 degrees of freedom
Multiple R-Squared: 0.04651
F-statistic: 1855 on 1 and 38018 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

engine.power -0.7501 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

engine.power 1 3.34748 3.347484 1854.647 0
 Residuals 38018 68.61934 0.001805 

The results suggest that engine power explains about 5% of the variance in truncated 
transformed HC. F-statistic shows that β1≠0, and the linear relationship is statistically signifi­
cant. To evaluate the model, the normality is examined in the QQ plot and constancy of variance 
is checked by examining residuals vs. fi tted values. 
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Figure 11-30 QQ and Residual vs. Fitted Plot for HC Model 3.1 

The residual plot in Figure 11-30 shows a slight departure from linear regression assump­
tions indicating a need to explore a curvilinear regression function. Since the variability at the 
different X levels appears to be fairly constant, a transformation on X is considered.  The reason 
to consider transformation first is to avoid multicollinearity brought about by adding the second-
order of X. Based on the prototype plot in Figure 11-30, the square root transformation and loga­
rithmic transformation are tested. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed to determine which transformation is most effective.  

Y = β0 + β1engine.power(1/2) + Error (3.2) 

Y = β0 + β1log10(engine.power+1) + Error (3.3) 

The results for Model 3.2 are shown in Table 11-23 and Figure 11-31, while the results 
for Model 3.3 are shown in Table 11-24 and Figure 11-32. 
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Table 11-23 Regression Result for HC Model 3.2 
Call: lm(formula = HC.25 ~ engine.power^(1/2), data = busdata10242006.1.4, na.action

= na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.1233 -0.02113 -0.0002419 0.02195 0.3266 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1700 0.0004 396.7451 0.0000 
I(engine.power^(1/2)) 0.0022 0.0000 47.6385 0.0000 

Residual standard error: 0.04227 on 38018 degrees of freedom
Multiple R-Squared: 0.05633
F-statistic: 2269 on 1 and 38018 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

I(engine.power^(1/2)) -0.8625 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 4.05395 4.053948 2269.422 0
 Residuals 38018 67.91288 0.001786 

Figure 11-31 QQ and Residual vs. Fitted Plot for HC Model 3.2 
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Table 11-24 Regression Result for HC Model 3.3 
Call: lm(formula = HC.25 ~ log10(engine.power + 1), data = busdata10242006.1.4,

na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.127 -0.02073 -0.0003198 0.02203 0.3226 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1653 0.0005 313.2136 0.0000 
log10(engine.power + 1) 0.0139 0.0003 46.4046 0.0000 

Residual standard error: 0.04233 on 38018 degrees of freedom
Multiple R-Squared: 0.05361
F-statistic: 2153 on 1 and 38018 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.9114 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 3.85779 3.857786 2153.39 0
 Residuals 38018 68.10904 0.001791 

Figure 11-32 QQ and Residual vs. Fitted Plot for HC Model 3.3 
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The results suggest that by using transformed engine power, the model retains the amount 
of variance explained in truncated transformed HC at about 5% (Model 2.2 and Model 2.3). The 
improvement is very small. 

Model 3.2 improves R2 relative to Model 3.3. The scatter plot for Model 3.2 (Figure 
11-31) also shows a better linear relationship than Model 3.3 (Figure 11-32).  Figure 11-31 also 
shows that Model 3.2 does a good job of improving the pattern of variance. The QQ plot shows 
general normality with the exceptions arising in the tails. 

11.2.2.3.2 Linear Regression Model with Dummy Variables 

Figure 11-21 suggests that the relationship between HC and engine power may differ 
across the engine power ranges. One dummy variable is created to represent different engine 
power ranges identified in Figure 11-21 for use in linear regression analysis as illustrated below: 

Engine power (bhp) Dummy1 

< 15.335 1 

≥ 15.335 0 

This dummy variable and the interaction between dummy variable and engine power 
are then tested to determine whether the use of the variable and interaction can help improve the 
model. 

Y = β0 + β1 log10(engine.power+1) + β2 dummy1 + β3 dummy1 log10(engine.power+1) + Error (3.4) 

The regression run shows the results in Table 11-25 and Figure 11-33. 
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Table 11-25 Regression Result for HC Model 3.4 
Call: lm(formula = HC.25 ~ log10(engine.power + 1) + dummy1 * log10(engine.power +

1), data = busdata10242006.1.4, na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.1292 -0.0209 -0.0007262 0.02123 0.3423


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1695 0.0015 109.7632 0.0000
 log10(engine.power + 1) 0.0124 0.0008 15.7058 0.0000

 dummy1 0.0022 0.0017 1.3388 0.1807 
dummy1:log10(engine.power + 1) -0.0249 0.0012 -20.1153 0.0000 

Residual standard error: 0.04184 on 38016 degrees of freedom
Multiple R-Squared: 0.07514
F-statistic: 1030 on 3 and 38016 degrees of freedom, the p-value is 0 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 3.85779 3.857786 2203.411 0
 dummy1 1 0.84128 0.841276 480.503 0 

dummy1:log10(engine.power + 1) 1 0.70843 0.708425 404.624 0
 Residuals 38016 66.55934 0.001751 

Figure 11-33 QQ and Residual vs. Fitted Plot for HC Model 3.4 
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

Mean ERs 0.00002 1.000 0.0020519 0.0000003 
Linear regression (power) 0.00766 0.886 0.0020984 0.00047397 
Linear regression (power0.5) 0.00912 0.724 0.0020845 0.00040936 
Linear regression (log(power)) 0.00950 0.820 0.0020831 0.00040857 
Linear regression (log(power)) w/dummy variables 0.00939 -1.142 0.0022933 0.00097449 

The results suggest that by using dummy variables and interactions with transformed en­
gine power, the model only increases the amount of variance explained in truncated transformed 
HC from about 5% to about 8%. 

Model 3.4 slightly improved R2 relative to Model 3.2. The F-statistic shows that all β 

values are not equal to zero, and the linear relationship is statistically significant. The gap in the 
residuals plot may be shifted regarding the intercept and slope by the difference of two regres­
sion functions. 

