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Foreword 

The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting 
the Nation's land, air, and water resources. Under a mandate of national environmental laws, 
the Agency strives to formulate and implement actions leading to a compatible balance 
between human activities and the ability of natural systems to support and nurture life. To 
meet this mandate, EPA's research program is providing data and technical support for 
solving environmental problems today and building a science knowledge base necessary to 
manage our ecological resources wisely, understand how pollutants affect our health, and 
prevent or reduce environmental risks in the future. 

The National Risk Management Research Laboratory (NRMRL) is the Agency's center for 
investigation of technological and management approaches for preventing and reducing risks 
from pollution that threaten human health and the environment. The focus of the Laboratory's 
research program is on methods and their cost-effectiveness for prevention and control of 
pollution to air, land, water, and subsurface resources; protection of water quality in public 
water systems; remediation of contaminated sites, sediments and ground water; prevention 
and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with 
both public and private sector partners to foster technologies that reduce the cost of 
compliance and to anticipate emerging problems. NRMRL's research provides solutions to 
environmental problems by: developing and promoting technologies that protect and improve 
the environment; advancing scientific and engineering information to support regulatory and 
policy decisions; and providing the technical support and information transfer to ensure 
implementation of environmental regulations and strategies at the national, state, and 
community levels. 

This publication has been produced as part of the Laboratory's strategic long-term research 
plan. It is published and made available by EPA's Office of Research and Development to 
assist the user community and to link researchers with their clients. 

Sally Gutierrez, Director
                                                              National Risk Management Research Laboratory 
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Abstract 

The Pocono Creek watershed located in Monroe County, PA, is threatened by high 
population growth and urbanization. Of concern specifically is the potential impact of future 
developments in the watershed on the reduction of base flow and the consequent risk of 
degradation of wild brown trout habitats in Pocono Creek. Anticipated increase in 
imperviousness, on the other hand, is expected to elevate flood risk and the associated 
environmental damage. A watershed hydrology based modeling study was initiated by the 
U.S. EPA in collaboration with the U.S. Geological Survey and the Pennsylvania Fish and 
Boat Commission to assist Monroe County in planning for sustainable future development in 
the Pocono Creek watershed. 

The Soil and Water Assessment Tool (SWAT) is selected to model the impact of 
projected future build out in the Pocono Creek watershed on the hydrologic response thereof. 
The model is successfully calibrated and validated for two sources of precipitation data, 
raingauge and Next Generation Weather Radar (NEXRAD) hourly precipitation data. The 
results clearly show that NEXRAD is an effective and economic alternative source of spatio
temporal precipitation, and that future modeling studies in ungauged watersheds may benefit 
from the use of NEXRAD rainfall data.  

Ensemble model forecast is constructed using time series analysis and Monte Carlo (MC) 
simulations to evaluate model predictive uncertainty. The MC simulations over a 20-year 
long period yielded an ensemble of rating curves of which the median and 95% confidence 
band of daily streamflows are plotted. These plots allow for the construction of the 95% 
confidence band for design flows corresponding to any given recurrence or return period. 
SWAT simulated daily streamflow rates in the range 2 to 11 (m3/s) show the least 
uncertainty. Computed daily streamflow rates below 2 m3/s have the greatest uncertainty, 
whereas for flows higher than 11 m3/s uncertainty is moderate. 

MC simulations over a 20-year period predict that, on the average, daily base flow would 
be reduced by 31% based on the projected build out in the watershed. However, predicted 
change in the average of daily streamflow (averaged over the entire simulation period) 
appears to be negligible. The computed low-flow index, 7Q10, is expected to decline by 
11%, and the monthly median daily flow is expected to be reduced by 10% on the average. 
The monthly peak of simulated daily flows and annual maximum daily flow on the average 
are predicted to increase by 21% and 19%, respectively. Watershed-averaged groundwater 
recharge is predicted to decline by 31% due to the projected land use changes. The median of 
the MC simulated flow duration curves shows that in general the likelihood that the 
watershed will experience high and low streamflows will increase with the projected 
urbanization. 

An index methodology is developed to rank seven subwatersheds composing the modeled 
portion of the Pocono Creek watershed based on their relative impact on watershed response 
to anticipated land developments. The first index, α, signifies the absolute impact of a 
particular catchment area on the watershed response. The second index, β, is α normalized 
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by the percentage area of the sub-catchment, and therefore describes the impact per area of 
land use changes. With a few exceptions, α and β indices produce similar rankings among 
the 7 catchment areas for 7Q10, monthly median of daily flow, and annual maximum daily 
flow. These ranking results may be related to groundwater recharge, area, topographic 
features, and proximity to the streamflow gauge station. The very downstream catchment 
area 7 ranked first in terms of impact on annual maximum daily flows, and second in terms 
of impact on 7Q10 and monthly median daily flows. Catchment area 4 associated with the 
highest groundwater recharge was ranked first and second for impact on 7Q10 based on α 
and β indices, respectively. Areas characterized by steep topography and intense wetlands 
ranked low, some times the lowest, with respect to impact on the three design flows. 

The results of this model study point toward significant changes in low as well as high 
flow regimes, should the Pocono Creek watershed experience land use changes consistent 
with the projected build out in the watershed. Management measures may be taken in the 
future to minimize the predicted changes in the watershed hydrology. 

Keywords: watershed, radar, rain gauges, hydrologic modeling, distributed parameter, 
SWAT, critical source area, land use change, uncertainty, forecast, Monte Carlo, 
time series analysis, Pocono Creek, urbanization, base flow 
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1 Introduction 

1.1 Pocono Creek Watershed 
Pocono Creek watershed is a 46.5 square miles (120 km2) basin located in Monroe County in 
Eastern Pennsylvania near the New Jersey border (Figure 1). The watershed drains into one 
of the main tributaries of Delaware River and has very good water and biological quality, and 
is designated as Special Protection Waters by the State and the Delaware River Basin 
Commission (DRBC). Wild brown trout population, tourism and significant outdoor 
recreation are major economic drivers of the area. Monroe County has the second fastest 
growing population in the state of Pennsylvania. The county is threatened by high population 
growth because of its attractive, pristine natural resources, and its proximity to the New York 
City and Philadelphia metropolitan regions. Since 1980 the population of Monroe County has 
nearly doubled and is projected to grow an additional 60% by 2020. Potential impacts, 
among others, include a degradation and loss of the forested and agricultural lands and 
deterioration of the local quality of life. Specifically, the concern is that the projected growth 
and land use changes along with the accompanying increased groundwater withdrawals in the 
watershed could well exceed sustainable levels, depleting groundwater and streamflows, and 
resulting in the loss of the Creek’s wild brown trout. Anticipated increase of imperviousness 
due to urbanization in the watershed and projected increase in the demand for ground water 
due to the anticipated population growth threaten the sustainability of current base flows. 
Further, reduced infiltration and increased runoff rates have the potential to elevate peak 
flows and increase flood hazards during large storm events.  

The Delaware River Basin Commission in collaboration with the U.S. Environmental 
Protection Agency (USEPA), Broadhead Watershed Association, Monroe County 
Conservation District, Monroe County Planning Commission, U.S. Geological Survey 
(USGS), and other stakeholders formed a consortium to study the potential future impacts of 
the projected growth and land use changes on the sustainability of the natural resources in the 
Pocono Creek watershed. The goals are to manage flows and growth in the Pocono Creek 
watershed such that natural resources are sustainable. The goals will be partly achieved 
through three integrated model studies by the USEPA, the U.S. Geological Survey (USGS), 
and the PA Fish and Boat Commission (PA F&B). These model studies will evaluate the 
effects of growth and land use change on ground water, streamflow, and the habitat of 
Pocono Creek. This report documents the development of the Pocono Creek Watershed 
model by the USEPA using the Soil and Water Assessment Tool (SWAT), its application to 
assess the impact of projected urbanization on streamflow characteristics, and identification 
of critical areas within the watershed having major contributions to changes in the 
streamflow. The results of this model study will be linked to a USGS groundwater flow 
model (MODFLOW) and the Pennsylvania Instream Flow Model (PIFM). 

Distributed watershed models are utilized to better understand the role of hydrological 
processes that govern surface and subsurface water movement. They provide tools for 
environmental decision making and water resources planning and management. They are not 
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only helpful in making model predictions of future flow conditions, but also in assessment of 
hydrologic impacts of management measures scenarios, land cover and climate changes.  

Figure 1. 	 Pocono Creek Watershed: Location, topography, USGS stream gauge, climate 
stations and NEXRAD cell centroids (adapted from Kalin and Hantush, 2006a). 

1.2 Objectives 
The goal of the current model study and those by the USGS and the PA F&B, is to provide 
the necessary science so that Monroe County and stakeholders can make informed decisions 
that will assist them in developing and implementing sustainable water resources 
management strategies without compromising the integrity of the watershed’s habitat. To 
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accomplish this overall goal, a watershed model is developed by the U.S. EPA to achieve the 
following objectives: 

1-	 Calibrate and validate a watershed model for Pocono Creek Watershed and examine 
model performance with Next Generation Weather Radar (NEXRAD) data against that 
based on surface raingauge precipitation data: The distributed hydrologic Soil Water 
Assessment Tool (SWAT) will be calibrated and validated. Radar generated precipitation 
estimates such as from NEXRAD products have found increasing usage in the hydrologic 
community lately as an alternative source to gauge data. NEXRAD data can provide 
information about the spatial distribution of precipitation patterns. If proven successful, 
NEXRAD data can be a cost-effective alternative to the rather more costly and sparse 
raingauge data. 

2-	 Predict the impact of projected land use changes on annual average recharge distribution: 
Spatial distribution of annual groundwater recharge rates will be computed pre- and after 
urbanization build out for use by a USGS MODFLOW model to simulate the impact of 
projected increase in groundwater withdrawals on base-flow reductions. 

3-	 Predict the impact of projected land use changes on monthly median daily flows: 
Monthly median daily flows will be computed pre and post urbanization build out for use 
by the PIFM model which will be used to establish a relationship between flow 
reductions and potential habitat degradation in the Pocono Creek watershed. 

4-	 Evaluate model predictive uncertainty: It is a common practice to calibrate and validate 
hydrologic and water quality models, but their forecasting abilities are rarely rigorously 
evaluated. In this modeling effort, the extra step of evaluating model error propagation 
will be conducted using time series analysis and Monte Carlo (MC) type simulations.  

5-	 Compute the effect of urbanization on streamflow characteristics: It is anticipated that 
projected population growth and urbanization in Pocono Creek will be accompanied by 
an increase in impervious fraction of the watershed. The impact of land-use changes on 
low, high, monthly average, and median flows will be particularly investigated, along 
with 95% confidence band of the computed changes in flow characteristics.   

6-	 Identify critical areas in the watershed: Once potential changes in flow characteristics are 
predicted by the watershed model due to projected land-use changes, the inner 
catchments contributing most of the changes will be identified using an index-based 
methodology.   

1.3 Report Organization 
This report is organized as follows. In Section 2 the rationale for the selection of the SWAT 
model to investigate the hydrology of Pocono Creek is established. A summary of model 
representation of the most important components of the hydrologic cycle and related 
parameters is presented. This summary is intended to define key model parameters and 
provide insights into the process of model calibration. Section 3 describes the study area, 
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model data and sources, and model calibration and validation using raingauge and NEXRAD 
precipitation data. The viability of NEXRAD technology as an alternative to raingauge 
networks as a source of spatio-temporal precipitation is established in the section. Error 
propagation and model forecast capability is investigated in Section 4 using time series 
analysis and Latin Hypercube Monte Carlo (MC) simulations.  Section 5 explores potential 
impacts of projected build out in the watershed on changes in key streamflow characteristics 
using MC simulations. The impact of land use changes on (low, medium, and high) flow 
frequency and duration is also investigated. Section 6 applies an index approach to identify 
and rank subwatersheds or areas within subwatersheds that may contribute mostly to 
predicted changes in streamflow characteristics. Each section ends with conclusions. The 
final summary and conclusions of this model study appear in Section 7. References are 
included in Section 8. 

1.4 Summary 
Pocono Creek watershed is threatened by high population growth and urbanization. Potential 
impacts include degradation and loss of the forested and agricultural lands and deterioration 
of the local quality of life. The condition of the wild brown trout habitat has been identified 
as an indicator of the health of the watershed. Of specific concern is the potential impact of 
projected population growth and land use change on the reduction of base flow and the 
impact this may have on the degradation of wild brown trout habitats in Pocono Creek. 
Projected increase in the imperviousness in the watershed, on the other hand, is expected to 
increase flood frequency and reduce the recurrence interval of high flows. 

Upon request by the DRBC and the EPA Region III, the National Risk Management 
Research Laboratory of the USEPA has been tasked to investigate through a watershed 
model study the impact of projected land use changes on potential alterations in the 
hydrology of Pocono Creek. Constrained by the existing budget and available resources, it 
was concluded that the SWAT model is a suitable and effective tool to conduct this modeling 
study. 

The objectives of the watershed model study are primarily three-fold. First, to calibrate 
and validate a watershed model for Pocono Creek and compute the spatial groundwater 
recharge distribution for use by a USGS groundwater flow model (MODFLOW) being 
developed to assess the impact of land-use changes on base flow. Secondly, to compute 
monthly median daily flows for use by the PIFM model that will be used to establish a 
relationship between flow reductions and potential habitat degradation in Pocono Creek. 
Thirdly, to investigate the impact of land-use changes on flow duration characteristics and 
identify critical areas in the watershed. An important component of this study is investigating 
NEXRAD as an alternative source of precipitation data, and the error propagation analysis 
required to examine model forecast quality.       
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2 Model Selection 

2.1 Background 
The distributed hydrologic Soil Water Assessment Tool (SWAT) (Neitsch et al., 2002a/b) 
was chosen to fulfill the project objectives. The SWAT model was originally developed to 
quantify the impact of land management practices in large, complex watersheds with varying 
soils, land use, and management conditions over a long period of time, on the order of years. 
It is developed and maintained by the US Department of Agriculture (USDA) scientists and 
is freely available from <http://www.brc.tamus.edu/swat>. Although SWAT is mostly based 
on empirical equations and simplified mass balance relationships, it is a widely-used model 
and numerous applications can be found in the peer reviewed literature. For instance, as of 
February 2006, the SWAT model web site cited 211 peer reviewed publications in the form 
of journal papers or book chapters (<http://www.brc.tamus.edu/swat/swat-peer
reviewed.pdf>). Borah (2002) reviewed eleven continuous-simulation and single-event 
watershed scale models including SWAT. The study provides a better understanding of the 
mathematical bases of the models. Kalin and Hantush (2003) reviewed key features and 
capabilities of widely cited watershed scale hydrologic and water quality models, and 
identified SWAT as one of the most suitable models for applications related to watershed 
management. Robustness of SWAT for simulating watershed responses has also been 
demonstrated in comparative studies by Saleh and Du (2002) and Van Liew et al. (2003). 
Arnold and Fohrer (2005) provided a list of SWAT applications in the USA and worldwide. 

