

# A CASE STUDY DEMONSTRATING US EPA GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES

# ROSE HILL REGIONAL LANDFILL SOUTH KINGSTOWN, RHODE ISLAND



# A CASE STUDY DEMONSTRATING U.S. EPA GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES

# ROSE HILL REGIONAL LANDFILL SOUTH KINGSTOWN, RHODE ISLAND

by

ENVIRONMENTAL QUALITY MANAGEMENT, INC. Cedar Terrace Office Park, Suite 250 3325 Durham-Chapel Hill Boulevard Durham, North Carolina 27707-2646

> EPA Contract No. 68-C-00-186 Task Order Number 3

EPA Project Officer: Ms. Susan Thorneloe Office of Research and Development (ORD) National Risk Management Research Laboratory (NRMRL) Air Pollution Prevention and Control Division (APPCD) Research Triangle Park, North Carolina.

> U.S. Environmental Protection Agency Office of Research and Development Washingtion, DC 20460

#### **Abstract**

This report describes a case study that applies EPA-600/R-05/123—the guidance for conducting air pathway analyses of landfill gas emissions that are of interest to superfund remedial project managers, on-scene coordinators, facility owners, and potentially responsible parties. The particular site examined for this case study was the Rose Hill Regional Landfill in South Kingstown, RI. The case study exemplifies the use of the procedures and tools described in the guidance for evaluating LFG emissions to ambient air. The air pathway analysis is used to evaluate the inhalation risks to offsite receptors as well as the hazards of both onsite and offsite methane explosions and landfill fires. Landfill gases detected at the site were methane and chemicals of particular concern (COPCs) that encompassed nonmethane organic compounds, 1,1,1-trichloroethane, benzene, chlorobenzene, chlorobenzene, methylene chloride, toluene, trichloroethene, vinyl chloride, and xylenes. The report includes values of 90th percentile concentration of COPCs and isopleths of the COPC concentrations overlaid on an aerial photograph of the site.

#### **Foreword**

The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future.

The National Risk Management Research Laboratory (NRMRL) is the Agency's center for investigation of technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and ground water; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL's research provides solutions to environmental problems by: developing and promoting technologies that protect and improve the environment; advancing scientific and engineering information to support regulatory and policy decisions; and providing the technical support and information transfer to ensure implementation of environmental regulations and strategies at the national, state, and community levels.

This publication has been produced as part of the Laboratory's strategic long-term research plan. It is published and made available by EPA's Office of Research and Development to assist the user community and to link researchers with their clients.

Sally Gutierrez, Director National Risk Management Research Laboratory

#### **EPA Review Notice**

This report has been peer and administratively reviewed by the U.S. Environmental Protection Agency and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

#### **Disclaimer**

This guidance is intended solely for informational purposes. It cannot be relied upon to create any rights enforceable by any party in litigation with the United States. This guidance is directed to EPA personnel; it is not a final action and does not constitute rulemaking. EPA officials may decide to follow the guidance provided herein, or they may act at variance with the guidance, based on site-specific circumstances. The guidance may be reviewed or changed at any time without public notice.

#### **Table of Contents**

| <u> 26</u> | ection        | <u>Page</u>                       |
|------------|---------------|-----------------------------------|
| At         | ostract       |                                   |
| Fo         | reword        | iii                               |
| Di         | sclaimer      | iv                                |
| Li         | st of Figures | vi                                |
| Li         | st of Tables  | vii                               |
| Αc         | cknowledgm    | entviii                           |
| Ex         | ecutive Sum   | mary ix                           |
| 1          | Demonstrat    | tion Objectives1                  |
| 2          |               | ption                             |
| 3          |               | y 5                               |
| 4          | Field Activ   | ities and Data Collection         |
|            |               | l Surface Screening Analysis      |
|            |               | ot and Homogeneity Determinations |
|            |               | ng Activities                     |
|            |               | Landfill Soil Gas Sampling        |
|            |               | Passive Vent Gas Sampling         |
|            |               | Perimeter Well Gas Sampling       |
|            |               | Ambient Air Sampling              |
|            |               | Assurance and Data Evaluation     |
|            |               | Accuracy                          |
|            | 4.4.2         | Precision                         |
|            |               | Completeness                      |
| 5          |               | of Landfill Gas Emissions         |
|            |               | EM Modeling of LFG                |
|            |               | N3 Modeling of LFG                |
| 6          |               | sment                             |
| 7          | Findings ar   | nd Conclusions                    |
| Αŗ         | ppendices     |                                   |
| A          | Site Activit  | y Photographs                     |
| В          | Wilcoxon S    | Statistical Analysis B-1          |
| C          | Laboratory    | Results                           |
| D          | LandGEM       | Model Runs D-1                    |
| E          | SCREEN3       | Model Runs E-1                    |

### **List of Figures**

| <u>Fig</u> | <u>jure</u>                                                               | <u>Page</u> |
|------------|---------------------------------------------------------------------------|-------------|
| 1          | Location and Orientation of the Solid Waste Landfill within the Rose Hill |             |
|            | Regional Landfill Site                                                    | 4           |
| 2          | Screening Sampling Node Locations                                         | 8           |
| 3          | Measured Screening Results (ppm) for NMOCs                                | 12          |
| 4          | Measured Screening Results (ppm) for Methane                              | 13          |
| 5          | Rose Hill Sampling Locations                                              | 14          |
| 6          | NMOC Concentration Isopleths (ppmvC) from Summa Sampling                  | 18          |
| 7          | 1,1,1-Trichloroethane Concentration Isopleths (ppbv) from Summa Sampling  | 19          |
| 8          | Benzene Concentration Isopleths (ppbv) from Summa Sampling                | 20          |
| 9          | Chlorobenzene Concentration Isopleths (ppbv) from Summa Sampling          | 21          |
| 10         | Chloroethane Concentration Isopleths (ppbv) from Summa Sampling           | 22          |
| 11         | 1,4-Dichlorobenzene Concentration Isopleths (ppbv) from Summa Sampling    | 23          |
| 12         | Toluene Concentration Isopleths (ppbv) from Summa Sampling                | 24          |
| 13         | Trichloroethene Concentration Isopleths (ppbv) from Summa Sampling        | 25          |
| 14         | Vinyl Chloride Concentration Isopleths (ppbv) from Summa Sampling         | 26          |
| 15         | m,p-Xylene Concentration Isopleths (ppbv) from Summa Sampling             | 27          |
| 16         | o-Xylene Concentration Isopleths (ppbv) from Summa Sampling               | 28          |
| 17         | Rose Hill's Two Homogeneous Parcels                                       | 29          |
| 18         | NMOC Emission Rates: 1967-2203                                            | 31          |
| 19         | Example LandGEM Model Run Output                                          | 32          |

#### **List of Tables**

| <u>Ta</u> | <u>able</u>                                                            | <u>Page</u> |
|-----------|------------------------------------------------------------------------|-------------|
| 1         | Rose Hill Screening Sample Results                                     | 9           |
| 2         | COPCs Commonly Found in LFG                                            | 17          |
| 3         | Analytical Results for COPCs                                           | 30          |
|           | COPCs 90th Percentile Concentrations for Northern and Southern Parcels |             |
| 5         | Emission Rates of COPCs by Parcel                                      | 31          |
| 6         | Modeled Maximum Annual Concentrations                                  | 32          |
| 7         | Risk Analysis                                                          | 33          |

#### **Acknowledgement**

The following individuals have reviewed this case study and the Fact Sheet or the Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities and made thoughtful suggestions to support the preparation of the reports: Ed Hathaway (EPA Region 1), Roger Duwart (EPA Region 1), David Healy (Maryland Department of Environment), Gary Jablonski (Rhode Island Department of Environmental Management, Fred MacMillan (EPA Region 3), Craig Mann (Environmental Quality Management, Inc.), Dave Mickunas (EPA-ERTC), Dave Newton (EPA Region 1), Dan Pazdersky (Harford County Maryland), Bill Rhodes (EPA-ORD), Tom Robertson (Environmental Quality Management, Inc.), Ken Skahn (EPA-OSWER), Susan Thorneloe (EPA-ORD), Bob Wright (EPA-ORD).

#### **Executive Summary**

The Rose Hill Regional Landfill (Landfill) is located within the town of South Kingstown, Rhode Island in the village of Peace Dale. This site encompasses approximately 70 acres. The facility is composed of three separate, inactive, disposal areas, including the solid waste landfill, bulky waste disposal area, and a sewage sludge landfill. These areas have been covered with soil and graded and currently support vegetative cover. The Landfill, which began operation in 1967, is in an abandoned gravel quarry. The Regional Landfill operated as a municipal disposal facility for the towns of South Kingstown and Narragansett. Industrial waste, however, was also accepted at the facility during its years of operation. In October 1983, the Regional Landfill reached its state permitted maximum capacity and ceased active land filling operations. The solid waste landfill located in the western portion of the site is approximately 28 acres and operated from 1967 until 1982.

On-site groundwater monitoring wells contain several volatile organic compounds (VOCs) including dichloroethane, chloroethane, vinyl chloride, benzene, and xylenes, as well as some heavy metals. Visual observations indicate that Mitchell Brook, an unnamed brook, and the Saugatucket River are impacted by contaminated run-off from the site. Early investigations determined that landfill gases are migrating laterally off-site in the vicinity of some residential properties. Three private wells adjacent to the site are contaminated with low levels of organic compounds, as are on-site soils. The site is not completely fenced, making it possible for people to come into direct contact with the landfill materials on-site. The Saugatucket Pond, located 2,000 feet downstream from the site, is used for fishing and swimming. A freshwater wetland is also located 500 feet downstream of the site and could be subject to contamination. There were several on- and off-site LFG monitoring wells with elevated methane levels. The Rose Hill site included: near-by single family homes, institutional buildings, and a golf course. As a result of this and subsequent investigations, the landfill was placed on the National Priority List (NPL) on October 4, 1989.

This case study documents how the guidance can be used to evaluate landfill gas emissions. It illustrates the usefulness of the information, and procedures presented in the Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities (EPA-600/R-05/123). By applying the investigative techniques and recommended practices, the research team was able to:

- 1 Determine where the landfill gases are escaping into the atmosphere,
- 2 Identify the chemicals of potential concern,
- 3 Quantify the speciated LFG emission rates,
- 4 Identify the most likely to be affected at off-site location(s), and
- 5 Characterize ambient air concentrations.

This case study report provided data and information that were used by the remedial project manager to:

- 1 Assess the health risk associated with the emissions from the landfill,
- 2 Determine if additional site investigation effort is needed,
- 3 Evaluate the level of effort associated with the existing LFG monitoring program,
- 4 Determine if the previously proposed remedial design needed to be altered,
- 5 Evaluate the need for institution controls and future land use policy decisions, and

6 Decide if the risks and hazards associated with the landfill gas needed to be controlled with LFG control technology.

Specific to the Rose Hill site the following lessons were learned:

- The conventional field screening, discrete sampling using Summa canisters, commercial laboratory analysis using TO15 analytical methods, and emission and dispersion modeling procedures provided the information needed to assess the risks and hazards associated with the LFG emissions. The turn-around time for the commercial laboratory was measured in weeks. The data reduction and modeling efforts require 2–3 man days of effort. Hence, health risks could not be quantified on a real-time basis. Readily available equipment and ordinary environmental technician skills are required to obtain quality results.
- The conventional field screening, discrete sampling using Tedlar bags, onsite mobile laboratory using EPA Method 18 analytical procedures, and emission and dispersion modeling procedures provided the information needed to assess the risks and hazards associated with the LFG emissions. The onsite mobile laboratory was unable to quantify the COPC's concentrations because of detection limit issues.
- Using the research data, the predicted COPC ambient air concentrations are below that which would create an unacceptable risk at the  $1\times10^{-6}$  level.

 $\mathbf{X}$ 

#### **Section 1. Demonstration Objectives**

The purpose of the activities described in this document was to provide a demonstration of the procedures described in the Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities (Guidance) (EPA-600/R-

05/123). It was also the intent of this demonstration to provide an example case study to be included in the guidance for reference by the practitioner. These efforts were not intended to provide a comprehensive site analysis or complete risk assessment.

#### **Section 2. Site Description**

The Rose Hill Regional Landfill (Regional Landfill) is located within the town of South Kingstown, Rhode Island in the village of Peace Dale. The site description contained in this section was derived from historical literature available for the site. This site encompasses approximately 70 acres. The facility is composed of three inactive disposal areas, including the solid waste landfill (28 acres), a bulky waste disposal area (11 acres), and a sewage sludge landfill (unknown). These areas have been covered with soil, graded, and currently support vegetative cover. An active transfer station is located on site where municipal refuse is unloaded from the refuse collection trucks and transferred to trucks that haul the refuse offsite to a separate landfill facility owned and operated by the state of Rhode Island. Figure 1 shows the approximate location and orientation of the solid waste section of the Regional Landfill.

The facility is situated on the east side of Rose Hill Road and is bordered by Rose Hill road to the west, the Saugatucket River to the east, residential property to the north, and a wooded wetland to the south. Mitchell Brook flows southerly through the center of the site and joins the Saugatucket River south of the site. An unnamed brook,

originating on the west side of Rose Hill Road, flows through the wetland and joins the Saugatucket River 500 feet south of Mitchell Brook.

Residential development has occurred along Broad Rock Road, 1200 feet east of the site. There has also been considerable development along Rose Hill Road to the north of the site. A golf course and clubhouse have been constructed on the west side of Rose Hill Road, immediately opposite the facility and to the north of an active sand and gravel operation.

The town of South Kingstown is primarily a residential area with limited industry. The University of Rhode Island (URI), located three miles northwest of the site, houses the largest population center and provides a major portion of South Kingstown's employment and business income.

Water supplies in South Kingstown are a mixture of private wells and district water supply sources. Supply wells for two water supply districts, URI and the Kingstown Fire District, are located within three miles of the facility.

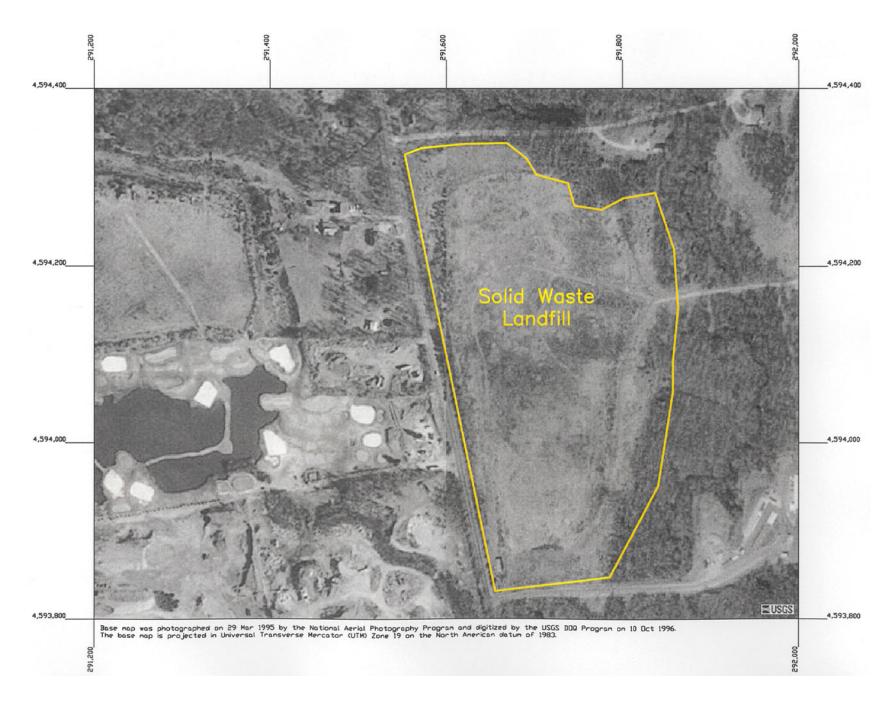



Figure 1. Location and Orientation of the Solid Waste Landfill within the Rose Hill Regional Landfill Site.

#### **Section 3. Site History**

The site history contained in this section was derived from historical literature available for the site. The Rose Hill Regional Landfill, which began operation in 1967, is located in an abandoned gravel quarry. The Regional Landfill operated under an annually renewable state permit from the Rhode Island Department of Environmental Management (RIDEM) for approximately 16 years. The Regional Landfill operated as a municipal disposal facility for the towns of South Kingstown and Narragansett. Industrial waste, however, was also accepted at the facility during its years of operation. In October 1983, the Regional Landfill reached its state permitted maximum capacity and ceased active land filling operations.

As previously mentioned, the Regional Landfill is composed of three disposal areas, none of which are currently active. The solid waste landfill, located in the western portion of the site, is approximately 28 acres in area, and it operated from 1967 until 1982. The exact depth of the excavation where the solid waste landfill exists is unknown. but it reportedly extended approximately to bedrock in some places. Refuse was reportedly deposited in areas at, above, and below the water table. The thickness of solid waste deposited throughout the landfill prior to 1977 is unknown. From 1977 to 1982, between 10 and 14 feet of solid waste was deposited. Borings conducted by C.E. Maguire, Inc. in 1977 have confirmed the presence of bedrock within 2.5 feet of ground surface along the eastern portion of the solid waste landfill. Borings have indicated that bedrock was encountered at 31.3 feet on the west side

of the site along Rose Hill Road. From a seismic survey, it appears that the depth to bedrock along the south of the solid waste landfill is between 29 and 32 feet below ground surface. Upon closure, the solid waste landfill was covered with 0.5 to 2 feet of sandy soil and subsoil and seeded.

The sewage sludge disposal area is located in the northeast section of the site between Mitchell Brook and the Saugatucket River. No surveys of the sewage sludge land-fill have been conducted to determine its size. This area operated from 1977 to 1983. Sludge was received from the South Kingstown wastewater treatment plant and areas throughout the state of Rhode Island and deposited in trenches. The depth of excavation of the trenches is unknown. Problems with the high moisture content of the sludge persisted throughout the operation of this area and prompted the town of South Kingstown to initiate the hauling of sludge to the Johnston Landfill. Currently, the sewage sludge landfill is covered with soil, graded, and seeded.

The bulky waste disposal area was proposed as an 11-acre area that is located west of the solid waste landfill and southwest of the sewage sludge landfill. This area is approximately 200 feet east of Mitchell Brook and 250 feet west of the Saugatucket River. Disposal of bulky waste began in this area in 1978. Solid waste was also disposed in the interim period between closure of the solid waste area and construction of the transfer station, May 1982 through October 1983. This area was covered, graded, and seeded in the same manner as the solid waste landfill.

#### Section 4. Field Activities and Data Collection

Field activities were conducted at the Rose Hill Regional Landfill, located in South Kingstown, Rhode Island, from July 22, 2002 through July 25, 2002. Field activities included landfill surface screening analysis, screening data reduction, hot spot and homogeneity determinations, landfill soil gas sampling, passive vent gas sampling, perimeter well gas sampling, and ambient air sampling. Pictures from the site activities can be found in Appendix A.

Prior to arrival at the site, the U.S. Environmental Protection Agency (EPA) Remedial Project Manager (RPM) notified the immediate surrounding residences and businesses that an assessment was to be conducted on and around the landfill area. This was part of a public relations effort to notify the public and address any concerns prior to the activities taking place.

To assist with the field activities, a 30 m by 30 m sampling grid was developed across the extent of the landfill area prior to the field activities. This sampling grid was developed to include the entire extent of the landfill boundary area and extend 30 m beyond that boundary area. This grid was then numbered for each node location, forming a serpentine sampling pathway across the grid. A total of 190 sampling locations comprised the sampling grid layout developed for this site. A reference point was identified using an identifiable landmark on the site to locate the starting point. Figure 2 shows the grid and pathway used for the screening analysis.

# 4.1 Landfill Surface Screening Analysis

As soon as personnel were on site, the reference point was visually located, and using a handheld global positioning

system (GPS), the starting point (Node No. 1) was located to begin the screening analysis. The screening analysis included measurements for non-methane organic compounds (NMOCs) using a photo ionized detector (PID) and for methane (CH<sub>4</sub>) using a flame ionized detector (FID). Both the PID and FID were held no more than one inch above the ground while measurements were being made. It should be noted that the field instrumentation was very sensitive and drifted quite significantly due to slight gusts of wind across the landfill cover. Readings were taken for approximately one minute, and the average value excluding the extreme highs and lows were recorded. While conducting the serpentine walk across the site, an effort was made to identify areas containing cracks and gaps in the landfill cover, and measurements were made at these locations to the extent possible. All predetermined sampling locations were not accessible for a variety of reasons ranging from being located on private property to being inaccessible by the field crew due to extreme overgrowth. An attempt was made to collect a reading at each location, with measurements being collected not greater than 10 m from the predetermined locations. If it was necessary to skip a location due to inaccessibility within the acceptable 10 m range, then replicate readings were collected at the next accessible location. These replicate readings were intended to provide for additional quality assurance and quality control (QA and QC) data and were not intended to back fill missing data for an inaccessible node. Duplicate readings were also taken at predefined locations as part of QA and QC efforts. These predetermined locations were selected based on a random number generator. All screening data were recorded on field log data collection forms along with any field notes relevant to specific locations. There was 89 percent data collection efficiency. Table 1 provides the screening sample results.

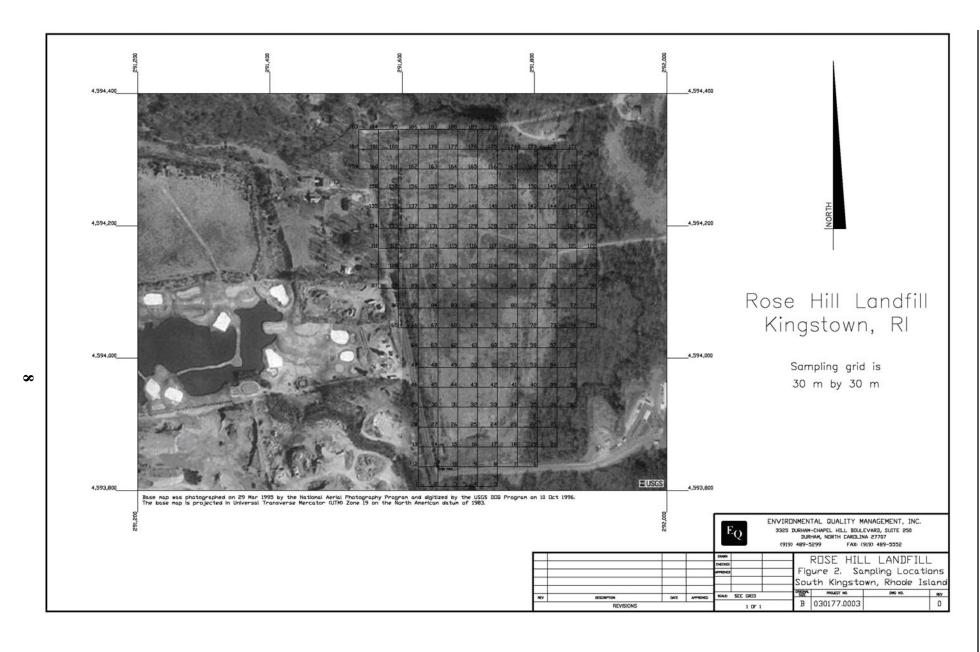



Figure 2. Screening Sampling Node Locations.

 Table 1. Rose Hill Screening Sample Results.

Table 1. Rose Hill Screening Sample Results (continued).

| Grid<br>No. |                                                    | Coor   | l UTM<br>dinates<br>Northing | NMOC<br>Conc. | C CH <sub>4</sub> Conc. | Gric<br>No. |                                                    | Coor   | l UTM<br>dinates<br>Northing | NMOC<br>Conc. | CCH <sub>4</sub> Conc. |
|-------------|----------------------------------------------------|--------|------------------------------|---------------|-------------------------|-------------|----------------------------------------------------|--------|------------------------------|---------------|------------------------|
| 1           | LFSG-02-07 22 02 -R 001                            |        |                              | 0.20          | ND                      | 46          | LFSG-02-07 22 02 -R 042                            |        | 4593944                      | ND            | ND                     |
|             | LFSG-02-07 22 02 -R 001<br>LFSG-02-07 22 02 -R 002 |        |                              | 0.43          | ND                      | 47          | LFSG-02-07 22 02 -R 043                            |        | 4593988                      | ND            | ND                     |
| 3           | LFSG-02-07 22 02 -R 003                            |        | 4593802                      | 0.20          | ND                      | 48          | LFSG-02-07 22 02 -R 045                            |        |                              | ND            | 8.00                   |
|             | LFSG-02-07 22 02 -R 004                            |        | 4593807                      | 0.20          | ND                      | 49          | LFSG-02-07 22 02 -R 045                            |        | 4593986                      | ND            | ND                     |
| 5           | LFSG-02-07 22 02 -R 005                            |        |                              | 0.20          | ND                      | 50          | LFSG-02-07 22 02 -R 046                            |        |                              | ND            | ND                     |
| 6           | LFSG-02-07 22 02 -R 006                            |        | 4591773                      | ND            | ND                      | 51          | LFSG-02-07 22 02 -R 047                            |        |                              | ND            | ND                     |
| 7           | LFSG-02-07 22 02 -R 007                            |        | 4593836                      | 0.20          | ND                      | 52          | LFSG-02-07 22 02 -R 048                            |        |                              | ND            | ND                     |
| 8           | LFSG-02-07 22 02 -R 008                            |        |                              | 0.20          | 1.00                    | 53          | LFSG-02-07 22 02 -R 049                            | 291775 | 4593986                      | ND            | ND                     |
| 9           | LFSG-02-07 22 02 -R 009                            |        | 4593833                      | 1.80          | ND                      | 54          | LFSG-02-07 22 02 -R 050                            | 291806 | 4593987                      | ND            | 12.00                  |
| 10          | LFSG-02-07 22 02 -R 010                            | 291656 | 4593829                      | 0.40          | ND                      | 55          | LFSG-02-07 22 02 -R 051                            | 291811 | 4593988                      | ND            | ND                     |
| 11          | LFSG-02-07 22 02 -R 011                            | 291645 | 4593834                      | ND            | ND                      | 56          | LFSG-02-07 22 02 -R 052                            | 291834 | 4594017                      | ND            | ND                     |
| 12          | LFSG-02-07 22 02 -D 001                            | NA     | NA                           | NA            | NA                      | 57          | LFSG-02-07 22 02 -R 053                            | 291802 | 4594019                      | ND            | ND                     |
| 13          | LFSG-02-07 22 02 -D 002                            | NA     | NA                           | NA            | NA                      | 58          | LFSG-02-07 22 02 -R 054                            | 291773 | 4594016                      | ND            | ND                     |
| 14          | LFSG-02-07 22 02 -R 012                            | 291634 | 4593867                      | ND            | ND                      | 59          | LFSG-02-07 22 02 -R 055                            | 291741 | 4594017                      | ND            | ND                     |
| 15          | LFSG-02-07 22 02 -R 013                            | 291657 | 4593862                      | 0.30          | 25.00                   | 60          | LFSG-02-07 22 02 -R 056                            | 291713 | 4594015                      | ND            | ND                     |
| 16          | LFSG-02-07 22 02 -R 014                            | 291684 | 4593866                      | 0.60          | ND                      | 61          | LFSG-02-07 22 02 -R 057                            | 291683 | 4594016                      | ND            | ND                     |
| 17          | LFSG-02-07 22 02 -R 015                            | 291712 | 4593865                      | ND            | ND                      | 62          | LFSG-02-07 22 02 -R 058                            | 291653 | 4594016                      | ND            | ND                     |
| 18          | LFSG-02-07 22 02 -R 016                            | 291745 | 4593865                      | ND            | 300.00                  | 63          | LFSG-02-07 22 02 -R 059                            | 291627 | 4594015                      | ND            | 110.00                 |
| 19          | LFSG-02-07 22 02 -R 017                            | 291778 | 4593862                      | 0.26          | 350.00                  | 64          | LFSG-02-07 22 02 -R 060                            | 291590 | 4594019                      | ND            | ND                     |
| 20          | LFSG-02-07 22 02 -R 018                            | 291803 | 4593861                      | ND            | ND                      | 65          | LFSG-02-07 22 02 -R 061                            | 291563 | 4594047                      | ND            | ND                     |
| 21          | LFSG-02-07 22 02 -R 019                            | 291808 | 4593862                      | ND            | ND                      | 66          | LFSG-02-07 22 02 -R 062                            | 291597 | 4594044                      | ND            | ND                     |
| 22          | LFSG-02-07 22 02 -R 020                            | 291782 | 4593896                      | ND            | ND                      | 67          | LFSG-02-07 22 02 -R 063                            | 291626 | 4594049                      | ND            | 6.00                   |
| 23          | LFSG-02-07 22 02 -R 021                            | 291742 | 4593902                      | ND            | ND                      | 68          | LFSG-02-07 22 02 -R 064                            | 291658 | 4594044                      | ND            | ND                     |
| 24          | LFSG-02-07 22 02 -R 022                            | 291710 | 4593903                      | ND            | ND                      | 69          | LFSG-02-07 22 02 -R 065                            | 291686 | 4594046                      | ND            | ND                     |
| 25          | LFSG-02-07 22 02 -R 023                            | 291681 | 4593899                      | 0.20          | ND                      | 70          | LFSG-02-07 22 02 -R 066                            | 291715 | 4594045                      | ND            | ND                     |
| 26          | LFSG-02-07 22 02 -R 024                            | 291654 | 4593897                      | ND            | 2.10                    | 71          | LFSG-02-07 22 02 -R 067                            | 291747 | 4594046                      | ND            | ND                     |
| 27          | LFSG-02-07 22 02 -R 025                            | 291628 | 4593896                      | ND            | ND                      | 72          | LFSG-02-07 22 02 -R 068                            | 291775 | 4594043                      | ND            | ND                     |
| 28          | LFSG-02-07 22 02 -D 003                            | NA     | NA                           | NA            | NA                      | 73          | LFSG-02-07 22 02 -R 069                            |        | 4594045                      | ND            | ND                     |
| 29          | LFSG-02-07 22 02 -D 004                            | NA     | NA                           | NA            | NA                      | 74          | LFSG-02-07 22 02 -R 070                            |        | 4594043                      | ND            | ND                     |
| 30          | LFSG-02-07 22 02 -R 026                            |        | 4593926                      | ND            | ND                      | 75          | LFSG-02-07 22 02 -R 071                            |        | 4594038                      | ND            | ND                     |
|             | LFSG-02-07 22 02 -R 027                            |        |                              | ND            | 3.00                    |             | LFSG-02-07 22 02 -R 072                            |        |                              | ND            | ND                     |
|             | LFSG-02-07 22 02 -R 028                            |        |                              | ND            | ND                      |             | LFSG-02-07 22 02 -R 073                            |        |                              | ND            | ND                     |
|             | LFSG-02-07 22 02 -R 029                            |        |                              | ND            | ND                      |             | LFSG-02-07 22 02 -R 074                            |        |                              | ND            | ND                     |
|             | LFSG-02-07 22 02 -R 030                            |        |                              | ND            | ND                      |             | LFSG-02-07 22 02 -R 075                            |        |                              | ND            | ND                     |
|             | LFSG-02-07 22 02 -R 031                            |        |                              | ND            | ND                      |             | LFSG-02-07 22 02 -R 076                            |        |                              | ND            | ND                     |
|             | LFSG-02-07 22 02 -R 032                            |        |                              | ND            | ND                      |             | LFSG-02-07 22 02 -R 077                            |        |                              | ND            | ND                     |
|             | LFSG-02-07 22 02 -R 033                            |        |                              | ND            | ND                      |             | LFSG-02-07 22 02 -R 078                            |        |                              | ND            | ND                     |
|             | LFSG-02-07 22 02 -R 034                            |        |                              | ND            | ND                      |             | LFSG-02-07 22 02 -R 079                            |        |                              | ND            | ND                     |
|             | LFSG-02-07 22 02 -R 035                            |        |                              | ND            | 6.00                    |             | LFSG-02-07 22 02 -R 080                            |        |                              | ND            | 3.00                   |
|             | LFSG-02-07 22 02 -R 036                            |        |                              | ND            | ND                      |             | LFSG-02-07 22 02 -R 081                            |        |                              | ND<br>NA      | ND<br>NA               |
|             | LFSG-02-07 22 02 -R 037                            |        |                              | ND            | 42.00                   |             | LFSG-02-07 22 02 -D 008                            |        | NA<br>NA                     | NA<br>NA      | NA<br>NA               |
|             | LFSG-02-07 22 02 -R 038                            |        |                              | ND            | 2.00                    |             | LFSG-02-07 22 02 -D 009<br>LFSG-02-07 22 02 -R 082 |        | NA<br>4594105                | NA<br>ND      | NA<br>ND               |
|             | LFSG-02-07 22 02 -R 039                            |        |                              | ND<br>ND      | ND<br>0.00              |             | LFSG-02-07 22 02 -R 082<br>LFSG-02-07 22 02 -R 083 |        |                              |               | ND<br>ND               |
|             | LFSG-02-07 22 02 -R 040<br>LFSG-02-07 22 02 -R 041 |        |                              | ND<br>ND      | 9.00<br>ND              |             | LFSG-02-07 22 02 -R 083<br>LFSG-02-07 22 02 -R 084 |        |                              | ND<br>ND      | ND<br>1.20             |
|             | = not detected                                     | 271019 | +373734                      | ND            | ND                      |             | = not detected                                     | 271014 | -TJ/#1UJ                     | עויו          | 1.20                   |

 $<sup>^{</sup>a}$  ND = not detected

continued

 $<sup>^{\</sup>mathrm{b}}$  NA = not available

<sup>&</sup>lt;sup>a</sup> ND = not detected

 $<sup>^{</sup>b}$  NA = not available

 Table 1. Rose Hill Screening Sample Results (continued).

Table 1. Rose Hill Screening Sample Results (continued).

| Grid<br>No.                    |                                                    | Actual UTM<br>Coordinates<br>Easting Northing |         | NMOC CH <sub>4</sub><br>Conc. Conc. |       | Grid<br>No. |                                                    | Actual UTM<br>Coordinates<br>Easting Northing |         | NMOC<br>Conc. |        |
|--------------------------------|----------------------------------------------------|-----------------------------------------------|---------|-------------------------------------|-------|-------------|----------------------------------------------------|-----------------------------------------------|---------|---------------|--------|
| 91                             | LFSG-02-07 22 02 -R 085                            |                                               |         | ND                                  | ND    | 136         | LFSG-02-07 23 02 -R 037                            |                                               | 4594324 | ND            | ND     |
| 92                             | LFSG-02-07 22 02 -R 086                            |                                               |         | ND                                  | ND    |             | LFSG-02-07 23 02 -R 001                            |                                               | 4594217 | 2.50          | 160.00 |
| 93                             | LFSG-02-07 22 02 -R 080<br>LFSG-02-07 22 02 -R 087 |                                               | 4594106 | ND                                  | ND    |             | LFSG-02-07 23 02 -R 001<br>LFSG-02-07 23 02 -R 002 |                                               | 4594227 | 0.50          | 2.00   |
| 94                             | LFSG-02-07 22 02 -R 087<br>LFSG-02-07 22 02 -R 088 |                                               | 4594107 | ND                                  | ND    |             | LFSG-02-07 23 02 -R 002<br>LFSG-02-07 23 02 -R 003 |                                               | 4594225 | 5.00          | 20.00  |
| 95                             | LFSG-02-07 22 02 -R 089                            |                                               | 4594105 | ND                                  | ND    | 140         | LFSG-02-07 23 02 -R 004                            |                                               | 4594226 | ND            | 1.00   |
| 96                             | LFSG-02-07 22 02 -R 090                            |                                               | 4594107 | ND                                  | ND    |             | LFSG-02-07 23 02 -R 005                            |                                               |         | ND            | ND     |
| 97                             | LFSG-02-07 22 02 -R 091                            |                                               | 4594105 | ND                                  | ND    |             | LFSG-02-07 23 02 -R 006                            |                                               |         | ND            | ND     |
| 98                             | LFSG-02-07 22 02 -D 010                            | NA                                            | NA      | NA                                  | NA    |             | LFSG-02-07 23 02 -R 007                            | 291775                                        | 4594227 | 2.00          | ND     |
| 99                             | LFSG-02-07 22 02 -D 011                            | NA                                            | NA      | NA                                  | NA    |             | LFSG-02-07 23 02 -R 008                            |                                               | 4594227 | ND            | ND     |
| 100                            | LFSG-02-07 22 02 -R 092                            |                                               | 4594136 | ND                                  | ND    |             | LFSG-02-07 23 02 -D 002                            | NA                                            | NA      | NA            | NA     |
| 101                            | LFSG-02-07 22 02 -R 093                            |                                               | 4594135 | ND                                  | ND    |             | LFSG-02-07 23 02 -D 003                            | NA                                            | NA      | NA            | NA     |
| 102                            | LFSG-02-07 22 02 -R 094                            |                                               | 4594136 | ND                                  | ND    |             | LFSG-02-07 23 02 -R 009                            |                                               | 4594261 | ND            | ND     |
| 103                            | LFSG-02-07 22 02 -R 095                            |                                               | 4594135 | ND                                  | ND    |             | LFSG-02-07 23 02 -R 010                            |                                               |         | 2.00          | ND     |
| 104                            | LFSG-02-07 22 02 -R 096                            |                                               | 4594136 | ND                                  | ND    | 149         | LFSG-02-07 23 02 -R 011                            | 291712                                        | 4594254 | ND            | ND     |
| 105                            | LFSG-02-07 22 02 -R 097                            |                                               | 4594136 | ND                                  | ND    | 150         | LFSG-02-07 23 02 -R 012                            |                                               |         | ND            | ND     |
| 106                            | LFSG-02-07 22 02 -R 098                            |                                               | 4594137 | ND                                  | ND    |             | LFSG-02-07 23 02 -R 013                            |                                               | 4594253 | ND            | 11.00  |
| 107                            | LFSG-02-07 22 02 -R 099                            | 291624                                        | 4594137 | ND                                  | ND    | 152         | LFSG-02-07 23 02 -R 014                            | 291641                                        | 4594252 | ND            | ND     |
| 108                            | LFSG-02-07 22 02 -R 100                            |                                               | 4594135 | ND                                  | ND    |             | LFSG-02-07 23 02 -R 015                            |                                               | 4594253 | ND            | ND     |
| 109                            | LFSG-02-07 22 02 -R 101                            | 291583                                        | 4594136 | ND                                  | ND    |             | LFSG-02-07 23 02 -R 016                            |                                               | 4594257 | ND            | 12.00  |
| 110                            | LFSG-02-07 22 02 -D 012                            | NA                                            | NA      | NA                                  | N     |             | LFSG-02-07 23 02 -R 017                            |                                               | 4594254 | ND            | 1.50   |
| 111                            | LFSG-02-07 22 02 -D 013                            | NA                                            | NA      | NA                                  | NA    | 156         | LFSG-02-07 23 02 -D 004                            | NA                                            | NA      | NA            | NA     |
| 112                            | LFSG-02-07 22 02 -R 102                            | 291571                                        | 4594167 | ND                                  | ND    | 157         | LFSG-02-07 23 02 -R 038                            | 291534                                        | 4594356 | ND            | ND     |
| 113                            | LFSG-02-07 22 02 -R 103                            | 291605                                        | 4594165 | ND                                  | 20.00 | 158         | LFSG-02-07 23 02 -R 039                            | 291538                                        | 4594357 | ND            | ND     |
| 114                            | LFSG-02-07 22 02 -R 104                            | 291627                                        | 4594167 | ND                                  | 1.00  | 159         | LFSG-02-07 23 02 -D 005                            | NA                                            | NA      | NA            | NA     |
| 115                            | LFSG-02-07 22 02 -R 105                            | 291656                                        | 4594166 | ND                                  | ND    | 160         | LFSG-02-07 23 02 -D 006                            | NA                                            | NA      | NA            | NA     |
| 116                            | LFSG-02-07 22 02 -R 106                            | 291686                                        | 4594167 | ND                                  | ND    | 161         | LFSG-02-07 23 02 -R 018                            | 291573                                        | 4594284 | ND            | 25.00  |
| 117                            | LFSG-02-07 22 02 -R 107                            | 291715                                        | 4594167 | ND                                  | 1.00  | 162         | LFSG-02-07 23 02 -R 019                            | 291594                                        | 4594288 | ND            | 130.00 |
| 118                            | LFSG-02-07 22 02 -R 108                            | 291737                                        | 4594165 | ND                                  | ND    | 163         | LFSG-02-07 23 02 -R 020                            | 291625                                        | 4594286 | 1.00          | ND     |
| 119                            | LFSG-02-07 22 02 -R 109                            | 291768                                        | 4594176 | ND                                  | 2.00  | 164         | LFSG-02-07 23 02 -R 021                            | 291656                                        | 4594288 | ND            | ND     |
| 120                            | LFSG-02-07 22 02 -R 110                            | 291805                                        | 4594169 | ND                                  | ND    | 165         | LFSG-02-07 23 02 -R 022                            | 291676                                        | 4594286 | ND            | ND     |
| 121                            | LFSG-02-07 22 02 -R 111                            | 291835                                        | 4594163 | ND                                  | ND    | 166         | LFSG-02-07 23 02 -R 023                            | 291694                                        | 4594294 | ND            | ND     |
| 122                            | LFSG-02-07 22 02 -R 112                            | 291869                                        | 4594165 | ND                                  | ND    | 167         | LFSG-02-07 23 02 -R 024                            | 291745                                        | 4594284 | ND            | ND     |
| 123                            | LFSG-02-07 22 02 -D 015                            | NA                                            | NA      | NA                                  | NA    | 168         | LFSG-02-07 23 02 -R 025                            | 291751                                        | 4594294 | ND            | ND     |
| 124                            | LFSG-02-07 22 02 -R 113                            | 291821                                        | 4594198 | ND                                  | ND    | 169         | LFSG-02-07 23 02 -D 007                            | NA                                            | NA      | NA            | NA     |
| 125                            | LFSG-02-07 22 02 -R 114                            | 291802                                        | 4594196 | ND                                  | ND    | 170         | LFSG-02-07 23 02 -D 008                            | NA                                            | NA      | NA            | NA     |
| 126                            | LFSG-02-07 22 02 -R 115                            | 291770                                        | 4594189 | ND                                  | 11.00 | 171         | LFSG-02-07 23 02 -R 026                            | 291813                                        | 4594311 | ND            | 1.00   |
| 127                            | LFSG-02-07 22 02 -R 116                            | 291743                                        | 4594195 | ND                                  | 1.00  | 172         | LFSG-02-07 23 02 -R 027                            | 291807                                        | 4594311 | ND            | ND     |
| 128                            | LFSG-02-07 22 02 -R 117                            | 291714                                        | 4594197 | ND                                  | 1.00  | 173         | LFSG-02-07 23 02 -R 028                            | 291788                                        | 4594308 | ND            | 2.00   |
| 129                            | LFSG-02-07 22 02 -R 118                            | 291683                                        | 4594197 | 0.25                                | 0.03  | 174         | LFSG-02-07 23 02 -R 029                            | 291746                                        | 4594334 | ND            | 8.00   |
| 130                            | LFSG-02-07 22 02 -R 119                            | 291643                                        | 4594197 | ND                                  | 2.00  | 175         | LFSG-02-07 23 02 -R 030                            | 291716                                        | 4594331 | ND            | 13.00  |
| 131                            | LFSG-02-07 22 02 -R 120                            | 291623                                        | 4594197 | ND                                  | 7.00  | 176         | LFSG-02-07 23 02 -R 031                            | 291677                                        | 4594321 | 2.00          | 2.00   |
| 132                            | LFSG-02-07 22 02 -R 121                            | 291595                                        | 4594194 | ND                                  | 16.00 | 177         | LFSG-02-07 23 02 -R 032                            | 291654                                        | 4594316 | ND            | 1.50   |
| 133                            | LFSG-02-07 22 02 -R 122                            | 291567                                        | 4594194 | ND                                  | ND    | 178         | LFSG-02-07 23 02 -R 033                            | 291623                                        | 4594316 | ND            | 2.00   |
| 134                            | LFSG-02-07 22 02 -R 123                            | 291561                                        | 4594190 | ND                                  | ND    |             | LFSG-02-07 23 02 -R 034                            |                                               |         | 1.00          | 1.00   |
| 135                            | LFSG-02-07 23 02 -R 036                            | 291555                                        | 4594324 | ND                                  | ND    | 180         | LFSG-02-07 23 02 -R 035                            | 291582                                        | 4594317 | 1.00          | 7.00   |
| <sup>a</sup> ND = not detected |                                                    |                                               |         |                                     |       | a ND        | = not detected                                     |                                               |         |               |        |

<sup>&</sup>quot; ND = not detected

<sup>b</sup> NA = not available

 $<sup>^{</sup>b}$  NA = not available

Table 1. Rose Hill Screening Sample Results (concluded).

| Grid<br>No. | Sample III No           |                | l UTM<br>dinates | NMOC  | CH <sub>4</sub><br>Conc. |  |
|-------------|-------------------------|----------------|------------------|-------|--------------------------|--|
| 110.        | _                       | <b>Easting</b> | Northing         | Conc. |                          |  |
| 181         | LFSG-02-07 23 02 -D 010 | NA             | NA               | NA    | NA                       |  |
| 182         | LFSG-02-0723 02 -D 011  | NA             | NA               | NA    | NA                       |  |
| 183         | LFSG-02-07 23 02 -D 012 | NA             | NA               | NA    | NA                       |  |
| 184         | LFSG-02-07 23 02 -D 013 | NA             | NA               | NA    | NA                       |  |
| 185         | LFSG-02-07 23 02 -R 040 | 291563         | 4594338          | ND    | ND                       |  |
| 186         | LFSG-02-07 23 02 -R 041 | 291595         | 4594344          | ND    | 1.00                     |  |
| 187         | LFSG-02-07 23 02 -R 042 | 291625         | 4594343          | ND    | ND                       |  |
| 188         | LFSG-02-07 23 02 -R 043 | 291655         | 4594343          | ND    | 2.00                     |  |
| 189         | LFSG-02-07 23 02 -R 044 | 291684         | 4594344          | ND    | 2.00                     |  |
| 190         | LFSG-02-07 23 02 -R 045 | 291715         | 4594342          | ND    | 1.00                     |  |

a ND = not detected

## 4.2 Hot Spot and Homogeneity Determinations

The screening data collected were used for two analyses. The first was for a hot spot analysis. This was accomplished by importing the screening data set into a graphical contouring software package (Surfer) to produce concentration contours that were layered over an aerial photographic image of the site. This method allowed for a visual determination of where the higher concentrations were recorded during the screening analysis. This method also allowed the data set to be divided into two data sets based on the contours derived from these data. This population division was used as part of the homogeneity determinations. Figures 3 and 4 show the concentration contours for NMOCs and methane, respectively.