11.2.2.3.3 Model Discussion 

The previous sections outline the model development process from regression tree model, 
to a simple OLS model, to more complex OLS models. Since the performance of the models 
is evaluated by comparing model predictions and actual observations for emission rates, the 
R2 and slope are different from those in previous linear regression models.  To test whether the 
linear regression with power was a beneficial addition to the regression tree model, the mean 
ERs at HTBR end nodes (single value) are compared to the predictions from the linear regres­
sion function with engine power.  The results of the performance evaluation are shown in Table 
11-26.  The improvement in R2 associated with moving toward a linear function of engine power 
is nearly imperceptible. Hence, the use of the linear regression function will provide almost no 
significant improvement in spatial and temporal model prediction capability.  This linear regres­
sion function might still be improved. Since the R2 and slope in Table 11-26 are derived by 
comparing model predictions and actual observations for emission rates (untransformed y), these 
numbers are different from the results obtained from linear regression models. 

Table 11-26 Comparative Performance Evaluation of HC Emission Rate Models 

Results suggest that the linear regression function with log transformation performs 
slightly better than the others and that the use of dummy variables can further improve model 
performance, but again there is almost no perceptible change in terms of explained variance. 
Although the linear regression function with log transformation and dummy variables performs 
slightly better than the linear regression function with square root transformation alone, the 

11-49 



revised model introduces additional explanatory variables (dummy variables and the interaction 
with engine power) and increases the complexity of the regression model without significantly 
improving the model. As discussed in Section 11.2.2.1, there is no compelling reason to include 
the dummy variables in the model, given that: 1) the second model is more complex without sig­
nificantly improving model performance, and 2) there is no compelling engineering reason at this 
time to support the difference in model performance within these specific power regions. These 
dummy variables are, however, worth exploring when additional data from other engine technol­
ogy groups become available for analysis. 

Model 3.2 is recommended as the preliminary “final” model (although one might argue 
that using the regression tree results directly would also probably be acceptable). The next step 
in model evaluation is to once again examine the residuals for the improved model. A principal 
objective was to verify that the statistical properties of the regression model conform ta a set of 
properties of least squares estimators. In summary, these properties require that the error terms 
be normally distributed, have a mean of zero, and have uniform variance. 

Test for Constancy of Error Variance 

A plot of the residuals versus the fitted values is useful in identifying any patterns in the 
residuals. Figure 11-31 plot (c) shows this plot for HC Model 3.2.  Without considering variance 
due to high emission points and zero load data, there is no obvious pattern in the residuals across 
the fitted values. 

Test of Normality of Error terms 

The first informal test normally reserved for the test of normality of error terms is a 
quantile-quantile plot of the residuals. Figure 11-31 plot (d) shows the normal quantile plot of 
the HC model. The second informal test is to compare actual frequencies of the residuals against 
expected frequencies under normality.  Under normality, we expect 68 percent of the residuals 
to fall between ±√MSE and about 90 percent to fall between ± 1.645 √MSE. Actually, 95.20% 
of residuals fall within the first limits, while 96.99% of residuals fall within the second limits. 
Thus, the actual frequencies here are reasonably consistent with those expected under normality. 
The heavy tails at both ends are a cause for concern, but are due to the nature of the data set. For 
example, even after the transformation, the response variable is not the real normal distribution. 

The final HC emission rate model selected for cruise mode is: 

HC = [0.170 + 0.0022(engine.power)(1/2)]4 
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11.3  Conclusions and Further Considerations 

In this research, engine power is used as the main explanatory variable to develop cruise 
emission rate models. The explanatory ability of engine power varies by pollutant. In general, 
the relationship between NOx and engine power is more highly correlated than the other two pol­
lutants. 

Inter-bus variability analysis indicated that some of the 15 buses are higher emitters that 
others (especially noted for HC emissions). However, none of the buses appear to qualify as 
traditional high-emitters, which would exhibit emission rates of two to three standard devia­
tions above the mean. Hence, it is difficult to classify any of these 15 buses as high emitters 
for modeling purposes. At this point, these 15 buses are treated as a whole data set for model 
development. Modelers should keep in mind that although no true high-emitters are present in 
the database, such vehicles may behave significantly differently than the vehicles tested.  Hence, 
data from high-emitting vehicles should be collected and examined in future studies. 

Some high HC emissions events are noted in cruise mode. After screening engine speed, 
engine power, engine oil temperature, engine oil pressure, engine coolant temperature, ECM 
pressure, and other parameters, no variables were identified that could be linked to these high 
emissions events. These events may represent natural variability in onroad emissions, or some 
other variable (such as grade or an engine variable that is not measured) may be linked to these 
events. 

Engine power is selected as the most important variable for three pollutants based on 
HTBR tree models. This finding is consistent with previous research results which verifi ed the 
important role of engine power (Ramamurthy et al. 1998; Clark et al. 2002; Barth et al. 2004). 
The noted HC relationship is significant but fairly weak. Analysis in previous chapters also indi­
cates that engine power is correlated with not only onroad load parameters such as vehicle speed, 
acceleration, and grade, but also potentially correlated with engine operating parameters such 
as throttle position and engine oil pressure. On the other hand, engine power in this research is 
derived from engine speed, engine torque and percent engine load. 

The regression tree models still suggest that some other variables, like oil pressure and 
engine barometric pressure, may also impact the HC emissions. Further analysis demonstrates 
that by using engine power alone one might be able to achieve similar explanatory ability as 
opposed to using engine power and other variables. To develop models that are effi cient and 
easy to implement, only engine power is used to develop emission models. However, additional 
investigation into these variables is warranted as additional detailed data from engine testing 
become available for analysis. 
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Given the relationships noted between engine indicated HP and emission rates, it is 
imperative that data be collected to develop solid relationships in engine power demand models 
(estimating power demand as a function of speed/acceleration, grade, vehicle characteristics, 
surface roughness, inertial losses, etc.) for use in regional inventory development and microscale 
impact assessment. 