The SWAT model development, operation, limitations, and assumptions were discussed 
by Arnold et al. (1998). Srinivasan et al. (1998) reviewed the applications of the SWAT 
model in streamflow prediction, sediment and nutrients transport, and effects of management 
practices on water quality. Arnold and Allen (1996) evaluated the performance of different 
hydrologic components of the SWAT model for three watersheds in Illinois (100-250 km2). 
Comparing the model outputs to measured data, the calibrated model reasonably simulated 
runoff, groundwater, and other components of hydrologic cycle for the study watersheds. 
Most of the simulated average monthly outputs were within 5% of the historical data and 
nearly all of them were within 25%. The coefficient of determination (R2) was used to assess 
the correlation between the observed and simulated average monthly variables. Also, the 
interaction among various components of hydrologic budgets was recognized to be realistic. 
SWAT was utilized in a study by Arnold et al. (2000) to compare the performance of two 
baseflow and groundwater recharge models. The first model was the water balance 
components of the SWAT model. A combination of a digital hydrograph separation tool and 
a modified hydrograph recession curve displacement technique composed the second model. 
The results of the two models were in general agreement in the Upper Mississippi river basin. 
A detailed procedure for calibration of SWAT was laid out by Santhi et al. (2001). Jha et al. 
(2003) found curve number (CN) as the most sensitive parameter in streamflow prediction 
with SWAT. Muleta and Nicklow (2005) applied SWAT coupled with automated calibration 
to estimate daily flow and sediment yield in a 133 km2 Southern Illinois watershed. Eckhardt 
and Arnold (2001) developed a version of SWAT having global optimization algorithm 
(SWAT-G) to model daily flow in an 81 km2 watershed in Germany. Fohrer et al. (2002) 
used SWAT-G in conjunction with two other GIS based agricultural economy and ecology 
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models in a mountainous 60 km2 watershed in Germany to analyze the effect of land use 
changes. Sophocleaous and Perkins (2000) integrated SWAT with MODFLOW and applied 
the integrated modeling system to three different Kansas watersheds. Tripathi et al. (2004) 
showed on a 92.5 km2 Indian watershed that SWAT can successfully simulate average annual 
and monthly flow and sediment yield even if weather input is obtained through SWAT’s 
weather generator. One may also refer to Jayakrishnan et al. (2005) on SWAT applications to 
water resources management. In conclusion, SWAT performance has been extensively 
validated for streamflow, and sediment and nutrients yield predictions for different regions of 
United States and outside. 

2.2 Summary of Hydrologic Component of SWAT Model 
SWAT is a distributed, deterministic process-based hydrologic model (Neitsch et al., 
2002a/b). The AVSWAT (Di Luzio et al., 2002) graphical user interface (GUI) which runs 
under ArcView GIS is used to preprocess model data, run the SWAT model, and post 
process model outputs. SWAT uses readily available inputs and has the capability of routing 
runoff and chemicals through streams and reservoirs, adding flows and input measured data 
from point sources, and is capable of simulating long periods for computing the effect of 
management changes. Major components of the model include weather, surface runoff, 
return flow, percolation, evapotranspiration (ET), transmission losses, pond & reservoir 
storage, crop growth & irrigation, groundwater flow, reach routing, nutrient & pesticide 
loading, and water transfer.  

Input data needed to run the SWAT model includes soil, land use, weather, rainfall, 
management conditions, stream network, and watershed configuration data. AVSWAT has 
the capability of extracting most of these model parameters from readily available GIS maps 
such as digital elevation models (DEM), land use maps, STATSGO soil maps, etc. Below is 
a short summary of the SWAT model from the model manual and theoretical documentation 
version 2000 (Neitsch et al., 2002a; 2002b). 

SWAT partitions the watershed into subunits including subbasins, reach/main channel 
segments, impoundments on main channel network, and point sources to set up a watershed. 
Subbasins are divided into hydrologic response units (HRUs) which are portions of subbasins 
with unique land use/management/soil attributes. AVSWAT enables extraction of input 
parameters easily. It uses Digital Elevation Models (DEM) as input to extract the channel 
network and delineate the watershed and subwatersheds, the resolution of which depends on 
the user provided threshold area which is required to initiate a first order channel. The 
threshold area can be chosen in such a way that the resultant channel network resembles the 
one provided in topographic maps. The user needs to provide two threshold values to create 
HRUs, one for land use and one for soil. Land uses that cover a percentage of the subbasin 
area less than the threshold level are considered minor and thus eliminated. After the 
elimination process, the areas of the remaining land uses are reapportioned so that 100% of 
the land area in the subbasin is modeled. The soil threshold is applied next in a similar 
fashion to eliminate minor soil types that occupy negligible portions of the HRUs. 

In SWAT, the land phase of the hydrologic cycle is based on the water balance equation: 
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(Rday − 0.2 S)2 

Qsurf =  (2.3)
(Rday + 0.8 S) 

S = 25.4⎜⎛
1000 

−10⎟⎞ (2.4)
⎝ CN ⎠ 

t 
SWt = SW0 +∑ (Rday,i − Qsurf ,i − Ea,i − wseep,i − Qgw,i ) (2.1)

i=1 

where SWt is the final soil water content (mm), SW0 is the initial soil water content (mm), t is 
the time (days), Rday,i is the amount of precipitation on day i (mm), Qsurf,i is the amount of 
surface runoff on day i (mm), Ea,i is the amount of evapotranspiration on day i (mm), wseep,i is 
the amount of percolation and bypass flow exiting the soil profile bottom on day i (mm), and 
Qgw,i is the amount of return flow on day i (mm).  

Snowmelt is included with rainfall in the calculation of runoff and percolation; it is 
controlled by the air and snow pack temperature, the melting rate, and the areal coverage of 
snow. The mass balance for the snow pack is given by: 

SNOt = SNO0 + Rday – Esub - SNOmlt (2.2) 

where SNOt is the water content of the snow pack at the end of a day (mm), SNO0 is the 
initial water content of snow pack (mm), Rday is the amount of precipitation on a given day 
(mm), Esub is the amount of sublimation on a given day (mm), and SNOmlt is the amount of 
snowmelt on a given day (mm). This equation assumes that the water released from 
snowmelt is evenly distributed over the 24 hours of the day. 

SWAT uses the SCS curve number method (USDA Soil Conservation Service, 1972) or 
Green & Ampt infiltration method (Green and Ampt, 1911) to compute surface runoff 
volume for each HRU. The former option is utilized in this study. The SCS runoff equation is 
an empirical model that was developed to provide a consistent basis for estimating the 
amounts of runoff under varying land use, soil types, and antecedent moisture conditions 
(Rallison and Miller, 1981). The SCS curve number equation is: 

where, S is the retention parameter (mm). In this equation the initial abstraction, which 
includes surface storage, interception and infiltration prior to runoff, is approximated as 0.2S. 
The retention parameter is defined as: 

in which CN is the curve number for the day, which is a function of the soil’s permeability, 
land use and antecedent soil water conditions. 

Evapotranspiration (ET) is the primary mechanism by which the water is removed from a 
watershed. It includes all processes by which water at the earth’s surface is converted to 
water vapor: evaporation from the plant canopy, transpiration, sublimation and evaporation 
from the soil. SWAT calculates actual ET from potential evapotranspiration (PET). The latter 
is estimated by three methods in SWAT: the Penman-Monteith method, the Priestly-Taylor 

7




tconcQch,i = (Qsurf ,i + Qstor ,i−1 )⋅ ⎢
⎡ 
1− e 

− surlag 

⎥
⎤ 

(2.5)
⎢ ⎥⎣ ⎦ 

method, and the Hargreaves method. The Penman-Monteith method requires solar radiation, 
air temperature, relative humidity and wind speed. The Priestly-Taylor method requires solar 
radiation, air temperature and relative humidity. The Hargreaves method requires air 
temperature only. Penman-Monteith is used in this study. 

Once surface runoff is calculated, the amount of surface runoff released to the main 
channel is computed from 

where Qch,i is the amount of surface runoff discharged to the main channel on day i (mm), 
Qsurf,i is the amount of surface runoff generated in the subbasin on day i (mm), Qstor,i-1 is the 
surface runoff stored or lagged from day i-1 (mm), surlag is the surface runoff lag 
coefficient, and tconc is the time of concentration for the subbasin (hrs). The last expression 
within the bracket on the right hand side of Equation (2.5) represents the fraction of total 
available water allowed to enter the reach on a given day. Remaining water becomes 
available water for the next day (Qstor,i). 

The movement of water through the channel network of the watershed to the outlet is 
routed in main channel and reservoirs. Flow is routed through the channel using a variable 
storage coefficient method developed by Williams (1969) or the Muskingum routing method, 
the latter of which is employed in this study. Transmission losses, which reduce runoff 
volume as the flood wave travels downstream, are also accounted for by the model. SWAT is 
a continuous time model, i.e., a long-term yield model.  The model is not designed to 
simulate detailed, single-event flood routing.  

The water balance for the shallow aquifer is: 

aqsh,i = aqsh,i−1 + wrchrg ,i − Qgw,i − wrevap,i − wdeep,i − wpump,sh,i (2.6) 

in which aqsh,i is the amount of water stored in the shallow aquifer on day i (mm), aqsh,i-1 is 
the amount of water stored in the shallow aquifer on day i-1 (mm), wrchrg,i is the amount of 
recharge entering the aquifer on day i (mm), Qgw,i is the groundwater discharge, or base flow, 
into the main channel on day i (mm), wrevap,i is the amount of water moving into the soil zone 
in response to water deficiencies on day i (mm), wdeep,i is the amount of water percolating 
from the shallow aquifer into the deep aquifer on day i (mm), and wpump,sh,i is the amount of 
water removed from the shallow aquifer by pumping on day i (mm). The recharge to the 
aquifer on a given day is calculated: 

w gw= [1− e −1/ δ ]⋅ w + e −1/δ gw ⋅ w (2.7)rchrg ,i seep,i rchrg ,i−1 

where δgw is the delay time or drainage time of the overlying geologic formations (days), 
wseep,i is the total amount of water exiting the bottom of the soil profile on day i (mm), and 
wrchg,i-1 is the amount of recharge entering the aquifer on day i-1 (mm). 
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Base flow is computed by SWAT using this equation: 

gw gwQgw,i = e −α Δt ⋅ Qgw,i−1 + (1− e −α Δt )⋅ wrchrg ,i (2.8) 

where Qgw,i-1 is the groundwater flow into the main channel on day i-1 (mm), αgw is the base 
flow recession constant, and Δt is the time step (1 day). 

2.3 Summary 
The rationale for the selection of SWAT was laid down in this section and its track record of 
applications to watershed management was discussed. It should be noted that while it is not 
the policy of the U.S. EPA to promote the use of a particular model, the unavailability of a 
detailed survey of Pocono Creek channels’ geometry and characteristics and lack of 
information about bathymetric and hydraulic characteristics of impoundments, ponds, and 
wetlands in the watershed precluded the use of more physically based, complex watershed 
models that are currently available to the public. It will be evident throughout the analyses 
hereafter that the selection of the SWAT model was indeed an appropriate decision.  

SWAT is a distributed, process-based watershed model, but with significant number of 
empirical relationships. It is one of the most suitable models for assessing the impact of 
management practices and land disturbances on watershed responses, and has a solid track 
record of applications.  
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3 Watershed Model 

3.1 Study Area 
The 120 km2 Pocono Creek watershed is located between the latitudes 40059’N-41006’N and 
longitudes 75014’W-75026’W in Monroe County, Eastern Pennsylvania near the New Jersey 
state border (Figure 1), located within the Delaware River Basin. Pocono Creek’s 26 km long 
watershed valley drains from the Pocono Plateau in its headwaters eventually into the 
Brodhead Creek, a tributary to the Delaware River. The model is constructed for the area 
upstream from the USGS streamflow gauge station that is located about 6.4 km upstream 
from the mouth near the city of Stroudsburg, PA (Figure 1) and drains an area about 98.87 
km2. 

Table 1 summarizes the data used in this study along with their sources and formats. 
Precipitation, temperature, humidity and wind speed data were obtained from two National 
Weather Service (NWS) climate stations; Mount Pocono to the North and Stroudsburg to the 
East. As can be seen from Figure 1, both stations are outside the watershed boundary. To 
study the potential effects of this on model performance, NEXRAD data were also utilized 
during the study as an alternative precipitation data source. Specifically, the XMRG products 
produced by The Middle Atlantic River Forecast Center (MARFC -
<http://www.erh.noaa.gov/er/marfc>) were used. XMRG precipitation files are generated in a 
specific file format after analyses from both gauges and radar with some manual quality 
control and are available at approximately 4 km cell resolutions. The small squares with dots 
inside in Figure 1 represent the locations of the centroids of the NEXRAD precipitation cells. 
The XMRG files for the MARFC region can be downloaded from 
<http://dipper.nws.noaa.gov/hdsb/data/nexrad/marfc_mpe.php>. Climate data from 1960 to 
2004 indicate that, on average, annual precipitation is 1237 mm, and varies from a minimum 
of 76 mm in February to a maximum of 125 mm in September.  The temperature typically 
varies from a minimum of -11 oC in January to a maximum of 26 oC in July. 