The second analysis provided a determination of the homogeneity of the site. This was accomplished through statistical means by using the Wilcoxon Rank Sum statistical method, which determines whether two data sets are statistically similar. If the two sets are similar, then the two populations are determined to be one nearly homogeneous area. If the two data sets are determined not to be statistically similar, then the two sets are said to be two non-homogeneous areas. To accomplish this task, the hot spot analysis was used to determine if there appeared to be two distinct population sets. For this site, the Wilcoxon method showed that the site has two nearly homogeneous areas. Appendix B contains the Wilcoxon data analysis. As men-

tioned earlier, for the purposes of this statistical analysis all non-detect, replicate, and duplicate measurements were excluded from this analysis.

#### 4.3 Sampling Activities

Sampling activities encompassed sampling landfill soil gas, passive vent gas, perimeter well gas, and ambient air. Figure 5 shows all sampled locations. Each of these sampling methods will be discussed further in the following sections.

#### 4.3.1 Landfill Soil Gas Sampling

As part of this demonstration, landfill soil gas samples were collected for the chemicals of potential concern (COPCs) by two methods. The first set of samples were collected using Summa canisters, which were sent to an off-site commercial laboratory for analysis. The second set of samples were collected using Tedlar bags and were analyzed at an on-site laboratory provided by EPA's Environmental Response Team Center (ERTC). Field instrumentation was used at each of the designated sampling locations. These instruments were used to measure fixed gases carbon dioxide ( $CO_2$ ), nitrogen ( $N_2$ ), and oxygen ( $O_2$ ), which were used to verify that landfill gas (LFG) was being collected. Sampling was conducted using a slam-bar to drive a sampling hole through the landfill cover, a sampling probe was inserted into the landfill area, and the hole was sealed around the probe to minimize ambient air inleakage.

Based on the data analysis conducted, it was determined that this site consisted of two homogeneous areas. It was determined that, for purposes of this demonstration, six Tedlar bag samples would be collected, three samples in each homogenous area. Samples were collected at grid node locations with the highest NMOC concentrations (2, 9, 16, 137, 139, and 148). Summa canister samples were also collected at each of the six node locations. In conducting the field measurements for fixed gases at node No. 2 it was observed that the O<sub>2</sub> content was greater than 18 percent and the N<sub>2</sub> concentration was greater than 20 percent, indicating the absence of landfill gas in the sample. It was determined that high NMOC reading during screening could have been attributed to vehicle exhaust and not LFG due to the close proximity of a road to this location. It was therefore determined that this sampling location should be abandoned to prevent sampling interference. The sampling location was moved to the next highest screening concentration found at grid No. 15. Laboratory analytical results can be found in Appendix C.

<sup>&</sup>lt;sup>b</sup> NA = not available

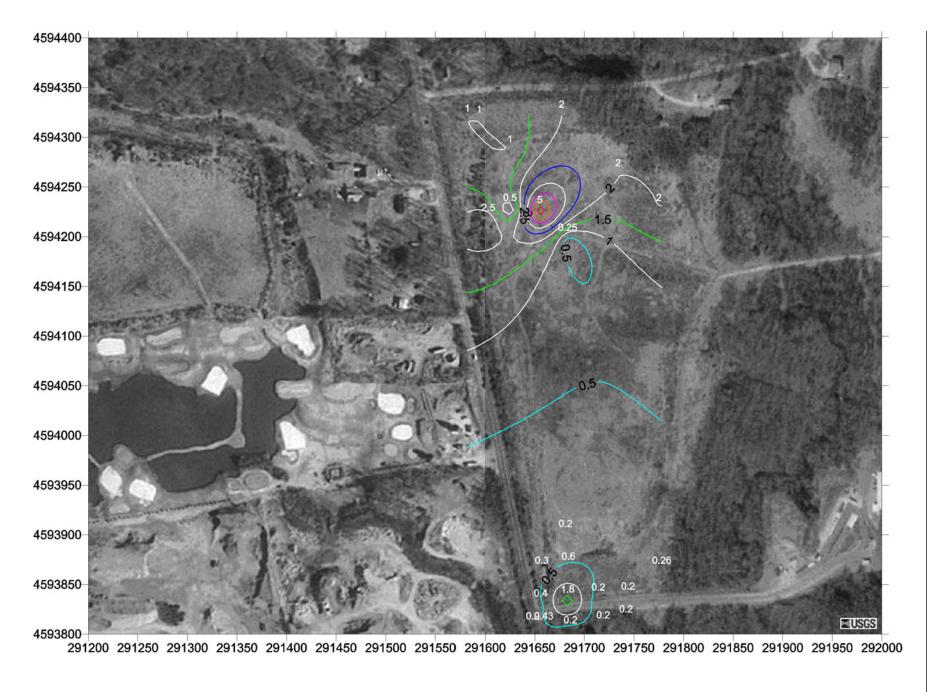



Figure 3. Measured Screening Results (ppm) for NMOCs.

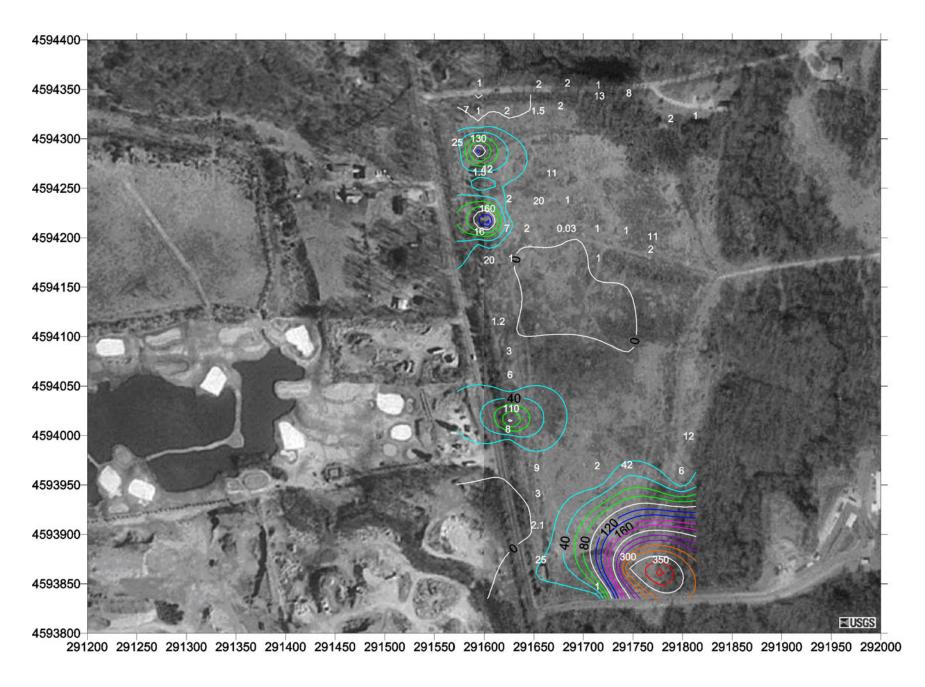



Figure 4. Measured Screening Results (ppm) for Methane.

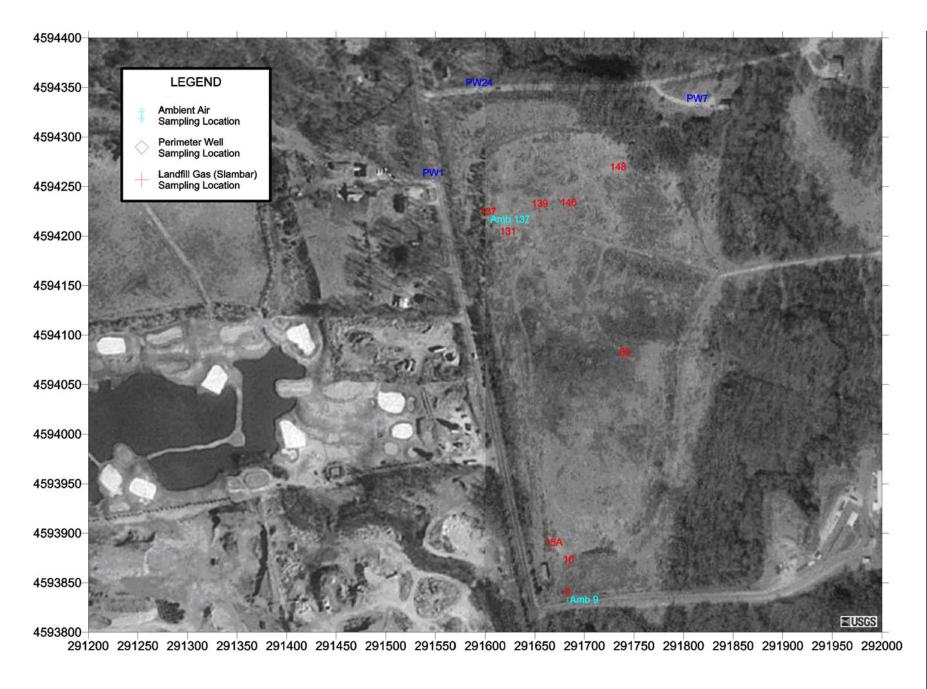



Figure 5. Rose Hill Sampling Locations.

#### 4.3.2 Passive Vent Gas Sampling

During the screening analysis of the site, it was observed that gas monitoring wells were installed within the interior of the landfill boundary area at grid Nos. 80, 131, and 140. Because these wells were not properly capped or sealed, they were assumed to be acting as passive vents through the landfill cover, and it was decided that these passive vent areas should also be sampled for further demonstration purposes. Sampling was conducted using a slam-bar to drive a sampling hole near the passive vents and through the landfill cover. A sampling probe was then inserted into the landfill, and the hole was sealed around the probe to minimize ambient air in-leakage. Summa canister samples were collected for COPCs and fixed gases, and Tedlar bag samples were collected for COPCs. Fixed Gases were also analyzed at these locations using field instrumentation. Laboratory analytical results can be found in Appendix C.

#### 4.3.3 Perimeter Well Gas Sampling

The guidance recommends that sampling be conducted at perimeter wells located nearest to the hot spots and the closest off-site receptor. For this site demonstration, sampling was conducted at three perimeter wells that were located in close proximity to off-site residential houses. At each of these locations, Summa canisters and Tedlar bags were used to collect the samples for COPCs and fixed gases analyses. The Summa canister sampling rate was set to approximately 0.1 L/min in order to minimize the potential for ambient air leakage. The Tedlar bag samples were collected at approximately 1.0 L/min. Laboratory analytical results can be found in Appendix C.

#### 4.3.4 Ambient Air Sampling

As recommended by the guidance, sampling of ambient air should be conducted at the location where the highest NMOC concentrations were measured. For the purpose of this demonstration, samples were collected at grid nodes 9 and 137 using a Summa canister. It should be noted that the sample taken at node 9 was located directly next to a storm drain that appeared to be acting as a passive vent from field observations. An ambient air sample was also collected at one perimeter well (node 137) that was determined to be closest to the nearest occupied structure and and that had the highest NMOC concentration observed on-site during the screening analysis. Laboratory analytical results can be found in Appendix C.

# 4.4 Quality Assurance and Data Evaluation

The primary purpose of this project is to establish the usefulness of the guidance document and identify areas that need to be clarified or expanded. The field efforts are a means to collect the information needed to implement the procedures included in the guidance. A secondary purpose of the project is to provide the RPMs with information that will allow them to determine if LFG controls are needed and if compliance with applicable relevant and appropriate requirements (ARARs) has been achieved. Data quality objectives are a starting point of an interactive process, and they do not necessarily constitute definitive rules for accepting or rejecting results. The measurement quality objectives have been defined in terms of standard methods with accuracy, precision, and completeness goals.

Uncertainty associated with the measurement data is expressed in terms of accuracy and precision. The accuracy of a single value contains both the measurement's random error component and the systematic error, or bias. Accuracy thus reflects the total error for a given measurement. Precision values represent a measure of only the random variability for replicate measurements. In general, the purpose of calibration is to eliminate bias, although inefficient analyte recovery or matrix interferences can contribute to sample bias, which is typically assessed by analyzing matrix spike samples. At very low levels, blank effects (contamination or other artifacts) can also contribute to low-level bias. The potential for bias is evaluated by method blanks. Instrument bias is evaluated by using control samples.

#### 4.4.1 Accuracy

Accuracy of laboratory results has been assessed for compliance with the established QC criteria using the analytical results of method blanks, reagent or preparation blank, matrix spike and matrix spike duplicate samples, and field blanks. The percent recovery (% R) of matrix spike samples is calculated using

$$\% R = \frac{A - B}{C} \times 100$$

Where A = the analyte concentration determined experimentally from the spiked sample,

B = the background level determined by a separate analysis of the unspiked sample, and

C = the amount of the spike added.

The laboratory did not detect any of the analytes in any sample blanks. The minimum and maximum recovery for the entire set of laboratory control samples (LCS) was greater than 70 percent and less than 122 percent. The 4-bromofluorobenzene surrogate spike recovery was outside

of the upper range for 10 out of 20 field samples. The maximum 4-bromofluorobenzene surrogate spike recovery was 363 percent. The high 4-bromofluorobenzene surrogate recovery is indicative of matrix interference, and the results may be biased on the high side. All other spike surrogate recovery values were within the target range of 70 to 130 percent.

#### 4.4.2 Precision

The analytical results between matrix spike and matrix spike duplicate (MS and MSD) analyses for each COPC have been assessed. The relative percent difference (RPD) was calculated for each pair of duplicate analysis using

$$RPD = \frac{S - D}{(S + D)/2} \times 100$$

Where S = first sample value (original or MS value) and D= second sample value (duplicate or MSD value).

Except for methylene chloride and acetone in the duplicate ambient air samples, the RPD for each of the matched sample pairs ranged from 2.15 to –13.33 percent. The laboratory reported concentrations of methylene chloride and acetone in one of the duplicate ambient air samples but not in the other. The calculated RPD for methylene chloride and acetone in the ambient air samples was 40 and –129.67 percent, respectively. The RPD for the blind reference standard ranged from 0 to 148 percent. The laboratory reported concentrations for methylene chloride, acetone, and toluene in the blind reference standard. The reported values

for the blind reference standard are less than five times the method detection limit (MDL) for each of the contaminants. These three contaminants were not expected to be in the blind reference standard. The RPD for the laboratory control samples (LCS) ranged from 0 to 18 percent. The calculated RPD for each LCS analyte was less than 5 percent except for 1,2,4-trichlorobenzene and hexachlorobutadiene.

This narrow range indicates that the laboratory was capable of reproducing the analytical results. Although, neither methylene chloride, hexane, nor acetone was found in the associated laboratory blanks, they are common laboratory contaminants.

#### 4.4.3 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount that was expected under normal conditions. The sampling and analytical goal for completeness is 80 percent or more for all samples tested. The percent completeness was calculated by using

$$Completeness(\%) = \frac{\left(number\ of\ valid\ data\right)}{\left(number\ of\ samples\ collected\right)} \times 100$$
 
$$for\ each\ parameter\ analyzed)$$

Ninety three percent of the targeted data was collected and validated.

#### Section 5. Estimation of Landfill Gas Emissions

After all samples were collected, it was possible to estimate the air impact of this site through the methods described in the guidance. For the purpose of this demonstration, it was determined that only select COPCs commonly found in LFG would be fully characterized. Table 2 provides a list of those COPCs commonly found in LFG and considered in this demonstration. From previous site activities and visual inspection of concentration isopleths generated from the laboratory results, the data were divided into groups according to the associated homogenous areas (parcels) for analysis. Those COPCs that contained nondetect data were eliminated from further investigation. Figures 6 through 16 show the soil gas concentration isopleths of all COPCs with detected concentrations. These figures provided a visual presentation of the laboratory results that were used to further understand the dynamics of this landfill and to quantify the division of the landfill into two homogenous parcels, which are shown in Figure 17. Table 3 provides the analytical results for the northern and southern parcels of the landfill. The data for each parcel were analyzed, and the 90th percentile concentrations were determined using the percentile function of Microsoft Excel. A percentile is a value on a scale of 0 to 100 that indicates the percent of a distribution that is equal to or less than the value Table 4 provides the 90th percentile values of the COPCs for both of the landfill's parcels.

Table 2. COPCs Commonly Found in LFGa,b

1,1,1-Trichloroethane (methyl chloroform)

1,1-Dichloroethene (vinylidene chloride)

1,2-Dichloroethane (ethylene dichloride)

Acrylonitrile

Benzene

Carbon Tetrachloride

Chlorobenzene

Chloroethane (ethyl chloride)

Chlorofluorocarbons

Chloroform

Dichlorobenzene

Ethylene Dibromide

Hydrogen Sulfide

Mercury

Methylene Chloride

Perchloroethylene (tetrachloroethylene)

Toluen

Trichloroethylene (trichloroethene)

Vinyl Chloride

#### Xylenes

<sup>&</sup>lt;sup>a</sup> Constituents associated with carcinogenic and chronic noncarcinogenic health effects that are routinely measured

<sup>&</sup>lt;sup>b</sup> Source: EPA, 1997

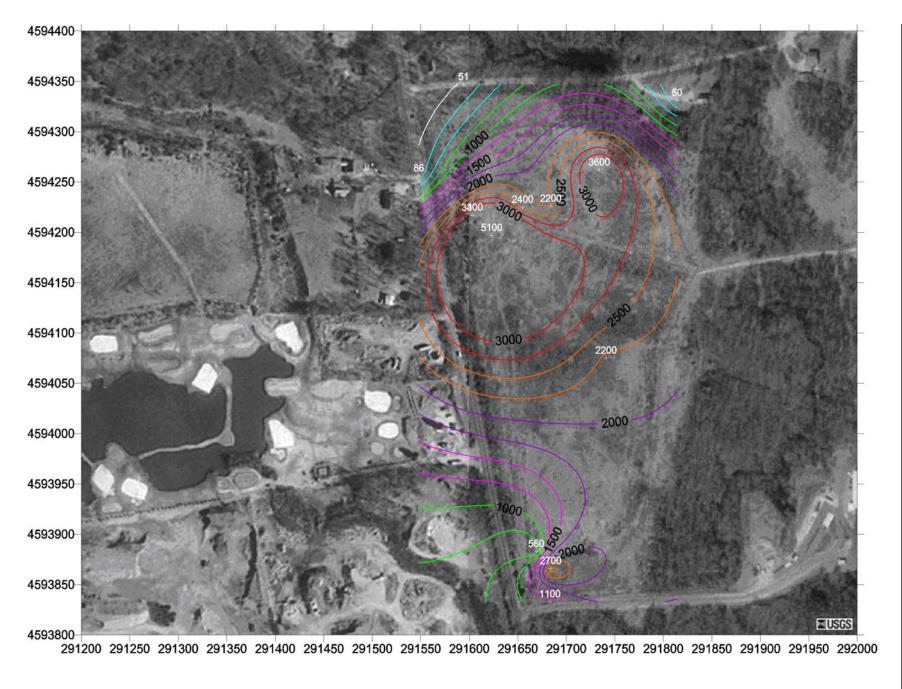



Figure 6. NMOC Concentration Isopleths (ppmvC) from Summa Sampling.



Figure 7. 1,1,1-Trichloroethane Concentration Isopleths (ppbv) from Summa Sampling.



Figure 8. Benzene Concentration Isopleths (ppbv) from Summa Sampling.

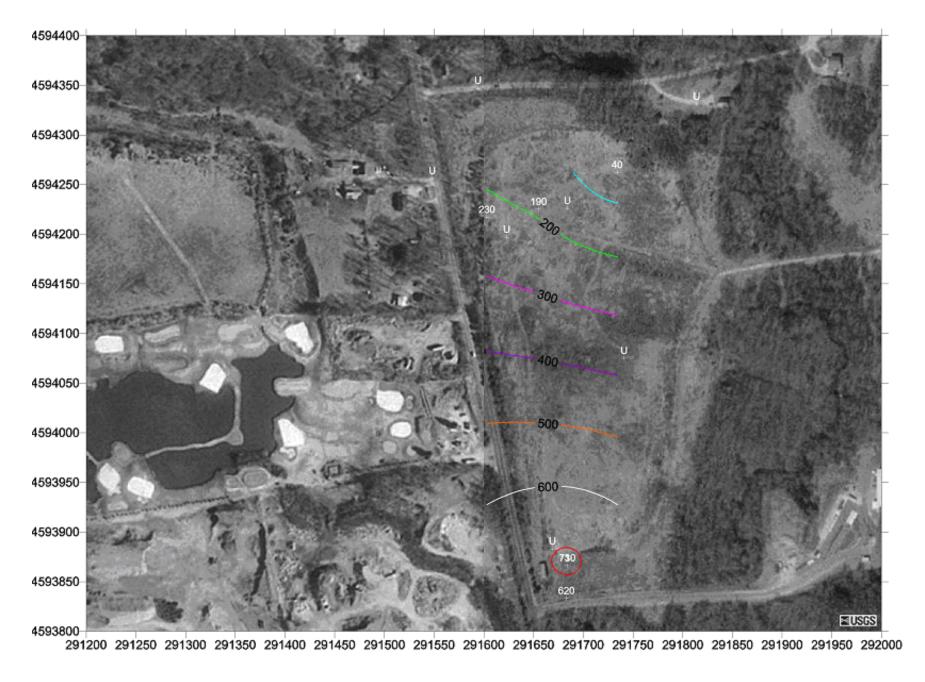



Figure 9. Chlorobenzene Concentration Isopleths (ppbv) from Summa Sampling.



Figure 10. Chloroethane Concentration Isopleths (ppbv) from Summa Sampling.



Figure 11. 1,4-Dichlorobenzene Concentration Isopleths (ppbv) from Summa Sampling.

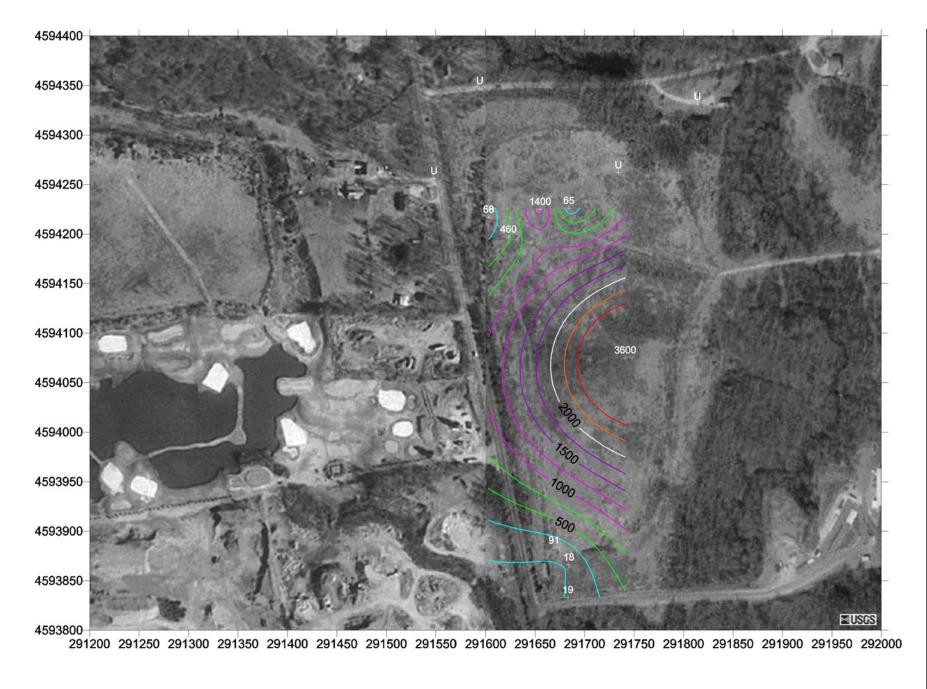



Figure 12. Toluene Concentration Isopleths (ppbv) from Summa Sampling.



Figure 13. Trichloroethene Concentration Isopleths (ppbv) from Summa Sampling.



Figure 14. Vinyl Chloride Concentration Isopleths (ppbv) from Summa Sampling.

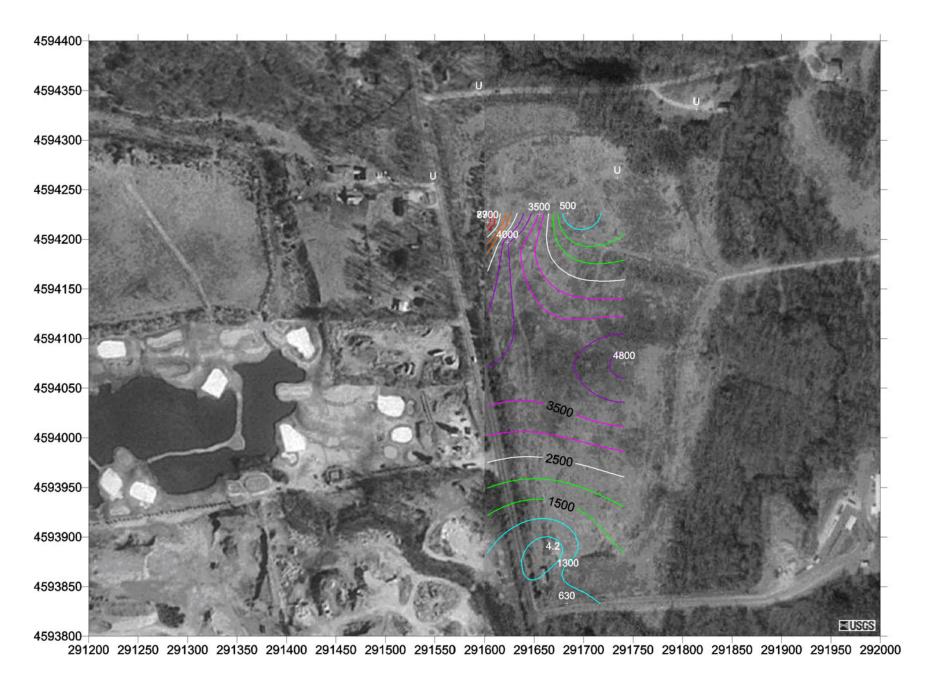



Figure 15. m,p-Xylene Concentration Isopleths (ppbv) from Summa Sampling.

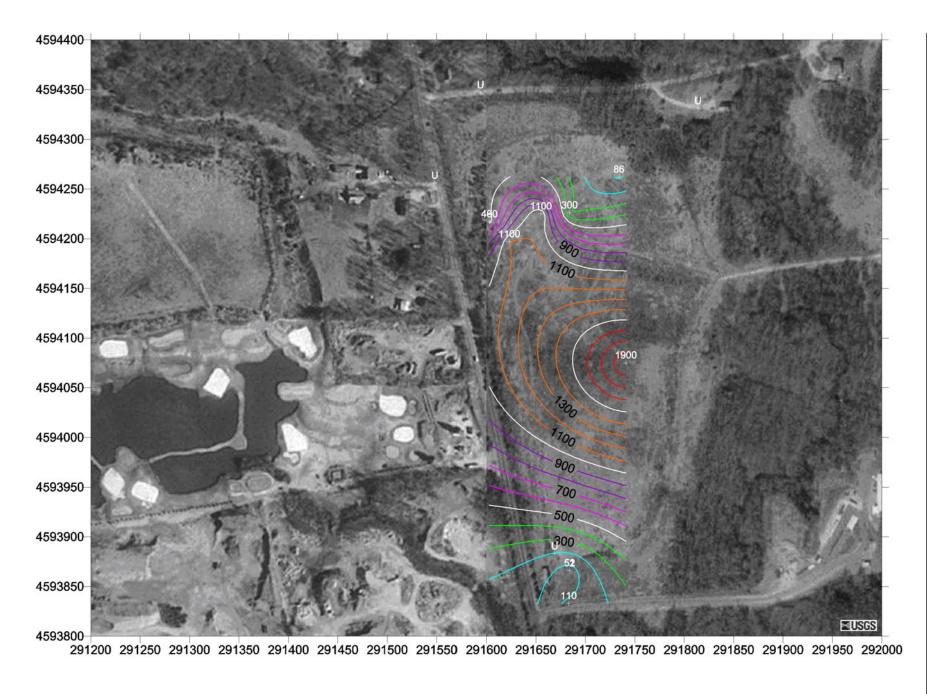



Figure 16. o-Xylene Concentration Isopleths (ppbv) from Summa Sampling.



Figure 17. Rose Hill's Two Homogenous Parcels

Table 3. Analytical Results for COPCs.

| Parcel   | Grid<br>ID<br>No. | O <sub>2</sub> (%) | N <sub>2</sub> (%) | CH <sub>4</sub> (%) | CO <sub>2</sub> (%) | NMOC    | 1,1,1-Trichloroethane | Benzene | Chlorobenzene | Chloroethane | 1,4-Dichlorobenzene | Toluene | Trichloroethene | Vinyl Chloride | m,p-Xylene | o-Xylene |
|----------|-------------------|--------------------|--------------------|---------------------|---------------------|---------|-----------------------|---------|---------------|--------------|---------------------|---------|-----------------|----------------|------------|----------|
|          |                   |                    |                    |                     |                     | (ppmvC) | (ppmv)                | (ppmv)  | (ppmv)        | (ppmv)       | (ppmv)              | (ppmv)  | (ppmv)          | (ppmv)         | (ppmv)     | (ppmv)   |
|          | 137               | 0.19               | 1.2                | 56                  | 42                  | 3300    | $ND^{a}$              | 1.40    | 0.23          | 0.47         | 0.06                | 0.06    | ND              | ND             | 7.90       | 0.46     |
| ern      | 148               | 4.1                | 67                 | 7.8                 | 21                  | 3600    | ND                    | 0.19    | 0.04          | 4.00         | ND                  | ND      | ND              | 0.80           | ND         | 0.09     |
| Northern | 139               | ND                 | 0.31               | 56                  | 43                  | 2400    | ND                    | 1.80    | 0.19          | 0.87         | 0.03                | 1.40    | 0.07            | 0.12           | 3.50       | 1.10     |
| ž        | 140               | 1.8                | 44                 | 23                  | 31                  | 2200    | ND                    | 0.14    | ND            | 0.09         | 0.03                | 0.07    | ND              | 0.20           | 0.50       | 0.30     |
|          | 131               | ND                 | 5.2                | 53                  | 43                  | 5100    | 0.58                  | 0.58    | ND            | 1.40         | 0.12                | 0.46    | 0.02            | 0.17           | 4.00       | 1.10     |
| Ħ        | 15A               | 1.6                | 79                 | ND                  | 21                  | 560     | ND                    | ND      | ND            | 0.041        | 0.026               | 0.091   | 0.0041          | ND             | 0.0042     | ND       |
| ther     | 9                 | 0.97               | 66                 | 11                  | 24                  | 1100    | ND                    | 0.17    | 0.62          | 0.021        | 0.038               | 0.019   | ND              | 0.022          | 0.63       | 0.11     |
| Southern | 16                | ND                 | 1.4                | 63                  | 38                  | 2700    | ND                    | 0.094   | 0.73          | ND           | 0.25                | 0.018   | ND              | ND             | 1.3        | 0.051    |
|          | 80                | 0.38               | 19                 | 43                  | 38                  | 2200    | ND                    | 0.26    | ND            | 0.39         | 0.034               | 3.6     | 0.03            | 0.33           | 4.8        | 1.9      |

a ND = not detected

**Table 4.** COPCs 90th Percentile Concentrations for Northern and Southern Parcels.

| 90th Percentile | Concentration |
|-----------------|---------------|
| (pp             | mv)           |

|                       | (ppint)         |                 |  |  |  |  |  |  |
|-----------------------|-----------------|-----------------|--|--|--|--|--|--|
| COPC                  | Northern Parcel | Southern Parcel |  |  |  |  |  |  |
| NMOC                  | 4500            | 2550            |  |  |  |  |  |  |
| 1,1,1-Trichloroethane | 0.58            |                 |  |  |  |  |  |  |
| 1,4-Dichlorobenzene   | 0.1008          | 0.1864          |  |  |  |  |  |  |
| Benzene               | 1.64            | 0.242           |  |  |  |  |  |  |
| Chlorobenzene         | 0.222           | 0.719           |  |  |  |  |  |  |
| Chloroethane          | 2.96            | 0.3202          |  |  |  |  |  |  |
| Toluene               | 1.118           | 2.5473          |  |  |  |  |  |  |
| Trichloroethene       | 0.0625          | 0.02741         |  |  |  |  |  |  |
| Vinyl Chloride        | 0.62            | 0.2992          |  |  |  |  |  |  |
| m,p-Xylene            | 6.73            | 3.75            |  |  |  |  |  |  |
| o-Xylene              | 1.1             | 1.542           |  |  |  |  |  |  |

# 5.1 LandGEM Modeling of LFG

With the 90th percentile values derived from the data set, these data were then used as input values for the LandGEM model to estimate the LFG emission rates for each of the COPCs. Because there are two distinct parcels, it was necessary to break this site into two areas and model each individually for NMOC emissions. To model this site the following parameters were used:

- 1 Methane generation rate (*k*): 0.05/yr [AP-42 default]
- 2 Methane generation potential (*Lo*): 170 m<sup>3</sup>/Mg [AP-42 default]

Year Opened: 1967Current Year: 2003

5 Landfill Type: Co-disposal6 Landfill Capacity: 197,692 Mg

This value was derived using the refuse estimator within LandGEM. In order to derive this value, the size of both parcels was estimated to be approximately half of the total acreage of the solid waste landfill. Therefore, each parcel was estimated to be 14 acres. In addition, it was determined from a literature review of the site that each parcel was approximately 18 feet deep. With this information, LandGEM calculated the appropriate landfill capacity.

- Acceptance rate (1967–1981): 13,179.48 Mg/ yr This value was calculated using the Autocalc function within LandGEM. This was performed due to a lack of historical acceptance rate data available for this site. To perform this calculation the landfill capacity value just calculated was entered as the refuse in place for the year 1982, as historical data indicated this was the year the site was closed and maximum capacity was achieved. Once the refuse in place was entered for the year 1982, all years in which the landfill was active were selected, including closure year (1967–1982). With these years selected, the Autocalc function was initiated, and the acceptance rate was derived for each of the active years as an average value for all years selected.
- 8 Methane percentage: 56% (Northern), 59% (Southern) This was based on the 90th percentile of the field sample data results.

- 9 NMOC Concentration: 4500 ppmv (Northern), 2550 ppmv (Southern)
  - This was based on the 90th percentile of the field sample data results.
- 10 Air Pollutants (COPCs)Modified per 90th percentile values as shown in Table4.

With all values input for each parcel, LFG emission rates for each COPC were estimated using the LandGEM model. Table 5 provides the emission rates estimated for each COPC within each landfill parcel, and Appendix D contains all the LandGEM model runs for both parcels. Figure 18 shows the emission rate data for NMOCs over a 236 year time span, and Figure 19 shows an example output file for NMOC emissions from the LandGEM model.

# 5.2 SCREEN3 Modeling of LFG

The next step in characterizing the emissions of LFG is to evaluate the ambient impact of each of the COPCs. For this, it is necessary to use an atmospheric dispersion model. For demonstration purposes, SCREEN3 was used to provide a screening level assessment, and each parcel was evaluated separately in order to properly screen the land-fill. The landfill was broken into two rectangular parcels as shown in Figure 17, and each parcel was treated as an area source within the model. Each parcel was modeled at a unity emission rate of 1 g/s to provide maximum 1-h concentration for each parcel. Because each area was modeled on a unity basis, the emission rates generated from

the LandGEM model could, in turn, be multiplied by this unity-derived concentration to determine the 1-hour maximum concentrations for each COPC. To convert these concentrations to a representative annual concentration, all derived 1-h concentrations were multiplied by the appropriate multiplying factor of 0.08 as identified in the guidance report (EPA-600/R-05/123a). If an alternative averaging time span is to be evaluated, the reader is referred to section 2.2.1.4 – Dispersion Modeling and Table 2-3 of the guidance report. Table 6 provides the maximum annual concentrations for each COPC, and Appendix E contains the SCREEN3 model runs for both parcels.

Table 5. Emission Rates of COPCs by Parcel.

2002 Emission Rate (Mg/yr)

| COPC                  | Northern Parcel        | Southern Parcel        |
|-----------------------|------------------------|------------------------|
| NMOC                  | 12.84                  | 6.907                  |
| 1,1,1-Trichloroethane | $2.562 \times 10^{-3}$ |                        |
| 1,4-Dichlorobenzene   | $4.868 \times 10^{-4}$ | $8.779 \times 10^{-4}$ |
| Benzene               | 4.243×10 <sup>-3</sup> | 5.893×10 <sup>-4</sup> |
| Chlorobenzene         | 8.200×10 <sup>-4</sup> | $2.547 \times 10^{-3}$ |
| Chloroethane          | $6.324 \times 10^{-3}$ | $6.489 \times 10^{-4}$ |
| Toluene               | $3.417\times10^{-3}$   | $7.385 \times 10^{-3}$ |
| Trichloroethene       | $2.610 \times 10^{-4}$ | $1.239 \times 10^{-4}$ |
| Vinyl Chloride        | 1.283×10 <sup>-3</sup> | 5.893×10 <sup>-4</sup> |
| m,p-Xylene            | 2.366×10 <sup>-2</sup> | $1.251 \times 10^{-2}$ |
| o-Xylene              | 3.867×10 <sup>-3</sup> | 5.139×10 <sup>-3</sup> |

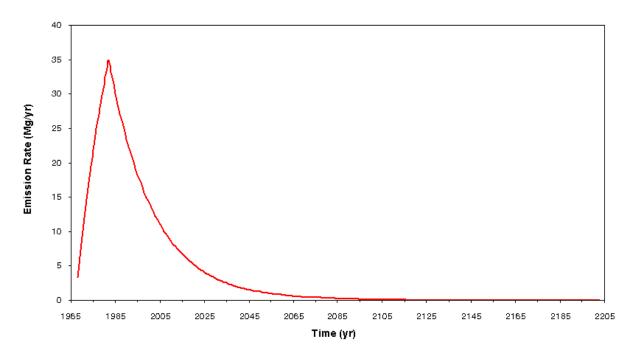



Figure 18. NMOC Emission Rates: 1967-2203

### **Model Parameters**

Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\*

NMOC: 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane : 56.0000 % volume

Carbon Dioxide: 44.0000 % volume

## Landfill Parameters

Landfill type: Co-Disposal

Year Opened: 1967 Current Year: 2003 Closure Year: 1982

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 13179.47 Mg/year

### Model Results

|      | N                    | MOC Emission | Rate      |
|------|----------------------|--------------|-----------|
| Year | Refuse In Place (Mg) | (Mg/yr)      | (Cubic m/ |
| yr)  |                      |              |           |
| 1968 | 1.318E+04            | 3.227E+00    | 9.002E+02 |
| 1969 | 2.636E+04            | 6.296E+00    | 1.757E+03 |
| 1970 | 3.954E+04            | 9.216E+00    | 2.571E+03 |
| 1971 | 5.272E+04            | 1.199E+01    | 3.346E+03 |
| 1972 | 6.590E+04            | 1.463E+01    | 4.083E+03 |
| 1973 | 7.908E+04            | 1.715E+01    | 4.784E+03 |
| 1974 | 9.226E+04            | 1.954E+01    | 5.451E+03 |
| 1975 | 1.054E+05            | 2.181E+01    | 6.085E+03 |
| 1976 | 1.186E+05            | 2.398E+01    | 6.689E+03 |
| 1977 | 1.318E+05            | 2.603E+01    | 7.263E+03 |
| 1978 | 1.450E+05            | 2.799E+01    | 7.809E+03 |
| 1979 | 1.582E+05            | 2.985E+01    | 8.328E+03 |
| 1980 | 1.713E+05            | 3.162E+01    | 8.822E+03 |
| 1981 | 1.845E+05            | 3.331E+01    | 9.292E+03 |
| 1982 | 1.977E+05            | 3.491E+01    | 9.739E+03 |
| 1983 | 1.977E+05            | 3.321E+01    | 9.264E+03 |
|      | •                    |              | •         |
| 2001 | 1.977E+05            | 1.350E+01    | 3.766E+03 |
| 2002 | 1.977E+05            | 1.284E+01    | 3.583E+03 |
| 2003 | 1.977E+05            | 1.222E+01    | 3.408E+03 |
|      |                      | •            | •         |
| 2201 | 1.977E+05            | 6.129E-04    | 1.710E-01 |
| 2202 | 1.977E+05            | 5.830E-04    | 1.627E-01 |
| 2203 | 1.977E+05            | 5.546E-04    | 1.547E-01 |

Figure 19. Example LandGEM Model Run Output

Table 6. Modeled Maximum Annual Concentrations.

| Maximum Annua | l Concentrations |
|---------------|------------------|
| (11 \sigma)   | $m^3$ )          |

|                       |                        | 40.                   |                        |
|-----------------------|------------------------|-----------------------|------------------------|
| COPC                  | Northern               | Southern              | Total                  |
| NMOC                  | 80.88                  | 38.4                  | 119.3                  |
| 1,1,1-Trichloroethane | $1.614 \times 10^{-2}$ | 0.00                  | $1.614 \times 10^{-2}$ |
| 1,4-Dichlorobenzene   | $3.066 \times 10^{-3}$ | $4.88 \times 10^{-3}$ | $7.946 \times 10^{-3}$ |
| Benzene               | 2.673×10 <sup>-2</sup> | $3.28 \times 10^{-3}$ | $3.000 \times 10^{-2}$ |
| Chlorobenzene         | 5.165×10 <sup>-3</sup> | $1.42 \times 10^{-2}$ | $1.932 \times 10^{-2}$ |
| Chloroethane          | 3.983×10 <sup>-2</sup> | $3.61 \times 10^{-3}$ | $4.344 \times 10^{-2}$ |
| Toluene               | $2.152 \times 10^{-2}$ | $4.10 \times 10^{-2}$ | $6.257 \times 10^{-2}$ |
| Trichloroethene       | $1.644 \times 10^{-3}$ | $6.89 \times 10^{-4}$ | 2.333×10 <sup>-3</sup> |
| Vinyl Chloride        | $8.081 \times 10^{-3}$ | $3.28 \times 10^{-3}$ | $1.136 \times 10^{-2}$ |
| m,p-Xylene            | $1.490 \times 10^{-1}$ | $6.95 \times 10^{-2}$ | $2.186 \times 10^{-1}$ |
| o-Xylene              | 2.436×10 <sup>-2</sup> | $2.86 \times 10^{-2}$ | 5.292×10 <sup>-2</sup> |

# **Section 6. Risk Assessment**

The risk assessment provided in this section is for illustrative purposes only. It is not intended to represent a complete and detailed risk assessment for determining further actions at this site.

In order to calculate the incremental risk associated with exposure to a COPC, the time averaged emission rate for the time period of concern must first be determined. The equation for determining the time averaged emission rate is

$$< E > \left(1/ED\right) \left[\left(\frac{h}{2}\right) \times \left(E_0 + 2\sum_{E_1}^{E_{n-1}} E\right) + E_n\right]$$

where

< E > = Time-averaged emission rate (megagrams per year),

ED = Exposure duration (years),

h = Time-step interval (years), h = 1 yr,

 $E_{0,1,2...n}$  = Emission rate at the end of the first year  $(E_0)$  and each succeeding year from LandGEM (megagrams per year), and

n = Number of time-steps (n = ED).

This time averaged emission rate is then entered into the atmospheric dispersion model to estimate the average exposure point concentration of the COPC. Using this approach, a dispersion model run will be required for each chemical of concern. Alternatively, if the dispersion model is run assuming the emission rate is at unity  $(1 \text{ g/m}^2 \bullet \text{s})$ , the dispersion model will generate a normalized air concentration in (micrograms per cubic meter per gram per square meter second) at the receptor of concern. The estimated ambient air concentration (micrograms per cubic meter) is determined by multiplying the dispersion coefficient and the time averaged emission rate. The LandGEM model runs for the Somersworth Landfill predicted very low emission rates, and the emission rate for every COPC was declining from 2002 forward. Hence, it was decided to use only the 2002 emission rates to calculate, for illustrative purposes, the ambient air concentrations. These predicted ambient air concentrations were then compared to the target concentrations in Table 7.

**Table 7.** Risk Analysis

| CAS<br>No. | Chemical                      | Basis<br>of     | Satisfy both t                                    | C <sub>target</sub> —Target Ambient Air Concentration to<br>Satisfy both the Prescribed Risk Level (R)<br>and the Target Hazard Index (HI) |                                 |                       |  |  |  |
|------------|-------------------------------|-----------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|--|--|--|
|            |                               | Target<br>Conc. | R=10 <sup>-4</sup> , HI=1<br>(μg/m <sup>3</sup> ) | R=10 <sup>-5</sup> , HI=1<br>(μg/m <sup>3</sup> )                                                                                          | $R=10^{-6}, HI=1$ $(\mu g/m^3)$ | - Conc. (μg/m³)       |  |  |  |
| 75354      | 1,1-Dichloroethylene          | $NC^a$          | $2.2 \times 10^{+03}$                             | $2.2 \times 10^{+03}$                                                                                                                      | $2.2 \times 10^{+03}$           | 1.6×10 <sup>-02</sup> |  |  |  |
| 106467     | 1,4-Dichlorobenzene           | NC              | $8.0 \times 10^{+02}$                             | $8.0 \times 10^{+02}$                                                                                                                      | $8.0 \times 10^{+02}$           | $7.9 \times 10^{-03}$ |  |  |  |
| 71432      | Benzene                       | $C^{b}$         | 31.                                               | 3.1                                                                                                                                        | $3.1 \times 10^{-01}$           | $3.0 \times 10^{-02}$ |  |  |  |
| 108907     | Chlorobenzene                 | NC              | 60.                                               | 60.                                                                                                                                        | 60.                             | $1.9 \times 10^{-02}$ |  |  |  |
| 75003      | Chloroethane (ethyl chloride) | NC              | $1.0 \times 10^{+04}$                             | $1.0 \times 10^{+04}$                                                                                                                      | $1.0 \times 10^{+04}$           | $4.3 \times 10^{-02}$ |  |  |  |
| 108883     | Toluene                       | NC              | $4.0 \times 10^{+02}$                             | $4.0 \times 10^{+02}$                                                                                                                      | $4.0 \times 10^{+02}$           | $6.3 \times 10^{-02}$ |  |  |  |
| 79016      | Trichloroethylene             | C               | 2.2                                               | 0.22                                                                                                                                       | $2.2 \times 10^{-02}$           | $2.3 \times 10^{-03}$ |  |  |  |
| 75014      | Vinyl Chloride (chloroethene) | C               | 28.                                               | 2.8                                                                                                                                        | 0.28                            | $1.1 \times 10^{-02}$ |  |  |  |
| 108383     | m,p-Xylene                    | NC              | $7.0 \times 10^{+03}$                             | $7.0 \times 10^{+03}$                                                                                                                      | $7.0 \times 10^{+03}$           | $2.2 \times 10^{-01}$ |  |  |  |
| 95476      | o-Xylene                      | NC              | $7.0 \times 10^{+03}$                             | $7.0 \times 10^{+03}$                                                                                                                      | $7.0 \times 10^{+03}$           | 5.3×10 <sup>-02</sup> |  |  |  |

<sup>&</sup>lt;sup>a</sup> NC = noncancer risk

<sup>&</sup>lt;sup>b</sup> C = cancer risk

Table 7 identifies target media concentrations corresponding to risk or hazard based concentrations for ambient air in residential settings. Only air concentrations that satisfy both the prescribed cancer risk level and the target hazard index are included in Table 7. The approach described here also can be used to evaluate chemicals not listed in the tables. It must be emphasized that the concentrations presented in Table 7 are screening levels. They are not clean-up levels or preliminary remediation goals nor are they intended to supercede existing criteria of the lead regulatory authority. The lead regulatory authority for a site may determine that criteria other than those provided herein are appropriate for their specific site or area.