In summary, the cruise emission rate models selected for implementation are: 

NOx = [0.0087+0.0311 (engine.power)(1/2)]2 

CO = 10^(-2.223+0.0033engine.power) 

HC = [0.170+0.0022 (engine.power)(1/2)]4 
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CHAPTER 12 

12. MODEL VERIFICATION 

In the previous chapters, three statistically-derived modal emission rate models were de­
veloped for use in predicting emissions of NOx, CO and HC from transit buses. This chapter dis­
cusses the reasons for using engine power instead of surrogate power variables in emission rate 
modeling, the necessity of developing a linear regression model rather than using mean emission 
rates, the need to introduce driving mode with load modeling, the possibility of combining ac­
celeration and cruise modes, and other issues. 

12.1 Engine Power vs. Surrogate Power Variables 

The first step towards verifying the model is to compare the explanatory power of real 
load data and surrogate power variables. Different approaches have been proposed by several re­
searchers. The MOVES model employs vehicle specific power (VSP), defined as instantaneous 
power per unit mass of the vehicle (Jimenez-Palacios 1999). 

VSP is a measure of the road load on a vehicle, defined as the power per unit mass to 
overcome road grade, rolling and aerodynamic resistance, and inertial acceleration (Jimenez-
Palacios 1999; U.S. EPA 2002b; Nam 2003; Younglove et al. 2005): 

v *( *(1 + γ ) + g * grade + g *CR ) + 0.5 ρ *CD * A* v3 / mVSP = a 
where: 

v: vehicle speed (assuming no headwind) in m/s 
a: vehicle acceleration in m/s2

γ: mass factor accounting for the rotational masses (~0.1)

g: acceleration due to gravity

grade: road grade


 CR: rolling resistance (~0.0135)

ρ: air density (1.2)


 CD: aerodynamic drag coefficient 
A: the frontal area 
M: vehicle mass in metric tons 
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Using typical values for coefficients, in SI units the equation becomes (CDA/m ~ 0.0005) 
(Younglove et al. 2005): 

( / metricTon ) V (1.1 a 9.81× (%) + 0.132) + 0.001208 × v3VSP kW = ×  × +  grade 

The VSP approach to emission characterization was developed by several researchers 
(Jimenez-Palacios 1999; U.S. EPA 2002b; Nam 2003; Younglove et al. 2005) and further devel­
oped as part of the MOVES model. The coefficients used to estimate VSP were different in pre­
vious research because of the choice of typical values of coefficients. However, the coefficients 
given in the above equation are specific for light-duty vehicles. For example, a mass factor of 
0.1 is not suitable to describe the transit bus characteristics of inertial loss. This surrogate power 
variable (VSP) is not suitable to compare with engine load data for this study.  First, the imple­
mentation approach that is used in MOVES is based upon VSP bins, and not on instantaneous 
VSP.  Second, the coefficients given in the above equation are specific for light-duty vehicles, not 
for transit buses. 

Other research efforts have used surrogate power variables such as the inertial power sur­
rogate, defined as acceleration times velocity, and drag power surrogate, defined as acceleration 
times velocity squared (Fomunung 2000). Barth and Frey also used acceleration times velocity 
for power demand estimation (Barth and Norbeck 1997; Frey et al. 2002). Both surrogate vari­
ables for power demand can be used to compare NOx in cruise mode. Using surrogate variables 
instead of real load data, the model is: 

Y = β0 + β1 acceleration + β2 vehicle.speed + β3 vehicle.speed*acceleration + 
β4 vehicle.speed2*acceleration + Error 

(1) 

The regression run shows the results in Table 12-1 and Figure 12-1. 
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Table 12-1 Regression Result for NOx Model 1 
Call: lm(formula = NOx.50 ~ vehicle.speed * acceleration + vehicle.speed^2:

acceleration, data = busdata10242006.1.4, na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.4779 -0.08625 0.001824 0.08759 1.338 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1996 0.0018 113.0559 0.0000
 vehicle.speed 0.0043 0.0001 77.4369 0.0000
 acceleration 0.0738 0.0052 14.2957 0.0000

 vehicle.speed:acceleration 0.0066 0.0004 15.5704 0.0000 
acceleration:I(vehicle.speed^2) -0.0001 0.0000 -13.7590 0.0000 

Residual standard error: 0.1323 on 39369 degrees of freedom
Multiple R-Squared: 0.3708
F-statistic: 5801 on 4 and 39369 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept) vehicle.speed acceleration

vehicle.speed -0.9243
acceleration 0.0796 -0.0590 

vehicle.speed:acceleration -0.0825 0.0569 -0.9114 
acceleration:I(vehicle.speed^2) 0.0782 -0.0593 0.7978 

vehicle.speed:acceleration
vehicle.speed
acceleration 

vehicle.speed:acceleration
acceleration:I(vehicle.speed^2) -0.9678 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

vehicle.speed 1 122.5215 122.5215 6999.67 0
 acceleration 1 278.9165 278.9165 15934.55 0

 vehicle.speed:acceleration 1 1.4036 1.4036 80.19 0 
acceleration:I(vehicle.speed^2) 1 3.3136 3.3136 189.31 0

 Residuals 39369 689.1106 0.0175 
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Figure 12-1 QQ and Residual vs. Fitted Plot for NOx Model 1 

The results suggest that the surrogate variable model can explain about 37 % of the vari­
ance in truncated transformed NOx, whereas the OLS model developed in Chapter 10 explained 
more than 75% of the cruise mode variance. Considering the theoretical equation of engine 
power presented much earlier in Chapter 3, the surrogate variables can only represent some, and 
not all, of the components of engine power.  Given the importance of engine power in explaining 
the variability of emissions, it is essential that field data collection efforts include the measure­
ment of indicated load data as well as all of the operating conditions necessary to estimate bhp 
load when second-by-second emission rate data are collected. 