The current land cover (Figure 2a) is dominantly forest (89%). Pasture constitutes about 
3.5% and minor agricultural activities less than 0.2%. Residential, commercial and 
transportation areas comprise about 5.8% of the watershed including the commercially 
developed Route 611 corridor, Big Pocono State Park, Camelback Ski Area, the Nature 
Conservancy's Tannersville Cranberry Bog, and state gamelands. Silt loam is the major soil 
type in the watershed covering about 84.9%. Two other soil types in the watershed are sandy 
loam (11.4%) and loam (3.7%). The elevation in the watershed changes from 183 m at the 
outlet to 648 m near the Camel Back Ski Area. The topography in the watershed generally 
has an average slope of 11% and ranges from 4% to 23%. A 30 m resolution digital elevation 
model (DEM) is used in extraction of the stream network and delineation of the watershed 
and subwatersheds. The watershed is divided into 29 subbasins. The STATSGO soil database 
was used to acquire the soil-related model parameters (Figure 2b). Hydrologic response units 
(HRU) are generated by using 10% and 0% thresholds for land use and soil maps that 
resulted in a total of 129 HRUs. 
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Table 1. Data Used in the Model Construct and Their Sources 

Data Source Additional Info 

Soil SWAT build in USDA STATSGO soil database 

Land Use DRBC National Land Cover Data (NLCD) 
Elevation DRBC provided, also available at 

http://www.pasda.psu.edu/ 
30 m resolution DEM 

Climate NOAA National Data Center 
http://nndc.noaa.gov 

Stations: Mount Pocono, 41°08'N / 
75°23'W; Stroudsburg, 41°01'N / 
75°11'W; hourly (daily for Stroudsburg) 
precipitation, temperature, wind speed, 
relative humidity 

Radar NWS Hydrologic Data Systems 
Group: 
http://dipper.nws.noaa.gov/hdsb/data 
/nexrad/nexrad.html 

NEXRAD, Multisensor Precipitation 
Estimator (MPE) Data in XMRG format. 
Hourly precipitation at approximately 4 
km resolution. 

Stream 
flow 

http://waterdata.usgs.gov/pa/nwis/uv 
?dd_cd=02&format=pre&period=16 
&site_no=01441495 

USGS 01441495 Pocono Creek ab 
Wigwam Run near Stroudsburg, PA, Lat 
40059'27", long 75015'20", data collected 
every 15 min. 

3.2 Base flow Separation 

Stream flow is usually partitioned into two parts: the fast and the slow response components, 
the latter of which is due to the base flow contribution. Any other contribution to stream flow 
by various mechanisms can be deemed as the fast response component. SWAT computes the 
base flow and surface runoff components of the stream flow separately. Although some 
parameters play an interactive role such as the CN, some parameters only affect one 
individual component of the flow. For instance, Manning’s roughness only affects surface 
runoff, whereas base flow recession constant only affects base flow. Hence, to better 
calibrate model parameters it is necessary to partition the observed stream flow hydrograph 
into base flow and surface runoff components, both of which then become estimated 
quantities rather than observed. 

We estimated base flow using the method described in Arnold et al. (1995) and Arnold 
and Allen (1999). This is a recursive digital filter technique which was originally used in 
signal processing and filtering. The filter can be passed over the stream flow data several 
times with each pass resulting in less base flow. Various other methods of base flow 
separation are also available and each can give significantly different base-flow estimates 
which clearly affect not only model calibrated parameters but also model performance. 
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Open Water
Perennial Ice/Snow 
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Transitional 
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Evergreen Forest PA024 
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Woody Wetlands 
Emergent Herbaceous Wetlands 

Figure 2. Pocono Creek watershed: a) Land use map; b) Soil map (STATSGO). 

3.3 Next Generation Weather Radar (NEXRAD) 
Both the Mount Pocono and Stroudsburg climate stations are located outside the watershed 
boundary (Figure 1) and provide point measurements. This raises the question whether the 
data from these two gauge stations are representative of spatial rainfall pattern over the 
Pocono Creek watershed which is partly covered with mountains. It is well known that 
precipitation may change significantly in mountainous areas due to orographic effects. 
Precipitation is usually higher in upper elevations. To be able to realistically answer this 
question several raingauges inside the watershed boundary are needed so that spatial 
distribution of the precipitation pattern can be attained. The Next Generation Weather Radar 
(NEXRAD) precipitation data offer an opportunity to overlay spatially distributed 
precipitation over the entire watershed. NEXRAD also provides a finer temporal resolution 
(hourly) compared to daily values from the climate stations that are available. In any case, 
hourly precipitation is not required for this study and daily precipitation suffices for the 
current model application. Because the ultimate goal is modeling base flow and stream flow 
in the Pocono Creek watershed, gauge driven model performance is compared to NEXRAD 
driven ones. This sheds light on whether or not consideration of the distributed nature of 
precipitation improves the model performance, and whether NEXRAD can be relied on as an 
alternative to the surface raingauge measurements. For further details on processing the 
NEXRAD data for use in a watershed model, the reader may refer to Kalin and Hantush 
(2006a). 

3.4 Model Calibration 
Models are only simplified representations of natural processes. Even fully physically-based 
models cannot avoid simplifications. In addition, parametric uncertainty and measurement 
errors make model calibration inevitable in most modeling exercises. A split data set 
approach is implemented in this study to calibrate and validate the SWAT model. The period 
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from 7/1/02 to 5/31/04 of the daily flow data, aggregated into monthly flows, is used for 
calibration and the remaining data from 6/1/04 to 4/30/05 is used for validation. Three to five 
years of data are typically required in calibration, although along with a good set of data and 
proper objective function, a single year of data has been shown to be adequate (Sorooshian et 
al., 1983). The statistical measures of Mass Balance Error (MBE), coefficient of 
determination (R2) and Nash-Sutcliffe (1970) efficiency (ENS) are used as indicators of model 
performance that are defined as 

where Qsim,i and Qobs,i are simulated and observed or estimated flows at ith observation, 
respectively, N is the number of observations. Similarly, Osim and Oobs  are the average 
simulated and observed flows over the simulation period. The coefficient of determination 
describes the proportion of the total variances in the observed data that can be explained by 
the model and ranges from 0 to 1, whereas Nash-Sutcliffe efficiency is a measure of how 
well the plot of observed versus predicted values fit the 1:1 line, and can vary from −∞  to 1. 
A negative ENS indicates that model predictions are not better than the average of observed 
data. 

The calibration process is adapted from Santhi et al. (2001) and is summarized in Figure 
3. The threshold values set for MBE, R2 and ENS in the figure are at monthly time scales. 
Curve numbers (CN) of each soil/land use combination are calibrated first to meet the criteria 
set for surface runoff (SR). At the next stage the GW_REVAP coefficient which is a limiting 
factor for the maximum amount of water that can be removed from the aquifer to the 
overlying unsaturated zone due to moisture deficit, threshold depth of water in shallow 
aquifer required for base flow to occur (GWQMN), delay time for aquifer recharge 
(GW_DELAY), and soil evaporation compensation factor (ESCO) are calibrated to meet the 
stream flow (SF) and base flow (BF) criteria. Once the model is calibrated using measured 
stream flows for the calibration period, the model is validated using the data for the above 
stated validation period and MBE, R2 and ENS are checked against the threshold values shown 
in Figure 3. The threshold values set for MBE, R2 and ENS statistical measures must be 
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•SR: Surface Runoff
Separate SR and BF for
Separate SR and BF for

measured daily flowmeasured daily flow •SF: Stream Flow


•BF: Base Flow 

•R2: Coefficient of determination 
[0,1] 

•EN-S: Coefficient of efficiency or 
Nash-Sutcliffe Efficiency [-∞,1] 

•CN: Curve Number 

•GW_REVAP: Groundwater 
revap* coefficient 

•GWQMN: Threshold depth of 
water in shallow aquifer required 
for return flow to occur 

•ESCO: Soil Evaporation 
compensation factor 

•GW_DELAY: Delay time for 
aquifer recharge (days) 

* movement of water from 
unconfined aquifer to overlying 
unsaturated layers 

Calibration complete 

Run SWAT 

NO 

NO 

If avrg. of sim. SR is within ± 15% 
of avrg. measured SR and 

R2≥0.6, EN-S≥0.5 

If avrg. of sim. SF is within ± 15% 
of avrg. measured SF and 

R2≥0.6, EN-S≥0.5 

If avrg. of sim. BF is within 
± 15% of average measured BF 

NO Adjust CN 

Adjust GW_REVAP, 
GWQMN, ESCO, 

GW_DELAY 

Adjust GW_REVAP, 
GWQMN, ESCO, 

GW_DELAY 

YES 

YES 

YES 
Calibration complete

Run SWAT

NO

NO

If avrg. of sim. SR is within ± 15%
of avrg. measured SR and 

R2≥0.6, EN-S≥0.5

If avrg. of sim. SF is within ± 15% 
of avrg. measured SF and

R2≥0.6, EN-S≥0.5

If avrg. of sim. BF is within
± 15% of average measured BF

NONO Adjust CN

Adjust GW_REVAP,
GWQMN, ESCO, 

GW_DELAY

Adjust GW_REVAP, 
GWQMN, ESCO, 

GW_DELAY

YES

YES

YES

satisfied for a successfully calibrated model. Before calibrating the model parameters, an 
automated sensitivity analysis was performed with a version of SWAT called AVSWATX 
that is based on Latin Hypercube (LH) and One factor At a Time (OAT) sampling. The 
sensitivity analysis revealed that CN is the most sensitive model parameter (Kalin and 
Hantush, 2006a). 

Figure 3. Calibration procedure in the SWAT model (adapted from Santhi et al., 2001). 

Figure 4 compares the daily and monthly areally averaged NEXRAD estimated 
precipitation to measurements at the gauges. All the values in the figure are in mm. Mount 
Pocono station falls in between two NEXRAD cells (Figure 1): (961,614) and (961,615) 
where the numbers in parentheses represent the X and Y coordinates of the centroids of 
NEXRAD cells in the HRAP coordinate system. Therefore, we compared Mount Pocono 
point precipitation measurements to NEXRAD estimates at both cells as well as to their 
arithmetic averages. The Stroudsburg station falls inside the grid (966,614) as seen in Figure 
1. Estimated hourly precipitations were 
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Figure 4. 	 Comparison of NEXRAD estimated precipitation with measurements from local 

gauge stations. Values shown are in mm. 
 
aggregated in these cells to obtain the daily and monthly precipitation estimates. We 
computed daily values from 7:00 AM to 7:00 AM at the cell (966,614) to be consistent with 
the reported daily precipitation data at the Stroudsburg gauge station. Figure 4 reveals that 
(961,615) represents Mount Pocono relatively better than both (961,614) and the average of 
the two, as it has a higher R2, the slope of its regression equation is closer to 1 and has a 
smaller intercept. Further, (961,615) overestimates precipitation by only 5.7% compared to 
10.8% overestimation of (961,614) from 1/1/2002 to 4/30/2005. Over the time period from 
1/1/2002 to 2/28/2005, NEXRAD underestimates precipitation in the Stroudsburg station by 
10.0%. In this watershed, comparisons with gauge measurements indicate that NEXRAD 
technology provides an alternative source of precipitation data. Note that NEXRAD 
estimates are areal average precipitations of an approximately 4x4 km2 grid in contrast to 
point measurements (~100 cm2) of gauge stations. Differences between the two are partly 
attributed to variations of point measurements from areal average estimates of precipitations, 
and partly due to measurement errors associated with the instrument itself. 
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SWAT is calibrated both with rain gauge and NEXRAD as the precipitation data source. 
The simulations are performed starting from 7/1/1970, i.e., with a 32 years of warm up 
period to minimize the effect of initial conditions. For more details on calibration using 
raingauge data, the readers are referred to Kalin and Hantush (2006a). The surface runoff lag 
coefficient (surlag) had to be adjusted to improve the daily simulation performances. The CN 
values calibrated based on raingauge data are reduced in all HRUs by 1.5 (for this specific 
site) when NEXRAD was the data source. The volume of precipitation over the study 
watershed estimated with NEXRAD is greater than that estimated from raingauges, and thus 
this adjustment in CN had to be made. Experimentation with other parameters revealed no 
further improvement in the model performance. Figure 5 compares SWAT simulations to 
observed SF and estimated SR at the monthly time scale and SF at the daily time scale only 
for NEXRAD. Rain gauge simulations not shown on the figure as hydrographs are very 
similar to NEXRAD generated hydrographs. 
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Figure 5.	 Measured stream flow (SF) and estimated surface runoff (SR) plotted against 
SWAT simulated counterparts for the calibration (7/1/2002-5/31/2004) period. 
NEXRAD estimates are used as precipitation data source. Top two panels show 
monthly results, and the bottom panel shows daily results. 

As Figure 5 shows, overall the model performs well at both time scales. These results are 
comparable to gauge driven simulations (Kalin and Hantush, 2006a). The NEXRAD driven 
model performance statistics MBE, R2 and ENS are summarized in Table 2 and are well within 
the calibration threshold values shown in Figure 3. From the results obtained, although with a 
relatively smaller calibrated CN, it is reasonable to conclude that NEXRAD estimated 
precipitation data is a good alternative to gauge measured precipitation data. The benefit of 
using distributed rainfall data was negligible at both time scales for the particular application. 
On the other hand, noticeable improvement is expected for stream flow estimates at the 
interior subwatershed outlets with the use of distributed rainfall data over the available 
raingauge data. In the next section, an 11 month period split sample data set is used to 
validate the calibrated model.  