The sources of chemical data used in the calculations necessary to create Table 7 were EPA's Superfund Chemical Data Matrix (SCDM) database and EPA's Water 9 database whenever a chemical was not included in the SCDM database. EPA's Integrated Risk Information System (IRIS) is the preferred source of carcinogenic unit risks and noncarcinogenic reference concentrations (RfCs) for inhalation exposure. The following two sources were consulted, in order of preference, when IRIS values were not available: provisional toxicity values recommended by EPA's National Center for Environmental Assessment (NCEA) and EPA's Health Effects Assessment Summary Tables (HEAST). If no inhalation toxicity data could be obtained from IRIS, NCEA, or HEAST, extrapolated unit risks and RfCs were derived by using toxicity data for oral exposure (cancer slope factors and reference doses, respectively) from these reference sources using the same preference order. Toxicity databases such as IRIS are constantly being updated; this table is current as of August 2002. Users of this guidance are strongly encouraged to research the latest toxicity values for contaminants of interest from the sources noted above.

The ambient air concentrations in the table are risk-based screening levels calculated following an approach consistent with that presented in HEAST (U.S. EPA, 1997). Separate carcinogenic and non-carcinogenic target concentrations were calculated for each compound when both unit risks and reference concentrations were available. When inhalation toxicity values were not available, unit risks and reference concentrations were extrapolated from oral slope factors or reference doses, respectively. For both carcinogens and non-carcinogens, target air concentrations were

based on an adult exposure scenario and assume maximum exposure of an individual (i.e., exposure to contaminants 24 hours per day, 7 days per week, over 30-year residential exposure). An inhalation rate of 20 m³/day and a body weight of 70 kg are assumed and have been factored into the inhalation unit risk and reference concentration toxicity values.

Unit risks were extrapolated from cancer slope factors using

$$URF = CFS \times IR \times \left(\frac{1}{BW}\right) \left(\frac{10^{-3} mg}{\mu g}\right)$$

where

*URF* = unit risk factor (micrograms per cubic meter)<sup>-1</sup>,

CSF = cancer slope factor,

IR = inhalation rate (cubic meters per day), and

BW = body weight (kilograms).

Reference concentrations were extrapolated from reference doses using

$$RfC = RfD \times BW \times \left(\frac{1}{IR}\right)$$

where

RfC = reference concentration (milligram per cubic meter) and

RfD = reference dose (milligram per kilogram per day).

For carcinogens,

$$C_{cancer} = TCR/URF$$

and for noncarcinogens,

$$C_{noncancer} = THQ \times RfC$$

where

 $C_{cancer}$  = target indoor air carcinogen concentration (micrograms per cubic meter),

 $C_{noncancer}$  = target indoor air noncarcinogen concentration (micrograms per cubic meter),

TCR = target cancer risk (e.g., 1.0×10<sup>-5</sup>), and

THQ = target hazard quotent (e.g., 1.0).

For most compounds, the more stringent of the cancer- and non-cancer-based contaminant concentrations is chosen as the target air concentration that satisfies both the prescribed cancer risk level and the target hazard quotient.

<sup>&</sup>lt;sup>1</sup> U.S. EPA. 2002. Integrated Risk Information System (IRIS). <a href="http://www.epa.gov/iriswebp/iris/index.html">http://www.epa.gov/iriswebp/iris/index.html</a> (accessed October 2005)

$$C_{target,ia} = MIN(C_{cancer}, C_{non-cancer})$$

The target concentration, however, was preferentially selected for those compounds that had both an inhalation-based toxicity value and an oral-extrapolated value. The selected screening level was preferentially based on the non-extrapolated toxicity value chosen to calculate the acceptable ambient air concentration.<sup>2</sup>

For ease in application of the table, the indoor air concentrations are given in units of micrograms per cubic meter. The conversion from parts per billion by volume to micrograms per cubic meter is

$$C[ppmv] = C\left[\frac{\mu g}{m^3}\right] \times 10^9 \left[\frac{ppb}{atm}\right] \times 10^{-3} \left[\frac{m^3}{L}\right] \times R \times \frac{T}{MW \times 10^6 \left[\mu g/g\right]}$$

where

R = gas constant (0.0821 L•atm/mole•K), T = absolute temperature (298 K), andMW = molecular weight (grams per mole).

The calculated target air concentrations are listed in the tables along with a column indicating whether cancer or noncancer risks drive the target concentration. If the exposure scenario of concern is an adult resident living at the receptor location being most impacted, the forward-calculation of incremental risks begins with the estimated ambient air concentration (i.e.,  $C_{air}$  in micrograms per cubic meter). For carcinogenic contaminants, the risk level is calculated as

$$Risk = \frac{URF \times EF \times ED \times C_{air}}{AT_C \times 365 \, days/yr}$$

where

Risk =incremental risk level, unitless (e.g.,  $1 \times 10^{-6}$ ),

 $C_{air}$  = annual average ambient air concentration for each carciogen (micrograms per cubic meter),

 $AT_C$  = averaging time for carcinogens (years—70 yr),

EF = exposure frequency (days per year—350 days), and

ED = exposure duration (years - 30 yr).

For noncarcinogenic contaminants, the hazard quotient is calculated as

$$HQ = \frac{EF \times ED \times \frac{1}{RfC} \times C_{air}}{AT_{NC} \times 365 \ days/yr}$$

where

HQ = Hazard quotient, unitless (e.g., 1.0) and  $AT_{NC}$  = Averaging time for noncarcinogens (year—30 yr)

Table 7 illustrates the results of using the above equations and discussions. The last column in Table 7 represents the total ambient air concentration in micrograms per cubic meter. This value is derived by multiplying the emission flux values from LandGEM by the ambient air concentration from the dispersion model (SCREEN3) when run at a unity emission rate (1 g/s). These values would be compared to the appropriate risk derived concentrations as seen in the previous three columns to determine if a particular COPC is above or below an acceptable air concentration and whether further actions or investigations may be needed. For purposes of comparison, approximately 12 COPCs were identified in one or more of the ambient air samples that were collected approximately 3 ft above ground level and adjacent to the subsurface probes. The maximum concentration was always below 20 ppby (0.3) μg/m<sup>3</sup>) Again Table 7 is presented for illustrative purposes only and is not intended to represent the results or conclusions drawn from a detailed risk assessment.

<sup>&</sup>lt;sup>2</sup> The target air concentration for trichloroethylene is the lone exception to this rule. The target concentration is based on a carcinogenic unit risk extrapolated from an upper bound oral cancer slope factor of 4×10<sup>-1</sup> (mg/kg/day)<sup>-1</sup> cited in NCEA's draft risk assessment for trichloroethylene (EPA, 2001). However, as noted in that document, available evidence from toxicological studies suggests similar carcinogenic effects from both the oral and inhalation routes of exposure. The existence of this evidence gives greater weight to the extrapolated unit risk, and given that the unit risk produces a lower target concentration than the non-extrapolated RfC, the unit risk-based value is adopted here as the target air concentration for trichloroethylene.

# **Section 7. Findings and Conclusions**

This case study documents how the guidance can be used to evaluate landfill gas emissions. It illustrates the usefulness of both the information and the procedures presented in the Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities. By applying the investigative techniques and recommended practices, the research team was able to:

- 1 Determine where the landfill gases are escaping into the atmosphere,
- 2 Identify the chemicals of potential concern,
- 3 Quantify the speciated LFG emission rates,
- 4 Identify the most likely to be affected at off-site location(s), and
- 5 Characterize ambient air concentrations.

This case study report provided data and information that were used by the remedial project manager to:

- 1 Assess the health risk associated with the emissions from the landfill.
- 2 Determine if additional site investigation effort is
- 3 Evaluate the level of effort associated with the existing LFG monitoring program,
- 4 Determine if the previously proposed remedial design needed to be altered,
- 5 Evaluate the need for institution controls and future land use policy decisions, and
- 6 Decide if the risks and hazards associated with the landfill gas needed to be controlled with LFG control technology.

Specific to the Rose Hill site the following lessons were learned:

- The conventional field screening, discrete sampling using Summa canisters, commercial laboratory analysis using TO15 analytical methods, and emission and dispersion modeling procedures provided the information needed to assess the risks and hazards associated with LFG emissions. The turn-around time for the commercial laboratory was measured in weeks. The data reduction and modeling efforts require 2-3 man days of effort. Hence, health risks could not be quantified on a real time basis. Readily available equipment and ordinary environmental technician skills are required to obtain quality results.
- The conventional field screening, discrete sampling using Tedlar bags, onsite mobile laboratory using EPA Modified Method 18 analytical procedures, and emission and dispersion modeling procedures provided the information needed to assess the risks and hazards associated with LFG emissions. The onsite mobile laboratory was unable to quantify the toxic COPCs concentrations because of detection limit issues.
- Using the research data, the predicted COPC ambient air concentrations are below that which would create an unacceptable risk at the 1×10<sup>-6</sup> level.

# Appendix A Site Activity Photographs



Rose Hill Superfund Landfill



Old Maintenance Shed on Landfill Property



Access Road onto Landfill Property



Storm Drain on Landfill Property



Rosehill Site Terrain



Overgrowth on the Rose Hill Site

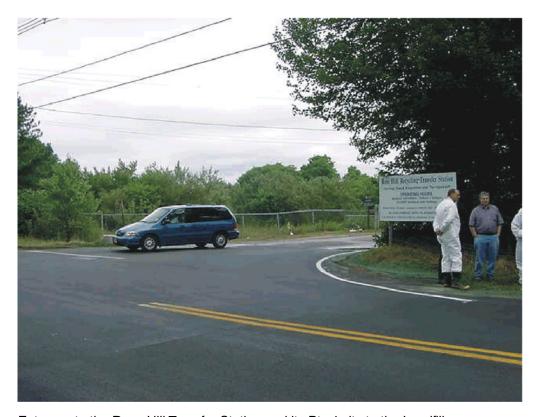


Passive Vent at Grid 80



Passive Vent at Grid 131




Passive Vent at Grid 140



Sampling Crew Navigating into Thick Overgrowth



Rose Hill Transfer Station East of the Landfill



Entrance to the Rose Hill Transfer Station and its Ptoximity to the Landfill



Newly Paved Public Road South of the Landfill



ERTC TAGA Unit Parked Along the Western Property Boundary



Sampling Crew Staging for Sample Collection Activities



Slam-Bar Used for Sampling Probe Insertion



Fixed Gas Sampling Collected by Sampling Probe



Tedlar Bag Chamber and Summa Canister Sampling



QA/QC Sampling with Summa Canisters



Tedlar Bag and Summa Canister Ambient Air Sampling



Passive Vent Gas Sampling



Perimeter Well Sampling

# Appendix B Wilcoxon Statistical Analysis

#### Wilcoxon Two-Sample, Rank-Sum Test

In order to properly characterize and establish a sampling method for each landfill, it is necessary to identify those areas that are nearly homogeneous in composition. This is determined following the screening procedures. Through application of statistical methods on the screening data, it is possible to divide the landfill into nearly homogeneous areas. For the purpose of this guidance, it was decided to use a method referred to as the Wilcoxon two-sample, rank-sum test, or simply the rank-sum test. This is a statistical method used to determine if two independent sample populations are statistically similar (i.e., they have the same mean and median). For this application, statistically similar populations refer to areas within the landfill that are nearly homogeneous.

The first step is to assign the screening data that was collected to two populations (e.g., north landfill and south landfill) as

$$n = n_1 + n_2$$

where

n = entire screening data set,  $n_1 =$  population of size  $n_1$ ,  $n_2 =$  population of size  $n_2$ , and  $n_1 \le n_2$ .

Once the all data has been assigned to one or the other populations, all the data must be placed in ascending order regardless of which population it was assigned and assigned a rank from 1 to n. In case of ties, all tied values should be assigned a ranking that is the mean of the tied rankings. For example, if two values are tied for the second lowest value, they both would be assigned a ranking of 2.5, which is the mean of the second and third ranking spots. After all values have been ranked, the ranks associated with the values from the smaller population,  $n_1$ , are added and the sum denoted as T'. Once T' is derived, it is compared with the values in Table X to decide on a given level of significance. Table X can be used for a given combination of  $n_1$  and  $n_2$  up to a total population size (n) of 20. If  $T'_{\alpha} \leq T'_{1-\alpha}$ , then the two populations can be considered statistically similar and therefore one homogeneous area.

For a larger data set, the following statistical test must be used.

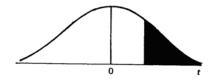
$$Z = \frac{T' - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}}}$$

This value of Z is then compared to a specific level of significance on a t distribution shown in Table IV, where df is the total population size (n). If  $|Z| \ge Z_{\alpha/2}$ , then the two populations can not be considered statistically similar and are therefore two nonhomogeneous areas.

Continue this process until all areas of the landfill have been divided into distinct homogeneous areas.

TABLE X DISTRIBUTION OF THE RANK SUM T'

The values of  $T'_{\alpha}$ ,  $T'_{1-\alpha}$ , and  $\alpha$  are such that, if the  $n_1$  and  $n_2$  observations are chosen at random from the same population, the chance that the rank sum T' of the  $n_1$  observations in the smaller sample is equal to or less than  $T'_{\alpha}$  is  $\alpha$  and the chance that T' is equal to or greater than  $T'_{1-\alpha}$  is  $\alpha$ . The sample sizes are shown in parentheses  $(n_1, n_2)$ 


|               |        |      | 1  |         | 4.1, | 12/ |                 |       |      |                 |       |
|---------------|--------|------|----|---------|------|-----|-----------------|-------|------|-----------------|-------|
| $T'_{\alpha}$ |        | α    | T' |         | α    | T'a | $T'_{1-\alpha}$ | α     | T'a  | $T'_{1-\alpha}$ | α     |
|               | (1,9)  |      |    | (3,8)   |      |     | (4,8) (C        | ont.) |      | 5,7) (C         | ont.) |
| 1             | 10     | .100 | 6  | 30      | .006 | 12  | 40              | .008  | 19   | 46              | .015  |
|               | (1,10) |      | 7  | 29      | .012 | 13  | 39              | .014  | 20   | 45              | .024  |
| 1             | 11     | .091 | 8  | 28      | .024 | 14  | 38              | .024  | 21   | 44              | .037  |
|               | (2,3)  |      | 9  | 27      | .042 | 15  | 37              | .036  | 22   | 43              | .053  |
| 3             | 9      | .100 | 10 | 26      | .067 | 16  | 36              | .055  | 23   |                 | .074  |
|               | (2,4)  |      | 11 | 25      | .097 | 17  | 35              | .077  |      | (5,8)           |       |
| 3             | 11     | .067 |    | (3,9)   |      |     | (4.9)           |       | 15   | 55              | .001  |
|               | (2,5)  |      | 6  | 33      | .005 | 10  | 46              | .001  | 16   | 54              | .002  |
| 3             | 13     | .047 | 7  | 32      | .009 | 11  | 45              | .003  | 17   | 53              | .003  |
| 4             | 12     | .095 | 8  | 31      | .018 | 12  | 44              | .006  | 18   | 52              | .005  |
|               | (2,6)  |      | 9  | 30      | .032 | 13  | 43              | .010  | 19   | 51              | .009  |
| 3             | 15     | .036 | 10 | 29      | .050 | 14  | 42              | .017  | 20   | 50              | .015  |
| 4             | 14     | .071 | 11 | 28      | .073 | 15  | 41              | .025  | 21   | 49              | .023  |
|               | (2,7)  |      | l  | (3, 10) |      | 16  | 40              | .038  | 22   | 48              | .033  |
| 3             | 17     | .028 | 6  | 36      | .003 | 17  | 39              | .053  | 23   | 47              | .047  |
| 4             | 16     | .056 | 7  | 35      | .007 | 18  | 38              | .074  | 24   | 46              | .064  |
|               | (2.8)  |      | 8  | 34      | .014 | 19  | 37              | .099  | 25   | 45              | .085  |
| 3             | 19     | .022 | 9  | 33      | .024 |     | (4,10)          |       | 1 20 | (5,9)           | .000  |
| 4             | 18     | .044 | 10 | 32      | .038 | 10  | 50              | .001  | 15   | 60              | .000  |
| 5             | 17     | .089 | 11 | 31      | .056 | 111 | 49              | .002  | 16   | 59              | .001  |
|               | (2,9)  |      | 12 | 30      | .080 | 12  | 48              | .004  | 17   | 58              | .002  |
| 3             | 21     | .018 |    | (4,4)   |      | 13  | 47              | .007  | 18   | 57              | .002  |
| 4             | 20     | .036 | 10 | 26      | .014 | 14  | 46              | .012  | 19   | 56              | .003  |
| 5             | 19     | .073 | 11 | 25      | .029 | 15  | 45              | .018  | 20   | 55              | .009  |
|               | (2,10) |      | 12 | 24      | .057 | 16  | 44              | .026  | 21   | 54              | .014  |
| 3             | 23     | .015 | 13 | 23      | .100 | 17  | 43              | .038  | 22   | 53              | .021  |
| 4             | 22     | .030 |    | (4,5)   |      | 18  | 42              | .053  | 23   | 52              | .030  |
| 5             | 21     | .061 | 10 | 30      | .008 | 19  | 41              | .071  | 24   | 51              | .041  |
| 6             | 20     | .091 | 11 | 29      | .016 | 20  | 40              | .094  | 25   | 50              | .056  |
|               | (3,3)  |      | 12 | 28      | .032 |     | (5,5)           |       | 26   | 49              | .073  |
| 6             | 15     | .050 | 13 | 27      | .056 | 15  | 40              | .004  | 27   | 48              | .095  |
| 7             | 14     | .100 | 14 | 26      | .095 | 16  | 39              | .008  | ~ ′  | (5,10)          | .033  |
|               | (3,4)  |      |    | (4,6)   |      | 17  | 38              | .016  | 15   | 65              | .000  |
| 6             | 18     | .028 | 10 | 34      | .005 | 18  | 37              | .028  | 16   | 64              | .001  |
| 7             | 17     | .057 | 11 | 33      | .010 | 19  | 36              | .048  | 17   | 63              | .001  |
|               | (3,5)  |      | 12 | 32      | .019 | 20  | 35              | .075  | 18   | 62              | .002  |
| 6             | 21     | .018 | 13 | 31      | .033 |     | (5,6)           |       | 19   | 61              | .004  |
| 7             | 20     | .036 | 14 | 30      | .057 | 15  | 45              | .002  | 20   | 60              | .006  |
| 8             | 19     | .071 | 15 | 29      | .086 | 16  | 44              | .004  | 21   | 59              | .010  |
|               | (3,6)  |      |    | (4,7)   | •    | 17  | 43              | .009  | 22   | 58              | .014  |
| 6             | 24     | .012 | 10 | 38      | .003 | 18  | 42              | .015  | 23   | 57              | .020  |
| 7             | 23     | .024 | 11 | 37      | .006 | 19  | 41              | .026  | 24   | 56              | .028  |
| 8             | 22     | .048 | 12 | 36      | .012 | 20  | 40              | .041  | 25   | 55              | .038  |
| 9             | 21     | .083 | 13 | 35      | .021 | 21  | 39              | .063  | 26   | 54              | .050  |
|               | (3,7)  |      | 14 | 34      | .036 | 22  | 38              | .089  | 27   | 53              | .065  |
| 6             | 27     | .008 | 15 | 33      | .055 |     | (5,7)           | .505  | 28   | 52              | .082  |
| 7             | 26     | .017 | 16 | 32      | .082 | 15  | 50              | .001  | 20   | (6,6)           | .002  |
| 8             | 25     | .033 |    | (4,8)   |      | 16  | 49              | .003  | 21   | 57              | .001  |
| 9             | 24     | .058 | 10 | 42      | .002 | 17  | 48              | .005  | 22   | 56              | .001  |
| 10            | 23     | .092 | 11 | 41      | .004 | 18  | 47              | .009  | 23   | 55              |       |
|               |        | .002 |    |         | .007 |     |                 | .003  | 23   |                 | .004  |

| DIST          | DISTRIBUTION OF THE RANK SUM T' (continued) |              |               |                 |      |               |                   |              |     |            |              |
|---------------|---------------------------------------------|--------------|---------------|-----------------|------|---------------|-------------------|--------------|-----|------------|--------------|
| $T'_{\alpha}$ | $T'_{1-\epsilon}$                           | αα           | $T'_{\alpha}$ | $T'_{1-\alpha}$ | α    | $T'_{\alpha}$ | $T'_{1-\epsilon}$ | , α          | T'a | T'_1_      | , α          |
|               | 6,6) (C                                     |              |               | 6,9) (Ca        |      |               | (7,8) (C          |              | 1   | 8,8) (0    | ont.)        |
| 24            | 54                                          | .008         | 35            | 61              | .072 | 41            | 71                | .047         | 37  | 99         | .000         |
| 25            | 53                                          | .013         | 36            | 60              | .091 | 42            |                   | .060         | 38  | 98         | .000         |
| 26            | 52                                          | .021         | ١             | (6,10)          |      | 43            |                   | .076         | 39  | 97         | .001         |
| 27            | 51                                          | .032         | 21            | 81              | .000 | 44            |                   | .095         | 40  | 96         | .001         |
| 28            | 50                                          | .047         | 22            | 80              | .000 | 45            | 67                | .116         | 41  | 95         | .001         |
| 29            | 49                                          | .066         | 23            | 79              | .000 |               | (7,9)             |              | 42  | 94         | .002         |
| 30            | 48                                          | .090         | 24            | 78              | .001 | 28            | 91                | .000         | 43  | 93         | .003         |
| 24            | (6,7)                                       | 004          | 25            | 77              | .001 | 29            | 90                | .000         | 44  | 92         | .005         |
| 21            | 63                                          | .001         | 26            | 76              | .002 | 30            | 89                | .000         | 45  | 91         | .007         |
| 22            | 62                                          | .001         | 27            | 75              | .004 | 31            | 88                | .001         | 46  | 90         | .010         |
| 23            | 61                                          | .002         | 28            | 74              | .005 | 32            | 87                | .001         | 47  | 89         | .014         |
| 24            | 60                                          | .004         | 29            | 73              | .008 | 33            | 86                | .002         | 48  | 88         | .019         |
| 25<br>26      | 59<br>58                                    | .007<br>.011 | 30            | 72<br>71        | .011 | 34            | 85                | .003         | 49  | 87         | .025         |
| 27            | 58<br>57                                    |              |               |                 | .016 | 35            | 84                | .004         | 50  | 86         | .032         |
| 28            | 56                                          | .017<br>.026 | 32            | 70              | .021 | 36            | 83                | .006         | 51  | 85         | .041         |
| 29            | 55                                          | .020         | 34            | 69<br>68        | .028 | 37            | 82                | .008         | 52  | 84         | .052         |
| 30            | 54                                          | .051         | 35            | 67              | .036 | 38            | 81                | .011         | 53  | 83         | .065         |
| 31            | 53                                          | .069         | 36            | 66              | .059 | 39<br>40      | 80                | .016         | 54  | 82         | .080         |
| 32            | 52                                          | .090         | 37            | 65              | .039 | 41            | 79<br>78          | .021         | 55  | 81         | .097         |
| 32            | (6,8)                                       | .090         | 38            | 64              | .090 | 42            | 78<br>77          | .027         | 200 | (8,9)      | 000          |
| 21            | 69                                          | .000         | 1 30          | (7,7)           | .030 | 43            | 76                | .036<br>.045 | 36  | 108        | .000         |
| 22            | 68                                          | .001         | 28            | 77              | .000 | 44            | 75<br>75          | .057         | 41  | 104        | .000         |
| 23            | 67                                          | .001         | 29            | 76              | .001 | 45            | 74                | .071         | 42  | 103<br>102 | .001         |
| 24            | 66                                          | .002         | 30            | 75              | .001 | 46            | 73                | .087         | 43  | 101        | .001<br>.002 |
| 25            | 65                                          | .004         | 31            | 74              | .002 | 1             | (7,10)            | .007         | 44  | 100        | .002         |
| 26            | 64                                          | .006         | 32            | 73              | .003 | - 28          | 98                | .000         | 45  | 99         | .003         |
| 27            | 63                                          | .010         | 33            | 72              | .006 | 29            | 97                | .000         | 46  | 98         | .004         |
| 28            | 62                                          | .015         | 34            | 71              | .009 | 30            | 96                | .000         | 47  | 97         | .008         |
| 29            | 61                                          | .021         | 35            | 70              | .013 | 31            | 95                | .000         | 48  | 96         | .010         |
| 30            | 60                                          | .030         | 36            | 69              | .019 | 32            | 94                | .001         | 49  | 95         | .014         |
| 31            | 59                                          | .041         | 37            | 68              | .027 | 33            | 93                | .001         | 50  | 94         | .018         |
| 32            | 58                                          | .054         | 38            | 67              | .036 | 34            | 92                | .001         | 51  | 93         | .023         |
| 33            | 57                                          | .071         | 39            | 66              | .049 | 35            | 91                | .002         | 52  | 92         | .030         |
| 34            | 56                                          | .091         | 40            | 65              | .064 | 36            | 90                | .003         | 53  | 91         | .037         |
|               | (6,9)                                       |              | 41            | 64              | .082 | 37            | 89                | .005         | 54  | 90         | .046         |
| 21            | 75                                          | .000         |               | (7,8)           |      | 38            | 88                | .007         | 55  | 89         | .057         |
| 22            | 74                                          | .000         | 28            | 84              | .000 | 39            | 87                | .009         | 56  | 88         | .069         |
| 23            | 73                                          | .001         | 29            | 83              | .000 | 40            | 86                | .012         | 57  | 87         | .084         |
| 24            | 72                                          | .001         | 30            | 82              | .001 | 41            | 85                | .017         |     | (8,10)     |              |
| 25            | 71                                          | .002         | 31            | 81              | .001 | 42            | 84                | .022         | 36  | 116        | .000         |
| 26            | 70                                          | .004         | 32            | 80              | .002 | 43            | 83                | .028         | 41  | 111        | .000         |
| 27<br>28      | 69                                          | .006         | 33            | 79<br>70        | .003 | 44            | 82                | .035         | 42  | 110        | .001         |
| 28<br>29      | 68<br>67                                    | .009         | 35            | 78<br>77        | .005 | 45            | 81                | .044         | 43  | 109        | .001         |
| 30            | 66                                          | .013<br>.018 | 36            | 76              | .007 | 46            | 80                | .054         | 44  | 108        | .002         |
| 31            | 65                                          | .018         | 37            | 75              | .010 | 47            | 79<br>78          | .067         | 45  | 107        | .002         |
| 32            | 64                                          | .025         | 38            | 74              | .020 | 48<br>49      | 78<br>77          | .081         | 46  | 106        | .003         |
| 33            | 63                                          | .044         | 39            | 73              | .027 | 49            |                   | .097         | 47  | 105        | .004         |
| 34            | 62                                          | .057         | 40            | 72              | .036 | 36            | (8,8)<br>100      | .000         | 48  | 104        | .006         |
|               | 02                                          | .007         | 40            |                 | .030 | 30            | 100               | .000         | 49  | 103        | .008         |

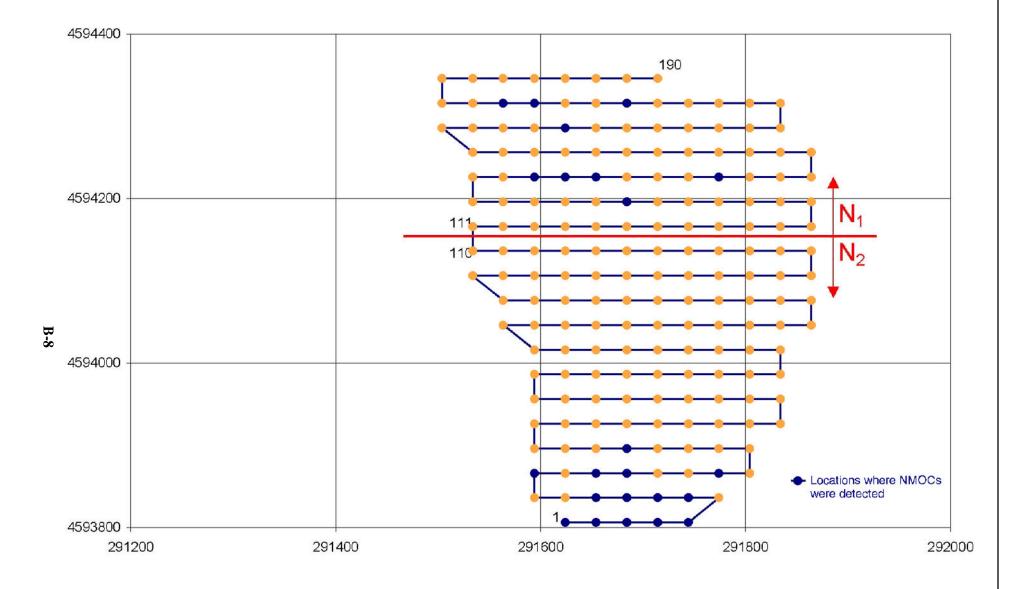
DISTRIBUTION OF THE RANK SUM T' (continued)

|               |                              |      |     |                 |                | <del></del>   |                 |                 |               |                 |      |
|---------------|------------------------------|------|-----|-----------------|----------------|---------------|-----------------|-----------------|---------------|-----------------|------|
| $T'_{\alpha}$ | $T'_{1-\sigma}$              | α    | T'a | $T'_{1-\alpha}$ | α              | $T'_{\alpha}$ | $T'_{1-\sigma}$ | α               | $T'_{\alpha}$ | $T'_{1-\alpha}$ | α    |
|               | (8,10) (Cont.) (9,9) (Cont.) |      |     | (9              | (9,10) (Cont.) |               |                 | (10,10) (Cont.) |               |                 |      |
| 50            | 102                          | .010 | 58  | 113             | .007           | 58            | 122             | .004            | 69            | 141             | .003 |
| 51            | 101                          | .013 | 59  | 112             | .009           | 59            | 121             | .005            | 70            | 140             | .003 |
| 52            | 100                          | .017 | 60  | 111             | .012           | 60            | 120             | .007            | 71            | 139             | .004 |
| 53            | 99                           | .022 | 61  | 110             | .016           | 61            | 119             | .009            | 72            | 138             | .006 |
| 54            | 98                           | .027 | 62  | 109             | .020           | 62            | 118             | .011            | 73            | 137             | .007 |
| 55            | 97                           | .034 | 63  | 108             | .025           | 63            | 117             | .014            | 74            | 136             | .009 |
| 56            | 96                           | .042 | 64  | 107             | .031           | 64            | 116             | .017            | 75            | 135             | .012 |
| 57            | 95                           | .051 | 65  | 106             | .039           | 65            | 115             | .022            | 76            | 134             | .014 |
| 58            | 94                           | .061 | 66  | 105             | .047           | 66            | 114             | .027            | 77            | 133             | .018 |
| 59            | 93                           | .073 | 67  | 104             | .057           | 67            | 113             | .033            | 78            | 132             | .022 |
| 60            | 92                           | .086 | 68  | 103             | .068           | 68            | 112             | .039            | 79            | 131             | .026 |
|               | (9,9)                        |      | 69  | 102             | .081           | 69            | 111             | .047            | 80            | 130             | .032 |
| 45            | 126                          | .000 | 70  | 101             | .095           | 70            | 110             | .056            | 81            | 129             | .038 |
| 50            | 121                          | .000 |     | (9,10)          |                | 71            | 109             | .067            | 82            | 128             | .045 |
| 51            | 120                          | .001 | 45  | 135             | .000           | 72            | 108             | .078            | 83            | 127             | .053 |
| 52            | 119                          | .001 | 52  | 128             | .000           | 73            | 107             | .091            | 84            | 126             | .062 |
| 53            | 118                          | .001 | 53  | 127             | .001           |               | (10, 10)        | ))              | 85            | 125             | .072 |
| 54            | 117                          | .002 | 54  | 126             | .001           | 65            | 145             | .001            | 86            | 124             | .083 |
| 55            | 116                          | .003 | 55  | 125             | .001           | 66            | 144             | .001            | 87            | 123             | .095 |
| 56            | 115                          | .004 | 56  | 124             | .002           | 67            | 143             | .001            |               |                 |      |
| 57            | 114                          | .005 | 57  | 123             | .003           | 68            | 142             | .002            |               |                 |      |

TABLE IV t DISTRIBUTION



| df   | . 100 | . 050 | .025   | .010   | . 005  | df   |
|------|-------|-------|--------|--------|--------|------|
| 1    | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 1    |
| 2    | 1.886 | 2.920 | 4.303  | 6.965  | 9.925  | 2    |
| 3    | 1.638 | 2.353 | 3.182  | 4.541  | 5.841  | 3    |
| 4    | 1.533 | 2.132 | 2.776  | 3.747  | 4.604  | 4    |
| 5    | 1.476 | 2.015 | 2.571  | 3.365  | 4.032  | 5    |
| 6    | 1.440 | 1.943 | 2.447  | 3.143  | 3.707  | 6    |
| 7    | 1.415 | 1.895 | 2.365  | 2.998  | 3.499  | 7    |
| 8    | 1.397 | 1.860 | 2.306  | 2.896  | 3.355  | 8    |
| 9    | 1.383 | 1.833 | 2.262  | 2.821  | 3.250  | 9    |
| 10   | 1.372 | 1.812 | 2.228  | 2.764  | 3.169  | 10   |
| 11   | 1.363 | 1.796 | 2.201  | 2.718  | 3.106  | 11   |
| 12   | 1.356 | 1.782 | 2.179  | 2.681  | 3.055  | 12   |
| 13   | 1.350 | 1.771 | 2.160  | 2.650  | 3.012  | 13   |
| 14   | 1.345 | 1.761 | 2.145  | 2.624  | 2.977  | 14   |
| 15   | 1.341 | 1.753 | 2.131  | 2.602  | 2.947  | 15   |
| 16   | 1.337 | 1.746 | 2.120  | 2.583  | 2.921  | 16   |
| 17   | 1.333 | 1.740 | 2.110  | 2.567  | 2.898  | 17   |
| 18   | 1.330 | 1.734 | 2.101  | 2.552  | 2.878  | 18   |
| 19   | 1.328 | 1.729 | 2.093  | 2.539  | 2.861  | 19   |
| 20   | 1.325 | 1.725 | 2.086  | 2.528  | 2.845  | 20   |
| 21   | 1.323 | 1.721 | 2.080  | 2.518  | 2.831  | 21   |
| 22   | 1.321 | 1.717 | 2.074  | 2.508  | 2.819  | 22   |
| 23   | 1.319 | 1.714 | 2.069  | 2.500  | 2.807  | 23   |
| 24   | 1.318 | 1.711 | 2.064  | 2.492  | 2.797  | 24   |
| 25   | 1.316 | 1.708 | 2.060  | 2.485  | 2.787  | 25   |
| 26   | 1.315 | 1.706 | 2.056  | 2.479  | 2.779  | 26   |
| 27   | 1.314 | 1.703 | 2.052  | 2.473  | 2.771  | 27   |
| 28   | 1.313 | 1.701 | 2.048  | 2.467  | 2.763  | 28   |
| 29   | 1.311 | 1.699 | 2.045  | 2.462  | 2.756  | 29   |
| inf. | 1.282 | 1.645 | 1.960  | 2.326  | 2.576  | inf. |


Rose Hill Landfill Site 22-24 July 2002 Wilcoxon Rank Sum Analysis (Run 1)

| Population 1 size $(n_1)$           | 11     |
|-------------------------------------|--------|
| Population 2 size $(n_2)$           | 14     |
| Total population size $(n)$         | 25     |
| Sum of Ranks $(W_{rs})$             | 209    |
| Large Sample Statistic ( $Z_{rs}$ ) | 3.683  |
| Confidence Interval                 | 5.0%   |
| $\mathrm{Z}_{	ext{1-}lpha}$         | 1.708  |
| Accept or Reject H <sub>0</sub> ?   | REJECT |

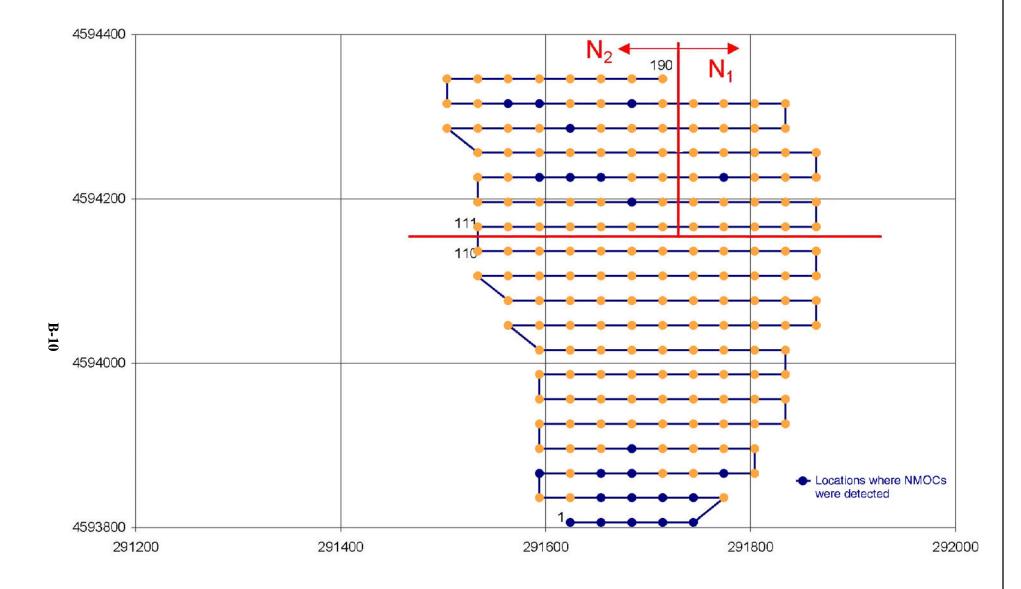
Rose Hill Landfill Site 22-24 July 2002 Wilsoxon Rank Sum Analysis (Run 1)

| Grid<br>No | UTM Coo |          | NMOC<br>Conc. | NMOC<br>Conc. for | Assign<br>Pop. Set | Prelim<br>Ranking | No. Ties | Final<br>Ranking | Pop. 1 |
|------------|---------|----------|---------------|-------------------|--------------------|-------------------|----------|------------------|--------|
|            | Easting | Northing |               | Rank              | торгост            |                   | 15       |                  | 209.0  |
| 1          | 291624  | 4593806  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |        |
| 2          | 291654  | 4593806  | 0.43          | 0.43              | 2                  | 13                | 1        | 13               |        |
| 3          | 291684  | 4593806  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |        |
| 4          | 291714  | 4593806  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |        |
| 5          | 291744  | 4593806  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |        |
| 7          | 291744  | 4593836  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |        |
| 8          | 291744  | 4593836  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |        |
| 9          | 291684  | 4593836  | 1.80          | 1.8               | 2                  | 19                | 1        | 19               |        |
| 10         | 291654  | 4593836  | 0.40          | 0.4               | 2                  | 12                | 1        | 12               |        |
| 13         | 291594  | 4593866  | $0.20^{a}$    | 0.2               | 2                  | 1                 | 8        | 4.5              |        |
| 15         | 291654  | 4593866  | 0.30          | 0.3               | 2                  | 11                | 1        | 11               |        |
| 16         | 291684  | 4593866  | 0.60          | 0.6               | 2                  | 15                | 1        | 15               |        |
| 19         | 291774  | 4593866  | 0.26          | 0.26              | 2                  | 10                | 1        | 10               |        |
| 25         | 291684  | 4593896  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |        |
| 129        | 291684  | 4594196  | 0.25          | 0.25              | 1                  | 9                 | 1        | 9                | 9      |
| 137        | 291594  | 4594226  | 2.50          | 2.5               | 1                  | 24                | 1        | 24               | 24     |
| 138        | 291624  | 4594226  | 0.50          | 0.5               | 1                  | 14                | 1        | 14               | 14     |
| 139        | 291654  | 4594226  | 5.00          | 5                 | 1                  | 25                | 1        | 25               | 25     |
| 143        | 291774  | 4594226  | 2.00          | 2                 | 1                  | 20                | 4        | 21.5             | 21.5   |
| 146        | 291864  | 4594226  | $2.00^{b}$    | 2                 | 1                  | 20                | 4        | 21.5             | 21.5   |
| 148        | 291834  | 4594256  | 2.00          | 2                 | 1                  | 20                | 4        | 21.5             | 21.5   |
| 163        | 291624  | 4594286  | 1.00          | 1                 | 1                  | 16                | 3        | 17               | 17     |
| 176        | 291684  | 4594316  | 2.00          | 2                 | 1                  | 20                | 4        | 21.5             | 21.5   |
| 179        | 291594  | 4594316  | 1.00          | 1                 | 1                  | 16                | 3        | 17               | 17     |
| 180        | 291564  | 4594316  | 1.00          | 1                 | 1                  | 16                | 3        | 17               | 17     |

<sup>&</sup>lt;sup>a</sup> Duplicate value from grid 15 used. <sup>b</sup> Duplicate value from grod 148 used.



Rose Hill Screening Sampling Locations for Wilcoxon Run 1 Populations


## Rose Hill Landfill Site 22–24 July 2002 Wilcoxon Rank Sum Analysis (Run 2)

| Population 1 size $(n_1)$         | 3                       |
|-----------------------------------|-------------------------|
| Population 2 size $(n_2)$         | 8                       |
| Total population size (n)         | 11                      |
| Sum of Ranks ( $W_{rs}$ )         | 22.5                    |
| Large Sample Statistic $(Z_{rs})$ | SEE TABLE X             |
| Confidence Interval               | 5.0%                    |
| $Z_{1-lpha}$                      | SEE TABLE X             |
| Accept or Reject H <sub>0</sub> ? | H <sub>0</sub> ACCEPTED |

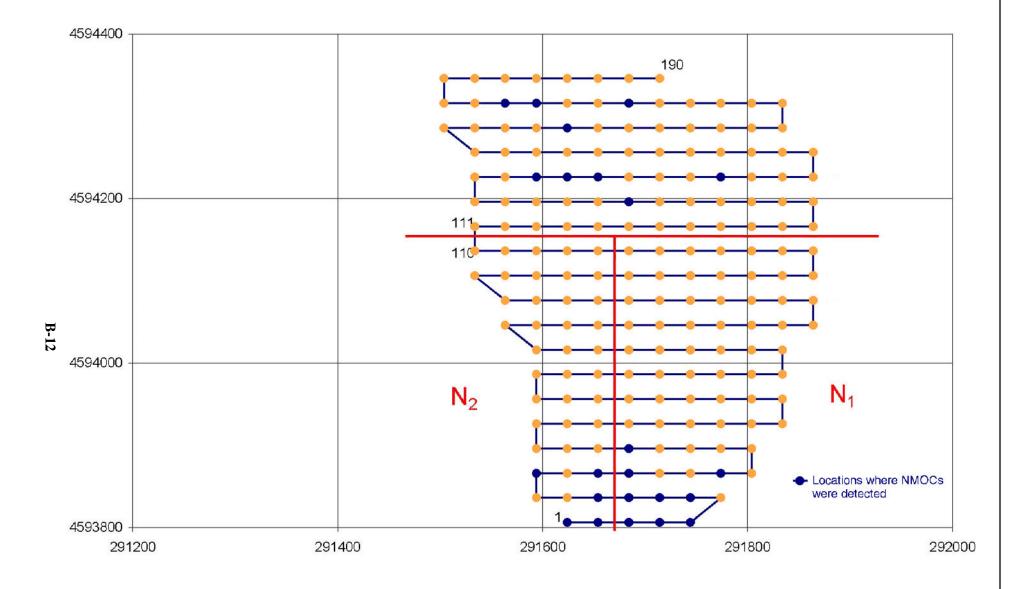
Rose Hill Landfill Site 22–24 July 2002 Wilsoxon Rank Sum Analysis (Run 2)

| Grid<br>No. | UTM Coordinates of Grid Node |          | NMOC<br>Conc. | NMOC<br>Conc. for | Assign<br>Pop. Set | Prelim<br>Ranking | No. Ties | Final<br>Ranking | Pop. 1<br>W <sub>rs</sub> |
|-------------|------------------------------|----------|---------------|-------------------|--------------------|-------------------|----------|------------------|---------------------------|
| 110.        | Easting                      | Northing | Conc.         | Rank              | Top. Set           | Kanking           | 7        | Kanking          | 22.5                      |
| 129         | 291684                       | 4594196  | 0.25          | 0.25              | 2                  | 1                 | 1        | 1                |                           |
| 137         | 291594                       | 4594226  | 2.50          | 2.5               | 2                  | 10                | 1        | 10               |                           |
| 138         | 291624                       | 4594226  | 0.50          | 0.5               | 2                  | 2                 | 1        | 2                |                           |
| 139         | 291654                       | 4594226  | 5.00          | 5                 | 2                  | 11                | 1        | 11               |                           |
| 143         | 291774                       | 4594226  | 2.00          | 2                 | 1                  | 6                 | 4        | 7.5              | 7.5                       |
| 146         | 291864                       | 4594226  | $2.00^{a}$    | 2                 | 1                  | 6                 | 4        | 7.5              | 7.5                       |
| 148         | 291834                       | 4594256  | 2.00          | 2                 | 1                  | 6                 | 4        | 7.5              | 7.5                       |
| 163         | 291624                       | 4594286  | 1.00          | 1                 | 2                  | 3                 | 3        | 4                |                           |
| 176         | 291684                       | 4594316  | 2.00          | 2                 | 2                  | 6                 | 4        | 7.5              |                           |
| 179         | 291594                       | 4594316  | 1.00          | 1                 | 2                  | 3                 | 3        | 4                |                           |
| 180         | 291564                       | 4594316  | 1.00          | 1                 | 2                  | 3                 | 3        | 4                |                           |

<sup>&</sup>lt;sup>a</sup> Duplicate value from grod 148 used.