12.2 Mean Emission Rates vs. Linear Regression Model 

The modeling approach employed in this research involved the separation of data into 
separate driving modes for analysis and then applying modeling techniques to derive emission 
rates as a function of engine load. Although constant emission rates in grams/second were ad­
equate for idle, motoring, and non-motoring deceleration modes, modeling efforts in Chapters 10 
and 11 demonstrated that a linear regression function should improve spatial and temporal model 
prediction capability significantly for acceleration and cruise modes. However, one verification 
comparison that should be undertaken is on the overall benefit of introducing engine load into the 
modeling regime vs. simply using average emission rate values for each operating mode. This 
comparison will provide insight into the overall effect of introducing engine load (even though it 
is only introduced into acceleration and cruise modes). 

There are a number of model goodness-of-fit criteria that can be used to assess the dif­
ference between the emissions predicted by the load-based modal emission rate model and the 
mode-only emission rate models. Normally, one would compare the alternative model perfor­
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mance for an independent set of data collected from similar vehicles, which is currently not 
available. Alternatively, model developers would set aside a significant subset of the data in the 
model development data set so that the data are not used in model development and instead used 
in model comparisons. However, there were not enough data available to do this.  Hence, at this 
time, the only comparisons that can be made are for alternative model performance using the 
same data that were used to develop the models presented in this research effort. 

The performance of the models is first evaluated by comparing model predictions and ac­
tual observations for emission rates. The performance of the model can be evaluated in terms of 
precision and accuracy (Neter et al. 1996). The R2 value is an indication of precision. Usually, 
higher R2 values imply a higher degree of precision and less unexplained variability in model 
predictions than lower R2 values. The slope of the trend line for the observed versus predicted 
values is an indication of accuracy.  A slope of one indicates an accurate prediction, in that the 
prediction of the model corresponds to an observation. 

The model’s predictive ability is also evaluated using the root mean square error (RMSE) 
and the mean prediction error (MPE) (Neter et al. 1996). The RMSE is a measure of prediction 
error.  When comparing two models, the model with a smaller RMSE is a better predictor of 
the observed phenomenon. Ideally, mean prediction error is close to zero.  RMSE and MPE are 
calculated as follows: 

RMSE = 
1 ∑ 

n 

( yi − y �i )
2   Equation (12-1)

n i=1 

MPE = 
1 ∑ 

n 

( yi − y � i ) 
       Equation (12-2) 

n i=1 

where:

RMSE: = root mean square error

n: = number of observations

 yi: = observaton y 
ȳ i: = mean of observation y 
MPE: = mean predictive error 

To test whether the linear regression with power was a beneficial addition to the regres­
sion tree model, the mean ERs at HTBR end nodes (single value) are compared to the predictions 
from the linear regression function with engine power.  The results of the performance evaluation 
are shown in Table 12-2.  
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

NO x 
Mean ERs 0.438 1.000 0.08725 0.000002 
Linear Regression 0.665 1.102 0.07122 0.021463 
CO 
Mean ERs 0.248 1.000 0.07406 -0.000004 
Linear Regression 0.491 1.749 0.06691 0.010285 
HC 
Mean ERs 0.0686 1.000 0.00190 0.0000005 
Linear Regression 0.0677 1.213 0.00192 0.000223 

Table 12-2 Comparative Performance Evaluation between Mode-Only Models and Linear Re­
gression Models 

For NOx and CO, the R2 values indicate that load based modal emission model performs 
slightly better than mean emission rates and the use of linear regression function can further im­
prove model performance. The results shown in Table 12-2 reinforce the importance of introduc­
ing linear regression functions in acceleration and cruise mode. For HC, there is no discernible 
difference in model performance.  Combining this finding with the performance results for HC 
noted in Chapters 8 through 11, using constant emission rates for each operating mode could be 
justified for this data set. When additional data are collected, researchers should compare mean 
emission rates approaches to power-based approaches to ensure that power demand models for 
HC are necessary. 

12.3 	Mode-specific Load Based Modal Emission Rate Model vs. Emission Rate Models as a 
Function of Engine Load 

Modal modeling approaches are becoming widely accepted as more accurate in making 
realistic estimates of mobile source contributions to local and regional air quality.  Research at 
Georgia Tech has clearly identified that modal operation is a better indicator of emission rates 
than average speed (Bachman 1998). The analysis of emissions with respect to driving modes, 
also referred to as modal emissions, has been performed in recent research studies (Barth et al. 
1996; Bachman 1998; Fomunung et al. 1999; Frey et al. 2002; Nam 2003; Barth et al. 2004). 
These studies indicated that driving modes might have the ability to explain a certain portion of 
the variability in emissions data. In Chapters 10 and 11, emission rates were derived as a func­
tion of driving mode (cruise, idle, acceleration, and deceleration operations) and engine power 
because previous research efforts had separately suggested that vehicle emission rates were 
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highly correlated with modal activity and engine power.  In this research, five driving modes are 
introduced in total: idle mode, deceleration motoring mode, revised deceleration mode, accelera­
tion mode, and cruise mode. 

Chapters 10 and 11 did not compare the combined modal and engine power models to 
models that use power alone to predict emission rates. To test the effect of adding driving modes 
in the emission rate model, the derivation of a load-only model for NOx emissions is illustrated 
in detail. Load-only CO emissions models and HC emissions models are also derived for com­
parison purposes and presented in final form (however, the detailed regression plots and tables 
are omitted for the purposes of brevity). 

As in previous chapters, the first step for a load based only model is to select the most im­
portant variable for NOx emissions. When using the entire database at once (data are not broken 
into mode subsets for this derivation), the appropriate transformation for NOx is ¼ based on Box-
Cox results, rather than the ½ value used in developing models for acceleration and cruise mode 
(see Chapters 10 and 11).  The trimmed HTBR tree models for NOx are illustrated in Figure 12-2 
and Table 12-3. 