Table 2.	 Mass Balance Error (MBE), Coefficient of Determination, R2, and Nash-Sutcliffe 
Efficiency, ENS for Stream Flow (SF), Base flow (BF) and Surface Runoff (SR) During the 
Calibration Period with NEXRAD as Precipitation Data Source. Values in Parenthesis 
Indicate Values when Rain Gauges are Used as Precipitation Data Source 

Stream Flow (SF) Base Flow (BF) Surface Runoff (SR) 

Monthly 

Daily 

MBE 
(%) 
-3.8 

(-3.8) 

R2 

0.85 

(0.85) 

0.74 

(0.74) 

ENS 

0.84 

(0.83) 

0.73 

(0.74) 

MBE 
% 
-4.5 

(-4.0) 

R2 

0.31 

(0.30) 

ENS 

0.05 

(0.08) 

MBE 
% 
-3.2 

(-3.6) 

R2 

0.79 

(0.77) 

ENS 

0.79 

(0.77) 
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3.5 Model Validation 

The period from 6/1/2004 to 4/30/2005 is chosen as the validation period. Simulations are 
performed again starting from 7/1/1970 to curtail the effect of initial conditions. Figure 6 
compares observed values to model simulations conducted with NEXRAD data. In the figure 
the top two panels compare monthly SF and SR and the bottom figure is for daily SF results. 
From visual inspection, one can conclude that model simulations match well with observed 
SF and estimated SR.  

Figure 6.	 Measured streamflow (SF) and estimated surface runoff (SR) plotted against 
SWAT simulated counterparts for the validation period (6/1/2004-4/30/2005). 
NEXRAD estimates are used as precipitation data source. Top and bottom panels 
denote monthly and daily results, respectively. 

Table 3 summarizes the model efficiencies at the monthly and daily time scales, respectively, 
validated with NEXRAD and raingauge data. In the table “g” denotes gauge input and “n” 
indicates NEXRAD input precipitation. In all cases, the model calibration criteria are 
satisfied. As can be seen, MBE in SR decreased in absolute value from 15.1% to 7.9% with 
the NEXRAD input simulations. In SF and BF, MBE dropped in absolute value to 5.6% from 
13.5% and to 1.2% from 10.6%, respectively, all underestimations. Overall NEXRAD input 
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Precip. 
source 

Stream Flow (SF) Base Flow (BF) Surface Runoff (SR) 

MBE 
R2 (%) ENS 

MBE 
% R2 ENS 

MBE 
% R2 ENS 

M
on

th
ly

 

g -13.5 0.81 0.66 -10.6 0.13 -0.26 -15.1 0.83 0.73 

n -5.6 0.89 0.75 -1.2 0.06 -0.40 -7.9 0.84 0.77 

D
ai

ly

g 0.70 0.64 

n 0.66 0.62 

monthly simulations outperformed raingauge based simulations. Daily statistics showed 
mixed results.  

Table 3. Mass Balance Error (MBE), Coefficient of Determination, R2, and Nash-Sutcliffe 
Efficiency, ENS for Stream Flow (SF), Base flow (BF) and Surface Runoff (SR) 
During the Validation Period. g and n Represent Gauge and NEXRAD Input 
Precipitations, Respectively 

It is interesting to note that while at the monthly time scale NEXRAD had better 
performance statistics, at the daily time scale gauge driven simulations had slightly better 
statistics. Several reasons may have contributed to this. First, calibration efforts were more 
focused to monthly time scale as part of the project goal. Secondly, NEXRAD calibration 
was built on the calibrated parameters with gauge driven data, therefore there is a small bias. 

An additional set of 5 months streamflow data in the period 5/1/2005 to 9/30/2005, which 
was not available during model validation, was downloaded from the source and was utilized 
to further evaluate the model performance. The model was run with NEXRAD data and 
corresponding calibrated parameters during this post-validation period, and the results are 
plotted in Figure 7. Interestingly, expanding the validation period 6/1/2004 – 4/30/2005 to 
9/30/2005 results in slightly improved results; the MBE in absolute value decreased from 
2.9% to 0.8%, daily R2 increased to 0.68 from 0.66, and daily ENS increased from 0.62 to 
0.64. 

19




5 

4 observed SWAT 

D
ai

ly
 fl

ow
 (m

3/
s)

3 

2 
5/

1/
05

1 

0 
5/

16
/0

5

5/
31

/0
5

6/
15

/0
5

6/
30

/0
5

7/
15

/0
5

7/
30

/0
5

8/
14

/0
5

8/
29

/0
5

9/
13

/0
5

9/
28

/0
5 

Figure 7. Measured daily streamflows plotted against SWAT simulated counterparts for the 
post-validation period (5/1/2005-9/30/2005). NEXRAD estimates are used as 
precipitation data source. 

3.6 Conclusions 

In this section the hydrology in the Pocono Creek watershed was modeled using a distributed 
parameter watershed model, and in particular the potential for using NEXRAD as an 
alternative source of precipitation data to raingauge stations was explored. The SWAT model 
was calibrated and validated for the Pocono Creek watershed. 

The model was first calibrated using precipitation data from two gauge stations located 
outside the watershed boundary. Model performance was evaluated with computed model 
efficiency statistics, i.e., mass balance error (MBE), coefficient of determination (R2), and 
Nash-Sutcliffe Efficiency (ENS). Simulation results were promising at the monthly and daily 
time scales.  

As an alternative data source, the use of radar generated precipitation data (NEXRAD) 
was appraised. NEXRAD data obtained from the Middle Atlantic River Forecast Center 
(MARFC) provided hourly precipitation estimates over approximately 4x4 km2 grids. 
Measured precipitation values at the two gauge stations were in close agreement with the 
NEXRAD estimated values.   

The SWAT model was fed with the spatially distributed NEXRAD precipitation data and 
recalibrated by reducing the average curve numbers (CN) by a value of 1.5 that were 
obtained from model calibration when gauge precipitation data was used as input. The 
streamflow and surface runoff hydrographs were in close agreement with measured 
hydrographs. Efficiency statistics MBE, R2 and ENS were close to ones obtained with gauge 
driven simulations. The model was then run for an additional 11 month period for validation 
purposes both with gauge and NEXRAD data. NEXRAD generated smaller MBE. The values 
of R2 and ENS were higher at the monthly time scale with NEXRAD, whereas at the daily 
time scale gauge driven simulations resulted in improved measures of fit. An additional 5 
months set of streamflow data was used to further evaluate the performance of the already 
validated model. 
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This section showed that spatially distributed precipitation data obtained through radar 
reflectivity measurements provide a viable alternative to raingauge measurements. However, 
estimation of precipitation with the help of radar still needs improvements. At present, data 
from raingauges will continue to be relied upon to correct NEXRAD hourly digital 
precipitation for mean field bias. Future refinement of this technology may provide a cost-
effective alternative source of precipitation data, and may reduce the need for the costlier 
raingauges for large scale watershed applications. 
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4 Model Prediction Uncertainty 

4.1 Introduction 

It is a common practice that the sequence of sensitivity analysis → calibration → validation 
is followed during applications of distributed hydrologic/water quality models, yet rigorous 
attempts are rarely made to assess model predictive uncertainty. Once the model is calibrated 
with one set of data and validated with another set, it is used for predicting the impact of 
management practices, land-use changes, and/or long-term climate changes, however, with 
much less regard to uncertainty bands of predictions. The process of examining model 
forecast reliability (post-validation) is an important consideration in development of 
watershed management plans. Modeling uncertainty should be rigorously addressed in 
development and application of models, especially when the model outcome might have 
implications on policy, watershed planning and management, and when stakeholders are 
affected by the decisions contingent upon model-supported analyses (NRC, 2001). 
Implications of model uncertainty should be factored in the decision making process.  

The analysis of uncertainty associated with utility of simulation models appears mostly in 
the scientific, research literature (e.g., Spear and Hornberger, 1980; Beven and Binely, 1992; 
Spear et al., 1994; van der Perk and Bierkens, 1997; Saltelli et al., 2000; Hossain et al., 2004; 
Carpenter and Georgakakos, 2004; and Pebesma et al., 2005). While various approaches exist 
for estimating distributed watershed/water quality model prediction uncertainty, careful 
examination of the scientific literature reveals three dominant approaches. Amongst the three 
approaches, the Bayesian approach is perhaps the most poular. Examples include Bayesian 
Monte Carlo (e.g., Dilks et al., 1992; and van der Perk and Bierkens, 1997) and Generalized 
Likelihood Uncertainty Estimation (GLUE) (Beven and Binely, 1992; Freer et al., 1996; 
Beven and Freer, 2001; Hossain et al., 2004; and Hossain and Anagnostou, 2005) 
methodologies. A second approach relies directly on Monte Carlo (MC) method to obtain an 
ensemble of model outputs by independently sampling model parameters from prior 
distributions based on ranges (i.e., with minima and maxima) derived from literature, or 
based on new information gained from experience and model calibration (e.g., Binley et al., 
1991; Carpenter and Georgakakos, 2004; and Hantush and Kalin, 2005). A third approach 
can be discerned in which the model noise or residual error is accounted for explicitly (e.g., 
Sorooshian and Dracup, 1980; and Pebesma et al., 2005). In this approach, model predictions 
and observations are given as time series data, and attempts are made to fit a deterministic or 
statistical relationship to the residual time series. Among these three approaches, the third 
one has been given the least attention. Although GLUE methodology has gained a wider 
acceptance, the selection of a suitable relationship for computing relative likelihoods 
associated with the ensemble simulations is a matter of choice, and therefore subjective in 
that sense. Both the GLUE methodology and the third approach implicitly account for the 
four major sources of uncertainty: model structural uncertainty, parametric uncertainty, 
measurement uncertainty, and rainfall variability.   

In this section, we fit a time series model to the residuals (observed – predicted) of daily 
SWAT model output. The focus on model performance at the daily time scale is because 
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predictions of monthly median daily flows are required inputs to the PIFM model for wild 
brown trout habitats. The time series model is combined with Monte Carlo-type simulation 
(Latin Hypercube) to estimate uncertainty bounds for model predictions. Using a new set of 
streamflow data (i.e., different from calibration and validation data), SWAT model forecast 
performance is evaluated by comparison of the 90% confidence interval or (uncertainty band) 
with observed values. One of the advantages of the time series approach, which is described 
in the following section, is that the commonly adopted Gaussian and statistical independence 
assumptions for model errors are relaxed by brute force application of time series analysis 
and using a nonparametric probabilistic approach. Further, MC-type simulation is conducted 
on rather a simple time series model for the residual errors as opposed to the computationally 
demanding watershed model.   

4.2 Structural and Model Parameters Uncertainty 

4.2.1 Prediction Error 

Figure 8(a) shows the time series of model prediction errors (observed-simulated) based on 
simulations during the calibration and validation period (7/1/2002-4/30/2005). The error is 
defined by this equation 

ε t = ot − pt (4.1) 

where εt is model output noise or prediction error; ot is measured streamflow; and pt is model 
computed streamflow; and t is time index in days. The εt accounts for model structural 
uncertainty, parametric uncertainty, measurement uncertainty, and errors in the rainfall input. 
Model structural uncertainty is usually associated with imperfect knowledge, and generally 
referred to as epistemic uncertainty. A close look at the daily errors time series (Figure 8a) 
reveals systematic errors shown as large positive or negative spikes that are not random in 
nature. In many instances a large (-) error is immediately followed by a big (+) error. One 
reason might be timing errors in recording either the precipitation or the streamflow. 
Another, probably the more reasonable, explanation is the inability of the SWAT model to 
use sub daily rainfall data. When a big rainfall event happens at the very end of a day, the 
actual watershed response will be about 1 day delayed compared to what SWAT actually 
simulates with daily rainfall data. This will clearly result in overprediction (negative error) 
and underprediction (positive error) on two successive days, respectively. Hence, to 
minimize this type of error to some extent, we decided to use three days (3-day) moving 
average of the errors in constructing our model. While one may argue as to why daily 
simulations are of interest, especially when SWAT is best suited for long-term simulations 
(monthly and annual time steps), there are two compelling reasons for this consideration. 
First, monthly median daily flows are a required input to the PIFM habitat model. Secondly, 
there is not sufficient monthly streamflow data to conduct a meaningful time series analysis 
to model errors. Therefore, in addition to smoothing the effect of the large errors during 
significant events, a 3-day averaging of streamflows is intended to provide reasonable 
estimates of daily flows for the wild brown trout habitat model. Further, sufficient data of 3
day moving averages will be available to construct a time series model of residual errors εt. 
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Henceforth, εt refers to model residual errors based on 3-day averages of ot and pt, and thus 
deemed (i.e., εt) a surrogate to (rather than exact) daily model prediction errors. 

Figure 8. 	 Time series of model prediction errors (Observed – SWAT simulated) in the 
calibration and validation time period (7/1/2002-4/30/2005): (a) daily simulations, 
(b) 3-day moving average.  

Figure 8(b) shows the difference between 3-day average of observed minus predicted 
times series of stream flows during the period (7/1/2002-4/30/2005). The errors are not 
totally eliminated but their magnitudes are significantly reduced. The Minitab® statistical 
computer package is used to identify a time series model and construct reasonable forecasts 
for the future of εt. In general, a multiplicative seasonal autoregressive integrated moving 
average model denoted by ARIMA (p,d,q) × (P,D,Q)S is fitted to the series of interest, which 
is the model prediction error εt in our case. The parameters p, d, and q are, respectively, the 
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orders of the autoregressive, difference, and moving average operators; P, D, and Q are, 
respectively, the orders of the seasonal autoregressive, seasonal moving average, and 
seasonal difference operators; and S is the seasonal period. Autocorrelation function (ACF) 
and partial autocorrelation function (PACF) are utilized and the procedure outlined by 
Shumway (1988), which derive its basis from Box and Jenkins (1970), is followed to identify 
the best model. The objective of the model identification process is to produce identically 
distributed, independent residuals wt, with a minimum variance σw 

2 arising from fitting some 
ARIMA (p,d,q) × (P,D,Q)S to the εt time series.  