Rose Hill Screening Sampling Locations for Wilcoxon Run 2 Populations


## Rose Hill Landfill Site 22–24 July 2002 Wilcoxon Rank Sum Analysis (Run 3)

| Population 1 size $(n_1)$           | 5                       |
|-------------------------------------|-------------------------|
| Population 2 size $(n_2)$           | 9                       |
| Total population size $(n)$         | 14                      |
| Sum of Ranks $(W_{rs})$             | 42                      |
| Large Sample Statistic ( $Z_{rs}$ ) | SEE TABLE X             |
| Confidence Interval                 | 5.0%                    |
| $\mathrm{Z}_{	ext{1-}lpha}$         | SEE TABLE X             |
| Accept or Reject H <sub>0</sub> ?   | H <sub>0</sub> ACCEPTED |

Rose Hill Landfill Site 22–24 July 2002 Wilsoxon Rank Sum Analysis (Run 3)

| Grid<br>No. | UTM Coordinates of Grid Node |          | NMOC<br>Conc. | NMOC<br>Conc. for | Assign<br>Pop. Set | Prelim<br>Ranking | No. Ties | Final<br>Ranking | Pop. 1<br>W <sub>rs</sub> |
|-------------|------------------------------|----------|---------------|-------------------|--------------------|-------------------|----------|------------------|---------------------------|
| 110.        | Easting                      | Northing | Conc.         | Rank              | Top. Set           | Kanking           | 8        | Kanking          | 42.0                      |
| 1           | 291624                       | 4593806  | 0.20          | 0.2               | 1                  | 1                 | 8        | 4.5              | 4.5                       |
| 2           | 291654                       | 4593806  | 0.43          | 0.43              | 1                  | 12                | 1        | 12               | 12                        |
| 3           | 291684                       | 4593806  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |                           |
| 4           | 291714                       | 4593806  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |                           |
| 5           | 291744                       | 4593806  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |                           |
| 7           | 291744                       | 4593836  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |                           |
| 8           | 291744                       | 4593836  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |                           |
| 9           | 291684                       | 4593836  | 1.80          | 1.8               | 2                  | 14                | 1        | 14               |                           |
| 10          | 291654                       | 4593836  | 0.40          | 0.4               | 1                  | 11                | 1        | 11               | 11                        |
| 13          | 291594                       | 4593866  | $0.20^{a}$    | 0.2               | 1                  | 1                 | 8        | 4.5              | 4.5                       |
| 15          | 291654                       | 4593866  | 0.30          | 0.3               | 1                  | 10                | 1        | 10               | 10                        |
| 16          | 291684                       | 4593866  | 0.60          | 0.6               | 2                  | 13                | 1        | 13               |                           |
| 19          | 291774                       | 4593866  | 0.26          | 0.26              | 2                  | 19                | 1        | 9                |                           |
| 25          | 291684                       | 4593896  | 0.20          | 0.2               | 2                  | 1                 | 8        | 4.5              |                           |

<sup>&</sup>lt;sup>a</sup> Duplicate value from grid 15 used.



Rose Hill Screening Sampling Locations for Wilcoxon Run 3 Populations

## Appendix C Laboratory Results

Table 1. Comparison of October 2002 Analysis Results of Rose Hill Volatile Organic Compounds in Air.

| Sample Number             | 13500    | 12941    |       | 13499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12942        |       | 13498            | 12943        |       |
|---------------------------|----------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|------------------|--------------|-------|
| Sample Location           | Grid 137 | Grid 137 | %     | Grid 137 D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Grid 137 Dup | %     | Grid 137 Amb.    | Grid 137 Amb | %     |
|                           |          |          | Diff. | reconstruction of the second s |              | Diff. | Parameter Street |              | Diff. |
| Dichlorodifluoromethane   | 1500     | 1600     | 6.7   | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1700         | 13    | U                | U            |       |
| Dichlorotetrafluoroethane | 120      | 120      | 0.0   | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120          | 0.0   | U                | Ų            |       |
| Vinyl Chloride            | U        | Ų        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U            |       | U                | U            |       |
| Chloroethane              | 770      | 470      | 39    | 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 460          | 22    | U                | Ų            |       |
| Trichlorofluoromethane    | U        | Ų        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U            |       | U                | U            |       |
| Isopropyl Alcohol         | U        | U        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ų            |       | U                | Ų            |       |
| Acetone                   | U        | Ų        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |       | 15               | 16           | 6.7   |
| 1,1-Dichloroethene        | U        | U        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ų            |       | U                | Ų            |       |
| Methylene Chloride        | U        | Ų        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>)</b>     | 100   | U                | 2.4          |       |
| trans-1,2-Dichloroethene  | 9.1      | U        |       | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U            |       | U                | U            |       |
| Hexane                    | 2800     | 2600     | 7.1   | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2600         | 7.1   | 8.2              | U            |       |
| 1,1-Dichloroethane        | U        | U        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U            |       | U                | Ų            |       |
| 2-Butanone                | U        | U        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ų            |       | U                | U            |       |
| cis-1,2-Dichloroethene    | 12       | U        |       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ų            |       | U                | U            |       |
| 1,1,1-Trichloroethane     | U        | U        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ų            |       | U                | U            |       |
| Cyclohexane               | 3000     | 1600     | 47    | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1600         | 47    | U                | Ų            |       |
| Carbon Tetrachloride      | U        | Ų        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ų            |       | U                | U            |       |
| 1,2-Dichloroethane        | U        | U        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ų            |       | U                | Ų            |       |
| Benzene                   | 2200     | 1400     | 36    | 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1400         | 36    | 7.1              | U            |       |
| Heptane                   | 5200     | 4100     | 21    | 5200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4200         | 19    | 17               | Ų            |       |
| Trichloroethene           | U        | Ų        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U            |       | U                | U            |       |
| 1,2-Dichloropropane       | U        | U        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ų            |       | U                | Ų            |       |
| Toluene                   | 99       | 58       | 41    | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60           | 24    | 4.1              | U            |       |
| Tetrachloroethene         | U        | U        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ų            |       | U                | Ų            |       |
| Chlorobenzene             | 330      | 230      | 30    | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 230          | 32    | U                | U            |       |
| Ethylbenzene              | 5800     | 5400     | 6.9   | 5800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5600         | 3.4   | 51               | U            |       |
| m&p-Xylenes               | 8600     | 7900     | 8.1   | 8600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8700         | 1.2   | 85               | 1.3          | 98    |
| o-Xylene                  | 430      | 460      | 7.0   | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 490          | 20    | 4.8              | Ų            |       |
| Styrene                   | 160      | Ų        |       | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ų            |       | U                | Ų            |       |
| 4-Ethyltoluene            | 960      | 800      | 17    | 940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 840          | 11    | 20               | U            |       |
| 1,3,5-Trimethylbenzene    | 450      | 460      | 2.2   | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 480          | 6.7   | 10               | Ų            |       |
| 1,2,4-Trimethylbenzene    | 1100     | 1200     | 9.1   | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1200         | 9.1   | 33               | Ų            |       |
| 1,3-Dichlorobenzene       | U        | Ų        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ų            |       | U                | IJ           |       |
| 1,4-Dichlorobenzene       | 76       | 56       | 26    | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64           | 14    | U                | Ų            |       |
| 1,2-Dichlorobenzene       | U        | U        |       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U            |       | U                | U            |       |

U = None detected

% Diff. = percent difference

Table 1. Comparison of October 2002 Analysis Results of Rose Hill Volatile Organic Compounds in Air (continued).

| Sample Number             | 13497                                | 12944         |        | 13496    | 12945    |       | 13495    | 12946   |      |
|---------------------------|--------------------------------------|---------------|--------|----------|----------|-------|----------|---------|------|
| Sample Location           | Grid 137 Amb. D.                     | Grid 137 Amb. | %      | Grid 139 | Grid 139 | % [   | Grid 140 | Grid140 | %    |
|                           | Section Acres Solvenia, Consultation |               | Diff.  |          |          | Diff. |          |         | Diff |
| Dichlorodifluoromethane   | Îυ                                   | U             |        | 590      | 780      | 32    | 43       | 46      | 7.0  |
| Dichlorotetrafluoroethane | U                                    | U             |        | U        | 71       |       | 38       | 40      | 5.3  |
| Vinyl Chloride            | U                                    | Ų             |        | U        | 120      |       | 300      | 200     | 33   |
| Chloroethane              | U                                    | U             |        | 980      | 870      | 11    | 99       | 92      | 7.1  |
| Trichlorofluoromethane    | U                                    | Ų             |        | 68       | 66       | 2.9   | U        | Ų       |      |
| Isopropyl Alcohol         | U                                    | U             |        | U        | U        |       | C        | U       |      |
| Acetone                   | 19                                   | 75            | 295    | U        | Ų        |       | U        | 95      |      |
| 1,1-Dichloroethene        | U                                    | U             |        | U        | U        | *     | U        | U       |      |
| Methylene Chloride        | U                                    | 1.6           | 15     | U        | 47       |       | U        | 7,6     |      |
| trans-1,2-Dichloroethene  | U                                    | U             |        | 12       | Ų        | *     | U        | Ų       |      |
| Hexane                    | U                                    | U             |        | 3200     | 3100     | 3.1   | 850      | 930     | 9.4  |
| 1,1-Dichloroethane        | U                                    | U             |        | U        | 31       |       | U        | U       |      |
| 2-Butanone                | U                                    | Ų             |        | U        | U        |       | U        | Ų       |      |
| cis-1,2-Dichloroethene    | U                                    | U             |        | 67       | 51       | 24    | U        | 5.4     |      |
| 1,1,1-Trichloroethane     | U                                    | Ų             |        | U        | Ų        |       | U        | 2       |      |
| Cyclohexane               | U                                    | U             |        | 3000     | 1900     | 37    | 990      | 710     | 28   |
| Carbon Tetrachloride      | U                                    | Ų             |        | U        | Ų        |       | U        | Ų       |      |
| 1,2-Dichloroethane        | U                                    | U             |        | U        | U        |       | U        | U       |      |
| Benzene                   | U                                    | Ų             |        | 2800     | 1800     | 36    | 200      | 140     | 30   |
| Heptane                   | U                                    | U             |        | 2700     | 2300     | 15    | 1100     | 1000    | 9.1  |
| Trichloroethene           | U                                    | Ų             |        | 57       | 67       | 18    | U        | Ų       |      |
| 1,2-Dichloropropane       | U                                    | IJ            |        | U        | U        |       | U        | U       |      |
| Toluene                   | U                                    | 2.5           |        | 1800     | 1400     | 22    | 83       | 65      | 22   |
| Tetrachloroethene         | U                                    | U             |        | 31       | 22       | 29    | U        | U       |      |
| Chlorobenzene             | U                                    | Ų             |        | 220      | 190      | 14    | U        | Ų       |      |
| Ethylbenzene              | 11                                   | U             |        | 2800     | 2600     | 7.1   | 1400     | 1400    | 0.0  |
| m&p-Xylenes               | 19                                   | Ų             |        | 3700     | 3500     | 5.4   | 550      | 500     | 9.1  |
| o-Xylene                  | U                                    | U             |        | 1100     | 1100     | 0.0   | 320      | 300     | 6.3  |
| Styrene                   | U                                    | Ų             |        | U        | 57       |       | U        | Ų       |      |
| 4-Ethyltoluene            | 4.7                                  | U             |        | 1000     | 920      | 8.0   | 170      | 120     | 29   |
| 1,3,5-Trimethylbenzene    | U                                    | Ų             |        | 470      | 450      | 4.3   | 130      | 83      | 36   |
| 1,2,4-Trimethylbenzene    | 8.1                                  | U             | 100    | 930      | 950      | 3.2   | 220      | 150     | 32   |
| 1,3-Dichlorobenzene       | U                                    | Ų             |        | U        | Ų        |       | U        | Ų       |      |
| 1,4-Dichlorobenzene       | U                                    | U             | Mary 1 | 23       | 27       | 17    | 29       | 30      | 3.4  |
| 1,2-Dichlorobenzene       | U                                    | U             |        | U        | U        |       | U        | U       |      |

U = None detected

% Diff. = percent difference

Table 1. Comparison of October 2002 Analysis Results of Rose Hill Volatile Organic Compounds in Air (continued).

| Sample Number             | 13494    | 12947    | **    | 13493   | 12948   |       | 13492    | 12949    |       |
|---------------------------|----------|----------|-------|---------|---------|-------|----------|----------|-------|
| Sample Location           | Grid 131 | Grid 131 | % [   | Grid 80 | Grid 80 | %     | Grid 146 | Grid 146 | %     |
|                           |          |          | Diff. |         |         | Diff. |          |          | Diff. |
| Dichlorodifluoromethane   | 55       | 60       | 9.1   | 74      | 88      | 19    | 34       | 44       | 29    |
| Dichlorotetrafluoroethane | 25       | 29       | 16    | U       | U       |       | U        | Ų        |       |
| Vinyl Chloride            | 120      | 170      | 42    | 290     | 330     | 14    | 650      | 800      | 23    |
| Chloroethane              | 1800     | 1400     | 22    | 430     | 390     | 9.3   | 4000     | 4000     | 0.0   |
| Trichlorofluoromethane    | U        | U        |       | 77      | 82      | 6.5   | U        | Ü        |       |
| Isopropyl Alcohol         | U        | U        |       | 670     | 330     | 51    | U        | U        |       |
| Acetone                   | U        | Ų        |       | 650     | 550     | 15    | 34       | Ü        |       |
| 1,1-Dichloroethene        | 16       | Ų        |       | U       | U       |       | U        | U        |       |
| Methylene Chloride        | U        | 22       |       | U       | IJ      |       | U        |          |       |
| trans-1,2-Dichloroethene  | U        | Ų        |       | 14      | U       |       | 35       | Ü        |       |
| Hexane                    | 2600     | 2500     | 3.8   | 900     | 980     | 8.9   | 83       | 73       | 12    |
| 1,1-Dichloroethane        | 1000     | 520      | 38    | U       | U       |       | 670      | 650      | 3.0   |
| 2-Butanone                | U        | U        |       | 790     | 580     | 27    | 14       | U        |       |
| cis-1,2-Dichloroethene    | 55       | 52       | 5.5   | 94      | 97      | 3.2   | 100      | 110      | 10    |
| 1,1,1-Trichloroethane     | 910      | 580      | 36    | U       | V       |       | U        | U        |       |
| Cyclohexane               | 3100     | 1400     | 55    | 1200    | 560     | 53    | 160      | 140      | 13    |
| Carbon Tetrachloride      | 130      | U        |       | U       | Ų       |       | U        | U        |       |
| 1,2-Dichloroethane        | U        | U        |       | U       | U       |       | 12       | Ų        |       |
| Benzene                   | 810      | 580      | 28    | 360     | 260     | 28    | 250      | 190      | 24    |
| Heptane                   | 4400     | 3700     | 16    | 2200    | 2100    | 4.5   | 52       | Ų        |       |
| Trichloroethene           | U        | 22       |       | 25      | 30      | 20    | U        | U        |       |
| 1,2-Dichloropropane       | U        | Ų        |       | U       | U       |       | U        | U        |       |
| Toluene                   | 520      | 460      | 12    | 3400    | 3600    | 5.9   | 60       | U        |       |
| Tetrachloroethene         | U        | Ų        |       | 17      | U       |       | U        | U        |       |
| Chlorobenzene             | U        | Ų        |       | U       | U       |       | 38       | 40       | 5.3   |
| Ethylbenzene              | 3500     | 2900     | 17    | 2600    | 2900    | 12    | 91       | Ų        |       |
| m&p-Xylenes               | 4600     | 4000     | 13    | 4300    | 4800    | 12    | 170      | U        |       |
| o-Xylene                  | 1200     | 1100     | 8.3   | 1600    | 1900    | 19    | 170      | 86       | 49    |
| Styrene                   | U        | U        |       | U       | Ų       |       | U        | Ų        |       |
| 4-Ethyltoluene            | 990      | 780      | 21    | 760     | 630     | 17    | 71       | U        | *     |
| 1,3,5-Trimethylbenzene    | 490      | 450      | 8.2   | 370     | 350     | 5.4   | 31       | Ų        | *     |
| 1,2,4-Trimethylbenzene    | 1300     | 1400     | 7.7   | 840     | 830     | 1.2   | 91       | U        |       |
| 1,3-Dichlorobenzene       | U        | Ų        |       | U       | Ų       |       | U        | U        |       |
| 1,4-Dichlorobenzene       | 100      | 120      | 20    | 31      | 34      | 9.7   | 10       | U        |       |
| 1.2-Dichlorobenzene       | U        | U        |       | U       | U       |       | U        | U        |       |

U = None detected

% Diff. = percent difference

Table 1. Comparison of October 2002 Analysis Results of Rose Hill Volatile Organic Compounds in Air (continued).

| Sample Number             | 13490 | 12955 |       | 13489                                          | 12956 |       | 13488 | 12957 | <b>***</b> |
|---------------------------|-------|-------|-------|------------------------------------------------|-------|-------|-------|-------|------------|
| Sample Location           | LFG7  | PW7   | %     | LFG24                                          | PW24  | %     | LFG1  | PW1   | <b>%</b>   |
|                           |       |       | Diff. | angan akawan zana ang<br>Cibiga manakan manaki |       | Diff. |       |       | Diff.      |
| Dichlorodifluoromethane   | U     | U     |       | 4.8                                            | 6,1   | 27    | 11    | 13    | 18         |
| Dichlorotetrafluoroethane | U     | Ų     |       | U                                              | U     |       | U     | 1,3   |            |
| Vinyl Chloride            | U     | U     |       | U                                              | Ų     |       | U     | Ų     |            |
| Chloroethane              | U     | Ų     |       | U                                              | U     |       | U     | Ų     |            |
| Trichlorofluoromethane    | U     | Ų     |       | U                                              | 1.1   |       | U     | U     |            |
| Isopropyl Alcohol         | U     | Ų     |       | U                                              | U     |       | U     | Ų     |            |
| Acetone                   | 7.6   | 13    | 71    | U                                              | 15    |       | U     | 12    |            |
| 1,1-Dichloroethene        | U     | Ų     |       | 4.9                                            | 4.3   | 12    | U     | Ų     |            |
| Methylene Chloride        | U     | 14    |       | U                                              | 34    |       | U     | 15    |            |
| trans-1,2-Dichloroethene  | U     | Ų     |       | U                                              | U     |       | U     | Ų     |            |
| Hexane                    | U     | U     |       | U                                              | Ų     |       | U     | U     |            |
| 1,1-Dichloroethane        | U     | Ų     |       | 6.4                                            | 51    | 20    | U     | Ų     |            |
| 2-Butanone                | U     | Ų     |       | U                                              | Ų     |       | U     | U     |            |
| cis-1,2-Dichloroethene    | U     | Ų     |       | 230                                            | 270   | 17    | U     | Ų     |            |
| 1,1,1-Trichloroethane     | U     | U     |       | 76                                             | 56    | 26    | U     | U     |            |
| Cyclohexane               | U     | Ų     |       | U                                              | U     |       | U     | Ų     |            |
| Carbon Tetrachloride      | U     | U     |       | 12                                             | Ų     |       | U     | U     |            |
| 1,2-Dichloroethane        | U     | Ų     |       | U                                              | Ų     |       | U     | Ų     |            |
| Benzene                   | U     | U     |       | U                                              | Ų     |       | U     | U     |            |
| Heptane                   | U     | Ų     |       | U                                              | Ų     |       | U     | Ų     |            |
| Trichloroethene           | U     | U     |       | 130                                            | 110   | 15    | U     | U     |            |
| 1,2-Dichloropropane       | U     | Ų     |       | U                                              | U     |       | U     | U     |            |
| Toluene                   | U     | U     |       | U                                              | Ų     |       | U     | Ü     |            |
| Tetrachloroethene         | U     | U     |       | U                                              | U     |       | U     | U     |            |
| Chlorobenzene             | U     | U     |       | U                                              | U     |       | U     | U     |            |
| Ethylbenzene              | U     | Ų     |       | U                                              | U     |       | U     | Ų     |            |
| m&p-Xylenes               | U     | U     |       | U                                              | U     |       | U     | U     |            |
| o-Xylene                  | U     | Ų     |       | U                                              | U     |       | U     | Ų     |            |
| Styrene                   | U     | U     |       | U                                              | U     |       | U     | U     |            |
| 4-Ethyltoluene            | U     | Ų     |       | U                                              | U     |       | U     | Ų     |            |
| 1,3,5-Trimethylbenzene    | U     | U     |       | U                                              | U     |       | U     | U     |            |
| 1,2,4-Trimethylbenzene    | U     | Ų     |       | U                                              | U     |       | U     | Ų     |            |
| 1,3-Dichlorobenzene       | U     | U     |       | U                                              | U     | **    | U     | U     |            |
| 1,4-Dichlorobenzene       | U     | Ų     |       | U                                              | U     | ***   | U     | Ų     |            |
| 1,2-Dichlorobenzene       | U     | U     | ***   | U                                              | U     |       | U     | U     |            |

U = None detected

% Diff. = percent difference

Table 1. Comparison of October 2002 Analysis Results of Rose Hill Volatile Organic Compounds in Air (continued).

| Sample Number             | 13487  | 12950  | *     | 13486      | 12951      |       | 13483                               | 12954    |       |
|---------------------------|--------|--------|-------|------------|------------|-------|-------------------------------------|----------|-------|
| Sample Location           | Grid 9 | Grid 9 | %     | Grid 9 Amb | Grid 9 Amb | %     | Grid 15A                            | Grid 15A | %     |
|                           |        |        | Diff. |            |            | Diff. | recursive distribution of the given |          | Diff. |
| Dichlorodifluoromethane   | 490    | 590    | 20    | U          | U          |       | 30                                  | 34       | 13.3  |
| Dichlorotetrafluoroethane | 130    | 160    | 23    | U          | Ų          |       | U                                   | Ų        |       |
| Vinyl Chloride            | U      | 22     | *     | U          | Ų          |       | U                                   | U        |       |
| Chloroethane              | 19     | 21     | 11    | U          | 1,5        |       | 56                                  | 41       | 27    |
| Trichlorofluoromethane    | U      | U      |       | U          | Ų          |       | U                                   | 2.8      |       |
| Isopropyl Alcohol         | U      | Ų      |       | U          | Ų          |       | U                                   | U        |       |
| Acetone                   | 43     | 91     | 112   | 5.3        | 48         | 806   | U                                   | 85       |       |
| 1,1-Dichloroethene        | U      | Ų      |       | U          | Ų          |       | U                                   | Ų        |       |
| Methylene Chloride        | U      | U      |       | U          | 1.7        |       | U                                   | U        |       |
| trans-1,2-Dichloroethene  | U      | U      | *     | U          | Ų          |       | U                                   | Ų        |       |
| Hexane                    | 180    | 160    | 11    | U          | Ų          |       | U                                   | Ų        |       |
| 1,1-Dichloroethane        | 6.1    | Ų      |       | U          | Ų          |       | 51                                  | 49       |       |
| 2-Butanone                | U      | U      |       | U          | Ų          |       | U                                   | Ų        |       |
| cis-1,2-Dichloroethene    | 9.3    | 8.8    | 5.4   | U          | U          |       | U                                   | Ų        |       |
| 1,1,1-Trichloroethane     | U      | U      |       | U          | IJ         |       | U                                   | Ų        |       |
| Cyclohexane               | 170    | 97     | 43    | U          | U          |       | 19                                  | 17       | 11    |
| Carbon Tetrachloride      | U      | U      |       | U          | Ų          |       | U                                   | Ų        |       |
| 1,2-Dichloroethane        | U      | Ų      |       | U          | U          |       | U                                   | U        |       |
| Benzene                   | 250    | 170    | 32    | U          | Ų          |       | U                                   | Ų        |       |
| Heptane                   | 420    | 340    | 19    | U          | U          |       | U                                   | U        |       |
| Trichloroethene           | U      | U      |       | U          | Ų          |       | U                                   | 41       |       |
| 1,2-Dichloropropane       | U      | Ų      |       | U          | Ų          |       | 40                                  | 27       | 33    |
| Toluene                   | 24     | 19     | 21    | U          | 2,1        |       | 130                                 | 91       | 30    |
| Tetrachloroethene         | U      | Ų      |       | U          | U          |       | U                                   | 5.5      |       |
| Chlorobenzene             | 640    | 620    | 3.1   | U          | Ų          |       | 10                                  | Ų        |       |
| Ethylbenzene              | 790    | 790    | 0.0   | U          | 1,3        |       | 14                                  | 4.3      | 69    |
| m&p-Xylenes               | 650    | 630    | 3.1   | U          | 1.4        |       | U                                   | 4.2      |       |
| o-Xylene                  | 130    | 110    | 15    | U          | U          |       | U                                   | Ų        |       |
| Styrene                   | U      | U      |       | U          | Ų          |       | U                                   | U        |       |
| 4-Ethyltoluene            | 230    | 150    | 35    | U          | U          |       | 23                                  | Ų        |       |
| 1,3,5-Trimethylbenzene    | 220    | 170    | 23    | U          | Ų          |       | 15                                  | U        |       |
| 1,2,4-Trimethylbenzene    | 370    | 340    | 8.1   | 5.7        | Ų          |       | 33                                  | 4.6      | 86    |
| 1,3-Dichlorobenzene       | U      | U      | 8     | U          | Ų          |       | U                                   | U        |       |
| 1,4-Dichlorobenzene       | 45     | 38     | 16    | U          | U          |       | 23                                  | 26       | 13    |
| 1,2-Dichlorobenzene       | 31     | 26     | 16    | U          | U          |       | U                                   | U        |       |

U = None detected

% Diff. = percent difference

Table 1. Comparison of October 2002 Analysis Results of Rose Hill Volatile Organic Compounds in Air (concluded).

| Sample Number             | 13485   | 12952   | *     | 13484        | 12953          |       |
|---------------------------|---------|---------|-------|--------------|----------------|-------|
| Sample Location           | Grid 16 | Grid 16 | %     | Grid 16 Dup. | Grid 16 Dup.   | %     |
|                           |         |         | Diff. |              | l              | Diff. |
| Dichlorodifluoromethane   | U       | Ų       | *     | 90           | U              |       |
| Dichlorotetrafluoroethane | 100     | 130     | 30    | 110          | 130            |       |
| Vinyl Chloride            | U       | Ų       |       | U            | U              |       |
| Chloroethane              | U       | Ų       | *     | U            | ¥              |       |
| Trichlorofluoromethane    | U       | U       | *     | U            | U              |       |
| Isopropyl Alcohol         | U       | Ų       |       | U            | IJ             |       |
| Acetone                   | U       | Ų       |       | U            | U              |       |
| 1,1-Dichloroethene        | U       | U       |       | U            | Ų              |       |
| Methylene Chloride        | U       | U       |       | U            | U              |       |
| trans-1,2-Dichloroethene  | U       | Ų       | *     | U            | U              |       |
| Hexane                    | 710     | 670     | 5.6   | 750          | 740            | 1.3   |
| 1,1-Dichloroethane        | U       | U       |       | U            | Ų              |       |
| 2-Butanone                | U       | U       |       | U            |                |       |
| cis-1,2-Dichloroethene    | U       | U       |       | 4.3          | U<br>U         |       |
| 1,1,1-Trichloroethane     | U       | U       |       | U            | U              |       |
| Cyclohexane               | 620     | 350     | 44    | 660          | 350            | 47    |
| Carbon Tetrachloride      | U       | Ų       |       | U            | U              |       |
| 1,2-Dichloroethane        | U       | Ų       |       | U            | Ų              |       |
| Benzene                   | 130     | 94      | 28    | 140          | 98             | 30    |
| Heptane                   | 1100    | 890     | 19    | 1100         | 960            | 13    |
| Trichloroethene           | U       | U       |       | U            | U              |       |
| 1,2-Dichloropropane       | U       | U       |       | U            | Ų              |       |
| Toluene                   | 31      | 18      | 42    | 30           | 18             | 40    |
| Tetrachloroethene         | U       | Ų       |       | U            | Ų              |       |
| Chlorobenzene             | 800     | 730     | 8.8   | 820          | 710            | 13    |
| Ethylbenzene              | 1300    | 1300    | 0.0   | 1400         | 1300           | 7.1   |
| m&p-Xylenes               | 1300    | 1300    | 0.0   | 1400         | 1300           | 7.1   |
| o-Xylene                  | 74      | 51      | 31    | 76           | <del>5</del> 2 | 32    |
| Styrene                   | 27      | U       |       | U            | Ü              |       |
| 4-Ethyltoluene            | 1600    | 1400    | 13    | 1700         | 1400           | 18    |
| 1,3,5-Trimethylbenzene    | 810     | 780     | 3.7   | 860          | 750            | 13    |
| 1,2,4-Trimethylbenzene    | 1300    | 1400    | 7.7   | 1400         | 1300           | 7.1   |
| 1,3-Dichlorobenzene       | 73      | 90      | 23    | 79           | 80             | 1.3   |
| 1,4-Dichlorobenzene       | 200     | 250     | 25    | 210          | 240            | 14    |
| 1,2-Dichlorobenzene       | 64      | 74      | 16    | 66           | 69             | 4.5   |

Results in the non-shaded columns are from on-site analysis.

Results in the shaded columns are from laboratory analysis.

U = None detected

<sup>%</sup> Diff. = percent difference

Table 2. Comparison of October 2002 Analysis Results of Rose Hill Fixed Gases.

| Sample Number   | 13500    | 12941    |       | 13499       | 12942        |       | 13498         | 12943         |       |
|-----------------|----------|----------|-------|-------------|--------------|-------|---------------|---------------|-------|
| Sample Location | Grid 137 | Grid 137 | %     | Grid 137 D. | Grid 137 Dup | %     | Grid 137 Amb. | Grid 137 Amb. | %     |
|                 |          |          | Diff. |             |              | Diff. |               |               | Diff. |
| Oxygen          | 1.3      | 0,19     | 85.4  | 0.68        | 0,23         | 66.2  | 21            | 20            | 4.8   |
| Nitrogen        | 4.8      | 1.2      | 75.0  | 2.4         | 0,79         | 67.1  | 76            | 78            | 2.6   |
| Methane         | 57       | 56       | 1.8   | 59          | 56           | 5.1   | 0.11          | u             |       |
| Carbon dioxide  | 40       | 42       | 5.0   | 42          | 42           | 0.0   | 0.099         | IJ            |       |

| Sample Number   | 13497            | 12944         |       | 13496    | 12945    |       | 13495    | 12946   |       |
|-----------------|------------------|---------------|-------|----------|----------|-------|----------|---------|-------|
| Sample Location | Grid 137 Amb. D. | Grid 137 Amb. | %     | Grid 139 | Grid 139 | %     | Grid 140 | Grid140 | %     |
|                 |                  |               | Diff. |          |          | Diff. |          |         | Diff. |
| Oxygen          | 21               | 20            | 4.8   | 0.57     | U        |       | 1.4      | 1.8     | 28.6  |
| Nitrogen        | 77               | 78            | 1.3   | 2.0      | 0.31     | 84.5  | 42       | 44      | 4.8   |
| Methane         | U                | U             |       | 59       | 56       | 5.1   | 25       | 23      | 8.0   |
| Carbon dioxide  | 0.035            | U             |       | 43       | 43       | 0.0   | 29       | 31      | 6.9   |

| Sample Number   | 13494    | 12947   |       | 13493   | 12948   |       | 13492    | 12949    |       |
|-----------------|----------|---------|-------|---------|---------|-------|----------|----------|-------|
| Sample Location | Grid 131 | Gnd 131 | %     | Grid 80 | Grid 80 | %     | Grid 146 | Grid 146 | %     |
|                 |          |         | Diff. |         |         | Diff. |          |          | Diff. |
| Oxygen          | 0.70     | U       |       | 1.2     | 0.38    | 68.3  | 5.3      | 4,1      | 22.6  |
| Nitrogen        | 6.8      | 5.2     | 23.5  | 21      | 19      | 9.5   | 67       | 67       | 0.0   |
| Methane         | 55       | 53      | 3.6   | 44      | 43      | 2.3   | 7.8      | 7.8      | 0.0   |
| Carbon dioxide  | 41       | 43      | 4.9   | 34      | 38      | 11.8  | 16       | 21       | 31.3  |

Results are in percent by volume (%/v)
U = None detected

% Diff. = percent difference

Results in the non-shaded columns are from on-site analysis.

Results in the shaded columns are from laboratory analysis.

Average results from the replicates of the on-site analyses are entered here.

Table 2. Comparison of October 2002 Analysis Results of Rose Hill Fixed Gases (concluded).

| Sample Number   | 13490 | 12955 |       | 13489 | 12956 |       | 13488 | 12957 |       |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Sample Location | LFG7  | PW7   | %     | LFG24 | PW24  | %     | LFG1  | PW1   | %     |
|                 |       |       | Diff. |       |       | Diff. |       |       | Diff. |
| Oxygen          | 20    | 19    | 5.0   | 20    | 20    | 0.0   | 19    | 18    | 5.3   |
| Nitrogen        | 77    | 82    | 6.5   | 77    | 80    | 3.9   | 77    | 83    | 7.8   |
| Methane         | U     | U     |       | U     | Ų     |       | U     | U     |       |
| Carbon dioxide  | 0.82  | 1.5   | 82.9  | 0.89  | 1,2   | 34.8  | 2.3   | 3.0   | 30.4  |

| Sample Number   | 13487  | 12950  |       | 13486      | 12951       |       | 13483    | 12954    |       |
|-----------------|--------|--------|-------|------------|-------------|-------|----------|----------|-------|
| Sample Location | Grid 9 | Grid 9 | %     | Grid 9 Amb | Grid 9 Amb. | %     | Grid 15A | Grid 15A | %     |
|                 |        |        | Diff. |            |             | Diff. |          |          | Diff. |
| Oxygen          | 2.1    | 0.97   | 53.8  | 21         | 20          | 4.8   | 2.9      | 1.6      | 44.8  |
| Nitrogen        | 65     | 66     | 1.5   | 77         | 82          | 6.5   | 77       | 79       | 2.6   |
| Methane         | 11     | 11     | 0.0   | U          | U           |       | 0.083    | U        |       |
| Carbon dioxide  | 20     | 24     | 20.0  | 0.038      | U           |       | 16       | 21       | 31.3  |

| Sample Number   | 13485   | 12952   | 8     | 13484        | 12953        |       |
|-----------------|---------|---------|-------|--------------|--------------|-------|
| Sample Location | Grid 16 | Grid 16 | %     | Grid 16 Dup. | Grid 16 Dup. | %     |
|                 |         |         | Diff. |              |              | Diff. |
| Oxygen          | 2.3     | U       |       | 0.63         | 0.30         | 52.4  |
| Nitrogen        | 8.7     | 1.4     | 83.9  | 2.8          | 1.8          | 35.7  |
| Methane         | 60      | 63      | 5.0   | 66           | 63           | 4.5   |
| Carbon dioxide  | 33      | 38      | 15.2  | 37           | 38           | 2.7   |

Results are in percent by volume (%/v)

U = None detected

% Diff. = percent difference

Results in the non-shaded columns are from on-site analysis.

Results in the shaded columns are from laboratory analysis.

Average results from the replicates of the on-site analyses are entered here.

# Appendix D LandGEM Model Runs

## **Contents**

| Table D-1. Northern Parcel Methane Emisson Rate from Year 1968 to 2203                | D-3  |
|---------------------------------------------------------------------------------------|------|
| Table D-2. Northern Parcel NMOC Emission Rate from Year 1968 to 2203                  | D-7  |
| Table D-3. Northern Parcel 1,1,1-Trichloroethane Emission Rate from Year 1968 to 2203 | D-11 |
| Table D-4. Northern Parcel Benzene Emission Rate from Year 1968 to 2203               | D-15 |
| Table D-5. Northern Parcel Chlorobenzene Emission Rate from Year 1968 to 2203         | D-19 |
| Table D-6. Northern Parcel Chloroethane Emission Rate from Year 1968 to 2203          | D-23 |
| Table D-7. Northern Parcel Dichlorobenzene Emission Rate from Year 1968 to 2203       | D-27 |
| Table D-8. Northern Parcel Toluene Emission Rate from Year 1968 to 2203               |      |
| Table D-9. Northern Parcel Trichloroethene Emission Rate from Year 1968 to 2203       | D-35 |
| Table D-10. Northern Parcel Vinyl Chloride Emission Rate from Year 1968 to 2203       | D-39 |
| Table D-11. Northern Parcel m,p-Xylene Emission Rate from Year 1968 to 2203           | D-43 |
| Table D-12. Northern Parcel o-Xylene Emission Rate from Year 1968 to 2203             | D-47 |
| Table D-13. Southern Parcel Methane Emisson Rate from Year 1968 to 2203               | D-51 |
| Table D-14. Southern Parcel NMOC Emisson Rate from Year 1968 to 2203                  | D-55 |
| Table D-15. Southern Parcel Benzene Emission Rate from Year 1968 to 2203              | D-59 |
| Table D-16. Southern Parcel Chlorobenzene Emission Rate from Year 1968 to 2203        | D-63 |
| Table D-17. Southern Parcel Chloroethane Emission Rate from Year 1968 to 2203         | D-67 |
| Table D-18. Southern Parcel Dichlorobenzene Emission Rate from Year 1968 to 2203      | D-71 |
| Table D-19. Southern Parcel Toluene Emission Rate from Year 1968 to 2203              | D-75 |
| Table D-20. Southern Parcel Trichloroethene Emission Rate from Year 1968 to 2203      | D-79 |
| Table D-21. Southern Parcel Vinyl Chloride Emission Rate from Year 1968 to 2203       | D-83 |
| Table D-22. Southern Parcel m,p-Xylene Emission Rate from Year 1968 to 2203           | D-87 |
| Table D-23. Southern Parcel o-Xylene Emission Rate from Year 1968 to 2203             | D-91 |

Table D-1. Northern Parcel Methane Emisson Rate from Year 1968 to 2203.

#### Model Parameters

\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k : 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC: 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 56.0000 % volume

Carbon Dioxide : 44.0000 % volume

\_\_\_\_\_\_

#### Landfill Parameters

\_\_\_\_\_\_

Landfill type : Co-Disposal

Year Opened: 1967 Current Year: 2003 Closure Year: 2004

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 13179.47 Mg/year

\_\_\_\_\_\_ \_\_\_\_\_\_

| Year | Refuse In Place (Mg) | Methane<br>(Mg/yr) | Emission Rate<br>(Cubic m/yr) |
|------|----------------------|--------------------|-------------------------------|
| 1968 | 1.318E+04            | 7.474E+01          | 1.120E+05                     |
| 1969 | 2.636E+04            | 1.458E+02          | 2.186E+05                     |
| 1970 | 3.954E+04            | 2.135E+02          | 3.200E+05                     |
| 1971 | 5.272E+04            | 2.778E+02          | 4.164E+05                     |
| 1972 | 6.590E+04            | 3.390E+02          | 5.081E+05                     |
| 1973 | 7.908E+04            | 3.972E+02          | 5.953E+05                     |
| 1974 | 9.226E+04            | 4.525E+02          | 6.783E+05                     |
| 1975 | 1.054E+05            | 5.052E+02          | 7.573E+05                     |
| 1976 | 1.186E+05            | 5.553E+02          | 8.324E+05                     |
| 1977 | 1.318E+05            | 6.030E+02          | 9.038E+05                     |
| 1978 | 1.450E+05            | 6.483E+02          | 9.717E+05                     |
| 1979 | 1.582E+05            | 6.914E+02          | 1.036E+06                     |
| 1980 | 1.713E+05            | 7.324E+02          | 1.098E+06                     |
| 1981 | 1.845E+05            | 7.714E+02          | 1.156E+06                     |
| 1982 | 1.977E+05            | 8.086E+02          | 1.212E+06                     |
| 1983 | 1.977E+05            | 7.691E+02          | 1.153E+06                     |
| 1984 | 1.977E+05            | 7.316E+02          | 1.097E+06                     |
| 1985 | 1.977E+05            | 6.959E+02          | 1.043E+06                     |
| 1986 | 1.977E+05            | 6.620E+02          | 9.923E+05                     |
| 1987 | 1.977E+05            | 6.297E+02          | 9.439E+05                     |
| 1988 | 1,977E+05            | 5.990E+02          | 8.978E+05                     |
| 1989 | 1.977E+05            | 5.698E+02          | 8.541E+05                     |
| 1990 | 1.977E+05            | 5.420E+02          | 8.124E+05                     |
| 1991 | 1.977E+05            | 5.156E+02          | 7.728E+05                     |
| 1992 | 1.977E+05            | 4.904E+02          | 7.351E+05                     |
| 1993 | 1.977E+05            | 4.665E+02          | 6.992E+05                     |
| 1994 | 1.977E+05            | 4.437E+02          | 6.651E+05                     |
| 1995 | 1.977E+05            | 4.221E+02          | 6.327E+05                     |
| 1996 | 1.977E+05            | 4.015E+02          | 6.018E+05                     |
| 1997 | 1.977E+05            | 3.819E+02          | 5.725E+05                     |
| 1998 | 1.977E+05            | 3.633E+02          | 5.446E+05                     |
| 1999 | 1.977E+05            | 3.456E+02          | 5.180E+05                     |
| 2000 | 1.977E+05            | 3.287E+02          | 4.927E+05                     |
| 2001 | 1.977E+05            | 3.127E+02          | 4.687E+05                     |
| 2002 | 1.977E+05            | 2.975E+02          | 4.459E+05                     |
| 2003 | 1.977E+05            | 2.829E+02          | 4.241E+05                     |
| 2004 | 1.977E+05            | 2.691E+02          | 4.034E+05                     |
| 2005 | 1.977E+05            | 2.560E+02          | 3.838E+05                     |
| 2006 | 1.977E+05            | 2.435E+02          | 3.650E+05                     |
| 2007 | 1.977E+05            | 2.317E+02          | 3.472E+05                     |
| 2008 | 1.977E+05            | 2.204E+02          | 3.303E+05                     |
| 2009 | 1.977E+05            | 2.096E+02          | 3.142E+05                     |
| 2010 | 1.977E+05            | 1.994E+02          | 2.989E+05                     |
| 2011 | 1.977E+05            | 1.897E+02          | 2.843E+05                     |
| 2012 | 1.977E+05            | 1.804E+02          | 2.704E+05                     |
| 2013 | 1.977E+05            | 1.716E+02          | 2.572E+05                     |
| 2014 | 1.977E+05            | 1.632E+02          | 2.447E+05                     |

Table D-1. Northern Parcel Methane Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2015         | 1.977E+05              | 1.553E+02              | 2.328E+05              |
| 2016         | 1.977E+05              | 1.477E+02              | 2.214E+05              |
| 2017         | 1.977E+05              | 1.405E+02              | 2.106E+05              |
| 2018         | 1.977E+05              | 1.337E+02              | 2.003E+05              |
| 2019         | 1.977E+05              | 1.271E+02              | 1.906E+05              |
| 2020<br>2021 | 1.977E+05<br>1.977E+05 | 1.209E+02<br>1.150E+02 | 1.813E+05<br>1.724E+05 |
| 2021         | 1.977E+05              | 1.094E+02              | 1.640E+05              |
| 2023         | 1.977E+05              | 1.041E+02              | 1.560E+05              |
| 2024         | 1.977E+05              | 9.901E+01              | 1.484E+05              |
| 2025         | 1.977E+05              | 9.419E+01              | 1.412E+05              |
| 2026         | 1.977E+05              | 8.959E+01              | 1.343E+05              |
| 2027         | 1.977E+05              | 8.522E+01              | 1.277E+05              |
| 2028         | 1.977E+05              | 8.107E+01              | 1.215E+05              |
| 2029         | 1.977E+05              | 7.711E+01              | 1.156E+05              |
| 2030         | 1.977E+05              | 7.335E+01              | 1.099E+05              |
| 2031<br>2032 | 1.977E+05<br>1.977E+05 | 6.977E+01<br>6.637E+01 | 1.046E+05<br>9.949E+04 |
| 2032         | 1.977E+05              | 6.313E+01              | 9.463E+04              |
| 2034         | 1.977E+05              | 6.006E+01              | 9.002E+04              |
| 2035         | 1.977E+05              | 5.713E+01              | 8.563E+04              |
| 2036         | 1.977E+05              | 5.434E+01              | 8.145E+04              |
| 2037         | 1.977E+05              | 5.169E+01              | 7.748E+04              |
| 2038         | 1.977E+05              | 4.917E+01              | 7.370E+04              |
| 2039         | 1.977E+05              | 4.677E+01              | 7.011E+04              |
| 2040         | 1.977E+05              | 4.449E+01              | 6.669E+04              |
| 2041         | 1.977E+05              | 4.232E+01              | 6.343E+04              |
| 2042         | 1.977E+05<br>1.977E+05 | 4.026E+01              | 6.034E+04              |
| 2043<br>2044 | 1.977E+05              | 3.829E+01<br>3.643E+01 | 5.740E+04<br>5.460E+04 |
| 2044         | 1.977E+05              | 3.465E+01              | 5.194E+04              |
| 2046         | 1.977E+05              | 3.296E+01              | 4.940E+04              |
| 2047         | 1.977E+05              | 3.135E+01              | 4.699E+04              |
| 2048         | 1.977E+05              | 2.982E+01              | 4.470E+04              |
| 2049         | 1.977E+05              | 2.837E+01              | 4.252E+04              |
| 2050         | 1.977E+05              | 2.698E+01              | 4.045E+04              |
| 2051         | 1.977E+05              | 2.567E+01              | 3.847E+04              |
| 2052         | 1.977E+05<br>1.977E+05 | 2.442E+01<br>2.323E+01 | 3.660E+04              |
| 2053<br>2054 | 1.977E+05              | 2.209E+01              | 3.481E+04<br>3.312E+04 |
| 2055         | 1.977E+05              | 2.102E+01              | 3.150E+04              |
| 2056         | 1.977E+05              | 1.999E+01              | 2.996E+04              |
| 2057         | 1.977E+05              | 1.902E+01              | 2.850E+04              |
| 2058         | 1.977E+05              | 1.809E+01              | 2.711E+04              |
| 2059         | 1.977E+05              | 1.721E+01              | 2.579E+04              |
| 2060         | 1.977E+05              | 1.637E+01              | 2.453E+04              |
| 2061         | 1.977E+05              | 1.557E+01              | 2.334E+04              |
| 2062<br>2063 | 1.977E+05<br>1.977E+05 | 1.481E+01<br>1.409E+01 | 2.220E+04<br>2.112E+04 |
| 2063         | 1.977E+05              | 1.340E+01              | 2.009E+04              |
| 2065         | 1.977E+05              | 1.275E+01              | 1.911E+04              |
| 2066         | 1.977E+05              | 1.212E+01              | 1.817E+04              |
| 2067         | 1.977E+05              | 1.153E+01              | 1.729E+04              |
| 2068         | 1.977E+05              | 1.097E+01              | 1.644E+04              |
| 2069         | 1.977E+05              | 1.044E+01              | 1.564E+04              |
| 2070         | 1.977E+05              | 9.927E+00              | 1.488E+04              |
| 2071         | 1.977E+05              | 9.443E+00              | 1.415E+04              |
| 2072         | 1.977E+05              | 8.982E+00              | 1.346E+04              |
| 2073<br>2074 | 1.977E+05<br>1.977E+05 | 8.544E+00<br>8.128E+00 | 1.281E+04<br>1.218E+04 |
| 2075         | 1.977E+05              | 7.731E+00              | 1.159E+04              |
| 2076         | 1.977E+05              | 7.354E+00              | 1.102E+04              |
| 2077         | 1.977E+05              | 6.995E+00              | 1.049E+04              |
| 2078         | 1.977E+05              | 6.654E+00              | 9.974E+03              |
| 2079         | 1.977E+05              | 6.330E+00              | 9.488E+03              |
| 2080         | 1.977E+05              | 6.021E+00              | 9.025E+03              |
| 2081         | 1.977E+05              | 5.727E+00              | 8.585E+03              |
| 2082         | 1.977E+05              | 5.448E+00              | 8.166E+03              |
| 2083         | 1.977E+05              | 5.182E+00              | 7.768E+03              |
| 2084<br>2085 | 1.977E+05<br>1.977E+05 | 4.930E+00<br>4.689E+00 | 7.389E+03<br>7.029E+03 |
| 2000         | 1.9//6403              | 4.0075700              | 7.02 JETUS             |