Figure 12-2 Trimmed Regression Tree Model for Truncated Transformed NOx 
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Table 12-3 Trimmed Regression Tree Results for Truncated Transformed NOx 
Regression tree:
tree(formula = NOx.25 ~ engine.power + vehicle.speed + acceleration +

oil.temperture + oil.press + cool.temperature + eng.bar.press +
model.year + odometer + bus360 + bus361 + bus363 + bus364 + bus372 +
bus375 + bus377 + bus379 + bus380 + bus381 + bus382 + bus383 + bus384 + 
bus385 + dummy.grade, data = busdata10242006.1, na.action = na.exclude,
mincut = 3000, minsize = 6000, mindev = 0.1)

Variables actually used in tree construction:
[1] “engine.power”
Number of terminal nodes: 4 
Residual mean deviance: 0.005837 = 618.6 / 106000
Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-5.187e-001 -4.510e-002 -9.204e-003 3.768e-016 5.004e-002 6.557e-001 
node), split, n, deviance, yval

* denotes terminal node 

1) root 105976 3058.00 0.4991
2) engine.power<41.535 62441 666.60 0.3823 
4) engine.power<4.515 17897 195.50 0.2768 *
 5) engine.power>4.515 44544 192.20 0.4246 *

 3) engine.power>41.535 43535 316.60 0.6667 
6) engine.power<96.255 11504 61.56 0.5926 *
 7) engine.power>96.255 32031 169.20 0.6933 * 

After testing different transformations for Y and adding dummy variables according to 
HTBR results, Table 12-4 and Figure 12-3 show that a load based only model for NO  emissions x
is a fairly good model, considering the constancy of error variance and normality of error terms. 
So, the final load based only model for NO  emissions is: x

NOx = [0.230 + 0.195log10(engine.power+1)]4 

The regression run shows the results in Table 12-4 and Figure 12-3. 
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Table 12-4 Regression Result for NO  Load-Based Only Emission Rate Modelx
Call: lm(formula = NOx.25 ~ log10(engine.power + 1), data = busdata10242006.1,

na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.4683 -0.04297 -0.01329 0.04138 0.663 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.2303 0.0005 489.9131 0.0000 
log10(engine.power + 1) 0.1950 0.0003 657.2170 0.0000 

Residual standard error: 0.0754 on 105974 degrees of freedom
Multiple R-Squared: 0.803
F-statistic: 431900 on 1 and 105974 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.8702 

Analysis of Variance Table 

Response: NOx.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 2455.676 2455.676 431934.2 0
 Residuals 105974 602.494 0.006 

Figure 12-3 QQ and Residual vs. Fitted Plot for Load-Based Only NO  Emission Rate Model x
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

NO x 
Load-Only Emission Rate Model 0.715 1.181 0.06494 0.011382 
Mode/Load Emission Rate Models 0.665 1.102 0.07122 0.021463 
CO 
Load-Only Emission Rate Model 0.246 2.071 0.07886 0.015568 
Mode/Load Emission Rate Models 0.490 1.749 0.06691 0.010285 
HC 
Load-Only Emission Rate Model 0.0672 0.982 0.00197 0.000499 
Mode/Load Emission Rate Models 0.0677 1.213 0.00192 0.000223 

­

Following the same derivation techniques, the final load-only model for CO emissions is: 

CO = 10^[-2.659 + 0.0899(engine.power)(1/2)] 

Following the same derivation techniques, the final load-only model for HC emissions is: 

HC = 10^[-3.306 + 0.0382(engine.power)(1/2)] 

The performance of the load-only models relative to the combined mode and load models 
developed in Chapters 8 through 11 is presented in Table 12-5. 

Table 12-5 Comparative Performance Evaluation Between Load-Based Only Emission Rate (ER) 
Model and Load-Based Modal Emission Rate Model 

For NOx, both models perform well in explaining the variance of emission rates, reinforc
ing the importance of including engine power as a variable in explaining the variance of NOx 
emission rates. Results suggest that a mode/load modal emission modeling approach performs 
slightly better than load-only emission rate models for CO. For HC, there is no discernible 
difference in model performance.  Combining this finding with the performance results for HC 
noted in Chapters 8 through 11, using constant emission rates for each operating mode could be 
justified for this data set. When additional data are collected, researchers should compare mode-
only approaches to power-based approaches to ensure that power demand models for HC are 
necessary. 
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12.4 Separation of Acceleration and Cruise Modes 

In this research effort, separate models were developed for acceleration and cruise modes 
(Chapters 10 and 11).  However, it may be possible to combine acceleration and cruise mode 
activity into a new “combined driving” mode. As noted in Chapter 10, although engine power 
distribution for acceleration mode is different from cruise mode, these two modes share a similar 
pattern. A quick analysis of the impact of combining acceleration and cruise mode is presented 
in this section. 

After examining HTBR results, selecting the important explanatory variables, testing dif­
ferent transformations for X and Y, and adding dummy variables according to HTBR results, the 
fi nal NO x emission model for combined driving mode is: 

NOx = [0.113 + 0.0266(engine.power(1/2)]2 

The final CO emission model for combined driving mode is: 

CO = 10^[-2.238 + 0.0043(engine.power)] 

while the final HC emission model for combined driving mode is: 

HC = [0.167 + 0.0028(engine.power(1/2)]4 

To test whether combining acceleration and cruise modes would benefit the load-based 
modal emission model, the predictions from the linear regression function for combined driving 
mode are compared to the predictions from sub-models for acceleration and cruise mode in the 
load-based modal emission model. Since the other elements are the same for two models, they 
will be excluded from test. The results of the performance evaluation are shown in Table 12-6. 
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Coeffi cient of 
determination 

(R2) 
Slope (β1) RMSE MPE 

NO x 
Combined Driving Mode 0.531 0.921 0.08488 0.00840 
Acceleration & Cruise Mode 0.527 0.953 0.09312 0.03904 
CO 
Combined Driving Mode 0.177 1.594 0.10395 0.02305 
Acceleration & Cruise Mode 0.452 1.775 0.08966 0.01873 
HC 
Combined Driving Mode 0.0338 0.907 0.00204 0.00042 
Acceleration & Cruise Mode 0.0410 0.905 0.00203 0.00041 

­

Table 12-6 Comparative Performance Evaluation between Linear Regression with Combined 
Mode and Linear Regression with Acceleration and Cruise Modes 

Results shown in Table 12-6 suggest that separate linear regression functions for accelera
tion and cruise modes perform significantly better than linear regression functions with combined 
driving mode for CO. For NOx and HC, both models perform similarly with respect to explain­
ing the variance of emission rates. In general, these results support introducing acceleration and 
cruise mode into the conceptual model. However, as new data become available for testing, 
researchers should examine whether it is reasonable to simply separate idle and deceleration 
modes from other driving modes and then apply a simple power-based model to the remaining 
combined driving activity for NOx. 