The upper two panels in Figure 9 (i.e., Figure 9(a)) show the ACF and PACF of model 
errors, εt. It is obvious that the series display nonstationarity accentuated by the slowly 
decaying ACF as a function of lag and the large positive value of PACF at lag 1. The ACF of 
the first difference in Figure 9(b) contains a fairly strong negative peak (-0.44) at lag-3 and 
zero thereafter, indicating that a seasonal moving average with S = 3 (days) and Q =1 might 
be appropriate. The decreasing peaks of the PACF at multiples of 3 are due to the seasonal 
moving average component. Therefore, ARIMA (0,1,0) × (0,0,1)3 appears to be, at the 
moment, a suitable selection among, perhaps, other competing models. Table 4 lists several 
ARIMA models with computed variance of residuals, σ̂ w 

2 , and various goodness-of-fit 
measures: final prediction error (FPF), Akaike’s information criterion (AIC), and Bayesian 
information criterion (BIC). It is clear that the most appropriate model choice is ARIMA 
(1,1,1) × (0,0,1)3, which has the smallest values of σ̂ w 

2 , FPF, AIC, and BIC. The model was 
fitted to the error time series depicted in Figure 8(b) (recall the 3-day averages of the actual 
model errors), and the equation for determining the residuals wt is 

3(1−φ B)∇ε t = (1−Θ B )(1−θ B)wt (4.2) 

where ∇εt = εt - εt-1 is the first difference operator; Bεt = εt-1 is the backward shift operator; 
φ, θ, and Θ are the fitted parameters. Equation (4.2) can be expanded to yield the following 
representation for εt: 

ε t = (1+φ)ε t−1 −φ ε t−2 + wt −θ wt−1 −Θ wt−3 +θ Θ wt−4 (4.3) 
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(a) 

(b) 

(c) 

Figure 9. 	 Autocorrelation (ACF) and partial autocorrelation (PACF) functions of: (a) 
prediction error εt, (b) first difference of residual error ∇εt = εt - εt-1, (c) residuals 
(wt) for ARIMA(1,1,1) × (0,0,1)3. The lag is in units of days. 
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where φ̂  = 0.7838, θ̂  = 0.6163, and Θ̂ = 0.9819. The ACF and PACF of the residuals wt from 
this model is plotted in Figure 9(c), and shows no prominent peaks at 5% significance limits. 
Therefore, it seems reasonable to regard the residuals as being white noise, with an estimated 
variance σ̂ 2 = 0.629.w 

Table 4. 	Values of Residual variance, Final Prediction Error (FPF), Akaike’s 
Information Criterion (AIC), and Bayesian Information Criterion 
(BIC) for Various Models Applied to Model Prediction Error Data, εt 

Model ˆ 2 
wσ FPE AIC BIC 

ARIMA(0,1,0)x(1,0,0)3 0.926 0.928 -0.075 -0.070 
ARIMA(0,1,0)x(2,0,0)3 0.805 0.808 -0.213 -0.203 
ARIMA(0,1,0)x(3,0,0)3 0.778 0.783 -0.245 -0.231 
ARIMA(0,1,0)x(4,0,0)3 0.762 0.768 -0.264 -0.245 
ARIMA(0,1,0)x(5,0,0)3 0.743 0.750 -0.287 -0.263 
ARIMA(0,1,0)x(0,0,1)3 0.674 0.675 -0.393 -0.388 
ARIMA(0,1,0)x(0,0,2)3 0.661 0.664 -0.410 -0.401 
ARIMA(0,1,1)x(0,0,1)3 0.653 0.656 -0.422 -0.413 
ARIMA(0,1,2)x(0,0,1)3 0.641 0.645 -0.439 -0.425 
ARIMA(1,1,0)x(0,0,1)3 0.647 0.650 -0.432 -0.422 
ARIMA(2,1,0)x(0,0,1)3 0.634 0.638 -0.450 -0.435 
ARIMA(1,1,1)x(0,0,1)3 0.629 0.633 -0.458 -0.443 

The Box-Pierce Q for lags 48, 100, and 250 measuring randomness are satisfied with 95% 
confidence for the selected ARIMA(1,1,1) × (0,0,1)3 model.  

Plotting positions for the computed residuals ŵt reveal that they are not normally 
distributed. In other words, the Box-Pierce goodness-of-fit, which is based on normally 
distributed wt, is a measure for the goodness-of-fit only in a relative sense. In this case, the 
fitted parametersφ̂ , θ̂ , Θ̂ , and the variance of residuals σ̂ w 

2  are least-squares estimates as 
opposed to maximum likelihood estimates. Nevertheless, the ACF and PACF in Figure 9, the 
variance of residualsσ̂ w 

2 , and comparison of FPE, AIC, and BIC criteria altogether point 
toward a suitable model fit. The implication of wt being not normal, however, is to render the 
l-step forecast, defined as the conditional expectation wt

t 
+l = E[wt+l|wt, wt-1,…], and the l-step 

forecast variance Pt
t 
+ l = E[(wt+l - wt

t 
+l )

2|wt, wt-1,…], insufficient for constructing the (1-α) 
confidence or probability interval, because the first two moments are not sufficient to infer 
the probability density function as long as the residuals are not normally distributed. In this 
case, a nonparametric method is followed to fit a nonparametric probability density function 
to wt. The premise of using the stochastic model (4.3) is that the future is statistically similar 
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n 

f̂  
X (x) =	

1 ∑ K⎛
⎜ 

x − wk ⎞⎟ (4.4)
n h k =1 ⎝ h ⎠ 

2 

1 − 
x 

K (x) = e 2	 (4.5)
2π

ˆ ⎛ 4 ⎞
1/ 5


h = ⎜⎜ ⎟⎟ σ (4.6)

⎝ 3n ⎠ 

to the past by preserving and reproducing the statistical characteristics of observed model 
errors. 

4.2.2 Nonparametric Probability Distribution 
Nonparametric methods are applied when parametric probability distributions fail to describe 
the stochastic sequence under consideration. Lall (1995) reviewed applications of 
nonparametric function estimation in hydrology. A probability density function of arbitrary 
shape can be locally approximated by a nonparametric model. This is particularly important 
when commonly used probability distributions (e.g., normal, log-normal, exponential, etc.) 
poorly fit the frequency of the observed stochastic series. However, despite their successful 
applications to hydrology, nonparametric approaches have the limitation that they do not 
extrapolate beyond the range of the record, since the sequence of future wt is hypothesized to 
have a similar nonparametric functional form of the fitted probability density function (PDF).  

In parametric methods, the density function is estimated by assuming that data are drawn 
from a known parametric family of distributions. The methods of moments, maximum 
likelihood estimation, or any other methods are commonly used to estimate the parameters of 
the chosen PDF. In nonparametric approaches, a kernel function is often used to generalize 
the density function estimation. Given a set of n observations w1, w2,…, wn, a mathematical 
expression of a univariate kernel probability density estimator is ((e.g., Kim and Valdés, 
2005) 

where x is a random variable which stands for w; K is a kernel function; n is number of 
observations; and h is a bandwidth that controls the variance of the kernel function. Kim and 
Valdés (2005) provide a list of kernel functions typically used in hydrology, the most widely 
used one being the Gaussian: 

An optimal estimate for the bandwidth for a Gaussian kernel is provided by Kim and Valdés 
(2005) citing Silverman (1986), 

Where σ is the standard deviation of the observed record, which in this case is equal to the 
standard deviation of observed residuals, σ̂ w ≈ 0.79. n = 1028 is approximately the number of 
streamflow measurements in the calibration and validation period (7/1/2002-4/30/2005). 

28




Note that the residual term wt in the error stochastic model (4.3) is not directly observed in 
the data sample ε1, ε2, …, εn. This value can be approximated by assuming that w2 = w1 = w0 
= w-1 = 0 and then computing from (4.3)  

wk =θ wk −1 +Θ wk −3 −θ Θ wk −4 − (1+φ)ε k −1 +φε k −2 (4.7) 

for k = 3, 4, …, n. Recall that the sequence ε1, ε2, …, εn, which is used to construct the time 
series model (4.3), is computed from Eq. (4.1) using SWAT model simulations and 
corresponding streamflow measurements during the calibration and validation period.  

Although the residuals wt have zero-mean and are independent, they do not follow any of 
the known parametric distributions. Figure 10 shows a relatively poor fit to the frequency 
histogram by Gaussian PDF assuming wt ∼ N(0, σ̂ w 

2 ). The nonparametric fit (4.4) provides a 
remarkably improved local fit to the observed histogram.  

Figure 10. Frequency histogram, Gaussian PDF, and the nonparametric model fit to the 
computed series of residuals wk. Both the histogram of residuals and normal 
distribution has zero mean and standard deviation σ̂ .w 

In the following section we now combine nonparametric random generation and Latin 
Hypercube Sampling (LHS) with the stochastic model (4.3) to synthesize the ensemble of 
model error time series wt. 

4.2.3 Nonparametric Random Generation 
Random observations may be generated from probability distributions by making use of the 
fact that the cumulative probability function for any continuous variate is uniformly 
distributed over the interval [0, 1] (e.g., Haan, 2002). Thus, for any random variable X with 
PDF fX(x), the variate FX(x) 
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x 

FX (x) = ∫ f X (u) du (4.8)
−∞ 

is uniformly distributed over [0, 1]. A procedure for generating a random value x from fX(x) 
starts with generating a random number R from the uniform distribution in the interval [0, 1], 
then setting R = FX(x), and finally solving for x using the inverse relationship 

x = FX 
−1 (R) (4.9) 

Unfortunately, an explicit solution to (4.9) is not always possible because FX(x) may not 
be a simple function of x. The procedure for solving this equation is achieved in two steps. 
First, FX(x) is obtained by substituting the right-hand-side of (4.4) for fX(x) in (4.8) and 
commuting the order of summation with the integration operator. The term-wise integration 
can be carried either numerically or analytically in terms of resulting error functions. 
Secondly, for each randomly generated R, Eq. (4.9) is solved using any of the root searching 
techniques. The simple bisection method is used to obtain the root.  

A large sequence of independent, identically distributed model residuals wt are randomly 
generated using the aforementioned procedure. Latin Hypercube Sampling (LHS) is 
employed as an efficient and effective alternative to conventional Monte Carlo sampling 
(MCS). The LHS (McKay et al. 1979) divides the CDF (i.e., the FX(x) function) into 
segments of equal width from each of which a random variate R is generated. This way the 
whole CDF is covered, but with smaller number of replications than by MCS. LHS is more 
efficient than MCS at both ends of the CDF. The randomly generated sequence of wt is fed 
into Eq. (4.3) to synthesize ensemble time series of εt. As indicated at the outset, the 
computed εt values, in fact, estimate the 3-day average as opposed to daily model prediction 
errors. 

The generated ensemble of model errors together with the effect of precipitation 
uncertainty were used to construct an ensemble of flow duration curves based on a present 
land use map (Figure 2a). However, before doing so, model forecast performance was first 
examined using the stochastic error model developed above and available streamflow data.  

4.3 Model Forecast Evaluation 
Figure 7 constitutes the first step in evaluating the model forecast performance during the 
post-validation period 5/1/2005-9/30/2005. The simulated streamflows and measured 
counterparts are daily and not 3-day averages. The relatively good fit indicated by extending 
the validation period further corroborates the calibrated model, and suggests that no further 
calibration is warranted. In general, the simulations somewhat overestimated measured 
streamflows during high flow periods and underestimated measured values during low flow 
periods. 
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To examine model forecast quality, the period from 7/1/2002 to 4/30/2005 (1035 days) is 
divided into two parts. The first 900 days (7/1/2002-12/16/2004) are used to construct the 
error model and the remaining 135 days from (12/16/2004-4/30/2005) are used for 
validation. The synthesized εt values are subsequently added to SWAT model simulations 
conducted during the same time period to obtain an ensemble of model forecast (500 time 
series of streamflows), 

ôt = pt + ε̂ t (4.10) 

where the ^ symbol denotes an estimate. ôt  is therefore considered as a surrogate to daily 
forecast of streamflows. Negative values of ôt  computed from (4.10) are replaced with zero 
flow rates. 

Thus, for each t (i.e., day), there are 500 values of computed streamflows, ôt , available to 
construct uncertainty band (confidence interval).  Figure 11 compares measured streamflow 
with ôt . About 7% of observed values fall outside the 95% confidence band. Overall, the 
median of simulated 3-day average streamflows compared fairly well with the measured 
counterparts. The confidence band tends to be narrower for high flows and wider for low 
flows. This indicates that the forecast is more reliable during storm events and least reliable 
during smaller events and near base-flow conditions. To further examine model forecast 
during low flow conditions, the forecast evaluation period is extended to 9/30/2005.  No 
significant storm events were recorded during the time period 5/1/2005-9/30/2005. While the 
simulated median daily flows generally compare well with measured counterparts, the 95% 
confidence band remains relatively wide (Figure 12). It is not clear if this is the result of 
inadequate error model fit or poor SWAT model performance during low flow periods. In 
general, watershed hydrologic models tend to perform poorer and have larger prediction 
uncertainty during low flow events (e.g., Hantush and Kalin, 2005). This phenomenon is 
largely attributed to the inadequacy of the models to capture the true intricate nature of 
runoff-subsurface flow interactions for small events. It will be shown later that simulated low 
flows generally have relatively high uncertainty. 
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Figure 11. SWAT model ensemble forecast (median and 95% confidence band) and 
measured streamflows during the validation period (12/16/2004-4/30/2005). A 
total of 9 measurements lie outside the 95% confidence band (6.7 %). The 
simulated and measured values are 3-day averages. 

Figure 12. SWAT model forecast (median and 95% confidence band) and measured 
streamflows during the post-validation period (5/1/2005-9/30/2005). The 
simulated and measured values are 3-day averages.  

Since a rationale was set to use the simulated 3-day average streamflows as surrogates to 
the daily flows, and for completeness, the ensemble forecast (median and 95% confidence 
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band) and measured daily flows are plotted in Figure 13. The median of 3-day average of the 
simulated streamflows appear to have grossly underestimated some of the measured peak 
flows. On the other hand, low flows were simulated fairly well.   