Table D-1. Northern Parcel Methane Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2086         | 1.977E+05              | 4.461E+00              | 6.686E+03              |
| 2087         | 1.977E+05              | 4.243E+00              | 6.360E+03              |
| 2088         | 1.977E+05              | 4.036E+00              | 6.050E+03              |
| 2089         | 1.977E+05              | 3.839E+00              | 5.755E+03              |
| 2090<br>2091 | 1.977E+05<br>1.977E+05 | 3.652E+00<br>3.474E+00 | 5.474E+03<br>5.207E+03 |
| 2091         | 1.977E+05              | 3.474E+00<br>3.304E+00 | 4.953E+03              |
| 2092         | 1.977E+05              | 3.143E+00              | 4.712E+03              |
| 2094         | 1.977E+05              | 2.990E+00              | 4.482E+03              |
| 2095         | 1.977E+05              | 2.844E+00              | 4.263E+03              |
| 2096         | 1.977E+05              | 2.705E+00              | 4.055E+03              |
| 2097         | 1.977E+05              | 2.573E+00              | 3.857E+03              |
| 2098         | 1.977E+05              | 2.448E+00              | 3.669E+03              |
| 2099         | 1.977E+05              | 2.329E+00              | 3.490E+03              |
| 2100         | 1.977E+05              | 2.215E+00              | 3.320E+03              |
| 2101         | 1.977E+05<br>1.977E+05 | 2.107E+00<br>2.004E+00 | 3.158E+03<br>3.004E+03 |
| 2102<br>2103 | 1.977E+05<br>1.977E+05 | 1.906E+00              | 2.858E+03              |
| 2103         | 1.977E+05              | 1.814E+00              | 2.718E+03              |
| 2105         | 1.977E+05              | 1.725E+00              | 2.586E+03              |
| 2106         | 1.977E+05              | 1.641E+00              | 2.460E+03              |
| 2107         | 1.977E+05              | 1.561E+00              | 2.340E+03              |
| 2108         | 1.977E+05              | 1.485E+00              | 2.226E+03              |
| 2109         | 1.977E+05              | 1.412E+00              | 2.117E+03              |
| 2110         | 1.977E+05              | 1.343E+00              | 2.014E+03              |
| 2111         | 1.977E+05              | 1.278E+00              | 1.916E+03              |
| 2112         | 1.977E+05              | 1.216E+00              | 1.822E+03              |
| 2113         | 1.977E+05              | 1.156E+00<br>1.100E+00 | 1.733E+03              |
| 2114<br>2115 | 1.977E+05<br>1.977E+05 | 1.100E+00<br>1.046E+00 | 1.649E+03<br>1.568E+03 |
| 2116         | 1.977E+05              | 9.953E-01              | 1.492E+03              |
| 2117         | 1.977E+05              | 9.467E-01              | 1.419E+03              |
| 2118         | 1.977E+05              | 9.006E-01              | 1.350E+03              |
| 2119         | 1.977E+05              | 8.566E-01              | 1.284E+03              |
| 2120         | 1.977E+05              | 8.149E-01              | 1.221E+03              |
| 2121         | 1.977E+05              | 7.751E-01              | 1.162E+03              |
| 2122         | 1.977E+05              | 7.373E-01              | 1.105E+03              |
| 2123         | 1.977E+05              | 7.014E-01              | 1.051E+03              |
| 2124<br>2125 | 1.977E+05<br>1.977E+05 | 6.672E-01<br>6.346E-01 | 1.000E+03<br>9.512E+02 |
| 2126         | 1.977E+05              | 6.037E-01              | 9.048E+02              |
| 2127         | 1.977E+05              | 5.742E-01              | 8.607E+02              |
| 2128         | 1.977E+05              | 5.462E-01              | 8.187E+02              |
| 2129         | 1.977E+05              | 5.196E-01              | 7.788E+02              |
| 2130         | 1.977E+05              | 4.942E-01              | 7.408E+02              |
| 2131         | 1.977E+05              | 4.701E-01              | 7.047E+02              |
| 2132         | 1.977E+05              | 4.472E-01              | 6.703E+02              |
| 2133         | 1.977E+05              | 4.254E-01              | 6.376E+02              |
| 2134         | 1.977E+05              | 4.046E-01              | 6.065E+02              |
| 2135         | 1.977E+05<br>1.977E+05 | 3.849E-01<br>3.661E-01 | 5.770E+02<br>5.488E+02 |
| 2136<br>2137 | 1.977E+05              | 3.483E-01              | 5.220E+02              |
| 2138         | 1.977E+05              | 3.313E-01              | 4.966E+02              |
| 2139         | 1.977E+05              | 3.151E-01              | 4.724E+02              |
| 2140         | 1.977E+05              | 2.998E-01              | 4.493E+02              |
| 2141         | 1.977E+05              | 2.852E-01              | 4.274E+02              |
| 2142         | 1.977E+05              | 2.712E-01              | 4.066E+02              |
| 2143         | 1.977E+05              | 2.580E-01              | 3.867E+02              |
| 2144         | 1.977E+05              | 2.454E-01              | 3.679E+02              |
| 2145         | 1.977E+05              | 2.335E-01              | 3.499E+02              |
| 2146         | 1.977E+05              | 2.221E-01              | 3.329E+02<br>3.166E+02 |
| 2147<br>2148 | 1.977E+05<br>1.977E+05 | 2.112E-01<br>2.009E-01 | 3.166E+02<br>3.012E+02 |
| 2148         | 1.977E+05<br>1.977E+05 | 1.911E-01              | 2.865E+02              |
| 2150         | 1.977E+05              | 1.818E-01              | 2.725E+02              |
| 2151         | 1.977E+05              | 1.730E-01              | 2.592E+02              |
| 2152         | 1.977E+05              | 1.645E-01              | 2.466E+02              |
| 2153         | 1.977E+05              | 1.565E-01              | 2.346E+02              |
| 2154         | 1.977E+05              | 1.489E-01              | 2.231E+02              |
| 2155         | 1.977E+05              | 1.416E-01              | 2.122E+02              |
| 2156         | 1.977E+05              | 1.347E-01              | 2.019E+02              |

Table D-1. Northern Parcel Methane Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg)                                                                                   | (Mg/yr)                | (Cubic m/yr)           |
|------|--------------------------------------------------------------------------------------------------------|------------------------|------------------------|
| 2157 | 1.977E+05                                                                                              | 1.281E-01              | 1.921E+02              |
| 2158 | 1.977E+05                                                                                              | 1.219E-01              | 1.827E+02              |
| 2159 | 1.977E+05                                                                                              | 1.159E-01              | 1.738E+02              |
| 2160 | 1.977E+05                                                                                              | 1.103E-01              | 1.653E+02              |
| 2161 | 1.977E+05                                                                                              | 1.049E-01              | 1.572E+02              |
| 2162 | 1.977E+05                                                                                              | 9.979E-02              | 1.496E+02              |
| 2163 | 1.977E+05                                                                                              | 9.492E-02              | 1.423E+02              |
| 2164 | 1.977E+05                                                                                              | 9.029E-02              | 1.353E+02              |
| 2165 | 1.977E+05                                                                                              | 8.589E-02              | 1.287E+02              |
| 2166 | 1.977E+05                                                                                              | 8.170E-02              | 1.225E+02              |
| 2167 | 1.977E+05                                                                                              | 7.771E-02              | 1.165E+02              |
| 2168 | 1.977E+05                                                                                              | 7.392E-02              | 1.108E+02              |
| 2169 | 1.977E+05                                                                                              | 7.032E-02              | 1.054E+02              |
| 2170 | 1.977E+05                                                                                              | 6.689E-02              | 1.003E+02              |
| 2171 | 1.977E+05                                                                                              | 6.363E-02              | 9.537E+01              |
| 2172 | 1.977E+05                                                                                              | 6.052E-02              | 9.072E+01              |
| 2173 | 1.977E+05                                                                                              | 5.757E-02              | 8.629E+01              |
| 2174 | 1.977E+05                                                                                              | 5.476E-02              | 8.209E+01              |
| 2175 | 1.977E+05                                                                                              | 5.209E-02              | 7.808E+01              |
| 2176 | 1.977E+05                                                                                              | 4.955E-02              | 7.427E+01              |
| 2177 | 1.977E+05                                                                                              | 4.714E-02              | 7.065E+01              |
| 2178 | 1.977E+05                                                                                              | 4.484E-02              | 6.721E+01              |
| 2179 | 1.977E+05                                                                                              | 4.265E-02              | 6.393E+01              |
| 21/9 | 1.977E+05                                                                                              | 4.057E-02              | 6.081E+01              |
| 2181 | 1.977E+05                                                                                              | 3.859E-02              | 5.784E+01              |
| 2182 | 1.977E+05                                                                                              | 3.671E-02              | 5.502E+01              |
| 2183 | 1.977E+05                                                                                              | 3.492E-02              | 5.234E+01              |
| 2184 | 1.977E+05                                                                                              | 3.322E-02              | 4.979E+01              |
| 2185 | 1.977E+05                                                                                              | 3.160E-02              | 4.736E+01              |
| 2186 | 1.977E+05                                                                                              | 3.005E-02              | 4.505E+01              |
| 2187 | 1.977E+05                                                                                              | 2.859E-02              | 4.285E+01              |
| 2188 | 1.977E+05                                                                                              | 2.719E-02              | 4.265E+01<br>4.076E+01 |
| 2189 | 1.977E+05                                                                                              | 2.719E-02<br>2.587E-02 | 3.877E+01              |
| 2199 | 1.977E+05                                                                                              | 2.461E-02              | 3.688E+01              |
| 2191 | 1.977E+05                                                                                              | 2.341E-02              | 3.508E+01              |
| 2191 | 1.977E+05                                                                                              | 2.227E-02              | 3.337E+01              |
| 2192 | 1.977E+05                                                                                              | 2.118E-02              | 3.175E+01              |
| 2193 | 1.977E+05<br>1.977E+05                                                                                 | 2.015E-02              | 3.020E+01              |
| 2194 | 1.977E+05<br>1.977E+05                                                                                 | 1.916E-02              | 2.872E+01              |
| 2195 | 1.977E+05<br>1.977E+05                                                                                 | 1.916E-02<br>1.823E-02 |                        |
| 2196 | 1.977E+05                                                                                              |                        | 2.732E+01<br>2.599E+01 |
|      | 1.977E+05<br>1.977E+05                                                                                 | 1.734E-02              | 2.472E+01              |
| 2198 | 시급하다 하다 하나 나 아들이 살아가지 않는데 그 때문에 가지 않는데 하다 하나 하나 하나 하나 하나 하나 하는데 하나 | 1.649E-02              |                        |
| 2199 | 1.977E+05                                                                                              | 1.569E-02              | 2.352E+01              |
| 2200 | 1.977E+05                                                                                              | 1.492E-02              | 2.237E+01              |
| 2201 | 1.977E+05                                                                                              | 1.420E-02              | 2.128E+01              |
| 2202 | 1.977E+05                                                                                              | 1.350E-02              | 2.024E+01              |
| 2203 | 1.977E+05                                                                                              | 1.285E-02              | 1.925E+01              |

**Table D-2.** Northern Parcel NMOC Emisson Rate from Year 1968 to 2203.

\_\_\_\_\_\_

### Model Parameters

Lo: 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*
k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\*
NMOC: 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*

Methane : 56.0000 % volume

Carbon Dioxide : 44.0000 % volume

#### Landfill Parameters

\_\_\_\_\_\_

Landfill type : Co-Disposal

Year Opened: 1967 Current Year: 2003 Closure Year: 2004

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 13179.47 Mg/year

Walta Barrilla

| Model | Results |
|-------|---------|
|       |         |

|      |                      | NMOC Em   | ission Rate  |  |  |
|------|----------------------|-----------|--------------|--|--|
| Year | Refuse In Place (Mg) | (Mg/yr)   | (Cubic m/yr) |  |  |
| 1968 | 1.318E+04            | 3.227E+00 | 9.002E+02    |  |  |
| 1969 | 2.636E+04            | 6.296E+00 | 1.757E+03    |  |  |
| 1970 | 3.954E+04            | 9.216E+00 | 2.571E+03    |  |  |
| 1971 | 5.272E+04            | 1.199E+01 | 3.346E+03    |  |  |
| 1972 | 6.590E+04            | 1.463E+01 | 4.083E+03    |  |  |
| 1973 | 7.908E+04            | 1.715E+01 | 4.784E+03    |  |  |
| 1974 | 9.226E+04            | 1.954E+01 | 5.451E+03    |  |  |
| 1975 | 1.054E+05            | 2.181E+01 | 6.085E+03    |  |  |
| 1976 | 1.186E+05            | 2.398E+01 | 6.689E+03    |  |  |
| 1977 | 1.318E+05            | 2.603E+01 | 7.263E+03    |  |  |
| 1978 | 1.450E+05            | 2.799E+01 | 7.809E+03    |  |  |
| 1979 | 1.582E+05            | 2.985E+01 | 8.328E+03    |  |  |
| 1980 | 1.713E+05            | 3.162E+01 | 8.822E+03    |  |  |
| 1981 | 1.845E+05            | 3.331E+01 | 9.292E+03    |  |  |
| 1982 | 1.977E+05            | 3.491E+01 | 9.739E+03    |  |  |
| 1983 | 1.977E+05            | 3.321E+01 | 9.264E+03    |  |  |
| 1984 | 1.977E+05            | 3.159E+01 | 8.812E+03    |  |  |
| 1985 | 1.977E+05            | 3.005E+01 | 8.382E+03    |  |  |
| 1986 | 1.977E+05            | 2.858E+01 | 7.974E+03    |  |  |
| 1987 | 1.977E+05            | 2.719E+01 | 7.585E+03    |  |  |
| 1988 | 1.977E+05            | 2.586E+01 | 7.215E+03    |  |  |
| 1989 | 1.977E+05            | 2.460E+01 | 6.863E+03    |  |  |
| 1990 | 1.977E+05            | 2.340E+01 | 6.528E+03    |  |  |
| 1991 | 1.977E+05            | 2.226E+01 | 6.210E+03    |  |  |
| 1992 | 1.977E+05            | 2.117E+01 | 5.907E+03    |  |  |
| 1993 | 1.977E+05            | 2.014E+01 | 5.619E+03    |  |  |
| 1994 | 1.977E+05            | 1.916E+01 | 5.345E+03    |  |  |
| 1995 | 1.977E+05            | 1.822E+01 | 5.084E+03    |  |  |
| 1996 | 1.977E+05            | 1.734E+01 | 4.836E+03    |  |  |
| 1997 | 1.977E+05            | 1.649E+01 | 4.600E+03    |  |  |
| 1998 | 1.977E+05            | 1.569E+01 | 4.376E+03    |  |  |
| 1999 | 1.977E+05            | 1.492E+01 | 4.163E+03    |  |  |
| 2000 | 1.977E+05            | 1.419E+01 | 3.960E+03    |  |  |
| 2001 | 1.977E+05            | 1.350E+01 | 3.766E+03    |  |  |
| 2002 | 1.977E+05            | 1.284E+01 | 3.583E+03    |  |  |
| 2003 | 1.977E+05            | 1.222E+01 | 3.408E+03    |  |  |
| 2004 | 1.977E+05            | 1.162E+01 | 3.242E+03    |  |  |
| 2005 | 1.977E+05            | 1.105E+01 | 3.084E+03    |  |  |
| 2006 | 1.977E+05            | 1.051E+01 | 2.933E+03    |  |  |
| 2007 | 1.977E+05            | 1.000E+01 | 2.790E+03    |  |  |
| 2008 | 1.977E+05            | 9.514E+00 | 2.654E+03    |  |  |
| 2009 | 1.977E+05            | 9.050E+00 | 2.525E+03    |  |  |
| 2010 | 1.977E+05            | 8.609E+00 | 2.402E+03    |  |  |
| 2011 | 1.977E+05            | 8.189E+00 | 2.285E+03    |  |  |
| 2012 | 1.977E+05            | 7.789E+00 | 2.173E+03    |  |  |
| 2013 | 1.977E+05            | 7.409E+00 | 2.067E+03    |  |  |
| 2014 | 1.977E+05            | 7.048E+00 | 1.966E+03    |  |  |
|      | 1.57.11.00           | 7.0401.00 | 1.5001.00    |  |  |

Table D-2. Northern Parcel NMOC Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2015         | 1.977E+05              | 6.704E+00              | 1.870E+03              |
| 2016         | 1.977E+05              | 6.377E+00              | 1.779E+03              |
| 2017         | 1.977E+05              | 6.066E+00              | 1.692E+03              |
| 2018         | 1.977E+05              | 5.770E+00              | 1.610E+03              |
| 2019         | 1.977E+05              | 5.489E+00              | 1.531E+03              |
| 2020<br>2021 | 1.977E+05<br>1.977E+05 | 5.221E+00<br>4.967E+00 | 1.457E+03<br>1.386E+03 |
| 2021         | 1.977E+05              | 4.724E+00              | 1.318E+03              |
| 2023         | 1.977E+05              | 4.494E+00              | 1.254E+03              |
| 2024         | 1.977E+05              | 4.275E+00              | 1.193E+03              |
| 2025         | 1.977E+05              | 4.066E+00              | 1.134E+03              |
| 2026         | 1.977E+05              | 3.868E+00              | 1.079E+03              |
| 2027         | 1.977E+05              | 3.679E+00              | 1.026E+03              |
| 2028<br>2029 | 1.977E+05<br>1.977E+05 | 3.500E+00<br>3.329E+00 | 9.764E+02<br>9.288E+02 |
| 2030         | 1.977E+05              | 3.167E+00              | 8.835E+02              |
| 2031         | 1.977E+05              | 3.012E+00              | 8.404E+02              |
| 2032         | 1.977E+05              | 2.866E+00              | 7.994E+02              |
| 2033         | 1.977E+05              | 2.726E+00              | 7.604E+02              |
| 2034         | 1.977E+05              | 2.593E+00              | 7.234E+02              |
| 2035         | 1.977E+05              | 2.466E+00              | 6.881E+02              |
| 2036<br>2037 | 1.977E+05<br>1.977E+05 | 2.346E+00<br>2.232E+00 | 6.545E+02<br>6.226E+02 |
| 2037         | 1.977E+05              | 2.232E+00              | 5.922E+02              |
| 2039         | 1.977E+05              | 2.019E+00              | 5.634E+02              |
| 2040         | 1.977E+05              | 1.921E+00              | 5.359E+02              |
| 2041         | 1.977E+05              | 1.827E+00              | 5.097E+02              |
| 2042         | 1.977E+05              | 1.738E+00              | 4.849E+02              |
| 2043         | 1.977E+05              | 1.653E+00              | 4.612E+02              |
| 2044         | 1.977E+05              | 1.573E+00              | 4.387E+02              |
| 2045<br>2046 | 1.977E+05<br>1.977E+05 | 1.496E+00<br>1.423E+00 | 4.173E+02<br>3.970E+02 |
| 2047         | 1.977E+05              | 1.354E+00              | 3.776E+02              |
| 2048         | 1.977E+05              | 1.288E+00              | 3.592E+02              |
| 2049         | 1.977E+05              | 1.225E+00              | 3.417E+02              |
| 2050         | 1.977E+05              | 1.165E+00              | 3.250E+02              |
| 2051         | 1.977E+05              | 1.108E+00              | 3.092E+02              |
| 2052         | 1.977E+05              | 1.054E+00              | 2.941E+02              |
| 2053<br>2054 | 1.977E+05<br>1.977E+05 | 1.003E+00<br>9.539E-01 | 2.798E+02<br>2.661E+02 |
| 2055         | 1.977E+05              | 9.073E-01              | 2.531E+02              |
| 2056         | 1.977E+05              | 8.631E-01              | 2.408E+02              |
| 2057         | 1.977E+05              | 8.210E-01              | 2.290E+02              |
| 2058         | 1.977E+05              | 7.810E-01              | 2.179E+02              |
| 2059         | 1.977E+05              | 7.429E-01              | 2.072E+02              |
| 2060<br>2061 | 1.977E+05<br>1.977E+05 | 7.066E-01<br>6.722E-01 | 1.971E+02<br>1.875E+02 |
| 2062         | 1.977E+05              | 6.394E-01              | 1.784E+02              |
| 2063         | 1.977E+05              | 6.082E-01              | 1.697E+02              |
| 2064         | 1.977E+05              | 5.785E-01              | 1.614E+02              |
| 2065         | 1.977E+05              | 5.503E-01              | 1.535E+02              |
| 2066         | 1.977E+05              | 5.235E-01              | 1.460E+02              |
| 2067         | 1.977E+05              | 4.980E-01              | 1.389E+02              |
| 2068<br>2069 | 1.977E+05<br>1.977E+05 | 4.737E-01<br>4.506E-01 | 1.321E+02<br>1.257E+02 |
| 2070         | 1.977E+05              | 4.286E-01              | 1.196E+02              |
| 2071         | 1.977E+05              | 4.077E-01              | 1.137E+02              |
| 2072         | 1.977E+05              | 3.878E-01              | 1.082E+02              |
| 2073         | 1.977E+05              | 3.689E-01              | 1.029E+02              |
| 2074         | 1.977E+05              | 3.509E-01              | 9.790E+01              |
| 2075         | 1.977E+05              | 3.338E-01              | 9.312E+01              |
| 2076         | 1.977E+05<br>1.977E+05 | 3.175E-01<br>3.020E-01 | 8.858E+01              |
| 2077<br>2078 | 1.977E+05<br>1.977E+05 | 2.873E-01              | 8.426E+01<br>8.015E+01 |
| 2079         | 1.977E+05              | 2.733E-01              | 7.624E+01              |
| 2080         | 1.977E+05              | 2.600E-01              | 7.252E+01              |
| 2081         | 1.977E+05              | 2.473E-01              | 6.899E+01              |
| 2082         | 1.977E+05              | 2.352E-01              | 6.562E+01              |
| 2083         | 1.977E+05              | 2.237E-01              | 6.242E+01              |
| 2084<br>2085 | 1.977E+05<br>1.977E+05 | 2.128E-01<br>2.025E-01 | 5.938E+01<br>5.648E+01 |
| 2003         | 1.9//6+03              | Z.025E-01              | J.040ETUI              |

Table D-2. Northern Parcel NMOC Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |  |
|--------------|------------------------|------------------------|------------------------|--|
| 2086         | 1.977E+05              | 1.926E-01              | 5.373E+01              |  |
| 2087         | 1.977E+05              | 1.832E-01              | 5.111E+01              |  |
| 2088         | 1.977E+05              | 1.743E-01              | 4.861E+01              |  |
| 2089         | 1.977E+05              | 1.658E-01              | 4.624E+01              |  |
| 2090         | 1.977E+05              | 1.577E-01              | 4.399E+01              |  |
| 2091<br>2092 | 1.977E+05<br>1.977E+05 | 1.500E-01<br>1.427E-01 | 4.184E+01<br>3.980E+01 |  |
| 2092         | 1.977E+05<br>1.977E+05 | 1.42/E-01<br>1.357E-01 | 3.786E+01              |  |
| 2093         | 1.977E+05              | 1.291E-01              | 3.601E+01              |  |
| 2095         | 1.977E+05              | 1.228E-01              | 3.426E+01              |  |
| 2096         | 1.977E+05              | 1.168E-01              | 3.259E+01              |  |
| 2097         | 1.977E+05              | 1.111E-01              | 3.100E+01              |  |
| 2098         | 1.977E+05              | 1.057E-01              | 2.949E+01              |  |
| 2099         | 1.977E+05              | 1.005E-01              | 2.805E+01              |  |
| 2100         | 1.977E+05              | 9.563E-02              | 2.668E+01              |  |
| 2101<br>2102 | 1.977E+05<br>1.977E+05 | 9.097E-02<br>8.653E-02 | 2.538E+01<br>2.414E+01 |  |
| 2102         | 1.977E+05              | 8.231E-02              | 2.296E+01              |  |
| 2104         | 1.977E+05              | 7.830E-02              | 2.184E+01              |  |
| 2105         | 1.977E+05              | 7.448E-02              | 2.078E+01              |  |
| 2106         | 1.977E+05              | 7.085E-02              | 1.976E+01              |  |
| 2107         | 1.977E+05              | 6.739E-02              | 1.880E+01              |  |
| 2108         | 1.977E+05              | 6.410E-02              | 1.788E+01              |  |
| 2109         | 1.977E+05              | 6.098E-02              | 1.701E+01              |  |
| 2110         | 1.977E+05              | 5.800E-02              | 1.618E+01              |  |
| 2111<br>2112 | 1.977E+05<br>1.977E+05 | 5.518E-02<br>5.248E-02 | 1.539E+01<br>1.464E+01 |  |
| 2112         | 1.977E+05              | 4.992E-02              | 1.464E+01<br>1.393E+01 |  |
| 2114         | 1.977E+05              | 4.749E-02              | 1.325E+01              |  |
| 2115         | 1.977E+05              | 4.517E-02              | 1.260E+01              |  |
| 2116         | 1.977E+05              | 4.297E-02              | 1.199E+01              |  |
| 2117         | 1.977E+05              | 4.087E-02              | 1.140E+01              |  |
| 2118         | 1.977E+05              | 3.888E-02              | 1.085E+01              |  |
| 2119         | 1.977E+05              | 3.699E-02              | 1.032E+01              |  |
| 2120         | 1.977E+05              | 3.518E-02              | 9.815E+00              |  |
| 2121<br>2122 | 1.977E+05<br>1.977E+05 | 3.347E-02<br>3.183E-02 | 9.336E+00<br>8.881E+00 |  |
| 2123         | 1.977E+05              | 3.028E-02              | 8.448E+00              |  |
| 2124         | 1.977E+05              | 2.880E-02              | 8.036E+00              |  |
| 2125         | 1.977E+05              | 2.740E-02              | 7.644E+00              |  |
| 2126         | 1.977E+05              | 2.606E-02              | 7.271E+00              |  |
| 2127         | 1.977E+05              | 2.479E-02              | 6.916E+00              |  |
| 2128         | 1.977E+05              | 2.358E-02              | 6.579E+00              |  |
| 2129         | 1.977E+05              | 2.243E-02              | 6.258E+00              |  |
| 2130<br>2131 | 1.977E+05<br>1.977E+05 | 2.134E-02<br>2.030E-02 | 5.953E+00<br>5.663E+00 |  |
| 2132         | 1.977E+05              | 1.931E-02              | 5.387E+00              |  |
| 2133         | 1.977E+05              | 1.837E-02              | 5.124E+00              |  |
| 2134         | 1.977E+05              | 1.747E-02              | 4.874E+00              |  |
| 2135         | 1.977E+05              | 1.662E-02              | 4.636E+00              |  |
| 2136         | 1.977E+05              | 1.581E-02              | 4.410E+00              |  |
| 2137         | 1.977E+05              | 1.504E-02              | 4.195E+00              |  |
| 2138         | 1.977E+05              | 1.430E-02              | 3.990E+00              |  |
| 2139         | 1.977E+05              | 1.361E-02<br>1.294E-02 | 3.796E+00<br>3.611E+00 |  |
| 2140<br>2141 | 1.977E+05<br>1.977E+05 | 1.231E-02              | 3.435E+00              |  |
| 2142         | 1.977E+05              | 1.171E-02              | 3.267E+00              |  |
| 2143         | 1.977E+05              | 1.114E-02              | 3.108E+00              |  |
| 2144         | 1.977E+05              | 1.060E-02              | 2.956E+00              |  |
| 2145         | 1.977E+05              | 1.008E-02              | 2.812E+00              |  |
| 2146         | 1.977E+05              | 9.588E-03              | 2.675E+00              |  |
| 2147         | 1.977E+05              | 9.120E-03              | 2.544E+00              |  |
| 2148         | 1.977E+05              | 8.676E-03              | 2.420E+00              |  |
| 2149         | 1.977E+05              | 8.252E-03              | 2.302E+00              |  |
| 2150         | 1.977E+05              | 7.850E-03              | 2.190E+00              |  |
| 2151<br>2152 | 1.977E+05<br>1.977E+05 | 7.467E-03<br>7.103E-03 | 2.083E+00<br>1.982E+00 |  |
| 2152         | 1.977E+05              | 6.757E-03              | 1.885E+00              |  |
| 2154         | 1.977E+05              | 6.427E-03              | 1.793E+00              |  |
| 2155         | 1.977E+05              | 6.114E-03              | 1.706E+00              |  |
| 2156         | 1.977E+05              | 5.815E-03              | 1.622E+00              |  |
|              |                        |                        |                        |  |

Table D-2. Northern Parcel NMOC Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)   | (Cubic m/yr) |  |
|------|----------------------|-----------|--------------|--|
| 2157 | 1.977E+05            | 5.532E-03 | 1.543E+00    |  |
| 2158 | 1.977E+05            | 5.262E-03 | 1.468E+00    |  |
| 2159 | 1.977E+05            | 5.005E-03 | 1.396E+00    |  |
| 2160 | 1.977E+05            | 4.761E-03 | 1.328E+00    |  |
| 2161 | 1.977E+05            | 4.529E-03 | 1.264E+00    |  |
| 2162 | 1.977E+05            | 4.308E-03 | 1.202E+00    |  |
| 2163 | 1.977E+05            | 4.098E-03 | 1.143E+00    |  |
| 2164 | 1.977E+05            | 3.898E-03 | 1.088E+00    |  |
| 2165 | 1.977E+05            | 3.708E-03 | 1.034E+00    |  |
| 2166 | 1.977E+05            | 3.527E-03 | 9.840E-01    |  |
| 2167 | 1.977E+05            | 3.355E-03 | 9.360E-01    |  |
| 2168 | 1.977E+05            | 3.192E-03 | 8.904E-01    |  |
| 2169 | 1.977E+05            | 3.036E-03 | 8.470E-01    |  |
| 2170 | 1.977E+05            | 2.888E-03 | 8.057E-01    |  |
| 2171 | 1.977E+05            | 2.747E-03 | 7.664E-01    |  |
| 2172 | 1.977E+05            | 2.613E-03 | 7.290E-01    |  |
| 2173 | 1.977E+05            | 2.486E-03 | 6.934E-01    |  |
| 2174 | 1.977E+05            | 2.364E-03 | 6.596E-01    |  |
| 2175 | 1.977E+05            | 2.249E-03 | 6.274E-01    |  |
| 2176 | 1.977E+05            | 2.139E-03 | 5.968E-01    |  |
| 2177 | 1.977E+05            | 2.035E-03 | 5.677E-01    |  |
| 2178 | 1.977E+05            | 1.936E-03 | 5.400E-01    |  |
| 2179 | 1.977E+05            | 1.841E-03 | 5.137E-01    |  |
| 2180 | 1.977E+05            | 1.752E-03 | 4.887E-01    |  |
| 2181 | 1.977E+05            | 1.666E-03 | 4.648E-01    |  |
| 2182 | 1.977E+05            | 1.585E-03 | 4.422E-01    |  |
| 2183 | 1.977E+05            | 1.508E-03 | 4.206E-01    |  |
| 2184 | 1.977E+05            | 1.434E-03 | 4.001E-01    |  |
| 2185 | 1.977E+05            | 1.364E-03 | 3.806E-01    |  |
| 2186 | 1.977E+05            | 1.298E-03 | 3.620E-01    |  |
| 2187 | 1.977E+05            | 1.234E-03 | 3.443E-01    |  |
| 2188 | 1.977E+05            | 1.174E-03 | 3.276E-01    |  |
| 2189 | 1.977E+05            | 1.117E-03 | 3.116E-01    |  |
| 2190 | 1.977E+05            | 1.062E-03 | 2.964E-01    |  |
| 2191 | 1.977E+05            | 1.011E-03 | 2.819E-01    |  |
| 2192 | 1.977E+05            | 9.613E-04 | 2.682E-01    |  |
| 2193 | 1.977E+05            | 9.144E-04 | 2.551E-01    |  |
| 2194 | 1.977E+05            | 8.698E-04 | 2.427E-01    |  |
| 2195 | 1.977E+05            | 8.274E-04 | 2.308E-01    |  |
| 2196 | 1.977E+05            | 7.870E-04 | 2.196E-01    |  |
| 2197 | 1.977E+05            | 7.486E-04 | 2.089E-01    |  |
| 2198 | 1.977E+05            | 7.121E-04 | 1.987E-01    |  |
| 2199 | 1.977E+05            | 6.774E-04 | 1.890E-01    |  |
| 2200 | 1.977E+05            | 6.444E-04 | 1.798E-01    |  |
| 2201 | 1.977E+05            | 6.129E-04 | 1.710E-01    |  |
| 2202 | 1.977E+05            | 5.830E-04 | 1.627E-01    |  |
| 2203 | 1.977E+05            | 5.546E-04 | 1.547E-01    |  |
|      |                      |           |              |  |

Table D-3. Northern Parcel 1,1,1,-Trochloroethane Emisson Rate from Year 1968 to 2203.

Model Parameters

\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\*

NMOC: 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane : 56.0000 % volume

Carbon Dioxide : 44.0000 % volume

Air Pollutant : 1,1,1-Trichloroethane (HAP) Molecular Wt = 133.41 Concentration = 0.580000 ppmV

#### Landfill Parameters

\_\_\_\_\_\_

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 13179.47 Mg/year

|      |                      | Model Results                    |                 |                  |      |  |
|------|----------------------|----------------------------------|-----------------|------------------|------|--|
| Year | Refuse In Place (Mg) | 1,1,1-Trichloroethane<br>(Mg/yr) | (HAP)<br>(Cubic |                  | Rate |  |
| 1968 | 1.318E+04            | 6.438E-04                        | 1.16            | =======<br>0E-01 |      |  |

| Year | Refuse In Place (Mg) | (Mg/yr)                | (Cubic m/yr) | .00000 |
|------|----------------------|------------------------|--------------|--------|
| 1968 | 1.318E+04            | 6.438E-04              | 1.160E-01    |        |
| 1969 | 2.636E+04            | 1.256E-03              | 2.264E-01    |        |
| 1970 | 3.954E+04            | 1.839E-03              | 3.314E-01    |        |
| 1971 | 5.272E+04            | 2.393E-03              | 4.312E-01    |        |
| 1972 | 6.590E+04            | 2.920E-03              | 5,262E-01    |        |
| 1973 | 7.908E+04            | 3.421E-03              | 6.166E-01    |        |
| 1974 | 9.226E+04            | 3.898E-03              | 7.026E-01    |        |
| 1975 | 1.054E+05            | 4.352E-03              | 7.843E-01    |        |
| 1976 | 1.186E+05            | 4.784E-03              | 8.621E-01    |        |
| 1977 | 1.318E+05            | 5.194E-03              | 9.361E-01    |        |
| 1978 | 1.450E+05            | 5.585E-03              | 1.006E+00    |        |
| 1979 | 1.582E+05            | 5.956E-03              | 1.073E+00    |        |
| 1980 | 1.713E+05            | 6.309E-03              | 1.137E+00    |        |
| 1981 | 1.845E+05            | 6.646E-03              | 1.198E+00    |        |
| 1982 | 1.977E+05            | 6.965E-03              | 1.255E+00    |        |
| 1983 | 1.977E+05            | 6.626E-03              | 1.194E+00    |        |
| 1984 | 1.977E+05            | 6.302E-03              | 1.136E+00    |        |
| 1985 | 1.977E+05            | 5.995E-03              | 1.080E+00    |        |
| 1986 | 1.977E+05            | 5.703E-03              | 1.028E+00    |        |
| 1987 | 1.977E+05            | 5.425E-03              | 9.776E-01    |        |
| 1988 | 1.977E+05            | 5.160E-03              | 9.299E-01    |        |
| 1989 | 1.977E+05            | 4.908E-03              | 8.846E-01    |        |
| 1990 | 1.977E+05            | 4.669E-03              | 8.414E-01    |        |
| 1991 | 1.977E+05            | 4.441E-03              | 8.004E-01    |        |
| 1992 | 1.977E+05            | 4.225E-03              | 7.613E-01    |        |
| 1993 | 1.977E+05            | 4.019E-03              | 7.242E-01    |        |
| 1994 | 1.977E+05            | 3.823E-03              | 6.889E-01    |        |
| 1995 | 1.977E+05            | 3.636E-03              | 6.553E-01    |        |
| 1996 | 1.977E+05            | 3.459E-03              | 6.233E-01    |        |
| 1996 |                      | 3.459E-03<br>3.290E-03 |              |        |
| 1997 | 1.977E+05            |                        | 5.929E-01    |        |
|      | 1.977E+05            | 3.130E-03              | 5.640E-01    |        |
| 1999 | 1.977E+05            | 2.977E-03              | 5.365E-01    |        |
| 2000 | 1.977E+05            | 2.832E-03              | 5.103E-01    |        |
| 2001 | 1.977E+05            | 2.694E-03              | 4.855E-01    |        |
| 2002 | 1.977E+05            | 2.562E-03              | 4.618E-01    |        |
| 2003 | 1.977E+05            | 2.437E-03              | 4.393E-01    |        |
| 2004 | 1.977E+05            | 2.319E-03              | 4.178E-01    |        |
| 2005 | 1.977E+05            | 2.205E-03              | 3.975E-01    |        |
| 2006 | 1.977E+05            | 2.098E-03              | 3.781E-01    |        |
| 2007 | 1.977E+05            | 1.996E-03              | 3.596E-01    |        |
| 2008 | 1.977E+05            | 1.898E-03              | 3.421E-01    |        |
| 2009 | 1.977E+05            | 1.806E-03              | 3.254E-01    |        |
| 2010 | 1.977E+05            | 1.718E-03              | 3.095E-01    |        |
| 2011 | 1.977E+05            | 1.634E-03              | 2.944E-01    |        |
| 2012 | 1.977E+05            | 1.554E-03              | 2.801E-01    |        |

**Table D-3.** Northern Parcel 1,1,1,-Trochloroethane Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 1.478E-03              | 2.664E-01              |
| 2014         | 1.977E+05              | 1.406E-03              | 2.534E-01              |
| 2015         | 1.977E+05              | 1.338E-03              | 2.411E-01              |
| 2016         | 1.977E+05              | 1.272E-03              | 2.293E-01              |
| 2017<br>2018 | 1.977E+05<br>1.977E+05 | 1.210E-03<br>1.151E-03 | 2.181E-01<br>2.075E-01 |
| 2019         | 1.977E+05              | 1.095E-03              | 1.974E-01              |
| 2020         | 1.977E+05              | 1.042E-03              | 1.877E-01              |
| 2021         | 1.977E+05              | 9.910E-04              | 1.786E-01              |
| 2022         | 1.977E+05              | 9.427E-04              | 1.699E-01              |
| 2023         | 1.977E+05              | 8.967E-04              | 1.616E-01              |
| 2024         | 1.977E+05              | 8.529E-04              | 1.537E-01              |
| 2025         | 1.977E+05              | 8.113E-04              | 1.462E-01              |
| 2026         | 1.977E+05              | 7.718E-04              | 1.391E-01              |
| 2027         | 1.977E+05              | 7.341E-04              | 1.323E-01              |
| 2028         | 1.977E+05              | 6.983E-04              | 1.259E-01              |
| 2029<br>2030 | 1.977E+05<br>1.977E+05 | 6.643E-04<br>6.319E-04 | 1.197E-01<br>1.139E-01 |
| 2030         | 1.977E+05              | 6.011E-04              | 1.083E-01              |
| 2032         | 1.977E+05              | 5.717E-04              | 1.030E-01              |
| 2033         | 1.977E+05              | 5.439E-04              | 9.801E-02              |
| 2034         | 1.977E+05              | 5.173E-04              | 9.323E-02              |
| 2035         | 1.977E+05              | 4.921E-04              | 8.869E-02              |
| 2036         | 1.977E+05              | 4.681E-04              | 8.436E-02              |
| 2037         | 1.977E+05              | 4.453E-04              | 8.025E-02              |
| 2038         | 1.977E+05              | 4.236E-04              | 7.633E-02              |
| 2039         | 1.977E+05              | 4.029E-04              | 7.261E-02              |
| 2040         | 1.977E+05              | 3.833E-04              | 6.907E-02              |
| 2041         | 1.977E+05              | 3.646E-04              | 6.570E-02              |
| 2042         | 1.977E+05              | 3.468E-04              | 6.250E-02              |
| 2043         | 1.977E+05<br>1.977E+05 | 3.299E-04<br>3.138E-04 | 5.945E-02<br>5.655E-02 |
| 2045         | 1.977E+05              | 2.985E-04              | 5.379E-02              |
| 2046         | 1.977E+05              | 2.839E-04              | 5.117E-02              |
| 2047         | 1.977E+05              | 2.701E-04              | 4.867E-02              |
| 2048         | 1.977E+05              | 2.569E-04              | 4.630E-02              |
| 2049         | 1.977E+05              | 2.444E-04              | 4.404E-02              |
| 2050         | 1.977E+05              | 2.325E-04              | 4.189E-02              |
| 2051         | 1.977E+05              | 2.211E-04              | 3.985E-02              |
| 2052         | 1.977E+05              | 2.103E-04              | 3.791E-02              |
| 2053         | 1.977E+05              | 2.001E-04              | 3.606E-02              |
| 2054         | 1.977E+05<br>1.977E+05 | 1.903E-04<br>1.810E-04 | 3.430E-02<br>3.263E-02 |
| 2056         | 1.977E+05              | 1.722E-04              | 3.103E-02              |
| 2057         | 1.977E+05              | 1.638E-04              | 2.952E-02              |
| 2058         | 1.977E+05              | 1.558E-04              | 2.808E-02              |
| 2059         | 1.977E+05              | 1.482E-04              | 2.671E-02              |
| 2060         | 1.977E+05              | 1.410E-04              | 2.541E-02              |
| 2061         | 1.977E+05              | 1.341E-04              | 2.417E-02              |
| 2062         | 1.977E+05              | 1.276E-04              | 2.299E-02              |
| 2063         | 1.977E+05              | 1.214E-04              | 2.187E-02              |
| 2064         | 1.977E+05              | 1.154E-04              | 2.080E-02              |
| 2065         | 1.977E+05<br>1.977E+05 | 1.098E-04<br>1.044E-04 | 1.979E-02              |
| 2066<br>2067 | 1.977E+05              | 9.935E-05              | 1.882E-02<br>1.791E-02 |
| 2068         | 1.977E+05              | 9.451E-05              | 1.703E-02              |
| 2069         | 1.977E+05              | 8.990E-05              | 1.620E-02              |
| 2070         | 1.977E+05              | 8.552E-05              | 1.541E-02              |
| 2071         | 1.977E+05              | 8.134E-05              | 1.466E-02              |
| 2072         | 1.977E+05              | 7.738E-05              | 1.394E-02              |
| 2073         | 1.977E+05              | 7.360E-05              | 1.326E-02              |
| 2074         | 1.977E+05              | 7.001E-05              | 1.262E-02              |
| 2075         | 1.977E+05              | 6.660E-05              | 1.200E-02              |
| 2076         | 1.977E+05              | 6.335E-05              | 1.142E-02              |
| 2077         | 1.977E+05              | 6.026E-05              | 1.086E-02              |
| 2078<br>2079 | 1.977E+05<br>1.977E+05 | 5.732E-05<br>5.453E-05 | 1.033E-02<br>9.827E-03 |
| 2079         | 1.977E+05              | 5.187E-05              | 9.827E-03<br>9.347E-03 |
| 2081         | 1.977E+05              | 4.934E-05              | 8.892E-03              |
| 2082         | 1.977E+05              | 4.693E-05              | 8.458E-03              |
| 2083         | 1.977E+05              | 4.464E-05              | 8.045E-03              |
|              |                        |                        |                        |