12.5 MOBILE6.2 vs. Load-Based Modal Emission Rate Model 

The final step undertaken in the model verification process was a comparison of predic­
tion results from MOBILE6.2 and the load-based modal emission rate model developed in this 
research. Comparisons are based upon the Ann Arbor transit vehicle test data.  These data were 
used to develop the modal emission rates for this report, but were not used in developing the 
MOBILE6.2 model. Normally, one would compare alternative model performance using an 
independent set of data collected from similar vehicles, which is currently not available. Hence, 
the comparisons that will be presented are far from unbiased. When new data from an indepen­
dent test fleet become available, these comparisons should be performed again. 

To facilitate the emission rate prediction comparison, lookup tables for MOBILE6.2 
transit bus emission rates on arterial roads were first created for average speeds from 2.5 mph to 
65 mph. The MOBILE6.2 calendar year was set to January 2002 since the data set was collected 
during October 2001. The temperature was set as 75 ºF, since the emission rates for transit buses 
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Coeffi cient of 
determination 

(R2) 
Slope (β1) RMSE MPE 

NO x 
MOBILE 6.2 0.172 0.706 0.10825 0.011217 
Load-Based Modal ER Model 0.665 1.102 0.07122 0.021463 
CO 
MOBILE 6.2 0.0195 1.690 0.08516 0.013399 
Load-Based Modal ER Model 0.491 1.749 0.06691 0.010285 
HC 
MOBILE 6.2 0.0408 0.584 0.00194 0.000173 
Load-Based Modal ER Model 0.0677 1.213 0.00192 0.000223 

in MOBILE6.2 do not change with temperature. Emissions predictions from MOBILE6.2 were 
then obtained by combining lookup tables and corresponding speed values in the AATA data set. 
The results of the performance evaluation are shown in Table 12-7. 

Table 12-7 Comparative Performance Evaluation between MOBILE 6.2 and Load-Based Modal ER Model 

Results suggest that load-based modal emission rate model performs signifi cantly better 
than MOBILE6.2 for NOx and CO, and slightly better for HC. The performance of the load-
based modal emission rate model is not surprising because the same data used to develop the 
model are used in the comparison. Results suggest that the load-based modal emission model 
performs well vis-à-vis explaining the variance of NOx and CO emission rates on a microscopic 
level. The slight differences in RMSE and MPE indicate that both models (MOBILE6.2 and the 
load-based modal emission model) perform well at the macroscopic level, and should perform 
similarly when used in regional inventory development. 

12.6 Conclusions 

In general, the results provided here are encouraging for the load based modal emis­
sion model. The comparison between engine power and surrogate power variables confirms 
the important role of engine power in explaining the variability of emissions. The comparison 
between the load-only emission rate model and the load-based modal emission rate model shows 
that the impact of driving mode on emissions is signficiant for NOx and CO emissions while no 
such trend is discernible for HC. The comparison between acceleration and cruise modes and 
combined driving mode indicates that the relationships between engine power and emissions are 
slightly different for acceleration and cruise modes.  Splitting the database into five modes (idle 
mode, decelerating motoring mode, deceleration non-motoring mode, acceleration mode, and 
cruise mode) appears warranted. 
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The data used to develop the load based modal emission model in this research are very 
limited since the data set contained only 15 transit buses. Inter-bus variability is more obvious 
for HC emissions since Bus 363 has the lowest HC emissions compared with the other 14 buses. 
This kind of variability might influence the explanatory variables of the modal emission model 
for HC emissions. When new data become available, these models should be re-derived to ob­
tain further improved performance in applications to the transit bus fleet. 
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CHAPTER 13 

13. CONCLUSIONS 

The goal of this research is to provide emission rate models that fill the gap between 
existing models and ideal models for predicting emissions of NOx, CO, and HC from heavy-duty 
diesel vehicles. The researchers at Georgia Institute of Technology have developed a beta ver­
sion of HDDV-MEM (Guensler et al. 2005), which is based upon vehicle technology groups, 
engine emission characteristics, and vehicles modal activity.  The HDDV-MEM fi rst predicts 
second-by-second engine power demand as a function of onroad vehicle operating conditions 
and then applies brake-specific emission rates to these activity predictions. The HDDV-MEM 
consists of three modules: a vehicle activity module (with vehicle activity tracked by a vehicle 
technology group), an engine power module, and an emission rate module. 

Using second-by-second data collected from onroad vehicles, the research effort reported 
herein developed models to predict emission rates as a function of onroad operating conditions 
that affect vehicle emissions.  Such models should be robust and ensure that assumptions about 
the underlying distribution of the data are verified and that assumptions associated with appli­
cable statistical methods are not violated. Due to the general lack of data available for develop­
ment of heavy-duty vehicle modal emission rate models, this study focuses on development of an 
analytical methodology that is repeatable with different data sets collected across space and time. 
The only acceptable second-by-second data set in which emission rate and applicable load and 
vehicle activity data had been collected in parallel was the AATA bus emissions database col­
lected by Sensors, Inc., for use by the U.S. EPA. 

The models developed in this report are applicable to transit buses only, and are not ap­
plicable to all transit buses (see limitations discussion in Section 13.2). However, a significant 
contribution of the research is in the development of the analytical framework established for 
analysis of second-by-second emission rate data collected in parallel with engine load and other 
onroad operating parameters, and in the development of applicable processes for developing sta­
tistical models using such data. To demonstrate the capability of the modeling framework, three 
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modal emission rate models have been developed for prediction of NOx, CO and HC emissions 
from mid-1990s transit buses. 