Figure 13. SWAT model 3-day average ensemble forecast (median and 95% confidence 
band) and measured daily streamflows during the validation period (12/16/2004
4/30/2005). A total of 15 measurements fall outside the 95% confidence band (11 
%). 

In the following subsection we present a methodology for computing SWAT model 
response to uncertainty associated with precipitation.      

4.4 Uncertainty Due to Precipitation Variability 
Precipitation is the central driver of most hydrological processes. Model results are highly 
sensitive to precipitation, and uncertainty in precipitation input may affect model output 
variability. Other sources of uncertainties, such as the combined effect of parametric 
uncertainty, model structural errors and measurement errors, are accounted for by the 
stochastic model (4.3). Precipitation temporal variability is addressed here.  

For a rational analysis of the potential future impacts of the projected land use alterations 
on the hydrologic cycle of the Pocono Creek Watershed, it is essential to generate 
meteorological data for future conditions mimicking past conditions. Generated data such as 
precipitation, minimum and maximum air temperature, relative humidity, solar radiation and 
wind speed need to preserve statistics of past observations. Admittedly, the supposition of 
preserving the statistics of the past meteorological data ignores any global or local climate 
change effects. Thus, in this analysis, it is assumed that the anticipated changes in the 
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hydrologic regime are solely as a result of the projected modifications in the land use and 
land cover. SWAT has a built-in weather generator WXGEN (Sharpley and Williams, 1990) 
for atmospheric data generation. WXGEN relies on a first-order Markov-chain model to 
define wet and dry periods. For detailed information on weather data generation 
methodology, interested readers may refer to Kalin and Hantush (2006b). At the onset of this 
study, Mount Pocono station had daily atmospheric data from 10/1/1999 to 6/30/2005, which 
means that only 5 to 6 years of data was available to compute monthly statistics. At first 
glance, this duration may sound inappropriate for computing climate data statistics as the 
SWAT manual recommends the use of 20 years or longer data. Kalin and Hantush (2006b) 
investigated the adequacy of relying on a shorter duration data by comparison with rain data 
statistics pertinent to the Stroudsburg station, and showed that there are no significant 
differences in the statistics of the Stroudsburg station whether the past 5 years or 20 years of 
data is used. Therefore, for this specific application, it may be concluded that 5 years 
precipitation data reasonably reflects the statistics of a 20 years record for Pocono Creek.  

4.5 Monte Carlo Simulations 
To take into account the precipitation uncertainty, WXGEN is used to generate 500 sets of 
20-year long records of daily precipitation assumed to represent precipitation from 1/1/2005 
to 12/31/2024 based on averaged historical rainfall statistics at the Mount Pocono and 
Stroudsburg stations. A warm-up period from 1/1/1975 to 12/31/2004 of 30 years is used to 
eliminate the effect of uncertain initial conditions. Each of the synthesized time series of 
daily precipitation is fed into SWAT with the current land use map (Figure 2(a)) to obtain a 
20-year long time series of daily streamflows. For each MC simulation, 3-day moving 
average is computed from the simulated daily streamflows. The MC simulation is repeated 
for a total number of 500, 20-year long time series of daily streamflows, from which the 
ensemble of 3-day averaged flows are computed.    

Assuming that future simulations errors preserve the statistical characteristics of the 
historical record and follow the same stochastic model obtained in Eq. (4.3), an ensemble 
forecast of streamflows (median and 95% confidence band) for the period 1/1/2005 to 
12/31/2024 is constructed by generating an ensemble of 20-year long sequences of εt which 
then are added to the ensemble of MC simulations. In this manner, all sources of errors are 
accounted for in the forecast.  The sequence of independent, identically distributed wt are 
randomly generated according to the procedure outlined in section 4.2.3, then used in 
conjunction with Eq. (4.7) to synthesize an ensemble of 500 20-year long sequences of daily 
(actually 3-day average) εt values. The MC ensemble of 20-year long sequences of daily 
streamflows generated above are then corrupted by the randomly generated errors (εt) to 
obtain the ensemble forecast of streamflows at the USGS gauge station according to Eq. 
(4.10). It is worthwhile to note that the streamflows computed according to (4.10) constitute 
what is expected to be observed or measured rather than actual flow rates.  

Summary statistics of some of the model outcomes for the current land use scenario are 
presented in Table 5. Mean, standard deviation (std), coefficient of variation (CV), median, 
and 2.5th and 97.5th percentiles (95% confidence interval) of the 500 realizations for each 
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flow statistics are given in the table to explicate uncertainty involved in the model outcomes 
due to precipitation as well as structural, parametric, and observation errors.  

Table 5. 	Summary Statistics of Ensemble Streamflow Forecast Based on Most 
Recent land use (Figure 2a). Values in the Table are Obtained From 
500 Time Series of Synthesized Daily Streamflows  

 Average Daily 
Flow (m3/s) 

(1) 

Average Monthly 
Median Daily 
Flow (m3/s) 

(2) 

Average Monthly 
Maximum Daily 

Flow (m3/s) 
(3) 

Average Annual 
Maximum Daily 

Flow (m3/s) 
(4) 

mean 2.42 2.10 7.12 17.39 

std 0.203 0.182 0.411 1.93 

CV 0.084 0.087 0.058 0.111 

median 2.42 2.10 7.13 17.43 

95% C.I [2.02,2.80] [1.75,2.45] [6.35,7.91] [13.91,21.82] 

NOTE: Daily flow here refers to 3 day moving average flow. 

In the table, summary statistics related to high flow conditions as well as long term 
averages are given. The term “Average” in each column title denotes arithmetic average over 
the 20-year simulation period. For example, for each realization (i.e., time series) out of 500, 
daily flows are averaged over the 20-year simulation record to yield “average daily flow”. 
Thus, there are 500 such “average daily flow” values from which the mean, median, CV, and 
95% confidence limits are computed. Average monthly-median of simulated daily 
streamflow in column (2) represents the arithmetic average over the simulation period of the 
median daily stream flows for each month and as indicated above is a required input to the 
PIFM wild brown trout habitat model. In column (3) the monthly maximum daily 
streamflows averaged over the simulation period are given. Column (4) shows the annual 
maximum daily streamflows averaged over the simulation period. Note that the summary 
statistics in Table 5 assume that the watershed remains undisturbed in the next 20 years, 
which obviously is contrary to what is anticipated. As such, they are hypothetical and are 
intended solely to provide insights into the effect of uncertainties on the interpretation of 
model predictions. Nevertheless, assuming that the land use/landscape in the watershed did 
not undergo significant changes in the past twenty years, the tabulated results may provide 
insights into the current flow conditions in Pocono Creek Watershed. The following remarks 
can be made from Table 5: 
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i.	 The average daily flow, average monthly median of daily flows, and average monthly 
maximum daily flow have small CV values and relatively narrower 95% confidence 
bands. Given all sources of uncertainty, these flow measures show small variability and 
appear to be reliable measures of flow characteristics.  

ii.	 The average annual maximum daily flow shows a relatively greater uncertainty, as the 
larger CV and wider 95% confidence band indicate. The performance of flood control 
measures designed based on annual maximum daily flows should factor in the 
computed uncertainty.  

iii.	 The low uncertainty associated with median monthly daily flow is rather encouraging 
given that it is an important parameter for the wild brown trout habitat (PIFM) model.  

The ensemble characteristics of the simulated flow duration curves are depicted in Figure 
14. The figure plots the median of the flow duration curves and the lower (2.5th percentile) 
and upper (97.5th percentile) limits of the 95% confidence interval. Each of the 500 
synthesized ôt time series yielded one duration curve. A flow duration curve is a plot of the 
flow rate (say, x) versus probability of exceedance, P(X ≥ x). The return period, T, defined as 
the average recurrence interval between events equaling or exceeding a specified flow 
magnitude, x, is the reciprocal of P(X ≥ x): T = 1/ P(X ≥ x). High flows are associated with 
small probability of exceedance, whereas low flows are associated with large probability of 
exceedance. The ensemble of flow duration curves in Figure 14 can be interpreted as follows. 
From the figure it can bee seen that for P(X ≥ x) = 0.002, daily streamflow at the gauge 
station is between 16 and 25 m3/s with 95% confidence. Since the corresponding return 
period is T = 1/0.002 = 500 days, this means that 500 day return period flow is between 16 
and 25 m3/s with 95% confidence.   

One may be lured into believing that uncertainty increases with increasing daily 
streamflow as the 95% confidence band gets wider with decreasing probability of 
exceedance, however, careful inspection of Figure 15 reveals that low flows have greater CV 
values and, thus, show much higher uncertainty than medium range and high flows. It is 
interesting to note that predicted streamflow rates ranging from about 2 to 11 (m3/s) daily 
flow rates, corresponding to return periods of 2.5 and 50 days, respectively, have the smallest 
CV values and, therefore, lowest uncertainty. Higher flows with a recurrence period longer 
than 50 days have relatively higher uncertainty but much smaller than that associated with 
low flows, with return periods smaller than 2 days. Of course, these results are specific to 
Pocono Creek watershed. 
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Figure 14. Median and 95% confidence band for the MC simulated duration curve. The flow 
duration curves are generated from 500 replicas of 20 years daily streamflows, 
ôt . 

Figure 15. Coefficient of variation computed from ensemble of flow duration curves versus 
probability of exceedance in the left panel P(X ≥ x), and cumulative probability 
P(X ≤ x) in the right panel.    

4.6 Conclusions 
In this section model prediction capability was investigated using time series analysis and 
Monte Carlo-type Latin Hypercube simulations. Structural errors, parametric uncertainty, 
measurement errors, and rainfall variability together contribute to the SWAT model 
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predictive uncertainty. To minimize the effect of systematic SWAT prediction errors during 
significant events, 3-day averaged streamflows were considered as surrogates to daily flows. 
A stochastic model, which lumps the first three sources of errors, was developed by fitting 
ARIMA (1,1,1) × (0,0,1)3 time series model to 3-day averaged observed daily model errors 
during the calibration and verification period. A split-sample approach was implemented to 
construct and validate the error model. The stochastic error model allowed for constructing a 
forecast band (the median and 95% confidence band) for the SWAT model simulations. It 
was shown that most of the observed streamflows during the validation period (12/16/2004
4/30/2005) were within the 95% confidence band. The constructed model forecast was 
further evaluated using an additional set of measured streamflows during the period 
5/1/2005-9/30/2005. Although the results showed consistency, the 95% confidence band was 
relatively wide due to the relatively low-flow period. 

The effect of temporal precipitation variability was also accounted for using historical 
precipitation data recorded at the Mount Pocono and Stroudsburg stations. Synthesized 
precipitation rates by the SWAT built-in weather generator WXGEN along with MC 
simulation of the SWAT model and generated model errors all together were used to 
construct an ensemble forecast of daily streamflows for the next twenty years. It was shown 
that given all sources of model uncertainty, the average daily flow, average monthly median 
of daily flows, and average monthly maximum daily flow could be reliably predicted.  The 
relatively low uncertainty associated with monthly median of daily flows indicate that this 
flow measure may be used reliably as an input to the brown trout habitat model (PIFM). 
Averaged over the simulated 20-years period, annual maximum daily flow showed relatively 
greater variability. The ensemble of daily flow duration curves was summarized by the 
median and 95% confidence band. The ensemble duration curve graph allows for the 
estimation of the daily flow range with 95% confidence for a specified design recurrence 
(return) period. SWAT simulated daily streamflow rates ranging from about 2 to 11 (m3/s) 
showed least uncertainty. Computed daily streamflow rates below 2 m3/s had the greatest 
uncertainty, whereas for higher than 11 m3/s, uncertainty was moderate. The higher 
uncertainty associated with low flows was not surprising as watershed models tend to 
perform relatively poorer during small events. 

38




5 Impact of Land Use Changes 

5.1 Introduction 
Over the past 25 years, the population of the United States has grown over 30% (USDC 
Census Bureau, 2005). Naturally, such an ample growth in population leads to substantial 
increase in urbanized areas and results in a degradation and loss of forested and agricultural 
lands. Hydrologically, urbanization is accompanied by increased imperviousness in the 
landscape. Increase in impervious areas as well as reduction in soil permeability results in 
reduced infiltration rate, which means that more precipitation becomes surface runoff and 
less water is recharged to ground water. When increased surface runoff is combined with the 
effect of reduced surface roughness - a consequence of which is a shorter travel time - it is 
inevitable to observe more frequent and more intense local flood events. Such alterations in 
the flow regimes of streams and channels may lead to changes in channel morphology in the 
form of channel widening and deepening. On the other hand, groundwater recharge reduction 
results in the drop of groundwater levels and reduction of base flow to stream flow. 
Groundwater depletion can be further amplified due to an increase in groundwater 
withdrawal that accompanies population and economic growth. Consequently, stream flow is 
further depleted as groundwater levels are increasingly lowered by increased pumping. This 
could have undesirable ecological consequences not only due to limited available water, but 
also because of increase in pollutant concentrations and limited capabilities of the streams to 
dilute any toxic spills.  

As indicated earlier, Monroe County, where the Pocono Creek is located, has the second 
fastest growing population in the state of Pennsylvania. By the year 2020, a 
60% increase in Monroe County population is forecasted, and it is further projected that more 
than 70% of the Pocono Creek watershed will turn into commercial and residential areas, 
currently standing around 6% (Figure 16). The impact of population growth and urbanization 
on potential alterations in surface and groundwater regimes will be assessed through the 
modeling framework that has been developed.   

5.2 Present Land Use Map and Future Build Out  
A simulation period of 20 years, from 1/1/2005 to 12/31/2024, is employed to study the 
impact of changes in the land use on the hydrology of the watershed. Two land use scenarios 
are considered. First scenario (LU2000) assumes that land use pattern of the year 2000, as 
depicted in the top panel of Figure 16, is preserved during the simulation period. In the 
second scenario (LU2020) it is assumed that the build out would occur in 2020 or after 
(bottom panel in Figure 16). In both scenarios, land use pattern is assumed to remain the 
same throughout the 20 year simulation period. In other words, land use pattern is assumed 
time invariant during the course of the simulations. Ideally, it is desirable to let the land use 
pattern change gradually during the course of the simulations. However, this is not an easy 
task due to model limitations as this will require dynamic updating of land use related model 
parameters with time. Recall that the watershed model was calibrated and validated based on 
the land use pattern LU2000. The model setup for simulation of LU2000 is extended to 
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perform the model simulations of LU2020. 