**Table D-3.** Northern Parcel 1,1,1,-Trochloroethane Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (M     | g) (Mg/yr)             | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 4.247E-05              | 7.653E-03              |
| 2085         | 1.977E+05              | 4.039E-05              | 7.280E-03              |
| 2086         | 1.977E+05              | 3.842E-05              | 6.925E-03              |
| 2087         | 1.977E+05              | 3.655E-05              | 6.587E-03              |
| 2088         | 1.977E+05              | 3.477E-05              | 6.266E-03              |
| 2089<br>2090 | 1.977E+05<br>1.977E+05 | 3.307E-05<br>3.146E-05 | 5.960E-03<br>5.669E-03 |
| 2090         | 1.977E+05              | 2.993E-05              | 5.899E-03              |
| 2092         | 1.977E+05              | 2.847E-05              | 5.130E-03              |
| 2093         | 1.977E+05              | 2.708E-05              | 4.880E-03              |
| 2094         | 1.977E+05              | 2.576E-05              | 4.642E-03              |
| 2095         | 1.977E+05              | 2.450E-05              | 4.415E-03              |
| 2096         | 1.977E+05              | 2.331E-05              | 4.200E-03              |
| 2097         | 1.977E+05              | 2.217E-05              | 3.995E-03              |
| 2098         | 1.977E+05              | 2.109E-05              | 3.800E-03              |
| 2099         | 1.977E+05              | 2.006E-05              | 3.615E-03              |
| 2100<br>2101 | 1.977E+05<br>1.977E+05 | 1.908E-05<br>1.815E-05 | 3.439E-03<br>3.271E-03 |
| 2102         | 1.977E+05              | 1.727E-05              | 3.111E-03              |
| 2103         | 1.977E+05              | 1.642E-05              | 2.960E-03              |
| 2104         | 1.977E+05              | 1.562E-05              | 2.815E-03              |
| 2105         | 1.977E+05              | 1.486E-05              | 2.678E-03              |
| 2106         | 1.977E+05              | 1.414E-05              | 2.547E-03              |
| 2107         | 1.977E+05              | 1.345E-05              | 2.423E-03              |
| 2108         | 1.977E+05              | 1.279E-05              | 2.305E-03              |
| 2109         | 1.977E+05              | 1.217E-05              | 2.193E-03              |
| 2110         | 1.977E+05              | 1.157E-05              | 2.086E-03              |
| 2111<br>2112 | 1.977E+05<br>1.977E+05 | 1.101E-05<br>1.047E-05 | 1.984E-03<br>1.887E-03 |
| 2112         | 1.977E+05              | 9.961E-06              | 1.795E-03              |
| 2114         | 1.977E+05              | 9.475E-06              | 1.708E-03              |
| 2115         | 1.977E+05              | 9.013E-06              | 1.624E-03              |
| 2116         | 1.977E+05              | 8.574E-06              | 1.545E-03              |
| 2117         | 1.977E+05              | 8.156E-06              | 1.470E-03              |
| 2118         | 1.977E+05              | 7.758E-06              | 1.398E-03              |
| 2119         | 1.977E+05              | 7.379E-06              | 1.330E-03              |
| 2120         | 1.977E+05              | 7.020E-06              | 1.265E-03              |
| 2121         | 1.977E+05              | 6.677E-06              | 1.203E-03              |
| 2122<br>2123 | 1.977E+05<br>1.977E+05 | 6.352E-06<br>6.042E-06 | 1.145E-03<br>1.089E-03 |
| 2123         | 1.977E+05              | 5.747E-06              | 1.036E-03              |
| 2125         | 1.977E+05              | 5.467E-06              | 9.852E-04              |
| 2126         | 1.977E+05              | 5.200E-06              | 9.372E-04              |
| 2127         | 1.977E+05              | 4.947E-06              | 8.915E-04              |
| 2128         | 1.977E+05              | 4.705E-06              | 8.480E-04              |
| 2129         | 1.977E+05              | 4.476E-06              | 8.066E-04              |
| 2130         | 1.977E+05              | 4.258E-06              | 7.673E-04              |
| 2131         | 1.977E+05              | 4.050E-06              | 7.299E-04              |
| 2132<br>2133 | 1.977E+05<br>1.977E+05 | 3.852E-06<br>3.665E-06 | 6.943E-04<br>6.604E-04 |
| 2134         | 1.977E+05              | 3.486E-06              | 6.282E-04              |
| 2135         | 1.977E+05              | 3.316E-06              | 5.976E-04              |
| 2136         | 1.977E+05              | 3.154E-06              | 5.684E-04              |
| 2137         | 1.977E+05              | 3.000E-06              | 5.407E-04              |
| 2138         | 1.977E+05              | 2.854E-06              | 5.143E-04              |
| 2139         | 1.977E+05              | 2.715E-06              | 4.892E-04              |
| 2140         | 1.977E+05              | 2.582E-06              | 4.654E-04              |
| 2141         | 1.977E+05              | 2.456E-06              | 4.427E-04              |
| 2142         | 1.977E+05              | 2.337E-06              | 4.211E-04              |
| 2143         | 1.977E+05<br>1.977E+05 | 2.223E-06              | 4.006E-04<br>3.810E-04 |
| 2144<br>2145 | 1.977E+05              | 2.114E-06<br>2.011E-06 | 3.624E-04              |
| 2146         | 1.977E+05              | 1.913E-06              | 3.448E-04              |
| 2147         | 1.977E+05              | 1.820E-06              | 3.279E-04              |
| 2148         | 1.977E+05              | 1.731E-06              | 3.120E-04              |
| 2149         | 1.977E+05              | 1.647E-06              | 2.967E-04              |
| 2150         | 1.977E+05              | 1.566E-06              | 2.823E-04              |
| 2151         | 1.977E+05              | 1.490E-06              | 2.685E-04              |
| 2152         | 1.977E+05              | 1.417E-06              | 2.554E-04              |
| 2153         | 1.977E+05              | 1.348E-06              | 2.429E-04              |
| 2154         | 1.977E+05              | 1.282E-06              | 2.311E-04              |

**Table D-3.** Northern Parcel 1,1,1,-Trochloroethane Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)    | (Cubic m/yr)       |
|------|----------------------|------------|--------------------|
| 2155 | 1.977E+05            | 1.220E-06  | 2.198E-04          |
| 2156 | 1.977E+05            | 1.160E-06  | 2.091E-04          |
| 2157 | 1.977E+05            | 1.104E-06  | 1.989E-04          |
| 2158 | 1.977E+05            | 1.050E-06  | 1.892E-04          |
| 2159 | 1.977E+05            | 9.987E-07  | 1.800E-04          |
| 2160 | 1.977E+05            | 9.500E-07  | 1.712E-04          |
| 2161 | 1.977E+05            | 9.037E-07  | 1.629E-04          |
| 2162 | 1.977E+05            | 8.596E-07  | 1.549E-04          |
| 2163 | 1.977E+05            | 8.177E-07  | 1.474E-04          |
| 2164 | 1.977E+05            | 7.778E-07  | 1.402E-04          |
| 2165 | 1.977E+05            | 7.399E-07  | 1.333E-04          |
| 2166 | 1.977E+05            | 7.038E-07  | 1.268E-04          |
| 2167 | 1.977E+05            | 6.694E-07  | 1.206E-04          |
| 2168 | 1.977E+05            | 6.368E-07  | 1.148E-04          |
| 2169 | 1.977E+05            | 6.057E-07  | 1.092E-04          |
| 2170 | 1.977E+05            | 5.762E-07  | 1.038E-04          |
| 2171 | 1.977E+05            | 5.481E-07  | 9.878E-05          |
| 2172 | 1.977E+05            | 5.214E-07  | 9.396E-05          |
| 2173 | 1.977E+05            | 4.959E-07  | 8.938E <b>-</b> 05 |
| 2174 | 1.977E+05            | 4.718E-07  | 8.502E-05          |
| 2175 | 1.977E+05            | 4.487E-07  | 8.087E-05          |
| 2176 | 1.977E+05            | 4.269E-07  | 7.693E-05          |
| 2177 | 1.977E+05            | 4.060E-07  | 7.317E-05          |
| 2178 | 1.977E+05            | 3.862E-07  | 6.961E-05          |
| 2179 | 1.977E+05            | 3.674E-07  | 6.621E-05          |
| 2180 | 1.977E+05            | 3.495E-07  | 6.298E-05          |
| 2181 | 1.977E+05            | 3.324E-07  | 5.991E-05          |
| 2182 | 1.977E+05            | 3.162E-07  | 5.699E-05          |
| 2183 | 1.977E+05            | 3.008E-07  | 5.421E-05          |
| 2184 | 1.977E+05            | 2.861E-07  | 5.157E-05          |
| 2185 | 1.977E+05            | 2.722E-07  | 4.905E-05          |
| 2186 | 1.977E+05            | 2.589E-07  | 4.666E-05          |
| 2187 | 1.977E+05            | 2.463E-07  | 4.438E-05          |
| 2188 | 1.977E+05            | 2.343E-07  | 4.222E-05          |
| 2189 | 1.977E+05            | 2.228E-07  | 4.016E-05          |
| 2190 | 1.977E+05            | 2.120E-07  | 3.820E-05          |
| 2191 | 1.977E+05            | 2.016E-07  | 3.634E-05          |
| 2192 | 1.977E+05            | 1.918E-07  | 3.457E-05          |
| 2193 | 1.977E+05            | 1.824E-07  | 3.288E-05          |
| 2194 | 1.977E+05            | 1.735E-07  | 3.128E-05          |
| 2195 | 1.977E+05            | 1.651E-07  | 2.975E-05          |
| 2196 | 1.977E+05            | 1.570E-07  | 2.830E-05          |
| 2197 | 1.977E+05            | 1.494E-07  | 2.692E-05          |
| 2198 | 1.977E+05            | 1.421E-07  | 2.561E-05          |
| 2199 | 1.977E+05            | 1.352E-07  | 2.436E-05          |
| 2200 | 1.977E+05            | 1.286E-07  | 2.317E-05          |
| 2201 | 1.977E+05            | 1.223E-07  | 2.204E-05          |
| 2202 | 1.977E+05            | 1.163E-07  | 2.096E-05          |
| 2203 | 1.977E+05            | 1.107E-07  | 1.994E-05          |
|      | 2.3.7.2.00           | 1.10.11 0, |                    |

Table D-4. Northern Parcel Benzene Emisson Rate from Year 1968 to 2203.

#### Model Parameters

\_\_\_\_\_\_\_

Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\* k : 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC : 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 56.0000 % volume

Carbon Dioxide : 44.0000 % volume Air Pollutant : Benzene (HAP/VOC)

Concentration = 1.640000 ppmV Molecular Wt = 78.12

#### Landfill Parameters

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 13179.47 Mg/year

\_\_\_\_\_\_

| Year | Refuse In Place (Mg) | Benzene (HAP/<br>(Mg/yr) | VOC) Emission Rate<br>(Cubic m/yr) |  |
|------|----------------------|--------------------------|------------------------------------|--|
| 1000 |                      |                          |                                    |  |
| 1968 | 1.318E+04            | 1.066E-03                | 3.281E-01                          |  |
| 1969 | 2.636E+04            | 2.080E-03                | 6.401E-01                          |  |
| 1970 | 3.954E+04            | 3.045E-03                | 9.370E-01                          |  |
| 1971 | 5.272E+04            | 3.962E-03                | 1.219E+00                          |  |
| 1972 | 6.590E+04            | 4.835E-03                | 1.488E+00                          |  |
| 1973 | 7.908E+04            | 5.665E-03                | 1.743E+00                          |  |
| 1974 | 9.226E+04            | 6.455E-03                | 1.987E+00                          |  |
| 1975 | 1.054E+05            | 7.206E-03                | 2.218E+00                          |  |
| 1976 | 1.186E+05            | 7.920E-03                | 2.438E+00                          |  |
| 1977 | 1.318E+05            | 8.600E-03                | 2.647E+00                          |  |
| 1978 | 1.450E+05            | 9.247E-03                | 2.846E+00                          |  |
| 1979 | 1.582E+05            | 9.862E-03                | 3.035E+00                          |  |
| 1980 | 1.713E+05            | 1.045E-02                | 3.215E+00                          |  |
| 1981 | 1.845E+05            | 1.100E-02                | 3.386E+00                          |  |
| 1982 | 1.977E+05            | 1.153E-02                | 3.549E+00                          |  |
| 1983 | 1.977E+05            | 1.097E-02                | 3.376E+00                          |  |
| 1984 | 1.977E+05            | 1.044E-02                | 3.212E+00                          |  |
| 1985 | 1.977E+05            | 9.926E-03                | 3.055E+00                          |  |
| 1986 | 1.977E+05            | 9.442E-03                | 2.906E+00                          |  |
| 1987 | 1.977E+05            | 8.982E-03                | 2.764E+00                          |  |
| 1988 | 1.977E+05            | 8.544E-03                | 2.629E+00                          |  |
| 1989 | 1.977E+05            | 8.127E-03                | 2.501E+00                          |  |
| 1990 | 1.977E+05            | 7.731E-03                | 2.379E+00                          |  |
| 1991 | 1.977E+05            | 7.354E-03                | 2.263E+00                          |  |
| 1992 | 1.977E+05            | 6.995E-03                | 2.153E+00                          |  |
| 1993 | 1.977E+05            | 6.654E-03                | 2.048E+00                          |  |
| 1994 | 1.977E+05            | 6.329E-03                | 1.948E+00                          |  |
| 1995 | 1.977E+05            | 6.021E-03                | 1.853E+00                          |  |
| 1996 | 1.977E+05            | 5.727E-03                | 1.763E+00                          |  |
| 1997 | 1.977E+05            | 5.448E-03                | 1.677E+00                          |  |
| 1998 | 1.977E+05            | 5.182E-03                | 1.595E+00                          |  |
| 1999 | 1.977E+05            | 4.929E-03                | 1.517E+00                          |  |
| 2000 | 1.977E+05            | 4.689E-03                | 1.443E+00                          |  |
| 2001 | 1.977E+05            | 4.460E-03                | 1.373E+00                          |  |
| 2002 | 1.977E+05            | 4.243E-03                | 1.306E+00                          |  |
| 2003 | 1.977E+05            | 4.036E-03                | 1.242E+00                          |  |
| 2004 | 1.977E+05            | 3.839E-03                | 1.181E+00                          |  |
| 2005 | 1,977E+05            | 3.652E-03                | 1.124E+00                          |  |
| 2006 | 1.977E+05            | 3.474E-03                | 1.069E+00                          |  |
| 2007 | 1.977E+05            | 3.304E-03                | 1.017E+00                          |  |
| 2008 | 1.977E+05            | 3.143E-03                | 9.673E-01                          |  |
| 2009 | 1.977E+05            | 2.990E-03                | 9.201E-01                          |  |
| 2010 | 1.977E+05            | 2.844E-03                | 8.753E-01                          |  |
| 2011 | 1.977E+05            | 2.705E-03                | 8.326E-01                          |  |
| 2012 | 1.977E+05            | 2.573E-03                | 7.920E-01                          |  |
|      |                      |                          |                                    |  |

Table D-4. Northern Parcel Benzene Emisson Rate from Year 1968 to 2203 (continued).

| 2013 1.9778+05 2.448E-03 7.533E-01 2015 1.9778+05 2.215E-03 6.817E-01 2016 1.9778+05 2.215E-03 6.817E-01 2017 1.9778+05 2.004E-03 6.168E-01 2017 1.9778+05 2.004E-03 6.168E-01 2018 1.9778+05 1.906E-03 6.168E-01 2019 1.9778+05 1.906E-03 5.86TE-01 2019 1.9778+05 1.906E-03 5.86TE-01 2019 1.9778+05 1.161E-03 5.86TE-01 2020 1.9778+05 1.161E-03 5.86TE-01 2021 1.9778+05 1.161E-03 5.86TE-01 2022 1.9778+05 1.161E-03 5.86TE-01 2023 1.9778+05 1.461E-03 5.86TE-01 2024 1.9778+05 1.461E-03 5.86TE-01 2024 1.9778+05 1.461E-03 4.46E-01 2025 1.9778+05 1.412E-03 4.46E-01 2026 1.9778+05 1.412E-03 4.36E-01 2026 1.9778+05 1.278E-03 3.935E-01 2026 1.9778+05 1.278E-03 3.935E-01 2028 1.9778+05 1.278E-03 3.935E-01 2029 1.9778+05 1.106E-03 3.559E-01 2020 1.9778+05 1.106E-03 3.559E-01 2021 1.9778+05 1.106E-03 3.559E-01 2022 1.9778+05 1.106E-03 3.20E-01 2023 1.9778+05 1.106E-03 3.20E-01 2024 1.9778+05 1.106E-03 3.20E-01 2025 1.9778+05 1.106E-03 3.20E-01 2026 1.9778+05 1.106E-03 3.20E-01 2027 1.9778+05 1.106E-03 3.20E-01 2029 1.9778+05 1.106E-03 3.20E-01 2030 1.9778+05 1.106E-03 3.20E-01 2031 1.9778+05 9.96E-04 2.91SE-01 2032 1.9778+05 9.96E-04 2.91SE-01 2033 1.9778+05 9.96E-04 2.91SE-01 2034 1.9778+05 9.96E-04 2.91SE-01 2035 1.9778+05 9.96E-04 2.91SE-01 2036 1.9778+05 9.96E-04 2.91SE-01 2037 1.9778+05 9.96E-04 2.95SE-01 2038 1.9778+05 9.96E-04 2.95SE-01 2039 1.9778+05 9.96E-04 2.95SE-01 2041 1.9778+05 9.96E-04 9.96E-04 9.96E-04 2050 1.9778+05 9.96E-04 9.96E-04 9.96E-04 2060 1.9778+05 9.96E-04 9.96E-04 9.96E-04 2077 1.9778+05 9.96E-04 9.96E- | Year                                     | Refuse In Place (M | ) (Mg/yr) | (Cubic m/yr) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|-----------|--------------|
| 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2013                                     | 1.977E+05          | 2.448E-03 | 7.533E-01    |
| 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2014                                     | 1.977E+05          | 2.328E-03 | 7.166E-01    |
| 2018 1.977E-05 1.906E-03 5.867E-01 2019 1.977E-05 1.906E-03 5.867E-01 2019 1.977E-05 1.906E-03 5.867E-01 2020 1.977E-05 1.725E-03 5.309E-01 2021 1.977E-05 1.725E-03 5.309E-01 2021 1.977E-05 1.641E-03 5.050E-01 2022 1.977E-05 1.561E-03 4.509E-01 2023 1.977E-05 1.4E5E-03 4.569E-01 2024 1.977E-05 1.4E5E-03 4.569E-01 2025 1.977E-05 1.4E5E-03 4.346E-01 2026 1.977E-05 1.286E-03 3.933E-01 2027 1.977E-05 1.286E-03 3.933E-01 2027 1.977E-05 1.286E-03 3.741E-01 2028 1.977E-05 1.266E-03 3.741E-01 2029 1.977E-05 1.166E-03 3.741E-01 2029 1.977E-05 1.100E-03 3.395E-01 2029 1.977E-05 1.100E-03 3.395E-01 2020 1.977E-05 3.95E-04 3.063E-01 2031 1.977E-05 9.95E-04 3.063E-01 2032 1.977E-05 9.95E-04 3.065E-01 2031 1.977E-05 9.96E-04 2.71E-01 2032 1.977E-05 9.96E-04 2.71E-01 2033 1.977E-05 9.90E-04 2.03E-01 2034 1.977E-05 9.90E-04 2.03E-01 2035 1.977E-05 9.00E-04 2.71E-01 2036 1.977E-05 8.66E-04 2.63EE-01 2037 1.977E-05 8.66E-04 2.63EE-01 2038 1.977E-05 8.66E-04 2.63EE-01 2039 1.977E-05 8.66E-04 2.63EE-01 2039 1.977E-05 8.66E-04 2.93E-01 2030 1.977E-05 8.66E-04 2.93E-01 2031 1.977E-05 8.66E-04 2.93E-01 2032 1.977E-05 8.66E-04 2.93E-01 2034 1.977E-05 8.66E-04 2.93E-01 2035 1.977E-05 8.66E-04 2.93E-01 2036 1.977E-05 8.66E-04 2.93E-01 2037 1.977E-05 8.66E-04 2.93E-01 2039 1.977E-05 9.00E-04 2.93E-01 2040 1.977E-05 9.00E-04 2.93E-01 2041 1.977E-05 9.00E-04 2.93E-01 2044 1.977E-05 9.00E-04 2.93E-01 2045 1.977E-05 9.00E-04 2.93E-01 2046 1.977E-05 9.00E-04 2.93E-01 2047 1.977E-05 9.00E-04 2.93E-01 2048 1.977E-05 9.00E-04 2.93E-01 2049 1.977E-05 9.00E-04 2.93E-01 2040 1.977E-05 9.00E-04 2.93E-01 2041 1.977E-05 9.00E-04 1.97E-01 2042 1.977E-05 9.00E-04 1.97E-01 2044 1.977E-05 9.00E-04 1.97E-05 9.00E-04 2045 1.977E-05 9.00E-04 1.97E-05 9.00E-04 2047 1.977E-05 9.00E-04 9.00E-04 2048 1.977E-05 9.00E-04 9.00E-04 9.00E-04 2049 1.977E-05 9.00E-04 9.00E-04 9.00E-04 2049 1.977E-05 9.00E-04 9.00E-04 9.00E-04 2049 1.977E-0 |                                          |                    |           |              |
| 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 1.977E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                    |           |              |
| 1.977E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                    |           |              |
| 2022 1.977E+05 1.485E-03 4.504E-01 2024 1.977E+05 1.485E-03 4.346E-01 2024 1.977E+05 1.412E-03 4.346E-01 2025 1.977E+05 1.343E-03 3.933E-01 2026 1.977E+05 1.278E-03 3.933E-01 2026 1.977E+05 1.216E-03 3.741E-01 2028 1.977E+05 1.126E-03 3.741E-01 2028 1.977E+05 1.108E-03 3.3559E-01 2029 1.977E+05 1.108E-03 3.3559E-01 2029 1.977E+05 1.108E-03 3.3559E-01 2020 1.977E+05 1.108E-03 3.3559E-01 2030 1.977E+05 9.952E-04 3.0638E-01 2031 1.977E+05 9.952E-04 2.913E-01 2032 1.977E+05 9.952E-04 2.913E-01 2032 1.977E+05 9.962E-04 2.913E-01 2032 1.977E+05 9.965E-04 2.771E-01 2034 1.977E+05 9.965E-04 2.771E-01 2034 1.977E+05 9.065E-04 2.771E-01 2034 1.977E+05 9.065E-04 2.508E-01 2035 1.977E+05 9.065E-04 2.508E-01 2036 1.977E+05 7.733E-04 2.508E-01 2036 1.977E+05 7.733E-04 2.508E-01 2039 1.977E+05 7.733E-04 2.269E-01 2038 1.977E+05 7.373E-04 2.269E-01 2038 1.977E+05 7.373E-04 2.269E-01 2039 1.977E+05 6.346E-04 1.953E-01 2030 1.977E+05 6.346E-04 1.953E-01 2041 1.977E+05 5.742E-04 1.767E-01 2044 1.977E+05 5.742E-04 1.767E-01 2044 1.977E+05 5.195E-04 1.959E-01 2041 1.977E+05 6.36E-04 1.959E-04 1.977E+05 6.36E-04 1.977E+05 6.292E-04 6.84E-04 1.977E+05 |                                          |                    |           |              |
| 2023 1.977E+05 1.412E-03 4.366P-01 2025 1.977E+05 1.412E-03 4.314E-01 2025 1.977E+05 1.343E-03 4.134F-01 2026 1.977E+05 1.276E-03 3.933E-01 2027 1.977E+05 1.276E-03 3.933E-01 2027 1.977E+05 1.276E-03 3.741E-01 2028 1.977E+05 1.156E-03 3.5741E-01 2029 1.977E+05 1.166E-03 3.559E-01 2029 1.977E+05 1.100E-03 3.355E-01 2030 1.977E+05 1.046E-03 3.20E-01 2031 1.977E+05 9.407E-04 2.913E-01 2031 1.977E+05 9.407E-04 2.913E-01 2032 1.977E+05 9.407E-04 2.913E-01 2032 1.977E+05 9.407E-04 2.913E-01 2032 1.977E+05 9.407E-04 2.913E-01 2034 1.977E+05 9.407E-04 2.508E-01 2035 1.977E+05 8.566E-04 2.508E-01 2035 1.977E+05 8.148E-04 2.508E-01 2036 1.977E+05 7.751E-04 2.259E-01 2037 1.977E+05 7.731E-04 2.259E-01 2039 1.977E+05 7.731E-04 2.259E-01 2039 1.977E+05 7.033E-04 2.158E-01 2039 1.977E+05 6.46E-04 1.953E-01 2039 1.977E+05 6.671E-04 2.053E-01 2031 1.977E+05 6.671E-04 2.053E-01 2041 1.977E+05 6.036E-04 1.953E-01 2041 1.977E+05 6.036E-04 1.952E-04 1.601E-01 2041 1.977E+05 6.036E-04 1.952E-04 1.952E-04 2041 1.977E+05 6.036E-04 1.952E-04 1.952E-01 2041 1.977E+05 6.036E-04 1.952E-04 1.977E+05 6.036E-04 1.952E-04 1.952E-04 1.977E+05 6.036E-04 1.952E-04 1.957E+05 6.036E-04 1.952E-04 1.957E+05 6.036E-04 1.952E-04 1.957E+05 6.036E-04 1.952E-04 1.957E+05 6.036E-04 6. |                                          |                    |           |              |
| 2025 1.977E+05 1.278E-03 3.93B-01 2027 1.977E+05 1.278E-03 3.93B-01 2028 1.977E+05 1.166E-03 3.741E-01 2029 1.977E+05 1.166E-03 3.559E-01 2029 1.977E+05 1.100E-03 3.559E-01 2030 1.977E+05 1.100E-03 3.355E-01 2031 1.977E+05 1.046E-03 3.20E-01 2031 1.977E+05 9.952E-04 3.063E-01 2032 1.977E+05 9.952E-04 2.971E-01 2032 1.977E+05 9.96TE-04 2.971E-01 2033 1.977E+05 9.96TE-04 2.771E-01 2034 1.977E+05 9.06E-04 2.771E-01 2035 1.977E+05 8.56E-04 2.60E-01 2036 1.977E+05 8.56E-04 2.50E-01 2037 1.97E+05 7.73BE-04 2.88E-01 2038 1.977E+05 7.73BE-04 2.88E-01 2039 1.977E+05 7.013E-04 2.58E-01 2039 1.977E+05 6.36E-04 1.953E-01 2040 1.977E+05 6.36E-04 1.953E-01 2041 1.977E+05 6.36E-04 1.953E-01 2042 1.977E+05 5.742E-04 1.767E-01 2044 1.977E+05 5.742E-04 1.767E-01 2044 1.977E+05 5.195E-04 1.599E-01 2044 1.977E+05 6.195E-04 1.599E-01 2044 1.977E+05 6.195E-04 1.599E-01 2044 1.977E+05 6.195E-04 1.599E-01 2045 1.977E+05 6.195E-04 1.599E-01 2046 1.977E+05 6.195E-04 1.599E-01 2047 1.977E+05 6.195E-04 1.599E-01 2048 1.977E+05 6.195E-04 1.599E-01 2049 1.977E+05 6.195E-04 1.599E-01 2041 1.977E+05 6.195E-04 1.599E-01 2042 1.977E+05 6.195E-04 1.599E-01 2043 1.977E+05 6.195E-04 1.599E-01 2044 1.977E+05 6.195E-04 1.599E-01 2045 1.977E+05 6.195E-04 1.599E-01 2046 1.977E+05 6.195E-04 1.599E-01 2047 1.977E+05 6.195E-04 1.599E-01 2048 1.977E+05 6.195E-04 1.975E-01 2049 1.977E+05 6.195E-04 1.975E-01 2050 1.977E+05 6.195E-04 1.975E-02 2061 1.977E+05 6.195E-04 1.975E-02 2063 1.977E+05 6.195E-04 1.975E-04 2059 1.977E+05 6.195E-04 1.975E-04 2059 1.977E+05 6.195E-04 1.975E-04 2059 1.977E+05 6.195E-04 1.975E-04 2050 1.977E+05 6.195E-04 1.975E-04 2051 1.977E+05 6.195E-04 1.975E-04 2052 1.977E+05 6.195E-04 1.975E-04 2053 1.977E+05 6.195E-04 1.975E-04 2054 1.977E+05 6.195E-04 6.88E-02 2055 1.977E+05 6.195E-04 6.88E-02 2056 1.977E+05 6.195E-04 6.50E-04 7.940E-02 2059 1.977E+05 6.195E-04 6.50E-04 7.940E-02 2059 1.977E+05 6.195E-04 6.50E-04 7.940E-02 2051 1.977E+05 6.195E-04 6.50E-04 7.940E-02 2051 1.977E+05 6.195E-04 6.50E-04 7.955E-02 2051 1.977E+05 6.195E-0 |                                          |                    |           |              |
| 2026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2024                                     | 1.977E+05          | 1.412E-03 | 4.346E-01    |
| 2027 1.9778+05 1.216E-03 3.741E-01 2029 1.9778+05 1.156E-03 3.559E-01 2029 1.9778+05 1.100E-03 3.389E-01 2031 1.9778+05 1.046E-03 3.220E-01 2031 1.9778+05 9.952E-04 2.913E-01 2032 1.9778+05 9.952E-04 2.913E-01 2033 1.9778+05 9.05E-04 2.771E-01 2033 1.9778+05 9.05E-04 2.771E-01 2034 1.9778+05 9.05E-04 2.636E-01 2035 1.9778+05 8.566E-04 2.636E-01 2035 1.9778+05 8.148E-04 2.508E-01 2036 1.9778+05 7.751E-04 2.508E-01 2037 1.9778+05 7.751E-04 2.508E-01 2038 1.9778+05 7.733E-04 2.268E-01 2039 1.977E+05 7.013E-04 2.588E-01 2030 1.977E+05 7.013E-04 2.588E-01 2040 1.977E+05 6.36E-04 1.858E-01 2041 1.977E+05 6.36E-04 1.858E-01 2042 1.977E+05 5.742E-04 1.681E-01 2044 1.977E+05 5.155E-04 1.681E-01 2044 1.977E+05 5.155E-04 1.599E-01 2044 1.977E+05 4.402E-04 1.599E-01 2044 1.977E+05 4.701E-04 1.376E-01 2046 1.977E+05 4.701E-04 1.309E-01 2047 1.977E+05 4.701E-04 1.309E-01 2048 1.977E+05 4.701E-04 1.309E-01 2049 1.977E+05 4.701E-04 1.309E-01 2049 1.977E+05 4.701E-04 1.309E-01 2049 1.977E+05 4.701E-04 1.309E-01 2059 1.977E+05 4.701E-04 1.309E-01 2050 1.977E+05 4.701E-04 1.309E-01 2051 1.977E+05 4.701E-04 1.309E-01 2052 1.977E+05 4.701E-04 1.309E-01 2053 1.977E+05 4.701E-04 1.309E-01 2054 1.977E+05 4.701E-04 1.309E-01 2055 1.977E+05 4.701E-04 1.309E-01 2056 1.977E+05 4.701E-04 1.309E-01 2059 1.977E+05 4.701E-04 1.309E-01 2050 1.977E+05 4.701E-04 1.309E-01 2051 1.977E+05 4.701E-04 1.309E-01 2052 1.977E+05 3.483E-04 1.618E-01 2053 1.977E+05 4.922E-04 1.598E-02 2056 1.977E+05 3.483E-04 1.072E-01 2059 1.977E+05 4.701E-04 1.309E-01 2051 1.977E+05 4.701E-04 1.309E-01 2052 1.977E+05 3.483E-04 1.001E-04 1.27E-01 2053 1.977E+05 3.483E-04 1.001E-04 1.309E-01 2054 1.977E+05 3.483E-04 1.001E-04 1.309E-01 2055 1.977E+05 3.483E-04 1.001E-04 1.309E-01 2056 1.977E+05 3.483E-04 1.001E-04 1.309E-01 2059 1.977E+05 3.483E-04 1.001E-04 1.309E-01 2059 1.977E+05 3.483E-04 1.001E-04 1.309E-01 2051 1.977E+05 3.483E-04 1.001E-04 1.309E-02 2052 1.977E+05 1.91E-04 3.59E-02 2053 1.977E+05 1.91E-04 3.59E-02 2054 1.977E+05 1.91E-04 3.59E-02 2075 1.977E+05 1.1 | 2025                                     | 1.977E+05          |           |              |
| 2028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 2029 1.9778+05 1.100E-03 3.20E-01 2031 1.9778+05 1.04E-03 3.220E-01 2031 1.9778+05 9.952E-04 3.063E-01 2032 1.9778+05 9.467E-04 2.913E-01 2032 1.9778+05 9.467E-04 2.913E-01 2033 1.977E+05 9.005E-04 2.771E-01 2034 1.977E+05 8.56E-04 2.636E-01 2035 1.977E+05 8.56E-04 2.636E-01 2035 1.977E+05 7.751E-04 2.385E-01 2035 1.977E+05 7.751E-04 2.385E-01 2036 1.977E+05 7.733E-04 2.269E-01 2036 1.977E+05 7.013E-04 2.053E-01 2039 1.977E+05 7.013E-04 2.053E-01 2039 1.977E+05 6.636E-04 1.856E-01 2040 1.977E+05 6.36E-04 1.856E-01 2040 1.977E+05 6.742E-04 1.631E-01 2044 1.977E+05 5.742E-04 1.631E-01 2044 1.977E+05 5.195E-04 1.631E-01 2044 1.977E+05 5.195E-04 1.631E-01 2044 1.977E+05 5.195E-04 1.631E-01 2044 1.977E+05 4.942E-04 1.599E-01 2045 1.977E+05 4.942E-04 1.599E-01 2045 1.977E+05 4.942E-04 1.599E-01 2049 1.977E+05 4.72E-04 1.599E-01 2049 1.977E+05 4.254E-04 1.376E-01 2049 1.977E+05 4.254E-04 1.399E-01 2049 1.977E+05 4.254E-04 1.399E-01 2049 1.977E+05 3.661E-04 1.245E-01 2050 1.977E+05 3.661E-04 1.245E-01 2050 1.977E+05 3.661E-04 1.72E-01 2050 1.977E+05 3.661E-04 1.72E-01 2050 1.977E+05 3.661E-04 1.72E-01 2050 1.977E+05 3.661E-04 7.959E-02 2050 1.977E+05 2.99E-04 6.98E-02 2050 1.977E+05 2.99E-04 6.98E-02 2050 1.977E+05 2.99E-04 6.98E-02 2050 1.977E+05 2.99E-04 6.98E-02 2050 1.977E+05 1.97E+05 1.97E-05 1.99E-04 3.93E-02 2071 1.97TE-05 1.97E-05 1.99E-04 3.93E-02 2071 1.97TE-05 1.97E-0 |                                          |                    |           |              |
| 2030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 2031 1.977E+05 9.952E-04 3.063E-01 2032 1.977E+05 9.467E-04 2.913E-01 2033 1.977E+05 9.467E-04 2.971E-01 2034 1.977E+05 9.005E-04 2.771E-01 2034 1.977E+05 8.566E-04 2.636E-01 2035 1.977E+05 8.148E-04 2.508E-01 2036 1.977E+05 7.751E-04 2.85E-01 2037 1.977E+05 7.373E-04 2.269E-01 2037 1.977E+05 7.013E-04 2.158E-01 2039 1.977E+05 7.013E-04 2.158E-01 2039 1.977E+05 6.671E-04 2.053E-01 2040 1.97E+05 6.346E-04 1.953E-01 2041 1.977E+05 6.346E-04 1.953E-01 2041 1.977E+05 5.742E-04 1.767E-01 2042 1.97E+05 5.742E-04 1.767E-01 2043 1.977E+05 5.462E-04 1.691E-01 2044 1.97E+05 5.195E-04 1.599E-01 2044 1.97E+05 5.195E-04 1.599E-01 2044 1.97E+05 5.195E-04 1.591E-01 2045 1.97TE+05 5.195E-04 1.591E-01 2046 1.97TE+05 4.701E-04 1.376E-01 2047 1.97TE+05 4.701E-04 1.376E-01 2047 1.97TE+05 4.701E-04 1.376E-01 2049 1.97TE+05 4.701E-04 1.376E-01 2052 1.97TE+05 4.046E-04 1.245E-01 2050 1.97TE+05 4.046E-04 1.245E-01 2050 1.97TE+05 3.661E-04 1.27EE-01 2050 1.97TE+05 3.661E-04 1.27EE-01 2051 1.97TE+05 3.661E-04 1.27EE-01 2052 1.97TE+05 3.661E-04 1.27EE-01 2052 1.97TE+05 3.661E-04 1.27EE-01 2052 1.97TE+05 3.661E-04 1.27EE-01 2052 1.97TE+05 3.313E-04 1.002E-01 2052 1.97TE+05 3.313E-04 1.002E-01 2054 1.97TE+05 3.361E-04 9.698E-02 2055 1.97TE+05 2.99TE-04 9.225E-02 2056 1.97TE+05 2.99TE-04 9.225E-02 2056 1.97TE+05 2.99TE-04 9.225E-02 2056 1.97TE+05 2.212E-04 6.834E-02 2056 1.97TE+05 2.212E-04 6.834E-02 2056 1.97TE+05 2.212E-04 6.834E-02 2056 1.97TE+05 1.212E-04 6.834E-02 2057 1.97TE+05 1.212E-04 4.358E-02 2057 1.97TE+05 1.212E- |                                          |                    |           |              |
| 2032 1.977E+05 9.467E+04 2.913E+01 2034 1.977E+05 8.065E+04 2.771E+01 2034 1.977E+05 8.065E+04 2.636E+01 2.636E+01 2.035 1.977E+05 8.148E+04 2.508E+01 2.035 1.977E+05 7.751E+04 2.85E+01 2.037 1.977E+05 7.373E+04 2.269E+01 2.037 1.977E+05 7.373E+04 2.269E+01 2.038 1.977E+05 7.373E+04 2.269E+01 2.039 1.977E+05 6.671E+04 2.053E+01 2.039 1.977E+05 6.671E+04 2.053E+01 2.039 1.977E+05 6.671E+04 2.053E+01 2.039 1.977E+05 6.036E+04 1.953E+01 2.040 1.977E+05 6.036E+04 1.858E+01 2.042 1.977E+05 6.036E+04 1.858E+01 2.042 1.977E+05 5.742E+04 1.767E+01 2.043 1.977E+05 5.742E+04 1.767E+01 2.044 1.977E+05 5.462E+04 1.681E+01 2.044 1.977E+05 5.195E+04 1.599E+01 2.045 1.977E+05 4.942E+04 1.591E+01 2.046 1.977E+05 4.701E+04 1.447E+01 2.046 1.977E+05 4.701E+04 1.447E+01 2.048 1.977E+05 4.254E+04 1.309E+01 2.049 1.977E+05 4.254E+04 1.309E+01 2.049 1.977E+05 4.254E+04 1.309E+01 2.049 1.977E+05 4.254E+04 1.309E+01 2.050 1.977E+05 3.849E+04 1.127E+01 2.050 1.977E+05 3.849E+04 1.127E+01 2.050 1.977E+05 3.661E+04 1.127E+01 2.051 1.977E+05 3.661E+04 1.127E+01 2.052 1.977E+05 3.463E+04 1.020E+01 2.055 1.977E+05 3.151E+04 9.698E+02 2.055 1.977E+05 3.151E+04 9.698E+02 2.055 1.977E+05 2.25E+02 2.056 1.977E+05 2.25E+02 3.050E+04 9.25E+02 2.056 1.977E+05 2.25E+02 3.05E+04 9.25E+02 2.056 1.977E+05 2.25E+04 6.83E+02 2.05E+04 9.37EE+05 2.05E+04 9.32EE+02 2.056 1.977E+05 2.25E+04 6.83E+02 2.05E+04 9.37EE+05 2.05E+04 9.32EE+02 2.056 1.977E+05 2.25E+04 6.83E+02 2.05E+04 9.37EE+05 2.05E+04 9.37EE+05 2.05E+04 9.37EE+05 2.05E+04 9.32EE+02 2.056 1.977E+05 2.25E+04 6.83E-02 2.056 1.977E+05 2.25E+04 6.83E-02 2.056 1.977E+05 1.25E+04 6.83E-02 2.056 1.977E+05 1.25E+04 6.83E-02 2.056 1.977E+05 1.25E+04 6.83E-02 2.056 1.977E+05 1.25E-04 6.83E-02 2.059  |                                          |                    |           |              |
| 2033         1.977E+05         9.005E-04         2.771E-01           2034         1.977E+05         8.566E-04         2.636E-01           2035         1.977E+05         8.148E-04         2.508E-01           2036         1.977E+05         7.751E-04         2.385E-01           2037         1.977E+05         7.013E-04         2.269E-01           2038         1.977E+05         6.671E-04         2.558E-01           2040         1.97E+05         6.346E-04         1.953E-01           2041         1.977E+05         6.346E-04         1.953E-01           2042         1.977E+05         5.742E-04         1.767E-01           2043         1.977E+05         5.742E-04         1.67E-01           2044         1.977E+05         5.462E-04         1.681E-01           2043         1.977E+05         5.195E-04         1.521E-01           2044         1.977E+05         4.942E-04         1.521E-01           2041         1.977E+05         4.742E-04         1.521E-01           2046         1.977E+05         4.742E-04         1.376E-01           2041         1.977E+05         4.72E-04         1.376E-01           2047         1.977E+05         4.046E-04 <t< td=""><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                    |           |              |
| 2034 1.977E+05 8.566E+04 2.636E+01 2036 1.977E+05 8.148E+04 2.508E+01 2036 1.977E+05 7.751E+04 2.385E+01 2037 1.977E+05 7.373E+04 2.269E+01 2037 1.977E+05 7.373E+04 2.269E+01 2039 1.977E+05 6.671E+04 2.053E+01 2039 1.977E+05 6.671E+04 2.053E+01 2039 1.977E+05 6.671E+04 2.053E+01 2039 1.977E+05 6.346E+04 1.953E+01 2041 1.977E+05 6.346E+04 1.953E+01 2041 1.977E+05 6.346E+04 1.858E+01 2042 1.977E+05 5.742E+04 1.767E+01 2043 1.977E+05 5.462E+04 1.681E+01 2044 1.977E+05 5.462E+04 1.681E+01 2044 1.977E+05 5.462E+04 1.681E+01 2044 1.977E+05 4.942E+04 1.599E+01 2045 1.977E+05 4.942E+04 1.599E+01 2045 1.977E+05 4.942E+04 1.599E+01 2046 1.977E+05 4.942E+04 1.376E+01 2047 1.977E+05 4.701E+04 1.47E+01 2047 1.977E+05 4.701E+04 1.47E+01 2049 1.977E+05 4.264E+04 1.309E+01 2059 1.977E+05 3.849E+04 1.25E+01 2050 1.977E+05 3.849E+04 1.125E+01 2050 1.977E+05 3.661E+04 1.127E+01 2051 1.977E+05 3.661E+04 1.127E+01 2052 1.977E+05 3.661E+04 1.127E+01 2053 1.977E+05 3.463E+04 1.020E+01 2055 1.977E+05 3.463E+04 9.698E+02 2055 1.977E+05 3.151E+04 9.698E+02 2055 1.977E+05 3.151E+04 9.698E+02 2055 1.977E+05 2.25E+02 4.997E+04 9.698E+02 2055 1.977E+05 2.851E+04 8.775E+02 2056 1.977E+05 2.851E+04 8.775E+02 2056 1.977E+05 2.251E+04 8.775E+02 2059 1.977E+05 2.251E+04 8.775E+02 2059 1.977E+05 2.251E+04 6.834E+02 2056 1.977E+05 2.251E+04 6.834E+02 2056 1.977E+05 2.251E+04 6.834E+02 2059 1.977E+05 1.16E+04 5.55E+02 2059 1.977E+05 1.16E+04 5.55E+02 2059 1.977E+05 1.26E+04  |                                          |                    |           |              |
| 2035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 2036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 2038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2036                                     | 1.977E+05          | 7.751E-04 | 2.385E-01    |
| 2039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2037                                     | 1.977E+05          | 7.373E-04 |              |
| 2040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2038                                     |                    |           |              |
| 2041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 2042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 2043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 577 (578 (578 (578 (578 (578 (578 (578 ( |                    |           |              |
| 2044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 2045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 2046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 2047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 2049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2047                                     |                    |           |              |
| 2050         1.977E+05         3.849E-04         1.185E-01           2051         1.977E+05         3.661E-04         1.127E-01           2052         1.977E+05         3.483E-04         1.072E-01           2053         1.977E+05         3.313E-04         1.020E-01           2054         1.977E+05         3.151E-04         9.698E-02           2055         1.977E+05         2.997E-04         9.225E-02           2056         1.977E+05         2.851E-04         8.775E-02           2057         1.977E+05         2.712E-04         8.347E-02           2058         1.977E+05         2.580E-04         7.940E-02           2059         1.977E+05         2.454E-04         7.553E-02           2060         1.977E+05         2.231E-04         7.185E-02           2061         1.977E+05         2.231E-04         7.185E-02           2061         1.977E+05         2.231E-04         7.553E-02           2061         1.977E+05         2.21E-04         6.534E-02           2062         1.977E+05         2.09E-04         6.184E-02           2064         1.977E+05         2.09E-04         6.184E-02           2064         1.977E+05         1.618E-04 <t< td=""><td>2048</td><td>1.977E+05</td><td>4.254E-04</td><td>1.309E-01</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2048                                     | 1.977E+05          | 4.254E-04 | 1.309E-01    |
| 2051         1.977E+05         3.661E-04         1.127E-01           2052         1.977E+05         3.483E-04         1.072E-01           2053         1.977E+05         3.313E-04         1.020E-01           2054         1.977E+05         3.151E-04         9.698E-02           2055         1.977E+05         2.997E-04         9.225E-02           2056         1.977E+05         2.851E-04         8.775E-02           2057         1.977E+05         2.580E-04         7.940E-02           2058         1.977E+05         2.580E-04         7.940E-02           2059         1.977E+05         2.454E-04         7.553E-02           2060         1.977E+05         2.334E-04         7.185E-02           2061         1.977E+05         2.221E-04         6.834E-02           2062         1.977E+05         2.112E-04         6.501E-02           2063         1.977E+05         2.112E-04         6.501E-02           2064         1.977E+05         2.009E-04         6.184E-02           2064         1.977E+05         1.911E-04         5.882E-02           2066         1.977E+05         1.91E-04         5.882E-02           2066         1.977E+05         1.645E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2049                                     | 1.977E+05          | 4.046E-04 | 1.245E-01    |
| 2052         1.977E+05         3.483E-04         1.072E-01           2053         1.977E+05         3.313E-04         1.020E-01           2054         1.977E+05         3.515E-04         9.698E-02           2055         1.977E+05         2.997E-04         9.225E-02           2056         1.977E+05         2.851E-04         8.775E-02           2057         1.977E+05         2.712E-04         8.347E-02           2058         1.977E+05         2.580E-04         7.940E-02           2059         1.977E+05         2.454E-04         7.553E-02           2060         1.977E+05         2.334E-04         7.185E-02           2061         1.977E+05         2.212E-04         6.501E-02           2062         1.977E+05         2.09E-04         6.184E-02           2063         1.977E+05         2.09E-04         6.184E-02           2064         1.977E+05         2.09E-04         6.184E-02           2065         1.977E+05         1.91E-04         5.882E-02           2066         1.977E+05         1.91E-04         5.882E-02           2067         1.977E+05         1.645E-04         5.063E-02           2069         1.977E+05         1.645E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                    |           |              |
| 2053         1.977E+05         3.313E-04         1.020E-01           2054         1.977E+05         3.151E-04         9.698E-02           2055         1.977E+05         2.997E-04         9.225E-02           2056         1.977E+05         2.851E-04         8.775E-02           2057         1.977E+05         2.712E-04         8.347E-02           2058         1.977E+05         2.580E-04         7.940E-02           2059         1.977E+05         2.34E-04         7.185E-02           2060         1.977E+05         2.334E-04         7.185E-02           2061         1.977E+05         2.212E-04         6.834E-02           2062         1.977E+05         2.009E-04         6.501E-02           2063         1.977E+05         2.009E-04         6.184E-02           2064         1.977E+05         1.911E-04         5.882E-02           2065         1.977E+05         1.818E-04         5.595E-02           2066         1.977E+05         1.645E-04         5.063E-02           2067         1.977E+05         1.645E-04         5.063E-02           2067         1.977E+05         1.645E-04         4.816E-02           2070         1.977E+05         1.489E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                    |           |              |
| 2054         1.977E+05         3.151E-04         9.698E-02           2055         1.977E+05         2.997E-04         9.225E-02           2056         1.977E+05         2.851E-04         8.775E-02           2057         1.977E+05         2.712E-04         8.347E-02           2058         1.977E+05         2.580E-04         7.940E-02           2059         1.977E+05         2.454E-04         7.553E-02           2060         1.977E+05         2.334E-04         7.185E-02           2061         1.977E+05         2.221E-04         6.834E-02           2062         1.977E+05         2.112E-04         6.501E-02           2063         1.977E+05         2.009E-04         6.184E-02           2064         1.977E+05         2.009E-04         6.184E-02           2065         1.977E+05         1.911E-04         5.882E-02           2066         1.977E+05         1.818E-04         5.595E-02           2067         1.977E+05         1.645E-04         5.063E-02           2068         1.977E+05         1.645E-04         4.816E-02           2070         1.977E+05         1.49E-04         4.581E-02           2071         1.977E+05         1.49E-04         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                    |           |              |
| 2055         1.977E+05         2.997E-04         9.225E-02           2056         1.977E+05         2.851E-04         8.775E-02           2057         1.977E+05         2.712E-04         8.347E-02           2058         1.977E+05         2.580E-04         7.940E-02           2059         1.977E+05         2.454E-04         7.553E-02           2060         1.977E+05         2.334E-04         7.185E-02           2061         1.977E+05         2.221E-04         6.804E-02           2062         1.977E+05         2.009E-04         6.501E-02           2063         1.977E+05         2.009E-04         6.184E-02           2064         1.977E+05         1.911E-04         5.882E-02           2065         1.977E+05         1.818E-04         5.595E-02           2066         1.977E+05         1.818E-04         5.595E-02           2067         1.977E+05         1.645E-04         5.063E-02           2068         1.977E+05         1.645E-04         4.816E-02           2070         1.977E+05         1.489E-04         4.581E-02           2071         1.977E+05         1.347E-04         4.145E-02           2072         1.977E+05         1.219E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                    |           |              |
| 2056         1.977E+05         2.851E-04         8.775E-02           2057         1.977E+05         2.712E-04         8.347E-02           2058         1.977E+05         2.580E-04         7.940E-02           2059         1.977E+05         2.454E-04         7.553E-02           2060         1.977E+05         2.334E-04         7.185E-02           2061         1.977E+05         2.221E-04         6.834E-02           2062         1.977E+05         2.009E-04         6.184E-02           2063         1.977E+05         2.009E-04         6.184E-02           2064         1.977E+05         1.911E-04         5.882E-02           2065         1.977E+05         1.818E-04         5.595E-02           2066         1.977E+05         1.729E-04         5.322E-02           2067         1.977E+05         1.729E-04         5.322E-02           2067         1.977E+05         1.565E-04         4.816E-02           2069         1.977E+05         1.489E-04         4.581E-02           2070         1.977E+05         1.489E-04         4.581E-02           2071         1.977E+05         1.281E-04         3.943E-02           2071         1.977E+05         1.281E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                    |           |              |
| 2057       1.977E+05       2.712E-04       8.347E-02         2058       1.977E+05       2.580E-04       7.940E-02         2059       1.977E+05       2.454E-04       7.553E-02         2060       1.977E+05       2.334E-04       7.185E-02         2061       1.977E+05       2.221E-04       6.834E-02         2062       1.977E+05       2.009E-04       6.184E-02         2063       1.977E+05       2.009E-04       6.184E-02         2064       1.977E+05       1.911E-04       5.882E-02         2065       1.977E+05       1.818E-04       5.595E-02         2066       1.977E+05       1.645E-04       5.063E-02         2067       1.977E+05       1.645E-04       5.063E-02         2068       1.977E+05       1.565E-04       4.816E-02         2070       1.977E+05       1.489E-04       4.581E-02         2071       1.977E+05       1.347E-04       4.145E-02         2072       1.977E+05       1.281E-04       3.943E-02         2073       1.977E+05       1.281E-04       3.751E-02         2074       1.977E+05       1.159E-04       3.568E-02         2075       1.977E+05       1.049E-04       3.228E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                    |           |              |
| 2059       1.977E+05       2.454E-04       7.553E-02         2060       1.977E+05       2.334E-04       7.185E-02         2061       1.977E+05       2.221E-04       6.834E-02         2062       1.977E+05       2.102E-04       6.501E-02         2063       1.977E+05       2.009E-04       6.184E-02         2064       1.977E+05       1.911E-04       5.882E-02         2065       1.977E+05       1.818E-04       5.595E-02         2066       1.977E+05       1.729E-04       5.322E-02         2067       1.977E+05       1.645E-04       5.063E-02         2068       1.977E+05       1.565E-04       4.816E-02         2070       1.977E+05       1.489E-04       4.581E-02         2071       1.977E+05       1.347E-04       4.145E-02         2071       1.977E+05       1.347E-04       4.145E-02         2073       1.977E+05       1.281E-04       3.943E-02         2074       1.977E+05       1.219E-04       3.751E-02         2075       1.977E+05       1.103E-04       3.228E-02         2076       1.977E+05       1.049E-04       3.228E-02         2077       1.977E+05       9.978E-05       3.071E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2057                                     |                    |           | 8.347E-02    |
| 2060       1.977E+05       2.334E-04       7.185E-02         2061       1.977E+05       2.221E-04       6.834E-02         2062       1.977E+05       2.112E-04       6.501E-02         2063       1.977E+05       2.009E-04       6.184E-02         2064       1.977E+05       1.911E-04       5.882E-02         2065       1.977E+05       1.818E-04       5.595E-02         2066       1.977E+05       1.729E-04       5.322E-02         2067       1.977E+05       1.645E-04       5.063E-02         2068       1.977E+05       1.565E-04       4.816E-02         2070       1.977E+05       1.489E-04       4.581E-02         2071       1.977E+05       1.347E-04       4.145E-02         2072       1.977E+05       1.281E-04       3.943E-02         2073       1.977E+05       1.281E-04       3.943E-02         2074       1.977E+05       1.159E-04       3.568E-02         2075       1.977E+05       1.103E-04       3.394E-02         2076       1.977E+05       9.978E-05       3.071E-02         2077       1.977E+05       9.978E-05       2.921E-02         2079       1.977E+05       9.491E-05       2.921E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2058                                     | 1.977E+05          | 2.580E-04 | 7.940E-02    |
| 2061       1.977E+05       2.221E-04       6.834E-02         2062       1.977E+05       2.112E-04       6.501E-02         2063       1.977E+05       2.009E-04       6.184E-02         2064       1.977E+05       1.911E-04       5.882E-02         2065       1.977E+05       1.818E-04       5.595E-02         2066       1.977E+05       1.729E-04       5.322E-02         2067       1.977E+05       1.645E-04       5.063E-02         2068       1.977E+05       1.565E-04       4.816E-02         2070       1.977E+05       1.489E-04       4.581E-02         2071       1.977E+05       1.347E-04       4.145E-02         2072       1.977E+05       1.347E-04       3.943E-02         2073       1.977E+05       1.281E-04       3.943E-02         2074       1.977E+05       1.159E-04       3.568E-02         2075       1.977E+05       1.103E-04       3.228E-02         2076       1.977E+05       9.978E-05       3.071E-02         2077       1.977E+05       9.998E-05       2.921E-02         2079       1.977E+05       9.28E-05       2.779E-02         2080       1.977E+05       8.588E-05       2.643E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                    |           |              |
| 2062       1.977E+05       2.112E-04       6.501E-02         2063       1.977E+05       2.009E-04       6.184E-02         2064       1.977E+05       1.911E-04       5.882E-02         2065       1.977E+05       1.818E-04       5.595E-02         2066       1.977E+05       1.645E-04       5.322E-02         2067       1.977E+05       1.645E-04       5.063E-02         2068       1.977E+05       1.565E-04       4.816E-02         2070       1.977E+05       1.489E-04       4.581E-02         2070       1.977E+05       1.347E-04       4.145E-02         2071       1.977E+05       1.281E-04       3.943E-02         2072       1.977E+05       1.29E-04       3.751E-02         2073       1.977E+05       1.159E-04       3.568E-02         2074       1.977E+05       1.103E-04       3.394E-02         2075       1.977E+05       1.049E-04       3.228E-02         2077       1.977E+05       9.978E-05       3.071E-02         2078       1.977E+05       9.491E-05       2.921E-02         2079       1.977E+05       9.588E-05       2.643E-02         2080       1.977E+05       8.588E-05       2.514E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                    |           |              |
| 2063       1.977E+05       2.009E-04       6.184E-02         2064       1.977E+05       1.911E-04       5.882E-02         2065       1.977E+05       1.818E-04       5.595E-02         2066       1.977E+05       1.729E-04       5.322E-02         2067       1.977E+05       1.645E-04       5.063E-02         2068       1.977E+05       1.489E-04       4.816E-02         2070       1.977E+05       1.416E-04       4.358E-02         2071       1.977E+05       1.347E-04       4.145E-02         2072       1.977E+05       1.281E-04       3.943E-02         2073       1.977E+05       1.219E-04       3.751E-02         2074       1.977E+05       1.159E-04       3.568E-02         2075       1.977E+05       1.103E-04       3.394E-02         2076       1.977E+05       1.049E-04       3.228E-02         2077       1.977E+05       9.978E-05       3.071E-02         2078       1.977E+05       9.491E-05       2.921E-02         2079       1.977E+05       8.58E-05       2.643E-02         2080       1.977E+05       8.58E-05       2.514E-02         2081       1.977E+05       8.169E-05       2.514E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                    |           |              |
| 2064       1.977E+05       1.911E-04       5.882E-02         2065       1.977E+05       1.818E-04       5.595E-02         2066       1.977E+05       1.729E-04       5.322E-02         2067       1.977E+05       1.645E-04       5.063E-02         2068       1.977E+05       1.565E-04       4.816E-02         2069       1.977E+05       1.489E-04       4.581E-02         2070       1.977E+05       1.347E-04       4.145E-02         2071       1.977E+05       1.281E-04       3.943E-02         2072       1.977E+05       1.219E-04       3.751E-02         2073       1.977E+05       1.159E-04       3.568E-02         2074       1.977E+05       1.103E-04       3.394E-02         2075       1.977E+05       1.049E-04       3.228E-02         2077       1.977E+05       9.978E-05       3.071E-02         2078       1.977E+05       9.028E-05       2.779E-02         2079       1.977E+05       9.028E-05       2.779E-02         2080       1.977E+05       8.58E-05       2.643E-02         2081       1.977E+05       8.169E-05       2.514E-02         2082       1.977E+05       7.771E-05       2.392E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                    |           |              |
| 2065       1.977E+05       1.818E-04       5.595E-02         2066       1.977E+05       1.729E-04       5.322E-02         2067       1.977E+05       1.645E-04       5.063E-02         2068       1.977E+05       1.565E-04       4.816E-02         2069       1.977E+05       1.489E-04       4.581E-02         2070       1.977E+05       1.416E-04       4.358E-02         2071       1.977E+05       1.347E-04       4.145E-02         2072       1.977E+05       1.281E-04       3.943E-02         2073       1.977E+05       1.219E-04       3.751E-02         2074       1.977E+05       1.159E-04       3.568E-02         2075       1.977E+05       1.049E-04       3.228E-02         2076       1.977E+05       9.978E-05       3.071E-02         2078       1.977E+05       9.978E-05       2.921E-02         2079       1.977E+05       9.028E-05       2.779E-02         2080       1.977E+05       8.588E-05       2.643E-02         2081       1.977E+05       8.169E-05       2.514E-02         2082       1.977E+05       7.771E-05       2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                    |           |              |
| 2066       1.977E+05       1.729E-04       5.322E-02         2067       1.977E+05       1.645E-04       5.063E-02         2068       1.977E+05       1.565E-04       4.816E-02         2069       1.977E+05       1.489E-04       4.581E-02         2070       1.977E+05       1.416E-04       4.358E-02         2071       1.977E+05       1.347E-04       4.145E-02         2072       1.977E+05       1.219E-04       3.751E-02         2073       1.977E+05       1.219E-04       3.751E-02         2074       1.977E+05       1.159E-04       3.568E-02         2075       1.977E+05       1.049E-04       3.228E-02         2076       1.977E+05       9.978E-05       3.071E-02         2078       1.977E+05       9.491E-05       2.921E-02         2079       1.977E+05       9.028E-05       2.779E-02         2080       1.977E+05       8.588E-05       2.643E-02         2081       1.977E+05       8.169E-05       2.514E-02         2082       1.977E+05       7.771E-05       2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                    |           |              |
| 2067       1.977E+05       1.645E-04       5.063E-02         2068       1.977E+05       1.565E-04       4.816E-02         2069       1.977E+05       1.489E-04       4.581E-02         2070       1.977E+05       1.416E-04       4.358E-02         2071       1.977E+05       1.347E-04       4.145E-02         2072       1.977E+05       1.281E-04       3.943E-02         2073       1.977E+05       1.219E-04       3.751E-02         2074       1.977E+05       1.159E-04       3.568E-02         2075       1.977E+05       1.103E-04       3.394E-02         2076       1.977E+05       9.978E-05       3.071E-02         2077       1.977E+05       9.978E-05       3.071E-02         2078       1.977E+05       9.491E-05       2.921E-02         2079       1.977E+05       9.028E-05       2.779E-02         2080       1.977E+05       8.588E-05       2.643E-02         2081       1.977E+05       8.169E-05       2.514E-02         2082       1.977E+05       7.771E-05       2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                    |           |              |
| 2068       1.977E+05       1.565E-04       4.816E-02         2069       1.977E+05       1.489E-04       4.581E-02         2070       1.977E+05       1.416E-04       4.358E-02         2071       1.977E+05       1.347E-04       4.145E-02         2072       1.977E+05       1.281E-04       3.943E-02         2073       1.977E+05       1.219E-04       3.751E-02         2074       1.977E+05       1.159E-04       3.568E-02         2075       1.977E+05       1.103E-04       3.394E-02         2076       1.977E+05       1.049E-04       3.228E-02         2077       1.977E+05       9.978E-05       3.071E-02         2078       1.977E+05       9.491E-05       2.921E-02         2079       1.977E+05       9.028E-05       2.779E-02         2080       1.977E+05       8.588E-05       2.643E-02         2081       1.977E+05       8.169E-05       2.514E-02         2082       1.977E+05       7.771E-05       2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                    |           |              |
| 2070       1.977E+05       1.416E-04       4.358E-02         2071       1.977E+05       1.347E-04       4.145E-02         2072       1.977E+05       1.281E-04       3.943E-02         2073       1.977E+05       1.219E-04       3.751E-02         2074       1.977E+05       1.159E-04       3.568E-02         2075       1.977E+05       1.103E-04       3.394E-02         2076       1.977E+05       1.049E-04       3.228E-02         2077       1.977E+05       9.978E-05       3.071E-02         2078       1.977E+05       9.491E-05       2.921E-02         2079       1.977E+05       9.028E-05       2.779E-02         2080       1.977E+05       8.588E-05       2.643E-02         2081       1.977E+05       8.169E-05       2.514E-02         2082       1.977E+05       7.771E-05       2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 1.977E+05          |           |              |
| 2071       1.977E+05       1.347E-04       4.145E-02         2072       1.977E+05       1.281E-04       3.943E-02         2073       1.977E+05       1.219E-04       3.751E-02         2074       1.977E+05       1.159E-04       3.568E-02         2075       1.977E+05       1.103E-04       3.394E-02         2076       1.977E+05       1.049E-04       3.228E-02         2077       1.977E+05       9.978E-05       3.071E-02         2078       1.977E+05       9.491E-05       2.921E-02         2079       1.977E+05       9.028E-05       2.779E-02         2080       1.977E+05       8.588E-05       2.643E-02         2081       1.977E+05       8.169E-05       2.514E-02         2082       1.977E+05       7.771E-05       2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2069                                     | 1.977E+05          | 1.489E-04 | 4.581E-02    |
| 2072     1.977E+05     1.281E-04     3.943E-02       2073     1.977E+05     1.219E-04     3.751E-02       2074     1.977E+05     1.159E-04     3.568E-02       2075     1.977E+05     1.103E-04     3.394E-02       2076     1.977E+05     1.049E-04     3.228E-02       2077     1.977E+05     9.978E-05     3.071E-02       2078     1.977E+05     9.491E-05     2.921E-02       2079     1.977E+05     9.028E-05     2.779E-02       2080     1.977E+05     8.588E-05     2.643E-02       2081     1.977E+05     8.169E-05     2.514E-02       2082     1.977E+05     7.771E-05     2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                    | 1.416E-04 |              |
| 2073     1.977E+05     1.219E-04     3.751E-02       2074     1.977E+05     1.159E-04     3.568E-02       2075     1.977E+05     1.103E-04     3.394E-02       2076     1.977E+05     1.049E-04     3.228E-02       2077     1.977E+05     9.978E-05     3.071E-02       2078     1.977E+05     9.491E-05     2.921E-02       2079     1.977E+05     9.028E-05     2.779E-02       2080     1.977E+05     8.588E-05     2.643E-02       2081     1.977E+05     8.169E-05     2.514E-02       2082     1.977E+05     7.771E-05     2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                    |           |              |
| 2074     1.977E+05     1.159E-04     3.568E-02       2075     1.977E+05     1.103E-04     3.394E-02       2076     1.977E+05     1.049E-04     3.228E-02       2077     1.977E+05     9.978E-05     3.071E-02       2078     1.977E+05     9.491E-05     2.921E-02       2079     1.977E+05     9.028E-05     2.779E-02       2080     1.977E+05     8.588E-05     2.643E-02       2081     1.977E+05     8.169E-05     2.514E-02       2082     1.977E+05     7.771E-05     2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                    |           |              |
| 2075     1.977E+05     1.103E-04     3.394E-02       2076     1.977E+05     1.049E-04     3.228E-02       2077     1.977E+05     9.978E-05     3.071E-02       2078     1.977E+05     9.491E-05     2.921E-02       2079     1.977E+05     9.028E-05     2.779E-02       2080     1.977E+05     8.588E-05     2.643E-02       2081     1.977E+05     8.169E-05     2.514E-02       2082     1.977E+05     7.771E-05     2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                    |           |              |
| 2076     1.977E+05     1.049E-04     3.228E-02       2077     1.977E+05     9.978E-05     3.071E-02       2078     1.977E+05     9.491E-05     2.921E-02       2079     1.977E+05     9.028E-05     2.779E-02       2080     1.977E+05     8.588E-05     2.643E-02       2081     1.977E+05     8.169E-05     2.514E-02       2082     1.977E+05     7.771E-05     2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                    |           |              |
| 2077     1.977E+05     9.978E-05     3.071E-02       2078     1.977E+05     9.491E-05     2.921E-02       2079     1.977E+05     9.028E-05     2.779E-02       2080     1.977E+05     8.588E-05     2.643E-02       2081     1.977E+05     8.169E-05     2.514E-02       2082     1.977E+05     7.771E-05     2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                    |           |              |
| 2078     1.977E+05     9.491E-05     2.921E-02       2079     1.977E+05     9.028E-05     2.779E-02       2080     1.977E+05     8.588E-05     2.643E-02       2081     1.977E+05     8.169E-05     2.514E-02       2082     1.977E+05     7.771E-05     2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                    |           |              |
| 2079     1.977E+05     9.028E-05     2.779E-02       2080     1.977E+05     8.588E-05     2.643E-02       2081     1.977E+05     8.169E-05     2.514E-02       2082     1.977E+05     7.771E-05     2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                    |           |              |
| 2080     1.977E+05     8.588E-05     2.643E-02       2081     1.977E+05     8.169E-05     2.514E-02       2082     1.977E+05     7.771E-05     2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                    |           |              |
| 2081 1.977E+05 8.169E-05 2.514E-02<br>2082 1.977E+05 7.771E-05 2.392E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                    |           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                    |           |              |
| 2083 1.977E+05 7.392E-05 2.275E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                    |           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2083                                     | 1.977E+05          | 7.392E-05 | 2.275E-02    |