The AATA transit bus data set was first post-processed through a quality control/quality 
assurance process. Data problems were identified and corrected during this stage of the research 
effort.  The types of errors checked include: loss of data, erroneous ECM data, GPS dropouts, 
and synchronization errors. Data records for which all data elements were not collected were 
removed to avoid any bias to the results. No erroneous ECM data were identified. Six buses ex­
perienced GPS dropouts and synchronization errors and these problems were treated as described 
in chapter 4. Emission rate variability was also assessed across the sample of buses to identify 
any potential high-emitters that may behave differently than other buses under normal operating 
conditions and therefore warrant separate model development. However, no high-emitters were 
identifi ed. To find the true ‘high-emitters’, modelers need to include a representative sample 
of buses to try to ensure that mean emissions and response rates to operating variables are rep­
resented in the data. Since there are only 15 buses in the data set, modelers could not exclude 
buses that showed higher emission rates than the others. 

Model development then proceeded through a structured series of steps. Transformations 
of emission rates (NOx, CO, and HC) were verified through a Box-Cox procedure to improve 
the specific modeling assumptions, such as linearity or normality.  HTBR regression tree results 
were used to identify the most important explanatory variables for emission rates. OLS regres­
sion models were developed for transformed emission rates using chosen explanatory variables. 
Dummy variables were created to represent the cut points identified in HTBR trees. Interaction 
effects for identified explanatory variables were also tested to see whether they could improve 
the model. The models were comparatively evaluated and the most efficient models for each 
pollutant were selected. By demonstrating statistical “robustness” and sufficiency in previous 
chapters, the main goal of this research, that of “developing new load-based models with signifi­
cant improvement”, was achieved. 

This chapter will review the key accomplishments of this research. The chapter provides 
the final models selected for implementation and begins with a summary of the fi nal models 
developed for the transit buses, followed immediately by a discussion on the limitations of these 
models. The chapter concludes with the lessons learned and recommendations on further re­
search. 
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13.1 Transit Bus Emission Rate Models 

The goal of this research was to develop a methodology for creating load-based emis­
sion rate models designed to predict emission rates of NOx, CO, and HC from transit buses as a 
function of onroad operating conditions. The models should be robust and ensure that statisti­
cal assumptions in model development are not violated. With limited available data, this study 
developed a methodology that is repeatable with a different data set from across space and across 
time. The final estimated models are presented in Table 13-1. 

Table 13-1 Load Based Modal Emission Models 
Driving Mode 
NO x 

Idle Mode 0.033415 g/s 

Decelerating Motoring Mode 0.0097768 g/s 

Deceleration Non-Motoring Mode 0.045777 g/s 

Acceleration Mode 
NOx = (-0.0195 + 0.201log10(engine.power + 1) + 
0.0019vehicle.speed)2 

Cruise Mode NOx = (0.0087 + 0.0311 (engine.power)(1/2))2 

CO 
Idle Mode 0.0059439 g/s 
Decelerating Motoring Mode 0.0052857 g/s 
Deceleration Non-Motoring Mode 0.0068557 g/s 

Acceleration Mode CO = 10^(-3.747 + 1.341log10(engine.power + 1) -
0.0285vehicle.speed) 

Cruise Mode CO = 10(-2.223+0.0033engine.power) 

HC 
Idle Mode 0.00091777 g/s 
Decelerating Motoring Mode 0.001113 g/s 
Revised Deceleration Mode 0.001312 g/s 
Acceleration Mode HC = (0.114 + 0.0426log10(engine.power + 1))4 

Cruise Mode HC = (0.170 + 0.0022 (engine.power)(1/2))4 

The transformations employed for the three pollutants in acceleration and cruise modes 
are different.  The predictive capabilities of each of the models for three pollutants are also dif­
ferent. The R2 value is high for NOx and CO emission rates, but very low for HC emission rates. 
HC models are not much better than simply using HTBR mean ERs. The relatively poor perfor­
mance of the HC models is not an inherent limitation of the modal modeling approach. Instead, 
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it is a result of the lack of availability of a suitable explanatory variable for model development 
purposes. Although the model with dummy variables and interactions works better, the final 
model is not necessarily the best fit, but is one that can be readily implemented. 

The three models include all of those significant variables identified as affecting gram/ 
second emissions rates, with the exception of those variables that are highly correlated with indi­
vidual bus ID. Although a few of the vehicles behaved differently from other vehicles, modelers 
could not reasonably include bus ID as a variable, nor environmental parameters of testing since 
all low barometric pressure tests were conducted on one or two vehicles. Additional explora­
tion of environmental conditions should be conducted by collecting data for a larger fleet under a 
wider variety of environmental conditions over a longer time. 

The new modal emission rate models all indicate that engine power has a signifi cant im­
pact on the acceleration and cruise emission rates. This observation strengthens the importance 
of using load based emission data to develop new emission models and simulate engine power 
in real world applications. All three models were shown to be robust by use of several statistical 
measures. Although some departures from accepted norms were noted, these departures were 
judged not so serious as to compromise the usefulness of the models. Hence, no remedial mea­
sures were taken. 

13.2 Model Limitations 

There are several limitations in the models estimated and presented in this work. Theo­
retically, the models cannot be used to forecast emissions beyond the domain of variables used 
in estimating the models. These models were developed from 15 buses equipped with same fuel 
injection type, catalytic converter type, transmission type, and so on, so the models could not 
consider the effect of variation in vehicle technologies on emissions.  Another limitation is the 
consideration of the effect of emission control technology deterioration on emission levels since 
all buses were only 5 or 6 years old at the time testing was conducted. Although the speed/ac­
celeration profiles between the AATA data set and the Atlanta buses are similar, there is no way 
to estimate the effect of changes in vehicle technologies and deterioration on emissions in the 
current and future fleet in Atlanta.  Such a limitation introduces obvious uncertainties in the use 
of the model to make predictions for other fleets. 