Figure 16. Distribution of land use pattern in the Pocono Creek watershed in year 2000 (top) 
and the projected land use pattern for the year 2020 (bottom).  

In simulating the effect of the two land use scenarios on streamflow characteristics all 
sources of model output error are neglected except rainfall variability; i.e., only SWAT 
model output ôt  is considered, with the ensemble of rainfall rates generated for the period 
from 1/1/2005 to 12/31/2024. This is done primarily for two reasons. First, the error 
stochastic model (4.3) applies to LU2000, and it is therefore not conclusive if a similar error 
structure would apply to model simulations based on LU2020. Secondly, it is the relative 
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changes in the streamflow characteristics due to projected land use changes that are of 
concern rather than absolute predictions. Computed relative changes tend to have 
significantly lower uncertainty, consequently, they are much more reliable than absolute 
predictions of daily streamflows. 

5.3 Monte Carlo Simulation 

To take into account the precipitation uncertainty, we generated 50 sets of distinct daily 
precipitation records of 20 years length, each assumed to represent precipitation from 
1/1/2005 to 12/31/2024. Measured precipitation data from 1/1/1975 to 12/31/2004 is inserted 
at the beginning of each record to obtain 50 precipitation input data files, each of which 
contain 50 years of daily precipitation. For each scenario, model simulations are performed 
for each of the 50 precipitation data files. A total of 2x50x50=5000 years of model 
simulations are performed at the daily time scale. Again, the first 30 years (1/1/1975 to 
12/31/2004) of each realization is ignored for model warm-up purposes. Only the last 20 
years of each realization are retained for further analysis. The reason for using the same 
measured precipitation data during the 30 year warm-up periods of all realizations is to 
minimize uncertainty relevant to initial conditions. Experimentation revealed that 50 
realizations were adequate, and that more realizations had a negligible effect on the model 
outcome. 

5.4 Predicted Changes in Streamflow 
The MC simulations yielded 50 time series for each of the SWAT Model outputs that 
include, among others, stream flow, base flow, and groundwater recharge. Summary statistics 
of some of the model outcomes for the two scenarios, LU2000 and LU2020, are presented in 
Table 6 along with relative changes that might be expected when the land use pattern in the 
Pocono Creek Watershed changes from the one given in year 2000 to the one projected past 
year 2020. The statistics in the far left column and associated results in the table correspond 
to the variations of model output. Mean, standard deviation (std), coefficient of variation 
(CV), median, and 5th and 95th percentiles (90% confidence interval) for each design flow are 
computed from the resulting MC simulation and are given in the table to explicate 
uncertainty involved in the model outcomes due to precipitation. In the table summary 
statistics related to low and high flow conditions as well as long term averages are given. The 
first two columns given in the table are essentially base flow (BF) and stream flow (SF) 
averaged over the 20-year simulation period. The lowest computed flow occurring once 
every 10 years averaged over a 7-consecutive-day period (7Q10) listed in column (3) is 
widely used as a low-flow index in the United States (Smakhtin, 2001). This hydrologically-
based design flow parameter is also used to protect against chronic effects by requiring that 
water quality criteria must be met at all times except during the 7Q10. Average monthly-
median of simulated daily SF in column (4) represents the arithmetic average over the 
simulation period of the median daily stream flows for each month and as indicated above is 
a required input to the PIFM wild brown trout habitat model. In column (5) and (6) the 
monthly and annual maximum daily stream flows averaged over the simulation period are 
given, respectively. 
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Average BF Average SF 7Q10 Average Average Average 
(m3/s) (m3/s) (m3/s) Monthly Monthly Annual 

Median Maximum Maximum 
Daily SF Daily SF Daily Flow 

(m3/s) (m3/s) (m3/s) 
(1) (2) (3) (4) (5) (6) 

mean LU2000 1.314 2.452 0.284 2.033 6.11 17.47 
LU2020 0.911 2.426 0.252 1.829 7.40 20.86 

% change -30.6% -1.1% -11.1% -10.1% 21.1% 19.4% 

std LU2000 0.071 0.137 0.054 0.108 0.450 2.28 
LU2020 0.056 0.140 0.055 0.104 0.526 2.67 

CV LU2000 0.054 0.056 0.191 0.053 0.074 0.131 
LU2020 0.062 0.058 0.218 0.057 0.071 0.128 

median LU2000 1.318 2.457 0.282 2.027 6.17 17.40 
LU2020 0.909 2.431 0.242 1.826 7.47 20.81 

% change -31.0% -1.1% -14.4% -9.9% 21.0% 19.6% 

[5, 95]% LU2000 [1.205,1.421] [2.232,2.682] [0.197,0.364] [1.852,2.207] [5.35,6.71] [13.59,22.31] 
 LU2020 [0.828,0.993] [2.200,2.664] [0.167,0.326] [1.650,2.002] [6.52,8.17] [16.26,26.55] 

% change [-31.3,-30.1]% [-1.4,-0.7]% [-15.2,-10.4]% [-10.9,-9.3]% [21.8,21.7]% [19.6,19.0]% 

mean: Arithmetic average of 50 realizations 7Q10: Seven days average low flow with a 10 year 
return period. std: Standard deviation of 50 realizations 

LU2000: Simulations performed using land use CV: Coefficient of variation (std/mean) 
coverage for year 2000 

median: 50th percentile of 50 realizations 
LU2020: Simulations performed using land use 

[5, 95]%: 5th and 95th percentiles of the 50 realizations projections for 2020 
BF: Base flow contribution to stream flow % change: (LU2020-LU2000)/LU2000 
SF: Stream flow 

Table 6. Summary Statistics of Computed Streamflow Characteristics at the USGS Gauge 
Station. The Results are Derived From 50 MC Simulations Each 20 Years Long 

Table 1 reveals the following observations and associated conclusions: 

i.	 The mean value of 50 realizations for the average of simulated BF is expected to decline 
by 31%. This is simply due to reduced infiltration and consequently less recharge to the 
ground water. This reduction can be further aggravated if the effect of increased 
groundwater withdrawal due to higher water demand associated with population growth 
is imposed. To explore the effect of potential increase for groundwater demand, a more 
detailed groundwater flow model (MODFLOW) is being developed for the region by the 
USGS. In the simulations, groundwater pumpage is ignored. Precipitation uncertainty 
does not seem to impart much uncertainty on BF as CV is less than 0.1 for both 
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scenarios. The median, 5th and 95th percentiles are also expected to decline by the same 
rate as the mean. 

ii.	 The average of simulated daily SF is relatively unaffected by urbanization. This can be 
explained on the basis that reduction in BF is offset by the increase in surface runoff. Yet, 
a negligible reduction (1.1%) in SF is observed. Mass balance of soil water dictates that 
average evapotranspiration (ET) is not impacted much by land use changes. Indeed, close 
examination of ET outputs from the model confirms this. Although forested areas have 
high transpiration (T), impervious surfaces have higher solar reflectivity, and thus higher 
evaporation (E). The reduction in (T) seems to be compensated by the increased (E). 
Similar to BF, uncertainty in precipitation has insignificant impact on SF. It should be 
noted that since the average of simulated daily SF is obtained by averaging simulated 
daily streamflows over the entire simulation record, it therefore does not represent actual 
daily flow conditions. 

iii.	 On average, the computed 7Q10 is expected to decrease by almost 11%. This reduction 
can be attributed to the reduction in BF as low flows in perennial streams, such as Pocono 
Creek, are driven by BF which is predicted to decline by 31% on average over the study 
watershed. With 90% confidence, 7Q10 can be expected to be within the interval [0.197, 
0.364] m3/s with the current land use conditions. With the projected land use conditions 
the 90% confidence interval for 7Q10 is [0.167, 0.326] m3/s. The CV is estimated to 
increase by 14% due to changes in land use leading us to conclude that the combined 
effect of precipitation uncertainty and projected land use alterations are likely to cause 
higher uncertainty in 7Q10.  

iv.	 Mean, median, 5th and 95th percentiles of average (i.e., averaged over the simulation 
period) monthly median of simulated daily SF as shown in column (4) are all reduced by 
about 10%. It is also clear from the table that the levels of uncertainties in both scenarios 
do not differ considerably, as they are only marginal. From a hydrologist’s perspective, it 
is hard to reach a conclusion on how much risk this reduction poses to the brown trout 
population in Pocono Creek. Simulations based on the PIFM habitat model and the 
computed median flows will provide answers.  

v.	 As expected, average monthly maximum of simulated daily SF increases as summarized 
in column (5). The expected increase is around 21% for mean, median, and 5th and 95th 

percentiles of the 50 realizations. Reasons for increase in peak flow magnitude as well as 
peak flow frequencies as a result of urbanization are well known: reduced infiltration rate 
and shorter travel times. The levels of uncertainties are about the same for both scenarios 
and can be deemed negligible with CV values of 0.07. 

vi.	 Similarly, the increase in the average of annual maximum daily flow is anticipated with 
LU2020 projections. The mean and the median of average of annual maximum daily flow 
are predicted to increase by about 19%. The uncertainty associated with this design flow 
is the second highest after 7Q10, with a CV greater than 0.1. The 90% confidence band is 
estimated to increase from [13.59, 22.31] to [16.26, 26.55] in units of m3/s. 

In Figure 17, spatial distributions of the 20-year simulation average of annual 
groundwater recharge estimates [mm] at the subbasin scale are shown for the two scenarios. 
These are only model estimates, as real measurements of groundwater recharge are not 

43




Annual Recharge (mm) 
100 - 150 
150 - 200 
200 - 250 
250 - 300 LU2020300 - 350 
350 - 400 
400 - 450 
450 - 500 
500 - 550 
550 - 600 

LU2000 

available. The figure delivers some important insights. There is a significant spatial variation 
of groundwater recharge in the watershed. Lower portions of the watershed (associated with 
lower elevations) have higher recharge rates than upper portions. When recharge estimates of 
the scenarios are compared, it is seen that with few exceptions almost all subwatersheds 
experience reduction of groundwater recharge. Another important observation is related to 
the extent of spatial variation of recharge in the two scenarios. In LU2000, the computed 
average recharge rates vary from 155 mm/year to 576 mm/year. In LU2020 the computed 
range of groundwater recharge is from 131 mm/year to 432 mm/year. This indicates that the 
projected land use change is expected to slightly reduce the spatial variation of groundwater 
recharge over the Pocono Creek watershed.  

Figure 17. Annual groundwater recharge distributions in the Pocono Creek watershed for the 
two land use scenarios. 

It should be noted that the results in Table 6 and Figure 17 assume that the build out in 
LU2020 occurs by 2020. The results would still characterize the watershed response even if 
the build out in LU2020 is presumed to occur after 2020. This may be true provided that 
pattern and variability of future precipitation remains unaltered.  

The predicted annual groundwater recharge distributions depicted in Figure 17 were 
tabulated and passed on to USGS (Malvern, PA) to calibrate a quasi-three dimensional 
groundwater flow model (MODFLOW) for the watershed. The computed monthly median of 
daily flows were tabulated and passed on to the PA F&B Commission for use as input data to 
the brown trout habitat model (PIFM). Annual groundwater recharge averaged over the 
simulation record and spatially over the watershed was predicted to decline by 31%, from 
424 to 292 mm/yr based on the LU2020 projections. The coefficient of variation (CV) of the 
computed annual groundwater recharge did not exceed 0.08, indicating fairly reliable model 
estimates thereof.     
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5.5 Predicted Changes to Flow Frequency and Duration 

The medians of daily duration curves based on LU2000 and LU2020 are plotted in Figure 18. 
The probability of exceeding high flows and the risk for flood hazard are predicted to 
increase based on LU2020. On the other hand, flow exceeded at least 90% of the time (< 0.8 
m3/s) decreases in moving from LU2000 to LU2020, as depicted by the inner panel (Figure 
18). Equivalently, this means that the chance for the flow to be less than or equal to a given 
low flow threshold increases. Therefore, base flows are likely to decrease with the projected 
land use changes. This is, of course, excluding the effect of the anticipated increase in 
groundwater withdrawals which will further decline base flows. Also note from Figure 18 
that median flow due to LU2020 is slightly smaller than the one due to LU2000.    
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Figure 18. Median of the ensemble of the MC-simulated duration curves, bold thick line 
corresponds to simulations with LU2020, thin line corresponds to simulations 
with LU2000. The flow duration curves are generated from 50 replicas of 20 
years of daily streamflows, to
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5.6 Conclusions 

The Pocono Creek watershed is threatened by high population growth anticipated over the 
next two to four decades. Potential effects of population growth and urbanization have 
heightened the need for implementing sustainable water resource management strategies in 
the watershed. In this section, potential hydrological changes in Pocono Creek due to 
anticipated build out in the watershed were investigated using the calibrated SWAT model 
and Monte Carlo simulations.  Simulations accounted for anticipated rainfall variability over 
a 20 year period, with the current land use pattern and projected build out for the year past 
2020, named LU2000 and LU2020, respectively. Simulation results revealed that on the 
average, daily base flow is expected to be reduced by 31%. However, this is not expected to 
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cause a noteworthy reduction in average daily streamflow (averaged over the entire 
simulation period) as SWAT predicted that reduction in base flow would be balanced by 
increased surface runoff. The computed low-flow index, 7Q10, is expected to decline by 11% 
due to anticipated base-flow reduction. A metric for the sustainability of fish habitat, the 
computed monthly median daily flow is expected to decline by 10% on the average. The 
monthly peak of simulated daily flows and annual maximum daily flow are expected to 
increase by 21% and 19%, respectively. The computed 7Q10 and average annual maximum 
daily flow showed relatively higher uncertainty than the other flow characteristics. Projected 
build out in the watershed is estimated to cause a significant decline in the annual 
groundwater recharge rates. The decline in the watershed-averaged annual groundwater 
recharge is predicted to be 31% based on LU2020 projections. The spatial variability of 
groundwater recharge appears to diminish with the projected urbanization in the watershed. 
In general, the likelihood that the watershed will experience high and low streamflows will 
increase with the projected urbanization, as indicated by the median of the MC simulated 
flow duration curves. 
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6 Critical Source Areas 

6.1 Introduction 
It is now evident from model predictions that the projected land use changes in the Pocono 
Creek watershed have the potential of increasing average annual maximum and average 
maximum monthly flows, and reducing 7Q10 and average median monthly daily flows at the 
watershed outlet. Informed management decisions may benefit from the identification of 
portions of the watershed that have the highest contribution to the reduction/increase in the 
quantity of interest. In a sense, preserving the land use of a particular area in the watershed 
can be considered as a best management practice (BMP). From this point of view, the 
problem can also be posed as identifying the locations of those BMPs that minimize the 
predicted changes. Of course, socioeconomic and policy matters may interfere with and 
preclude the implementation of a particular BMP, but knowing beforehand (i.e., before land 
development) critical areas in the watershed provides science-based guidance to the planning 
process. 