Table D-4. Northern Parcel Benzene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (N     | 2.                     | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 7.031E-05              | 2.164E-02              |
| 2085         | 1.977E+05              | 6.688E-05              | 2.058E-02              |
| 2086         | 1.977E+05              | 6.362E-05              | 1.958E-02              |
| 2087         | 1.977E+05              | 6.052E-05              | 1.863E-02              |
| 2088         | 1.977E+05              | 5.757E-05              | 1.772E-02              |
| 2089         | 1.977E+05              | 5.476E-05              | 1.685E-02              |
| 2090         | 1.977E+05              | 5.209E-05              | 1.603E-02              |
| 2091         | 1.977E+05              | 4.955E-05              | 1.525E-02              |
| 2092         | 1.977E+05              | 4.713E-05              | 1.451E-02              |
| 2093         | 1.977E+05              | 4.483E-05              | 1.380E-02              |
| 2094         | 1.977E+05              | 4.265E-05              | 1.313E-02              |
| 2095         | 1.977E+05              | 4.057E-05              | 1.248E-02              |
| 2096         | 1.977E+05              | 3.859E-05              | 1.188E-02              |
| 2097         | 1.977E+05              | 3.671E-05              | 1.130E-02              |
| 2098         | 1.977E+05              | 3.492E-05              | 1.075E-02              |
| 2099         | 1.977E+05              | 3.321E-05              | 1.022E-02              |
| 2100<br>2101 | 1.977E+05<br>1.977E+05 | 3.159E-05<br>3.005E-05 | 9.723E-03<br>9.249E-03 |
| 2101         | 1.977E+05              | 2.859E-05              | 8.798E-03              |
| 2102         | 1.977E+05              | 2.719E-05              | 8.369E-03              |
| 2103         | 1.977E+05              | 2.587E-05              | 7.961E-03              |
| 2105         | 1.977E+05              | 2.460E-05              | 7.572E-03              |
| 2106         | 1.977E+05              | 2.340E-05              | 7.203E-03              |
| 2107         | 1.977E+05              | 2.226E-05              | 6.852E-03              |
| 2108         | 1.977E+05              | 2.118E-05              | 6.518E-03              |
| 2109         | 1.977E+05              | 2.014E-05              | 6.200E-03              |
| 2110         | 1.977E+05              | 1.916E-05              | 5.897E-03              |
| 2111         | 1.977E+05              | 1.823E-05              | 5.610E-03              |
| 2112         | 1.977E+05              | 1.734E-05              | 5.336E-03              |
| 2113         | 1.977E+05              | 1.649E-05              | 5.076E-03              |
| 2114         | 1.977E+05              | 1.569E-05              | 4.828E-03              |
| 2115         | 1.977E+05              | 1.492E-05              | 4.593E-03              |
| 2116         | 1.977E+05              | 1.420E-05              | 4.369E-03              |
| 2117         | 1.977E+05              | 1.350E-05              | 4.156E-03              |
| 2118         | 1.977E+05              | 1.284E-05              | 3.953E-03              |
| 2119         | 1.977E+05              | 1.222E-05              | 3.760E-03              |
| 2120         | 1.977E+05              | 1.162E-05              | 3.577E-03              |
| 2121         | 1.977E+05              | 1.106E-05              | 3.403E-03              |
| 2122         | 1.977E+05              | 1.052E-05              | 3.237E-03              |
| 2123         | 1.977E+05              | 1.000E-05              | 3.079E-03              |
| 2124         | 1.977E+05              | 9.516E-06              | 2.929E-03              |
| 2125         | 1.977E+05              | 9.052E-06              | 2.786E-03              |
| 2126         | 1.977E+05              | 8.610E-06              | 2.650E-03              |
| 2127         | 1.977E+05              | 8.190E-06              | 2.521E-03              |
| 2128         | 1.977E+05              | 7.791E-06              | 2.398E-03              |
| 2129         | 1.977E+05<br>1.977E+05 | 7.411E-06              | 2.281E-03              |
| 2130         |                        | 7.049E-06              | 2.170E-03<br>2.064E-03 |
| 2131<br>2132 | 1.977E+05<br>1.977E+05 | 6.706E-06<br>6.379E-06 | 1.963E-03              |
| 2133         | 1.977E+05              | 6.067E-06              | 1.867E-03              |
| 2134         | 1.977E+05              | 5.772E-06              | 1.776E-03              |
| 2135         | 1.977E+05              | 5.490E-06              | 1.690E-03              |
| 2136         | 1.977E+05              | 5.222E-06              | 1.607E-03              |
| 2137         | 1.977E+05              | 4.968E-06              | 1.529E-03              |
| 2138         | 1.977E+05              | 4.725E-06              | 1.454E-03              |
| 2139         | 1.977E+05              | 4.495E-06              | 1.383E-03              |
| 2140         | 1.977E+05              | 4.276E-06              | 1.316E-03              |
| 2141         | 1.977E+05              | 4.067E-06              | 1.252E-03              |
| 2142         | 1.977E+05              | 3.869E-06              | 1.191E-03              |
| 2143         | 1.977E+05              | 3.680E-06              | 1.133E-03              |
| 2144         | 1.977E+05              | 3.501E-06              | 1.077E-03              |
| 2145         | 1.977E+05              | 3.330E-06              | 1.025E-03              |
| 2146         | 1.977E+05              | 3.167E-06              | 9.748E-04              |
| 2147         | 1.977E+05              | 3.013E-06              | 9.273E-04              |
| 2148         | 1.977E+05              | 2.866E-06              | 8.821E-04              |
| 2149         | 1.977E+05              | 2.726E-06              | 8.391E-04              |
| 2150         | 1.977E+05              | 2.593E-06              | 7.981E-04              |
| 2151         | 1.977E+05              | 2.467E-06              | 7.592E-04              |
| 2152         | 1.977E+05              | 2.347E-06              | 7.222E-04              |
| 2153         | 1.977E+05              | 2.232E-06              | 6.870E-04              |
| 2154         | 1.977E+05              | 2.123E-06              | 6.535E-04              |

Table D-4. Northern Parcel Benzene Emisson Rate from Year 1968 to 2203 (concluded).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2155         | 1.977E+05              | 2.020E-06              | 6.216E-04              |
| 2156         | 1.977E+05              | 1.921E-06              | 5.913E-04              |
| 2157         | 1.977E+05              | 1.827E-06              | 5.624E-04              |
| 2158         | 1.977E+05              | 1.738E-06              | 5.350E-04              |
| 2159         | 1.977E+05              | 1.654E-06              | 5.089E-04              |
| 2160         | 1.977E+05              | 1.573E-06              | 4.841E-04              |
| 2161         | 1.977E+05              | 1.496E-06              | 4.605E-04              |
| 2162         | 1.977E+05              | 1.423E-06              | 4.380E-04              |
| 2163         | 1.977E+05              | 1.354E-06              | 4.167E-04              |
| 2164         | 1.977E+05              | 1.288E-06              | 3.963E-04              |
| 2165         | 1.977E+05              | 1.225E-06              | 3.770E-04              |
| 2166         | 1.977E+05              | 1.165E-06              | 3.586E-04              |
| 2167         | 1.977E+05              | 1.108E-06              | 3.411E-04              |
| 2168         | 1.977E+05              | 1.054E-06              | 3.245E-04              |
| 2169         | 1.977E+05              | 1.003E-06              | 3.087E-04              |
| 2170         | 1.977E+05              | 9.540E-07              | 2.936E-04              |
| 2171         | 1.977E+05              | 9.075E-07              | 2.793E-04              |
| 2172         | 1.977E+05              | 8.632E-07              | 2.657E-04              |
| 2173         | 1.977E+05              | 8.211E-07              | 2.527E-04              |
| 2174         | 1.977E+05              | 7.811E-07              | 2.404E-04              |
| 2175         | 1.977E+05              | 7.430E-07              | 2.287E-04              |
| 2176         | 1.977E+05              | 7.068E-07              | 2.175E-04              |
| 2177         | 1.977E+05              | 6.723E-07              | 2.069E-04              |
| 2178         | 1.977E+05              | 6.395E-07              | 1.968E-04              |
| 2179         | 1.977E+05              | 6.083E-07              | 1.872E-04              |
| 2180         | 1.977E+05              | 5.786E-07              | 1.781E-04              |
| 2181         | 1.977E+05              | 5.504E-07              | 1.694E-04              |
| 2182         | 1.977E+05              | 5.236E-07              | 1.611E-04              |
| 2183         | 1.977E+05              | 4.980E-07              | 1.533E-04              |
| 2184         | 1.977E+05              | 4.738E-07              | 1.458E-04              |
| 2185         | 1.977E+05              | 4.507E-07              | 1.387E-04              |
| 2186         | 1.977E+05              | 4.287E-07              | 1.319E-04              |
| 2187         | 1.977E+05              | 4.078E-07              | 1.255E-04              |
| 2188         | 1.977E+05              | 3.879E-07              | 1.194E-04              |
| 2189         | 1.977E+05              | 3.690E-07              | 1.136E-04              |
| 2190         | 1.977E+05              | 3.510E-07              | 1.080E-04              |
| 2191         | 1.977E+05              | 3.339E-07              | 1.027E-04              |
| 2192         | 1.977E+05              | 3.176E-07              | 9.774E-05              |
| 2193         | 1.977E+05              | 3.021E-07              | 9.297E-05              |
| 2194         | 1.977E+05              | 2.873E-07              | 8.844E-05              |
| 2195         | 1.977E+05              | 2.733E-07              | 8.412E-05              |
| 2196         | 1.977E+05              | 2.600E-07              | 8.002E-05              |
| 2197         | 1.977E+05              | 2.473E-07              | 7.612E-05              |
| 2198         | 1.977E+05              | 2.353E-07              | 7.241E-05              |
| 2199<br>2200 | 1.977E+05<br>1.977E+05 | 2.238E-07<br>2.129E-07 | 6.887E-05<br>6.551E-05 |
| 2200         | 1.977E+05<br>1.977E+05 | 2.129E-07<br>2.025E-07 | 6.232E-05              |
| 2201         | 1.977E+05<br>1.977E+05 | 1.926E-07              | 5.928E-05              |
| 2202         | 1.977E+05              | 1.926E-07              | 5.639E-05              |
| 2200         | 1.91/6703              | 1.0525-07              | 5.0596-05              |

Table D-5. Northern Parcel Chlorobenzene Emisson Rate from Year 1968 to 2203.

#### Model Parameters

\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC: 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 56.0000 % volume

Carbon Dioxide : 44.0000 % volume Air Pollutant : Chlorobenzene (HAP/VOC) Molecular Wt = 112.56 Concentratio

Concentration = 0.220000 ppmV

#### Landfill Parameters

\_\_\_\_\_\_

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 13179.47 Mg/year

\_\_\_\_\_\_

| Year | Refuse In Place (Mg) | Chlorobenzene<br>(Mg/yr) | (HAP/VOC) Emission Rate<br>(Cubic m/yr) |
|------|----------------------|--------------------------|-----------------------------------------|
|      |                      |                          |                                         |
| 1968 | 1.318E+04            | 2.060E-04                | 4.401E-02                               |
| 1969 | 2.636E+04            | 4.020E-04                | 8.587E-02                               |
| 1970 | 3.954E+04            | 5.885E-04                | 1.257E-01                               |
| 1971 | 5.272E+04            | 7.658E-04                | 1.636E-01                               |
| 1972 | 6.590E+04            | 9.345E-04                | 1.996E-01                               |
| 1973 | 7.908E+04            | 1.095E-03                | 2.339E-01                               |
| 1974 | 9.226E+04            | 1.248E-03                | 2.665E-01                               |
| 1975 | 1.054E+05            | 1.393E-03                | 2.975E-01                               |
| 1976 | 1.186E+05            | 1.531E-03                | 3.270E-01                               |
| 1977 | 1.318E+05            | 1.662E-03                | 3.551E-01                               |
| 1978 | 1.450E+05            | 1.787E-03                | 3.818E-01                               |
| 1979 | 1.582E+05            | 1.906E-03                | 4.071E-01                               |
| 1980 | 1.713E+05            | 2.019E-03                | 4.313E-01                               |
| 1981 | 1.845E+05            | 2.127E-03                | 4.543E-01                               |
| 1982 | 1.977E+05            | 2.229E-03                | 4.761E-01                               |
| 1983 | 1.977E+05            | 2.120E-03                | 4.529E-01                               |
| 1984 | 1.977E+05            | 2.017E-03                | 4.308E-01                               |
| 1985 | 1.977E+05            | 1.919E-03                | 4.098E-01                               |
| 1986 | 1.977E+05            | 1.825E-03                | 3.898E-01                               |
| 1987 | 1.977E+05            | 1.736E-03                | 3.708E-01                               |
| 1988 | 1.977E+05            | 1.651E-03                | 3.527E-01                               |
| 1989 | 1.977E+05            | 1.571E-03                | 3.355E-01                               |
| 1990 | 1.977E+05            | 1.494E-03                | 3.192E-01                               |
| 1991 | 1.977E+05            | 1.421E-03                | 3.036E-01                               |
| 1992 | 1.977E+05            | 1.352E-03                | 2.888E-01                               |
| 1993 | 1.977E+05            | 1.286E-03                | 2.747E-01                               |
| 1994 | 1.977E+05            | 1.223E-03                | 2.613E-01                               |
| 1995 | 1.977E+05            | 1.164E-03                | 2.486E-01                               |
| 1996 | 1.977E+05            | 1.107E-03                | 2.364E-01                               |
| 1997 | 1.977E+05            | 1.053E-03                | 2.249E-01                               |
| 1998 | 1.977E+05            | 1.002E-03                | 2.139E-01                               |
| 1999 | 1.977E+05            | 9.527E-04                | 2.035E-01                               |
| 2000 | 1.977E+05            | 9.063E-04                | 1.936E-01                               |
| 2001 | 1.977E+05            | 8.621E-04                | 1.841E-01                               |
| 2002 | 1.977E+05            | 8.200E-04                | 1.752E-01                               |
| 2003 | 1.977E+05            | 7.800E-04                | 1.666E-01                               |
| 2004 | 1.977E+05            | 7.420E-04                | 1.585E-01                               |
| 2005 | 1.977E+05            | 7.058E-04                | 1.508E-01                               |
| 2006 | 1.977E+05            | 6.714E-04                | 1.434E-01                               |
| 2007 | 1.977E+05            | 6.386E-04                | 1.364E-01                               |
| 2008 | 1.977E+05            | 6.075E-04                | 1.298E-01                               |
| 2009 | 1.977E+05            | 5.779E-04                | 1.234E-01                               |
| 2010 | 1.977E+05            | 5.497E-04                | 1.174E-01                               |
| 2011 | 1.977E+05            | 5.229E-04                | 1.117E-01                               |
| 2012 | 1.977E+05            | 4.974E-04                | 1.062E-01                               |

Table D-5. Northern Parcel Chlorobenzene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 4.731E-04              | 1.011E-01              |
| 2014         | 1.977E+05              | 4.500E-04              | 9.613E-02              |
| 2015         | 1.977E+05              | 4.281E-04              | 9.144E-02              |
| 2016         | 1.977E+05              | 4.072E-04              | 8.698E-02              |
| 2017         | 1.977E+05              | 3.874E-04              | 8.274E-02              |
| 2018         | 1.977E+05              | 3.685E-04              | 7.870E-02              |
| 2019         | 1.977E+05              | 3.505E-04              | 7.487E-02              |
| 2020         | 1.977E+05              | 3.334E-04              | 7.121E-02              |
| 2021         | 1.977E+05              | 3.171E-04              | 6.774E-02              |
| 2022         | 1.977E+05              | 3.017E-04              | 6.444E-02              |
| 2023         | 1.977E+05              | 2.870E-04              | 6.129E-02              |
| 2024         | 1.977E+05              | 2.730E-04              | 5.831E-02              |
| 2025         | 1.977E+05              | 2.597E-04              | 5.546E-02              |
| 2026         | 1.977E+05              | 2.470E-04              | 5.276E-02              |
| 2027<br>2028 | 1.977E+05<br>1.977E+05 | 2.349E-04              | 5.018E-02<br>4.774E-02 |
| 2020         | 1.977E+05              | 2.235E-04<br>2.126E-04 | 4.774E-02<br>4.541E-02 |
| 2030         | 1.977E+05              | 2.126E-04<br>2.022E-04 | 4.319E-02              |
| 2030         | 1.977E+05              | 1.924E-04              | 4.109E-02              |
| 2032         | 1.977E+05              | 1.830E-04              | 3.908E-02              |
| 2033         | 1.977E+05              | 1.741E-04              | 3.718E-02              |
| 2034         | 1.977E+05              | 1.656E-04              | 3.536E-02              |
| 2035         | 1.977E+05              | 1.575E-04              | 3.364E-02              |
| 2036         | 1.977E+05              | 1.498E-04              | 3.200E-02              |
| 2037         | 1.977E+05              | 1.425E-04              | 3.044E-02              |
| 2038         | 1.977E+05              | 1.356E-04              | 2.895E-02              |
| 2039         | 1.977E+05              | 1.289E-04              | 2.754E-02              |
| 2040         | 1.977E+05              | 1.227E-04              | 2.620E-02              |
| 2041         | 1.977E+05              | 1.167E-04              | 2.492E-02              |
| 2042         | 1.977E+05              | 1.110E-04              | 2.371E-02              |
| 2043         | 1.977E+05              | 1.056E-04              | 2.255E-02              |
| 2044         | 1.977E+05              | 1.004E-04              | 2.145E-02              |
| 2045         | 1.977E+05              | 9.552E-05              | 2.040E-02              |
| 2046         | 1.977E+05              | 9.086E-05              | 1.941E-02              |
| 2047         | 1.977E+05              | 8.643E-05              | 1.846E-02              |
| 2048         | 1.977E+05              | 8.222E-05              | 1.756E-02              |
| 2049         | 1.977E+05              | 7.821E-05              | 1.670E-02              |
| 2050         | 1.977E+05              | 7.439E-05              | 1.589E-02              |
| 2051<br>2052 | 1.977E+05<br>1.977E+05 | 7.076E-05<br>6.731E-05 | 1.512E-02<br>1.438E-02 |
| 2052         | 1.977E+05              | 6.403E-05              | 1.368E-02              |
| 2054         | 1.977E+05              | 6.091E-05              | 1.301E-02              |
| 2055         | 1.977E+05              | 5.794E-05              | 1.238E-02              |
| 2056         | 1.977E+05              | 5.511E-05              | 1.177E-02              |
| 2057         | 1.977E+05              | 5.242E-05              | 1.120E-02              |
| 2058         | 1.977E+05              | 4.987E-05              | 1.065E-02              |
| 2059         | 1.977E+05              | 4.743E-05              | 1.013E-02              |
| 2060         | 1.977E+05              | 4.512E-05              | 9.638E-03              |
| 2061         | 1.977E+05              | 4.292E-05              | 9.168E-03              |
| 2062         | 1.977E+05              | 4.083E-05              | 8.721E-03              |
| 2063         | 1.977E+05              | 3.884E-05              | 8.295E-03              |
| 2064         | 1.977E+05              | 3.694E-05              | 7.891E-03              |
| 2065         | 1.977E+05              | 3.514E-05              | 7.506E-03              |
| 2066         | 1.977E+05              | 3.343E-05              | 7.140E-03              |
| 2067         | 1.977E+05              | 3.180E-05              | 6.792E-03              |
| 2068         | 1.977E+05              | 3.025E-05              | 6.460E-03              |
| 2069         | 1.977E+05              | 2.877E-05              | 6.145E-03              |
| 2070         | 1.977E+05              | 2.737E-05              | 5.846E-03              |
| 2071         | 1.977E+05              | 2.603E-05              | 5.561E-03              |
| 2072<br>2073 | 1.977E+05<br>1.977E+05 | 2.476E-05<br>2.356E-05 | 5.289E-03<br>5.031E-03 |
|              | 1.977E+05              | 2.241E-05              | 4.786E-03              |
| 2074<br>2075 | 1.977E+05<br>1.977E+05 | 2.241E-05<br>2.131E-05 | 4.786E-03<br>4.553E-03 |
| 2076         | 1.977E+05              | 2.131E-05<br>2.027E-05 | 4.331E-03              |
| 2077         | 1.977E+05              | 1.929E-05              | 4.119E-03              |
| 2078         | 1.977E+05              | 1.834E-05              | 3.918E-03              |
| 2079         | 1.977E+05              | 1.745E-05              | 3.727E-03              |
| 2080         | 1.977E+05              | 1.660E-05              | 3.546E-03              |
| 2081         | 1.977E+05              | 1.579E-05              | 3.373E-03              |
| 2082         | 1.977E+05              | 1.502E-05              | 3.208E-03              |
| 2083         | 1.977E+05              | 1.429E-05              | 3.052E-03              |
|              |                        |                        |                        |

Table D-5. Northern Parcel Chlorobenzene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (M     | (Mg/yr) (Cubic m/yr)                       |
|--------------|------------------------|--------------------------------------------|
| 2084         | 1.977E+05              | 1.359E-05 2.903E-03                        |
| 2085         | 1.977E+05              | 1.293E-05 2.761E-03                        |
| 2086         | 1.977E+05              | 1.230E-05 2.627E-03                        |
| 2087         | 1.977E+05              | 1.170E-05 2.499E-03                        |
| 2088         | 1.977E+05              | 1.113E-05 2.377E-03                        |
| 2089         | 1.977E+05              | 1.058E-05 2.261E-03                        |
| 2090<br>2091 | 1.977E+05<br>1.977E+05 | 1.007E-05 2.150E-03<br>9.577E-06 2.046E-03 |
| 2091         | 1.977E+05<br>1.977E+05 | 9.110E-06 2.046E-03<br>9.110E-06 1.946E-03 |
| 2093         | 1.977E+05              | 8.666E-06 1.851E-03                        |
| 2094         | 1.977E+05              | 8.243E-06 1.761E-03                        |
| 2095         | 1.977E+05              | 7.841E-06 1.675E-03                        |
| 2096         | 1.977E+05              | 7.459E-06 1.593E-03                        |
| 2097         | 1.977E+05              | 7.095E-06 1.515E-03                        |
| 2098         | 1.977E+05              | 6.749E-06 1.442E-03                        |
| 2099         | 1.977E+05              | 6.420E-06 1.371E-03                        |
| 2100<br>2101 | 1.977E+05<br>1.977E+05 | 6.107E-06 1.304E-03<br>5.809E-06 1.241E-03 |
| 2101         | 1.977E+05              | 5.525E-06 1.180E-03                        |
| 2102         | 1.977E+05              | 5.256E-06 1.123E-03                        |
| 2104         | 1.977E+05              | 5.000E-06 1.068E-03                        |
| 2105         | 1.977E+05              | 4.756E-06 1.016E-03                        |
| 2106         | 1.977E+05              | 4.524E-06 9.663E-04                        |
| 2107         | 1.977E+05              | 4.303E-06 9.192E-04                        |
| 2108         | 1.977E+05              | 4.093E-06 8.743E-04                        |
| 2109         | 1.977E+05              | 3.894E-06 8.317E-04                        |
| 2110         | 1.977E+05              | 3.704E-06 7.911E-04                        |
| 2111         | 1.977E+05              | 3.523E-06 7.525E-04                        |
| 2112<br>2113 | 1.977E+05<br>1.977E+05 | 3.351E-06 7.158E-04<br>3.188E-06 6.809E-04 |
| 2114         | 1.977E+05              | 3.032E-06 6.477E-04                        |
| 2115         | 1.977E+05              | 2.885E-06 6.161E-04                        |
| 2116         | 1.977E+05              | 2.744E-06 5.861E-04                        |
| 2117         | 1.977E+05              | 2.610E-06 5.575E-04                        |
| 2118         | 1.977E+05              | 2.483E-06 5.303E-04                        |
| 2119         | 1.977E+05              | 2.362E-06 5.044E-04                        |
| 2120         | 1.977E+05              | 2.246E-06 4.798E-04                        |
| 2121         | 1.977E+05              | 2.137E-06 4.564E-04                        |
| 2122<br>2123 | 1.977E+05<br>1.977E+05 | 2.033E-06 4.342E-04<br>1.934E-06 4.130E-04 |
| 2123         | 1.977E+05              | 1.839E-06 4.130E-04<br>1.839E-06 3.929E-04 |
| 2125         | 1.977E+05              | 1.750E-06 3.737E-04                        |
| 2126         | 1.977E+05              | 1.664E-06 3.555E-04                        |
| 2127         | 1.977E+05              | 1.583E-06 3.381E-04                        |
| 2128         | 1.977E+05              | 1.506E-06 3.216E-04                        |
| 2129         | 1.977E+05              | 1.432E-06 3.060E-04                        |
| 2130         | 1.977E+05              | 1.363E-06 2.910E-04                        |
| 2131         | 1.977E+05              | 1.296E-06 2.768E-04                        |
| 2132         | 1.977E+05              | 1.233E-06 2.633E-04                        |
| 2133<br>2134 | 1.977E+05<br>1.977E+05 | 1.173E-06 2.505E-04<br>1.116E-06 2.383E-04 |
| 2135         | 1.977E+05              | 1.061E-06 2.267E-04                        |
| 2136         | 1.977E+05              | 1.009E-06 2.156E-04                        |
| 2137         | 1.977E+05              | 9.602E-07 2.051E-04                        |
| 2138         | 1.977E+05              | 9.133E-07 1.951E-04                        |
| 2139         | 1.977E+05              | 8.688E-07 1.856E-04                        |
| 2140         | 1.977E+05              | 8.264E-07 1.765E-04                        |
| 2141         | 1.977E+05              | 7.861E-07 1.679E-04                        |
| 2142         | 1.977E+05              | 7.478E-07 1.597E-04                        |
| 2143         | 1.977E+05<br>1.977E+05 | 7.113E-07 1.519E-04                        |
| 2144<br>2145 | 1.977E+05<br>1.977E+05 | 6.766E-07                                  |
| 2145         | 1.977E+05              | 6.122E-07 1.308E-04                        |
| 2147         | 1.977E+05              | 5.824E-07 1.244E-04                        |
| 2148         | 1.977E+05              | 5.540E-07 1.183E-04                        |
| 2149         | 1.977E+05              | 5.270E-07 1.126E-04                        |
| 2150         | 1.977E+05              | 5.013E-07 1.071E-04                        |
| 2151         | 1.977E+05              | 4.768E-07 1.018E-04                        |
| 2152         | 1.977E+05              | 4.536E-07 9.688E-05                        |
| 2153         | 1.977E+05              | 4.314E-07 9.215E-05                        |
| 2154         | 1.977E+05              | 4.104E-07 8.766E-05                        |
|              |                        |                                            |

Table D-5. Northern Parcel Chlorobenzene Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)   | (Cubic m/yr) |
|------|----------------------|-----------|--------------|
| 2155 | 1.977E+05            | 3.904E-07 | 8.338E-05    |
| 2156 | 1.977E+05            | 3.713E-07 | 7.932E-05    |
| 2157 | 1.977E+05            | 3.532E-07 | 7.545E-05    |
| 2158 | 1.977E+05            | 3.360E-07 | 7.177E-05    |
| 2159 | 1.977E+05            | 3.196E-07 | 6.827E-05    |
| 2160 | 1.977E+05            | 3.040E-07 | 6.494E-05    |
| 2161 | 1.977E+05            | 2.892E-07 | 6.177E-05    |
| 2162 | 1.977E+05            | 2.751E-07 | 5.876E-05    |
| 2163 | 1.977E+05            | 2.617E-07 | 5.589E-05    |
| 2164 | 1.977E+05            | 2.489E-07 | 5.317E-05    |
| 2165 | 1.977E+05            | 2.368E-07 | 5.057E-05    |
| 2166 | 1.977E+05            | 2.252E-07 | 4.811E-05    |
| 2167 | 1.977E+05            | 2.142E-07 | 4.576E-05    |
| 2168 | 1.977E+05            | 2.038E-07 | 4.353E-05    |
| 2169 | 1.977E+05            | 1.939E-07 | 4.141E-05    |
| 2170 | 1.977E+05            | 1.844E-07 | 3.939E-05    |
| 2171 | 1.977E+05            | 1.754E-07 | 3.747E-05    |
| 2172 | 1.977E+05            | 1.669E-07 | 3.564E-05    |
| 2173 | 1.977E+05            | 1.587E-07 | 3.390E-05    |
| 2174 | 1.977E+05            | 1.510E-07 | 3.225E-05    |
| 2175 | 1.977E+05            | 1.436E-07 | 3.068E-05    |
| 2176 | 1.977E+05            | 1.366E-07 | 2.918E-05    |
| 2177 | 1.977E+05            | 1.299E-07 | 2.776E-05    |
| 2178 | 1.977E+05            | 1.236E-07 | 2.640E-05    |
| 2179 | 1.977E+05            | 1.176E-07 | 2.511E-05    |
| 2180 | 1.977E+05            | 1.118E-07 | 2.389E-05    |
| 2181 | 1.977E+05            | 1.064E-07 | 2.272E-05    |
| 2182 | 1.977E+05            | 1.012E-07 | 2.162E-05    |
| 2183 | 1.977E+05            | 9.627E-08 | 2.056E-05    |
| 2184 | 1.977E+05            | 9.157E-08 | 1.956E-05    |
| 2185 | 1.977E+05            | 8.710E-08 | 1.861E-05    |
| 2186 | 1.977E+05            | 8.286E-08 | 1.770E-05    |
| 2187 | 1.977E+05            | 7.882E-08 | 1.683E-05    |
| 2188 | 1.977E+05            | 7.497E-08 | 1.601E-05    |
| 2189 | 1.977E+05            | 7.132E-08 | 1.523E-05    |
| 2190 | 1.977E+05            | 6.784E-08 | 1.449E-05    |
| 2191 | 1.977E+05            | 6.453E-08 | 1.378E-05    |
| 2192 | 1.977E+05            | 6.138E-08 | 1.311E-05    |
| 2193 | 1.977E+05            | 5.839E-08 | 1.247E-05    |
| 2194 | 1.977E+05            | 5.554E-08 | 1.186E-05    |
| 2195 | 1.977E+05            | 5.283E-08 | 1.128E-05    |
| 2196 | 1.977E+05            | 5.026E-08 | 1.073E-05    |
| 2197 | 1.977E+05            | 4.780E-08 | 1.021E-05    |
| 2198 | 1.977E+05            | 4.547E-08 | 9.713E-06    |
| 2199 | 1.977E+05            | 4.325E-08 | 9.239E-06    |
| 2200 | 1.977E+05            | 4.115E-08 | 8.789E-06    |
| 2201 | 1.977E+05            | 3.914E-08 | 8.360E-06    |
| 2202 | 1.977E+05            | 3.723E-08 | 7.952E-06    |
| 2203 | 1.977E+05            | 3.541E-08 | 7.564E-06    |

Table D-6. Northern Parcel Chloroethane Emisson Rate from Year 1968 to 2203.