The predictive models are derived from a research effort conducted by other parties.  
Modeling at this time cannot control for those variables for which data were not collected. This 
inability to control the variables may yield several uncertainties in the models. First, important 
or useful variables relevant to the effect of emission rates may not have been observed at all, so it 
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may be difficult to derive a model with sufficient explanatory power, or variables that are select­
ed may simply be correlated to the true causal variables that are affecting instantaneous emission 
rates. Second, the interpretation of the effects of individual variables effects might be limited.  
For example, the ability of negative load to explain the variability on emissions is limited due to 
the negative loads recorded as zero. 

An additional limitation imposed by the data is the uncertainty introduced by the actual 
data collection process. The uncertainty in the GPS position will introduce signifi cant instan­
taneous error in grade computation (grade should be collected by means other than GPS). Al­
though filter limits were imposed on the rate of change of engine speed (RPM), fuel fl ow, and 
vehicle speed data, data could yield unreasonable instantaneous vehicle acceleration or decelera­
tion rates, and still be within reasonable absolute limits. This uncertainty may bias predictions. 

The possible presence of outliers has the potential to cause a misleading fit by dispropor­
tionately pulling the fitted regression line away from the majority of the data points (Neter et al. 
1996). Cook’s distance plots indicated that some points do have influence over the regression 
fit. However, none of these points is indicative of obvious errors in data.  It is difficult to deter­
mine whether those extreme values were actually outliers or not. Since the data passed through 
EPA’s rigorous QA/QC procedures and no “true” outliers exist, and these high-emission events 
are assumed to be representative of events that occur in the real world. Therefore, all of these 
data were retained in model development. When additional data become available, researchers 
should make it a priority to examine these high emissions events to identify the underlying causal 
factors. 

13.3 Lessons Learned 

Because driving mode definitions varied across previous research efforts, fi ndings from 
these efforts are not directly comparable.  This study independently developed driving mode defi­
nitions through comparison across critical values. Suitable modal activity definition can divide 
the data into several homogeneous groups according to emission rates and driving conditions. 
Unlike previous research efforts which only present pairwise comparisons of modal average es­
timates or HTBR regression tree analyses, this study compared distributions of engine operating 
characteristics under proposed vehicle mode definitions by defining applicable vehicle modes. 

A representative data set is the most critical issue for development the final version of 
the proposed model. This issue plays an important role no matter which modeling approach is 
employed. The representative data set should reflect the real world with respect to vehicle emis­
sions and activity patterns. The data set used for the proposed model consists of EPA AATA data 
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and includes 15 buses. At the time this research was conducted, the AATA data were the only ap­
plicable data set that contained all required data (second-by-second emission rates, engine load, 
and applicable operating variables) all collected in parallel. New data sets will improve model 
performance in future. 

A combination of tree and OLS regression methods was used to estimate NOx, CO and 
HC emission models from EPA’s transit bus database tested by Sensors, Inc.  The HTBR tech­
nique was used as a tool to reveal underlying data structure and identify useful explanatory 
variables and was demonstrated as a powerful tool that will allow researchers to deal with large 
multivariate data sets with mixed mode (discrete and continuous) variables. 

13.4 Contributions 

This research verifies that vehicle emission rates are highly correlated with modal ve­
hicle activity.  Furthermore, the relationship between engine power and emissions is also sig­
nificant and is quantified for the available data. Research results indicate that engine power is 
more powerful than surrogate variables in predicting second-by-second grams/second emission 
rates. Hence, to improve our understanding of emission rates, it is important to examine not only 
vehicle operating modes, but also engine power distributions. Based upon the important role 
of engine power in explaining the variability of emissions, it is critical to include the load data 
measurement (and collection of all onroad operating parameters to estimate load, such as grade) 
during the emission data collection procedure. 

Another major contribution of the work is the establishment of a framework for emission 
rate model development suitable for predicting emissions at microscopic level. As more databases 
become available, the model development steps can be re-run to develop a more robust load-based 
modal emission model based on the same philosophy.  This living modeling framework provides 
the ability to integrate necessary vehicle activity data and emission rate algorithms to support 
second-by-second and link-based emissions prediction. Combined with a GIS framework, models 
derived through this methodology will improve spatial/temporal emissions modeling. 

13.5 Recommendation for Further Studies 

The methodology developed and applied in this research can, and should, be used to 
estimate similar models for the on-road fleet consisting of transit buses and heavy-duty vehicles. 
Since emissions of these vehicles are heavily dependent on vehicle dynamics (that is, load and 
power), a successful validation will provide further evidence of the “correctness” of the method 
employed here. When new data become available and these models are re-derived, modelers 
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can expect further improved performance in applications to the transit bus fleet and eventually to 
other heavy-duty vehicle fleets. 

Given the important role of engine power in explaining the variability of emissions, en­
gine load data should be measured during the emission data collection procedure and all param­
eters necessary to estimate onroad load (such as grade and vehicle payload) should be included in 
the data collection efforts.  Similarly, simulation of engine power demand for onroad operations 
becomes important in the implementation of emission inventory modeling for heavy-duty transit 
buses. Refinement of roadway characteristic data (grade, etc.) for urban areas is paramount and 
research efforts that can quantify drive train inertial losses under various operating conditions 
will help enhance modal model development. 

Because all buses tested were of the same model with the same engine, the test data were 
valuable from the perspective of controlling potential explanatory variables related to vehicle 
characteristics. However, these data simultaneously constrain the ability to explain the effect of 
vehicle technology groups and deterioration of emission control technologies on emissions data. 
Expanded data collection efforts should focus on identification of appropriate vehicle technology 
groups and high-emitting vehicle groups. In these test programs, it will also be important to test 
buses under their real-world operating conditions (on a variety of routes, road types and grades, 
onroad operating conditions, environmental conditions, passenger loadings, etc.) to better reflect 
real world conditions. These high-resolution data collection efforts will provide the data needed 
by modelers to develop new and enhanced modal emission rate models for a variety of heavy-
duty vehicle classes. 
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