There are limited applications in literature looking at the aspect of identifying or 
apportioning areas within a watershed based on their relative contributions to flow at the 
outlet. Saghafian and Khosroshahi (2005) address the same problem by focusing on flood 
source areas and they also emphasize lack of applications of this type. The approach adopted 
here, to be addressed shortly, has some similarities, however it differs from their work in two 
ways: i) in addition to high flows, the focus is extended to low and median flow 
characteristics (7Q10, monthly median daily flows), and ii) the focus here is not on 
individual event hydrographs, but rather on continuous flow time series. 

6.2 Methodology 
Let us assume that a given watershed is divided into k number of subareas, which will be 

referred as “elements” henceforth. There are two land use conditions, current (c) and future 
(f). The model run at the daily time scale with the future land use scenario for a given 
duration generates the flow time series Qt

f  at the watershed outlet. Suppose that all the 
elements have the future land use/cover with the exception of element j retaining its present 
status. The generated flow time series at the outlet with this setup will be denoted as Qt

f , j . 
For both flow time series, Qt

f and Qt
f , j , the flow characteristics of interest, say F is 

computed and designated as F f  and F f , j respectively. The following two indexes are 
defined to assess the relative impact of element j on the flow characteristic F: 

where Aj and Aw indicate areas of element j and the whole watershed, respectively. The first 
index, αj, signifies the absolute impact of element j on F. The second index, βj, which is 
basically normalization of αj with the percentage area of element j, measures the impact of 
land use changes in the element on F assuming these very changes occur over the entire 
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watershed. In other words, β is suitable for assessing the impact of land use changes per unit 
area. By computing αj and βj for j = 1,..,k one can rank the areas in the watershed from most 
critical to least. It is important to note that the order of ranking could be different not only 
depending on the index used but also depending on the flow characteristic of interest, F. 

6.3 Results 
As part of the modeling requirement, the Pocono Creek watershed was divided into 29 
catchments, numbered from 1 to 29 with catchment 29 being the most downstream (Figure 
19a). For management purposes this discretization might be too detailed. Hence, as an 
alternative we divided the watershed into 7 larger areas which are combinations of the 29 
subbasins (Figure 19b). It should be noted that the larger areas correspond to the 
management areas in the pilot study (2001), with areas 4,5, and 6 in Figure 19(b) together 
falling within the management area 3 of the pilot study (Figure 20). Area 7 in Figure 19(b) 
overlaps with management areas 2 and 3 of the pilot study (Figure 20).  

(a) (b) 

Figure 19. Watershed subdivisions used in determination of critical areas,  (a) finer, (b) 
coarser. 
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Figure 20. Management areas in Pocono Creek Watershed according to Pocono Pilot Study. 

Table 7 summarizes the computed indices, α and β with the coarser spatial scale for 
7Q10, monthly median of daily flows and annual maximum daily flows, which divides the 
watershed into 7 drainage areas, j=1,..,7. Also given in the table are the rankings of each area 
for each index and flow characteristics. Figure 21 depicts these rankings on a gray scale 
spectrum for visual purposes. One immediate observation is that the rankings based on α and 
β are quite consistent for monthly median of daily flows and annual maximum daily flow. 
Areas having the highest and lowest impact on these two flow characteristics do not change 
with the type of index. Management area 4 has the highest impact on the reduction of 7Q10 
when α index is used, whereas management area 5 is the biggest contributor when β index 
issued. 

Table 7. 	 Computed Indices α and β  for the 7 Management Areas for 7Q10, Monthly 
Median of Daily Flows and Annual Maximum Daily Flows 

rank 
7Q10 monthly median of daily flow annual maximum daily flow 

j αj j βj j αj j βj j αj j βj 

1 4 8.58% 5 0.54 4 2.55% 4 0.15 7 -5.48% 7 -0.32 

2 7 7.15% 4 0.51 7 2.51% 7 0.14 4 -3.88% 4 -0.23 

3 2 6.18% 7 0.41 2 2.03% 2 0.12 1 -2.47% 6 -0.22 

4 5 4.95% 2 0.35 1 1.97% 5 0.09 6 -1.96% 1 -0.11 

5 1 3.60% 6 0.22 5 0.85% 1 0.09 2 -1.69% 2 -0.10 

6 6 1.95% 3 0.17 6 0.73% 6 0.08 3 -0.56% 3 -0.07 

7 3 1.47% 1 0.17 3 0.59% 3 0.07 5 -0.50% 5 -0.05 
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(d) (e) (f) 

(a) (b) (c) 

Figure 21. Ranking of the 7 management areas based on α (a, b, c) and β (d, e, f) indices for 
7Q10, monthly median of daily flows, and annual maximum daily flow, 
respectively.

 Based on α, area 4 (Figure 19(b)) is ranked first in terms of impact on 7Q10 and monthly 
median of daily flows, whereas areas 6 and 3 ranked the lowest, 6th and 7th, respectively. 
Comparison of Figure 21 with Figure 17 reveals that area 4, through which Bisbing Run and 
Bulgers Run flow (Figure 20), contributes the highest annual groundwater recharge among 
the seven areas depicted in Figure 19(a). Since base flow is directly related to groundwater 
recharge, it is therefore expected that area 4 would have the highest impact on 7Q10. The 
predicted significant reduction in the annual groundwater recharge in area 4 due to projected 
land use changes (Figure 17) means a significantly greater fraction of precipitation would be 
available for runoff. This may explain area 4 being ranked first in terms of impact of land use 
changes on monthly median of daily flows, and ranked second for annual maximum daily 
flows.  

Area 7 is ranked second based on α for its impact on 7Q10 and monthly median of daily 
flows, and first for annual maximum daily flows. Close proximity to the USGS streamflow 
gauge station (i.e., being downstream most), relatively high groundwater recharge rates, and 
the relatively larger area may be contributing to this ranking. 

Significant portion of area 6 is occupied by wetlands (about 50%), which are maintained 
in both LU2000 and LU2020 as flow through features with zero infiltration. It is assumed 
that wetlands are preserved during land development. Therefore, groundwater recharge in 
area 6 is slightly reduced, thus, leading to least impact on 7Q10 and lowest ranking based on 
α. Area 3, where the Camel Back Ski Area is located and Coolmoor Creek flows (Figure 20), 
is characterized by steep topography that is conducive to high runoff and low infiltration 
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regardless of the landscape features. This explains the lowest and second lowest ranking of 
area 3 with α. 

The ranking based on β index is useful in assessing impacts when only portions of each 
of the 7 areas are planned to be developed. The most notable is area 5 which is ranked first 
for 7Q10 using β index. With the exception of a small, steep northern portion, the area is 
topographically characterized by relatively low steepness and long slope length (Figure 1), 
and contributes significant groundwater recharge (Figure 17). Developments planned 
according to LU2020 may have the highest impact on 7Q10 if they occur within area 5.    

6.4 Conclusions 
The Pocono Creek watershed was divided into seven catchment areas and an index 
methodology was presented to rank the catchments’ areas based on their impact on key 
streamflow characteristics due to anticipated land disturbances. The catchments’ areas 
conformed to the six management areas in the pilot study (2001). Two indices were 
proposed. The first index, α, signifies the absolute impact of a particular catchment area on 
the watershed response. The second index, β, is α normalized by the percentage area of the 
catchment, and therefore describes the impact of land use changes per unit area.   

Using these indices, catchments’ areas were ranked based on their potential to impact 
changes in the streamflow characteristics due to projected build out in the watershed. With a 
few exceptions, α and β indices produced similar rankings among the 7 catchment areas for 
7Q10, monthly median of daily flow, and annual maximum daily flow. Groundwater 
recharge, area, topographic features, and proximity to the streamflow gauge station may have 
contributed to the ranking results. The most downstream catchment, area 7, ranked first in 
terms of impact on annual maximum daily flows, and second in terms of impact on 7Q10 and 
monthly median daily flows. Catchment area 4, associated with the highest groundwater 
recharge, was ranked first and second based on α and β indices, respectively, with regard to 
impact on 7Q10. In general, areas characterized by steep topography and significant wetlands 
ranked low, some times the lowest, with respect to impact on changes in the three design 
flows.  
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7 Summary and Conclusions 

The Pocono Creek watershed, which is located in Monroe County, PA, is threatened by high 
population growth and urbanization. Of concern specifically is the potential impact of future 
developments in the watershed on the reduction of base flow and the consequent risk for 
degradation of wild brown trout habitats in Pocono Creek. Anticipated increase in 
imperviousness, on the other hand, is expected to elevate the risk for floods and the 
associated environmental damage. A watershed hydrologic modeling study was initiated by 
the U.S. EPA in collaboration with the U.S. Geological Survey and the Pennsylvania Fish 
and Boat Commission to assist Monroe County in planning for sustainable future 
developments in the Pocono Creek watershed.  

Good application track-record of the SWAT model and its suitability to address 
watershed management problems led to the selection of the model to achieve the objective of 
quantifying the impact of anticipated land use changes on the hydrologic response of the 
Pocono Creek watershed. The model was successfully calibrated and validated for two 
sources of precipitation data, raingauge measured and radar estimated (NEXRAD). Two 
raingauge stations were available outside the watershed, but in close proximity to the 
perimeter. Simulated daily and monthly streamflows at the outlet compared fairly well to the 
observed values, for both sources of the rainfall data. The results reinforced the notion that 
NEXRAD is an effective source of spatio-temporal precipitation data and a viable alternative 
to the very costly installation, operation, and maintenance of a raingauge network. Future 
modeling studies in ungauged watersheds can be conducted with NEXRAD rainfall data.  

Stochastic error propagation analysis was conducted using time series analysis and MC 
simulations to evaluate model predictive uncertainty. Model errors accounted for model 
structure uncertainty, parametric uncertainty, measurement errors, and rainfall variability. It 
was shown that the calibrated model was consistent in its forecast capability. MC simulations 
over a 20-year long period yielded an ensemble of rating curves of which the median and 
95% confidence band of daily streamflows were plotted. These plots allow for the 
construction of the 95% confidence band for design flows corresponding to any given 
recurrence or return period. SWAT simulated daily streamflow rates in the range 2 to 11 
(m3/s) showed least uncertainty. Computed daily streamflow rates below 2 m3/s had the 
greatest uncertainty, whereas for higher than 11 m3/s uncertainty was moderate. 

MC simulation over a 20-year period showed that the average daily base flow is expected 
to be reduced by 31% should the projected build out in the watershed occur. However, this is 
not believed to cause a noteworthy reduction in average daily streamflow as the model 
predicted that reduction in base flow would be balanced by increased surface runoff. The 
computed low flow index, 7Q10 is expected to decline by 11%, and the monthly median 
daily flow is expected to be reduced by 10% on the average. Monthly peak of simulated daily 
flows and annual maximum daily flow were predicted to increase by 21% and 19% on the 
average, respectively. Groundwater recharge rate averaged over the watershed was predicted 
to decline by 31% due to the projected land use changes. The median of the MC simulated 
flow duration curves showed that, in general, the likelihood that the watershed will 
experience high and low streamflows will increase with the projected urbanization.      
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An index methodology was developed to rank seven subwatersheds - composing the 
modeled area of the Pocono Creek watershed - based on their relative impact on the 
watershed response to land developments. The first index, α, signifies the absolute impact of 
a particular catchment area on the watershed response. The second index, β, is α normalized 
by the percentage area of the catchment, and therefore describes the impact of land use 
changes per unit area.  With a few exceptions, α and β indices produced similar rankings 
among the 7 catchment areas for 7Q10, monthly median of daily flow, and annual maximum 
daily flow. Groundwater recharge, area, topographic features, and proximity to the 
streamflow gauge station may have contributed to the ranking results. The most downstream 
catchment, area 7, ranked first in terms of impact on annual maximum daily flows, and 
second in terms of impact on 7Q10 and monthly median daily flows. Catchment area 4 
associated with the highest groundwater recharge was ranked first and second for impact on 
7Q10 based on α and β indices, respectively. Areas characterized by steep topography (area 
3) and significant wetlands (area 6) ranked low, some times the lowest, with respect to 
impact on the three design flows.  

This model study predicted that low and high flows may, respectively, decrease and 
increase significantly as a result of urbanization. Land use changes in that part of the 
watershed where Bisbing Run and Bulgers Run flow through were predicted to have the 
highest impact on the reduction in low flows due to anticipated reduction in the groundwater 
recharge rates. The most downstream of the channel network, immediately upstream of the 
USGS gauge station, ranked first in terms of impact on monthly median of daily flow and 
maximum annual daily flow. Land disturbances in the topographically steep subwatershed, in 
which Coolmoor Creek flows, and the area that contains wetlands, through which Cranberry 
Creek flows, were predicted to generally have the least impact on the watershed response.    
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