#### Model Parameters

\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k : 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC: 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 56.0000 % volume

Carbon Dioxide : 44.0000 % volume Air Pollutant : Chloroethane (HAP/VOC)

Molecular Wt = 64.52 Concentration = 2.960000 ppmV

#### Landfill Parameters

\_\_\_\_\_\_

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 13179.47 Mg/year

\_\_\_\_\_\_

| Year | Refuse In Place (Mg) | Chloroethane<br>(Mg/yr) | (HAP/VOC) Emission Rate<br>(Cubic m/yr) |
|------|----------------------|-------------------------|-----------------------------------------|
|      | Reluse in flace (Mg) | (Fig/ y1)               | (Cubic m/yi)                            |
| 1968 | 1.318E+04            | 1.589E-03               | 5.921E-01                               |
| 1969 | 2.636E+04            | 3.101E-03               | 1.155E+00                               |
| 1970 | 3.954E+04            | 4.538E-03               | 1.691E+00                               |
| 1971 | 5.272E+04            | 5.906E-03               | 2.201E+00                               |
| 1972 | 6.590E+04            | 7.207E-03               | 2.686E+00                               |
| 1973 | 7.908E+04            | 8.445E-03               | 3.147E+00                               |
| 1974 | 9.226E+04            | 9.622E-03               | 3.585E+00                               |
| 1975 | 1.054E+05            | 1.074E-02               | 4.003E+00                               |
| 1976 | 1.186E+05            | 1.181E-02               | 4.400E+00                               |
| 1977 | 1.318E+05            | 1 282F=02               | 4.777E+00                               |
| 1978 | 1.450E+05            | 1.282E-02<br>1.378E-02  | 5.136E+00                               |
| 1979 | 1.582E+05            | 1.470E-02               | 5.478E+00                               |
| 1980 | 1.713E+05            | 1.557E-02               | 5.803E+00                               |
| 1981 | 1.845E+05            |                         | 6.112E+00                               |
| 1982 | 1.977E+05            | 1.640E-02<br>1.719E-02  | 6.406E+00                               |
| 1983 | 1.977E+05            | 1.635E-02               | 6.094E+00                               |
| 1984 | 1.977E+05            | 1.556E-02               | 5.796E+00                               |
| 1985 | 1.977E+05            | 1.480E-02               | 5.514E+00                               |
| 1986 | 1.977E+05            | 1.408E-02               | 5.245E+00                               |
| 1987 | 1.977E+05            | 1.339E-02               | 4.989E+00                               |
| 1988 | 1.977E+05            | 1.274E-02               | 4.746E+00                               |
| 1989 | 1.977E+05            | 1.211E-02               | 4.514E+00                               |
| 1990 | 1.977E+05            | 1.152E-02               | 4.294E+00                               |
| 1991 | 1.977E+05            | 1.096E-02               | 4.085E+00                               |
| 1992 | 1.977E+05            | 1.043E-02               | 3.886E+00                               |
| 1993 | 1.977E+05            | 9.918E-03               | 3.696E+00                               |
| 1994 | 1.977E+05            | 9.435E-03               | 3.516E+00                               |
| 1995 | 1.977E+05            | 8.975E-03               | 3.344E+00                               |
| 1996 | 1.977E+05            | 8.537E-03               | 3.181E+00                               |
| 1997 | 1.977E+05            | 8.121E-03               | 3.026E+00                               |
| 1998 | 1.977E+05            | 7.725E-03               | 2.878E+00                               |
| 1999 | 1.977E+05            | 7.348E-03               | 2.738E+00                               |
| 2000 | 1.977E+05            | 6.989E-03               | 2.605E+00                               |
| 2001 | 1.977E+05            | 6.649E-03               | 2.478E+00                               |
| 2002 | 1.977E+05            | 6.324E-03               | 2.357E+00                               |
| 2003 | 1.977E+05            | 6.016E-03               | 2.242E+00                               |
| 2004 | 1.977E+05            | 5.723E-03               | 2.132E+00                               |
| 2005 | 1.977E+05            | 5.443E-03               | 2.028E+00                               |
| 2006 | 1.977E+05            | 5.178E-03               | 1.929E+00                               |
| 2007 | 1.977E+05            | 4.925E-03               | 1.835E+00                               |
| 2008 | 1.977E+05            | 4.685E-03               | 1.746E+00                               |
| 2009 | 1.977E+05            | 4.457E-03               | 1.661E+00                               |
| 2010 | 1.977E+05            | 4.239E-03               | 1.580E+00                               |
| 2011 | 1.977E+05            | 4.033E-03               | 1.503E+00                               |
| 2012 | 1.977E+05            | 3.836E-03               | 1.429E+00                               |

Table D-6. Northern Parcel Chloroethane Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 3.649E-03              | 1.360E+00              |
| 2014         | 1.977E+05              | 3.471E-03              | 1.293E+00              |
| 2015         | 1.977E+05              | 3.302E-03              | 1.230E+00              |
| 2016         | 1.977E+05              | 3.141E-03              | 1.170E+00              |
| 2017         | 1.977E+05              | 2.987E-03              | 1.113E+00              |
| 2018         | 1.977E+05              | 2.842E-03              | 1.059E+00              |
| 2019<br>2020 | 1.977E+05<br>1.977E+05 | 2.703E-03<br>2.571E-03 | 1.007E+00<br>9.582E-01 |
| 2020         | 1.977E+05              | 2.446E-03              | 9.114E-01              |
| 2022         | 1.977E+05              | 2.327E-03              | 8.670E-01              |
| 2023         | 1.977E+05              | 2.213E-03              | 8.247E-01              |
| 2024         | 1.977E+05              | 2.105E-03              | 7.845E-01              |
| 2025         | 1.977E+05              | 2.003E-03              | 7.462E-01              |
| 2026         | 1.977E+05              | 1.905E-03              | 7.098E-01              |
| 2027         | 1.977E+05              | 1.812E-03              | 6.752E-01              |
| 2028         | 1.977E+05              | 1.724E-03              | 6.423E-01              |
| 2029<br>2030 | 1.977E+05<br>1.977E+05 | 1.640E-03<br>1.560E-03 | 6.109E-01<br>5.812E-01 |
| 2030         | 1.977E+05              | 1.484E-03              | 5.528E-01              |
| 2032         | 1.977E+05              | 1.411E-03              | 5.258E-01              |
| 2033         | 1.977E+05              | 1.342E-03              | 5.002E-01              |
| 2034         | 1.977E+05              | 1.277E-03              | 4.758E-01              |
| 2035         | 1.977E+05              | 1.215E-03              | 4.526E-01              |
| 2036         | 1.977E+05              | 1.155E-03              | 4.305E-01              |
| 2037         | 1.977E+05              | 1.099E-03              | 4.095E-01              |
| 2038         | 1.977E+05              | 1.045E-03              | 3.896E-01              |
| 2039         | 1.977E+05              | 9.944E-04              | 3.706E-01              |
| 2040<br>2041 | 1.977E+05<br>1.977E+05 | 9.459E-04<br>8.998E-04 | 3.525E-01<br>3.353E-01 |
| 2041         | 1.977E+05              | 8.559E-04              | 3.189E-01              |
| 2042         | 1.977E+05              | 8.142E-04              | 3.034E-01              |
| 2044         | 1.977E+05              | 7.745E-04              | 2.886E-01              |
| 2045         | 1.977E+05              | 7.367E-04              | 2.745E-01              |
| 2046         | 1.977E+05              | 7.008E-04              | 2.611E-01              |
| 2047         | 1.977E+05              | 6.666E-04              | 2.484E-01              |
| 2048         | 1.977E+05              | 6.341E-04              | 2.363E-01              |
| 2049         | 1.977E+05              | 6.031E-04              | 2.248E-01              |
| 2050         | 1.977E+05              | 5.737E-04              | 2.138E-01              |
| 2051<br>2052 | 1.977E+05<br>1.977E+05 | 5.458E-04<br>5.191E-04 | 2.034E-01<br>1.934E-01 |
| 2053         | 1.977E+05              | 4.938E-04              | 1.840E-01              |
| 2054         | 1.977E+05              | 4.697E-04              | 1.750E-01              |
| 2055         | 1.977E+05              | 4.468E-04              | 1.665E-01              |
| 2056         | 1.977E+05              | 4.250E-04              | 1.584E-01              |
| 2057         | 1.977E+05              | 4.043E-04              | 1.507E-01              |
| 2058         | 1.977E+05              | 3.846E-04              | 1.433E-01              |
| 2059         | 1.977E+05              | 3.658E-04              | 1.363E-01              |
| 2060         | 1.977E+05              | 3.480E-04              | 1.297E-01              |
| 2061         | 1.977E+05<br>1.977E+05 | 3.310E-04<br>3.149E-04 | 1.233E-01              |
| 2062<br>2063 | 1.977E+05              | 2.995E-04              | 1.173E-01<br>1.116E-01 |
| 2064         | 1.977E+05              | 2.849E-04              | 1.062E-01              |
| 2065         | 1.977E+05              | 2.710E-04              | 1.010E-01              |
| 2066         | 1.977E+05              | 2.578E-04              | 9.606E-02              |
| 2067         | 1.977E+05              | 2.452E-04              | 9.138E-02              |
| 2068         | 1.977E+05              | 2.333E-04              | 8.692E-02              |
| 2069         | 1.977E+05              | 2.219E-04              | 8.268E-02              |
| 2070         | 1.977E+05              | 2.111E-04              | 7.865E-02              |
| 2071         | 1.977E+05              | 2.008E-04              | 7.481E-02              |
| 2072<br>2073 | 1.977E+05<br>1.977E+05 | 1.910E-04<br>1.817E-04 | 7.117E-02<br>6.770E-02 |
| 2074         | 1.977E+05<br>1.977E+05 | 1.728E-04              | 6.439E-02              |
| 2075         | 1.977E+05              | 1.644E-04              | 6.125E-02              |
| 2076         | 1.977E+05              | 1.564E-04              | 5.827E-02              |
| 2077         | 1.977E+05              | 1.487E-04              | 5.542E-02              |
| 2078         | 1.977E+05              | 1.415E-04              | 5.272E-02              |
| 2079         | 1.977E+05              | 1.346E-04              | 5.015E-02              |
| 2080         | 1.977E+05              | 1.280E-04              | 4.770E-02              |
| 2081         | 1.977E+05              | 1.218E-04              | 4.538E-02              |
| 2082         | 1.977E+05              | 1.158E-04              | 4.316E-02              |
| 2083         | 1.977E+05              | 1.102E-04              | 4.106E-02              |

Table D-6. Northern Parcel Chloroethane Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mo    | g) (Mg/yr)             | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 1.048E-04              | 3.906E-02              |
| 2085         | 1.977E+05              | 9.970E-05              | 3.715E-02              |
| 2086         | 1.977E+05              | 9.484E-05              | 3.534E-02              |
| 2087         | 1.977E+05              | 9.021E-05              | 3.362E-02              |
| 2088         | 1.977E+05              | 8.581E-05              | 3.198E-02              |
| 2089         | 1.977E+05              | 8.163E-05              | 3.042E-02              |
| 2090<br>2091 | 1.977E+05<br>1.977E+05 | 7.765E-05<br>7.386E-05 | 2.893E-02<br>2.752E-02 |
| 2092         | 1.977E+05              | 7.026E-05              | 2.618E-02              |
| 2093         | 1.977E+05              | 6.683E-05              | 2.490E-02              |
| 2094         | 1.977E+05              | 6.357E-05              | 2.369E-02              |
| 2095         | 1.977E+05              | 6.047E-05              | 2.253E-02              |
| 2096         | 1.977E+05              | 5.752E-05              | 2.143E-02              |
| 2097         | 1.977E+05              | 5.472E-05              | 2.039E-02              |
| 2098<br>2099 | 1.977E+05<br>1.977E+05 | 5.205E-05<br>4.951E-05 | 1.939E-02<br>1.845E-02 |
| 2100         | 1.977E+05              | 4.709E-05              | 1.755E-02              |
| 2101         | 1.977E+05              | 4.480E-05              | 1.669E-02              |
| 2102         | 1.977E+05              | 4.261E-05              | 1.588E-02              |
| 2103         | 1.977E+05              | 4.053E-05              | 1.510E-02              |
| 2104         | 1.977E+05              | 3.856E-05              | 1.437E-02              |
| 2105<br>2106 | 1.977E+05<br>1.977E+05 | 3.668E-05<br>3.489E-05 | 1.367E-02<br>1.300E-02 |
| 2107         | 1.977E+05              | 3.319E-05              | 1.237E-02              |
| 2108         | 1.977E+05              | 3.157E-05              | 1.176E-02              |
| 2109         | 1.977E+05              | 3.003E-05              | 1.119E-02              |
| 2110         | 1.977E+05              | 2.856E-05              | 1.064E-02              |
| 2111         | 1.977E+05              | 2.717E-05              | 1.013E-02              |
| 2112         | 1.977E+05              | 2.585E-05              | 9.631E-03              |
| 2113<br>2114 | 1.977E+05<br>1.977E+05 | 2.459E-05<br>2.339E-05 | 9.162E-03<br>8.715E-03 |
| 2115         | 1.977E+05              | 2.225E-05              | 8.290E-03              |
| 2116         | 1.977E+05              | 2.116E-05              | 7.885E-03              |
| 2117         | 1.977E+05              | 2.013E-05              | 7.501E-03              |
| 2118         | 1.977E+05              | 1.915E-05              | 7.135E-03              |
| 2119         | 1.977E+05              | 1.821E-05              | 6.787E-03              |
| 2120<br>2121 | 1.977E+05<br>1.977E+05 | 1.733E-05<br>1.648E-05 | 6.456E-03<br>6.141E-03 |
| 2122         | 1.977E+05              | 1.568E-05              | 5.842E-03              |
| 2123         | 1.977E+05              | 1.491E-05              | 5.557E-03              |
| 2124         | 1.977E+05              | 1.418E-05              | 5.286E-03              |
| 2125         | 1.977E+05              | 1.349E-05              | 5.028E-03              |
| 2126         | 1.977E+05              | 1.283E-05              | 4.783E-03              |
| 2127<br>2128 | 1.977E+05<br>1.977E+05 | 1.221E-05<br>1.161E-05 | 4.549E-03<br>4.328E-03 |
| 2129         | 1.977E+05              | 1.105E-05              | 4.117E-03              |
| 2130         | 1.977E+05              | 1.051E-05              | 3.916E-03              |
| 2131         | 1.977E+05              | 9.996E-06              | 3.725E-03              |
| 2132         | 1.977E+05              | 9.508E-06              | 3.543E-03              |
| 2133         | 1.977E+05              | 9.045E-06              | 3.370E-03              |
| 2134<br>2135 | 1.977E+05<br>1.977E+05 | 8.603E-06<br>8.184E-06 | 3.206E-03<br>3.050E-03 |
| 2136         | 1.977E+05              | 7.785E-06              | 2.901E-03              |
| 2137         | 1.977E+05              | 7.405E-06              | 2.759E-03              |
| 2138         | 1.977E+05              | 7.044E-06              | 2.625E-03              |
| 2139         | 1.977E+05              | 6.700E-06              | 2.497E-03              |
| 2140         | 1.977E+05              | 6.374E-06              | 2.375E-03              |
| 2141<br>2142 | 1.977E+05<br>1.977E+05 | 6.063E-06<br>5.767E-06 | 2.259E-03<br>2.149E-03 |
| 2143         | 1.977E+05              | 5.486E-06              | 2.044E-03              |
| 2144         | 1.977E+05              | 5.218E-06              | 1.945E-03              |
| 2145         | 1.977E+05              | 4.964E-06              | 1.850E-03              |
| 2146         | 1.977E+05              | 4.722E-06              | 1.759E-03              |
| 2147         | 1.977E+05              | 4.491E-06              | 1.674E-03              |
| 2148         | 1.977E+05<br>1.977E+05 | 4.272E-06              | 1.592E-03              |
| 2149<br>2150 | 1.977E+05<br>1.977E+05 | 4.064E-06<br>3.866E-06 | 1.514E-03<br>1.441E-03 |
| 2151         | 1.977E+05              | 3.677E-06              | 1.370E-03              |
| 2152         | 1.977E+05              | 3.498E-06              | 1.303E-03              |
| 2153         | 1.977E+05              | 3.327E-06              | 1.240E-03              |
| 2154         | 1.977E+05              | 3.165E-06              | 1.179E-03              |

Table D-6. Northern Parcel Chloroethane Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)   | (Cubic m/yr) |
|------|----------------------|-----------|--------------|
| 2155 | 1.977E+05            | 3.011E-06 | 1.122E-03    |
| 2156 | 1.977E+05            | 2.864E-06 | 1.067E-03    |
| 2157 | 1.977E+05            | 2.724E-06 | 1.015E-03    |
| 2158 | 1.977E+05            | 2.591E-06 | 9.656E-04    |
| 2159 | 1.977E+05            | 2.465E-06 | 9.185E-04    |
| 2160 | 1.977E+05            | 2.345E-06 | 8.737E-04    |
| 2161 | 1.977E+05            | 2.230E-06 | 8.311E-04    |
| 2162 | 1.977E+05            | 2.122E-06 | 7.906E-04    |
| 2163 | 1.977E+05            | 2.018E-06 | 7.520E-04    |
| 2164 | 1.977E+05            | 1.920E-06 | 7.153E-04    |
| 2165 | 1.977E+05            | 1.826E-06 | 6.805E-04    |
| 2166 | 1.977E+05            | 1.737E-06 | 6.473E-04    |
| 2167 | 1.977E+05            | 1.652E-06 | 6.157E-04    |
| 2168 | 1.977E+05            | 1.572E-06 | 5.857E-04    |
| 2169 | 1.977E+05            | 1.495E-06 | 5.571E-04    |
| 2170 | 1.977E+05            | 1.422E-06 | 5.299E-04    |
| 2171 | 1.977E+05            | 1.353E-06 | 5.041E-04    |
| 2172 | 1.977E+05            | 1.287E-06 | 4.795E-04    |
| 2173 | 1.977E+05            | 1.224E-06 | 4.561E-04    |
| 2174 | 1.977E+05            | 1.164E-06 | 4.339E-04    |
| 2175 | 1.977E+05            | 1.108E-06 | 4.127E-04    |
| 2176 | 1.977E+05            | 1.054E-06 | 3.926E-04    |
| 2177 | 1.977E+05            | 1.002E-06 | 3.734E-04    |
| 2178 | 1.977E+05            | 9.533E-07 | 3.552E-04    |
| 2179 | 1.977E+05            | 9.068E-07 | 3.379E-04    |
| 2180 | 1.977E+05            | 8.626E-07 | 3.214E-04    |
| 2181 | 1.977E+05            | 8.205E-07 | 3.058E-04    |
| 2182 | 1.977E+05            | 7.805E-07 | 2.908E-04    |
| 2183 | 1.977E+05            | 7.424E-07 | 2.767E-04    |
| 2184 | 1.977E+05            | 7.062E-07 | 2.632E-04    |
| 2185 | 1.977E+05            | 6.718E-07 | 2.503E-04    |
| 2186 | 1.977E+05            | 6.390E-07 | 2.381E-04    |
| 2187 | 1.977E+05            | 6.078E-07 | 2.265E-04    |
| 2188 | 1.977E+05            | 5.782E-07 | 2.155E-04    |
| 2189 | 1.977E+05            | 5.500E-07 | 2.050E-04    |
| 2190 | 1.977E+05            | 5.232E-07 | 1.950E-04    |
| 2191 | 1.977E+05            | 4.977E-07 | 1.854E-04    |
| 2192 | 1.977E+05            | 4.734E-07 | 1.764E-04    |
| 2193 | 1.977E+05            | 4.503E-07 | 1.678E-04    |
| 2194 | 1.977E+05            | 4.283E-07 | 1.596E-04    |
| 2195 | 1.977E+05            | 4.074E-07 | 1.518E-04    |
| 2196 | 1.977E+05            | 3.876E-07 | 1.444E-04    |
| 2197 | 1.977E+05            | 3.687E-07 | 1.374E-04    |
| 2198 | 1.977E+05            | 3.507E-07 | 1.307E-04    |
| 2199 | 1.977E+05            | 3.336E-07 | 1.243E-04    |
| 2200 | 1.977E+05            | 3.173E-07 | 1.182E-04    |
| 2201 | 1.977E+05            | 3.018E-07 | 1.125E-04    |
| 2202 | 1.977E+05            | 2.871E-07 | 1.070E-04    |
| 2203 | 1.977E+05            | 2.731E-07 | 1.018E-04    |
|      |                      |           |              |

Table D-7. Northern Parcel Dichlorobenzene Emisson Rate from Year 1968 to 2203.

### Model Parameters

Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC: 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 56.0000 % volume

Carbon Dioxide : 44.0000 % volume

Air Pollutant : Dichlorobenzene (VOC/HAP for 1,4 isomer) Molecular Wt = 147.00 Concentration = 0.100000 ppmV

### Landfill Parameters

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 13179.47 Mg/year

\_\_\_\_\_\_

| Year | Refuse In Place (M |           | for 1,4 isomer) Emission R<br>(Cubic m/yr) |
|------|--------------------|-----------|--------------------------------------------|
| 1968 | 1.318E+04          | 1.223E-04 | 2.000E-02                                  |
| 1969 | 2.636E+04          | 2.387E-04 | 3.903E-02                                  |
| 1970 | 3.954E+04          | 3.493E-04 | 5.713E-02                                  |
| 1971 | 5.272E+04          | 4.546E-04 | 7.435E-02                                  |
| 1972 | 6.590E+04          | 5.547E-04 | 9.073E-02                                  |
| 1973 | 7.908E+04          | 6.500E-04 | 1.063E-01                                  |
| 1974 | 9.226E+04          | 7.406E-04 | 1.211E-01                                  |
| 1975 | 1.054E+05          | 8.268E-04 | 1.352E-01                                  |
| 1976 | 1.186E+05          | 9.088E-04 | 1.486E-01                                  |
| 1977 | 1.318E+05          | 9.868E-04 | 1.614E-01                                  |
| 1978 | 1.450E+05          | 1.061E-03 | 1.735E-01                                  |
| 1979 | 1.582E+05          | 1.132E-03 | 1.851E-01                                  |
| 1980 | 1.713E+05          | 1.199E-03 | 1.960E-01                                  |
| 1981 | 1.845E+05          | 1.263E-03 | 2.065E-01                                  |
| 1982 | 1.977E+05          | 1.323E-03 | 2.164E-01                                  |
| 1983 | 1.977E+05          | 1.259E-03 | 2.059E-01                                  |
| 1984 | 1.977E+05          | 1.197E-03 | 1.958E-01                                  |
| 1985 | 1.977E+05          | 1.139E-03 | 1.863E-01                                  |
| 1986 | 1.977E+05          | 1.083E-03 | 1.772E-01                                  |
| 1987 | 1.977E+05          | 1.031E-03 | 1.686E-01                                  |
| 1988 | 1.977E+05          | 9.803E-04 | 1.603E-01                                  |
| 1989 | 1.977E+05          | 9.325E-04 | 1.525E-01                                  |
| 1990 | 1.977E+05          | 8.870E-04 | 1.451E-01                                  |
| 1991 | 1.977E+05          | 8.437E-04 | 1.380E-01                                  |
| 1992 | 1.977E+05          | 8.026E-04 | 1.313E-01                                  |
| 1993 | 1.977E+05          | 7.634E-04 | 1.249E-01                                  |
| 1994 | 1.977E+05          | 7.262E-04 | 1.188E-01                                  |
| 1995 | 1.977E+05          | 6.908E-04 | 1.130E-01                                  |
| 1996 | 1.977E+05          | 6.571E-04 | 1.075E-01                                  |
| 1997 | 1.977E+05          | 6.251E-04 | 1.022E-01                                  |
| 1998 | 1.977E+05          | 5.946E-04 | 9.725E-02                                  |
| 1999 | 1.977E+05          | 5.656E-04 | 9.250E-02                                  |
| 2000 | 1.977E+05          | 5.380E-04 | 8.799E-02                                  |
| 2001 | 1.977E+05          | 5.118E-04 | 8.370E-02                                  |
| 2002 | 1.977E+05          | 4.868E-04 | 7.962E-02                                  |
| 2003 | 1.977E+05          | 4.631E-04 | 7.573E-02                                  |
| 2004 | 1.977E+05          | 4.405E-04 | 7.204E-02                                  |
| 2005 | 1.977E+05          | 4.190E-04 | 6.853E-02                                  |
| 2006 | 1.977E+05          | 3.986E-04 | 6.519E-02                                  |
| 2007 | 1.977E+05          | 3.791E-04 | 6.201E-02                                  |
| 2008 | 1.977E+05          | 3.606E-04 | 5.898E-02                                  |
| 2009 | 1.977E+05          | 3.430E-04 | 5.611E-02                                  |
| 2010 | 1.977E+05          | 3.263E-04 | 5.337E-02                                  |
| 2011 | 1.977E+05          | 3.104E-04 | 5.077E-02                                  |
| 2012 | 1.977E+05          | 2.953E-04 | 4.829E-02                                  |

Table D-7. Northern Parcel Dichlorobenzene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 2.809E-04              | 4.594E-02              |
| 2014         | 1.977E+05              | 2.672E-04              | 4.370E-02              |
| 2015         | 1.977E+05              | 2.541E-04              | 4.156E-02              |
| 2016         | 1.977E+05              | 2.417E-04              | 3.954E-02              |
| 2017         | 1.977E+05              | 2.299E-04              | 3.761E-02<br>3.577E-02 |
| 2018<br>2019 | 1.977E+05<br>1.977E+05 | 2.187E-04<br>2.081E-04 | 3.403E-02              |
| 2020         | 1.977E+05              | 1.979E-04              | 3.237E-02              |
| 2021         | 1.977E+05              | 1.883E-04              | 3.079E-02              |
| 2022         | 1.977E+05              | 1.791E-04              | 2.929E-02              |
| 2023         | 1.977E+05              | 1.703E-04              | 2.786E-02              |
| 2024         | 1.977E+05              | 1.620E-04              | 2.650E-02              |
| 2025         | 1.977E+05              | 1.541E-04              | 2.521E-02              |
| 2026         | 1.977E+05              | 1.466E-04              | 2.398E-02              |
| 2027         | 1.977E+05              | 1.395E-04              | 2.281E-02              |
| 2028         | 1.977E+05              | 1.327E-04              | 2.170E-02              |
| 2029         | 1.977E+05              | 1.262E-04              | 2.064E-02              |
| 2030<br>2031 | 1.977E+05<br>1.977E+05 | 1.200E-04<br>1.142E-04 | 1.963E-02<br>1.868E-02 |
| 2031         | 1.977E+05              | 1.086E-04              | 1.777E-02              |
| 2032         | 1.977E+05              | 1.033E-04              | 1.690E-02              |
| 2034         | 1.977E+05              | 9.828E-05              | 1.607E-02              |
| 2035         | 1.977E+05              | 9.349E-05              | 1.529E-02              |
| 2036         | 1.977E+05              | 8.893E-05              | 1.454E-02              |
| 2037         | 1.977E+05              | 8.459E-05              | 1.384E-02              |
| 2038         | 1.977E+05              | 8.047E-05              | 1.316E-02              |
| 2039         | 1.977E+05              | 7.654E-05              | 1.252E-02              |
| 2040         | 1.977E+05              | 7.281E-05              | 1.191E-02              |
| 2041         | 1.977E+05              | 6.926E-05              | 1.133E-02              |
| 2042         | 1.977E+05<br>1.977E+05 | 6.588E-05<br>6.267E-05 | 1.078E-02              |
| 2043         | 1.977E+05              | 5.961E-05              | 1.025E-02<br>9.750E-03 |
| 2045         | 1.977E+05              | 5.670E-05              | 9.274E-03              |
| 2046         | 1.977E+05              | 5.394E-05              | 8.822E-03              |
| 2047         | 1.977E+05              | 5.131E-05              | 8.392E-03              |
| 2048         | 1.977E+05              | 4.881E-05              | 7.982E-03              |
| 2049         | 1.977E+05              | 4.643E-05              | 7.593E-03              |
| 2050         | 1.977E+05              | 4.416E-05              | 7.223E-03              |
| 2051         | 1.977E+05              | 4.201E-05              | 6.871E-03              |
| 2052<br>2053 | 1.977E+05<br>1.977E+05 | 3.996E-05<br>3.801E-05 | 6.535E-03<br>6.217E-03 |
| 2054         | 1.977E+05              | 3.616E-05              | 5.914E-03              |
| 2055         | 1.977E+05              | 3.439E-05              | 5.625E-03              |
| 2056         | 1.977E+05              | 3.272E-05              | 5.351E-03              |
| 2057         | 1.977E+05              | 3.112E-05              | 5.090E-03              |
| 2058         | 1.977E+05              | 2.960E-05              | 4.842E-03              |
| 2059         | 1.977E+05              | 2.816E-05              | 4.605E-03              |
| 2060         | 1.977E+05              | 2.679E-05              | 4.381E-03              |
| 2061         | 1.977E+05              | 2.548E-05              | 4.167E-03              |
| 2062         | 1.977E+05              | 2.424E-05              | 3.964E-03              |
| 2063         | 1.977E+05<br>1.977E+05 | 2.305E-05<br>2.193E-05 | 3.771E-03<br>3.587E-03 |
| 2064<br>2065 | 1.977E+05              | 2.193E=05<br>2.086E=05 | 3.412E-03              |
| 2066         | 1.977E+05              | 1.984E-05              | 3.245E-03              |
| 2067         | 1.977E+05              | 1.888E-05              | 3.087E-03              |
| 2068         | 1.977E+05              | 1.795E-05              | 2.937E-03              |
| 2069         | 1.977E+05              | 1.708E-05              | 2.793E-03              |
| 2070         | 1.977E+05              | 1.625E-05              | 2.657E-03              |
| 2071         | 1.977E+05              | 1.545E-05              | 2.528E-03              |
| 2072         | 1.977E+05              | 1.470E-05              | 2.404E-03              |
| 2073         | 1.977E+05              | 1.398E-05              | 2.287E-03              |
| 2074         | 1.977E+05<br>1.977E+05 | 1.330E-05              | 2.175E-03<br>2.069E-03 |
| 2075<br>2076 | 1.977E+05<br>1.977E+05 | 1.265E-05<br>1.204E-05 | 1.968E-03              |
| 2077         | 1.977E+05              | 1.145E-05              | 1.872E-03              |
| 2078         | 1.977E+05              | 1.089E-05              | 1.781E-03              |
| 2079         | 1.977E+05              | 1.036E-05              | 1.694E-03              |
| 2080         | 1.977E+05              | 9.854E-06              | 1.612E-03              |
| 2081         | 1.977E+05              | 9.373E-06              | 1.533E-03              |
| 2082         | 1.977E+05              | 8.916E-06              | 1.458E-03              |
| 2083         | 1.977E+05              | 8.481E-06              | 1.387E-03              |
|              |                        |                        |                        |

Table D-7. Northern Parcel Dichlorobenzene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (N     |                        | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 8.068E-06              | 1.319E-03              |
| 2085         | 1.977E+05              | 7.674E-06              | 1.255E-03              |
| 2086         | 1.977E+05              | 7.300E-06              | 1.194E-03              |
| 2087         | 1.977E+05              | 6.944E-06              | 1.136E-03              |
| 2088         | 1.977E+05              | 6.605E-06              | 1.080E-03              |
| 2089<br>2090 | 1.977E+05<br>1.977E+05 | 6.283E-06<br>5.977E-06 | 1.028E-03<br>9.775E-04 |
| 2091         | 1.977E+05              | 5.685E-06              | 9.298E-04              |
| 2092         | 1.977E+05              | 5.408E-06              | 8.845E-04              |
| 2093         | 1.977E+05              | 5.144E-06              | 8.413E-04              |
| 2094         | 1.977E+05              | 4.893E-06              | 8.003E-04              |
| 2095         | 1.977E+05              | 4.655E-06              | 7.613E-04              |
| 2096         | 1.977E+05              | 4.428E-06              | 7.241E-04              |
| 2097<br>2098 | 1.977E+05<br>1.977E+05 | 4.212E-06<br>4.006E-06 | 6.888E-04<br>6.552E-04 |
| 2099         | 1.977E+05              | 3.811E-06              | 6.233E-04              |
| 2100         | 1.977E+05              | 3.625E-06              | 5.929E-04              |
| 2101         | 1.977E+05              | 3.448E-06              | 5.640E-04              |
| 2102         | 1.977E+05              | 3.280E-06              | 5.365E-04              |
| 2103         | 1.977E+05              | 3.120E-06              | 5.103E-04              |
| 2104         | 1.977E+05              | 2.968E-06              | 4.854E-04              |
| 2105<br>2106 | 1.977E+05<br>1.977E+05 | 2.823E-06<br>2.685E-06 | 4.617E-04<br>4.392E-04 |
| 2106         | 1.977E+05              | 2.554E-06              | 4.178E-04              |
| 2108         | 1.977E+05              | 2.430E-06              | 3.974E-04              |
| 2109         | 1.977E+05              | 2.311E-06              | 3.780E-04              |
| 2110         | 1.977E+05              | 2.199E-06              | 3.596E-04              |
| 2111         | 1.977E+05              | 2.091E-06              | 3.421E-04              |
| 2112         | 1.977E+05              | 1.989E-06              | 3.254E-04              |
| 2113         | 1.977E+05              | 1.892E-06              | 3.095E-04              |
| 2114<br>2115 | 1.977E+05<br>1.977E+05 | 1.800E-06<br>1.712E-06 | 2.944E-04<br>2.801E-04 |
| 2116         | 1.977E+05              | 1.629E-06              | 2.664E-04              |
| 2117         | 1.977E+05              | 1.549E-06              | 2.534E-04              |
| 2118         | 1.977E+05              | 1.474E-06              | 2.410E-04              |
| 2119         | 1.977E+05              | 1.402E-06              | 2.293E-04              |
| 2120         | 1.977E+05              | 1.334E-06              | 2.181E-04              |
| 2121         | 1.977E+05              | 1.269E-06              | 2.075E-04              |
| 2122<br>2123 | 1.977E+05<br>1.977E+05 | 1.207E-06<br>1.148E-06 | 1.974E-04<br>1.877E-04 |
| 2123         | 1.977E+05              | 1.092E-06              | 1.786E-04              |
| 2125         | 1.977E+05              | 1.039E-06              | 1.699E-04              |
| 2126         | 1.977E+05              | 9.879E-07              | 1.616E-04              |
| 2127         | 1.977E+05              | 9.397E-07              | 1.537E-04              |
| 2128         | 1.977E+05              | 8.939E-07              | 1.462E-04              |
| 2129         | 1.977E+05              | 8.503E-07              | 1.391E-04              |
| 2130<br>2131 | 1.977E+05<br>1.977E+05 | 8.088E-07<br>7.694E-07 | 1.323E-04<br>1.258E-04 |
| 2132         | 1.977E+05              | 7.319E-07              | 1.197E-04              |
| 2133         | 1.977E+05              | 6.962E-07              | 1.139E-04              |
| 2134         | 1.977E+05              | 6.622E-07              | 1.083E-04              |
| 2135         | 1.977E+05              | 6.299E-07              | 1.030E-04              |
| 2136         | 1.977E+05              | 5.992E-07              | 9.800E-05              |
| 2137         | 1.977E+05              | 5.700E-07              | 9.322E-05              |
| 2138<br>2139 | 1.977E+05<br>1.977E+05 | 5.422E-07<br>5.157E-07 | 8.868E-05<br>8.435E-05 |
| 2140         | 1.977E+05              | 4.906E-07              | 8.024E-05              |
| 2141         | 1.977E+05              | 4.667E-07              | 7.632E-05              |
| 2142         | 1.977E+05              | 4.439E-07              | 7.260E-05              |
| 2143         | 1.977E+05              | 4.223E-07              | 6.906E-05              |
| 2144         | 1.977E+05              | 4.017E-07              | 6.569E-05              |
| 2145         | 1.977E+05              | 3.821E-07              | 6.249E-05              |
| 2146<br>2147 | 1.977E+05<br>1.977E+05 | 3.634E-07<br>3.457E-07 | 5.944E-05<br>5.654E-05 |
| 2148         | 1.977E+05              | 3.288E-07              | 5.379E-05              |
| 2149         | 1.977E+05              | 3.128E-07              | 5.116E-05              |
| 2150         | 1.977E+05              | 2.976E-07              | 4.867E-05              |
| 2151         | 1.977E+05              | 2.830E-07              | 4.629E-05              |
| 2152         | 1.977E+05              | 2.692E-07              | 4.404E-05              |
| 2153<br>2154 | 1.977E+05<br>1.977E+05 | 2.561E-07<br>2.436E-07 | 4.189E-05<br>3.984E-05 |
| 2134         | 1.9//6+05              | Z.436E-U/              | J. 904E-US             |

Table D-7. Northern Parcel Dichlorobenzene Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)   | (Cubic m/yr) |
|------|----------------------|-----------|--------------|
| 2155 | 1.977E+05            | 2.317E-07 | 3.790E-05    |
| 2156 | 1.977E+05            | 2.204E-07 | 3.605E-05    |
| 2157 | 1.977E+05            | 2.097E-07 | 3.429E-05    |
| 2158 | 1.977E+05            | 1.995E-07 | 3.262E-05    |
| 2159 | 1.977E+05            | 1.897E-07 | 3.103E-05    |
| 2160 | 1.977E+05            | 1.805E-07 | 2.952E-05    |
| 2161 | 1.977E+05            | 1.717E-07 | 2.808E-05    |
| 2162 | 1.977E+05            | 1.633E-07 | 2.671E-05    |
| 2163 | 1.977E+05            | 1.553E-07 | 2.541E-05    |
| 2164 | 1.977E+05            | 1.478E-07 | 2.417E-05    |
| 2165 | 1.977E+05            | 1.406E-07 | 2.299E-05    |
| 2166 | 1.977E+05            | 1.337E-07 | 2.187E-05    |
| 2167 | 1.977E+05            | 1.272E-07 | 2.080E-05    |
| 2168 | 1.977E+05            | 1.210E-07 | 1.979E-05    |
| 2169 | 1.977E+05            | 1.151E-07 | 1.882E-05    |
| 2170 | 1.977E+05            | 1.095E-07 | 1.790E-05    |
| 2171 | 1.977E+05            | 1.041E-07 | 1.703E-05    |
| 2172 | 1.977E+05            | 9.905E-08 | 1.620E-05    |
| 2173 | 1.977E+05            | 9.422E-08 | 1.541E-05    |
| 2174 | 1.977E+05            | 8.962E-08 | 1.466E-05    |
| 2175 | 1.977E+05            | 8.525E-08 | 1.394E-05    |
| 2176 | 1.977E+05            | 8.109E-08 | 1.326E-05    |
| 2177 | 1.977E+05            | 7.714E-08 | 1.262E-05    |
| 2178 | 1.977E+05            | 7.338E-08 | 1.200E-05    |
| 2179 | 1.977E+05            | 6.980E-08 | 1.142E-05    |
| 2180 | 1.977E+05            | 6.639E-08 | 1.086E-05    |
| 2181 | 1.977E+05            | 6.316E-08 | 1.033E-05    |
| 2182 | 1.977E+05            | 6.008E-08 | 9.826E-06    |
| 2183 | 1.977E+05            | 5.715E-08 | 9.346E-06    |
| 2184 | 1.977E+05            | 5.436E-08 | 8.891E-06    |
| 2185 | 1.977E+05            | 5.171E-08 | 8.457E-06    |
| 2186 | 1.977E+05            | 4.919E-08 | 8.045E-06    |
| 2187 | 1.977E+05            | 4.679E-08 | 7.652E-06    |
| 2188 | 1.977E+05            | 4.450E-08 | 7.279E-06    |
| 2189 | 1.977E+05            | 4.233E-08 | 6.924E-06    |
| 2190 | 1.977E+05            | 4.027E-08 | 6.586E-06    |
| 2191 | 1.977E+05            | 3.831E-08 | 6.265E-06    |
| 2192 | 1.977E+05            | 3.644E-08 | 5.960E-06    |
| 2193 | 1.977E+05            | 3.466E-08 | 5.669E-06    |
| 2194 | 1.977E+05            | 3.297E-08 | 5.392E-06    |
| 2195 | 1.977E+05            | 3.136E-08 | 5.129E-06    |
| 2196 | 1.977E+05            | 2.983E-08 | 4.879E-06    |
| 2197 | 1.977E+05            | 2.838E-08 | 4.641E-06    |
| 2198 | 1.977E+05            | 2.699E-08 | 4.415E-06    |
| 2199 | 1.977E+05            | 2.568E-08 | 4.200E-06    |
| 2200 | 1.977E+05            | 2.442E-08 | 3.995E-06    |
| 2201 | 1.977E+05            | 2.323E-08 | 3.800E-06    |
| 2202 | 1.977E+05            | 2.210E-08 | 3.615E-06    |
| 2203 | 1.977E+05            | 2.102E-08 | 3.438E-06    |

**Table D-8.** Northern Parcel Toluene Emisson Rate from Year 1968 to 2203.

\_\_\_\_\_\_

### Model Parameters

Lo: 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\*
NMOC: 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 56.0000 % volume

Carbon Dioxide: 44.0000 % volume Air Pollutant: Toluene (HAP/VOC)

Molecular Wt = 92.14 Concentration = 1.120000 ppmV

\_\_\_\_\_\_

### Landfill Parameters

\_\_\_\_\_\_

Landfill type : Co-Disposal

Year Opened: 1967 Current Year: 2003 Closure Year: 2004

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 13179.47 Mg/year

Model Deculte

| Year   Refuse In Place (Mg)   Mg/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | <br>Results                                |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|--------------|
| 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 그리면 하는 그렇게 하면 하는 것이 하는 것이 되었다. 그런 그렇게 하를 하는 것 같다. | <br>(Mg/yr)                                | (Cubic m/yr) |
| 1970 3.954P+04 2.452P-03 6.399E-01 1971 5.272F+04 3.191E-03 8.327E-01 1972 6.590E+04 3.894E-03 1.016E+00 1973 7.908E+04 4.563E-03 1.191E+00 1974 9.226E+04 5.199E-03 1.357E+00 1975 1.054E+05 5.804E-03 1.515E+00 1976 1.186E+05 6.380E-03 1.665E+00 1977 1.318E+05 6.927E-03 1.808E+00 1978 1.450E+05 7.448E-03 1.943E+00 1979 1.582E+05 7.944E-03 2.073E+00 1980 1.713E+05 8.415E-03 2.196E+00 1981 1.845E+05 8.863E-03 2.313E+00 1982 1.977E+05 8.863E-03 2.336E+00 1983 1.977E+05 8.863E-03 2.306E+00 1984 1.977E+05 7.995E-03 2.086E+00 1985 1.977E+05 7.666E-03 1.985E+00 1986 1.977E+05 7.666E-03 1.985E+00 1987 1.977E+05 7.235E-03 1.888E+00 1988 1.977E+05 7.235E-03 1.888E+00 1989 1.977E+05 6.82E-03 1.706E+00 1989 1.977E+05 6.862E-03 1.706E+00 1989 1.977E+05 6.546E-03 1.706E+00 1989 1.977E+05 6.546E-03 1.706E+00 1990 1.977E+05 6.546E-03 1.706E+00 1991 1.977E+05 6.542F-03 1.625E+00 1992 1.977E+05 6.542F-03 1.625E+00 1993 1.977E+05 6.542F-03 1.625E+00 1994 1.977E+05 6.923E-03 1.706E+00 1999 1.977E+05 6.928E-03 1.706E+00 1999 1.977E+05 6.227E-03 1.625E+00 1991 1.977E+05 6.34E-03 1.470E+00 1992 1.977E+05 6.34E-03 1.470E+00 1993 1.977E+05 6.34E-03 1.470E+00 1994 1.977E+05 6.34E-03 1.456E+00 1995 1.977E+05 6.34E-03 1.330E+00 1996 1.977E+05 6.34E-03 1.456E+00 1997 1.977E+05 6.923E-03 1.366E+00 1999 1.977E+05 6.923E-03 1.366E+00 1999 1.977E+05 6.923E-03 1.566E+00 1999 1.977E+05 6.928E-03 1.30E+00 1999 1.977E+05 6.928E-03 1.30E+00 1991 1.977E+05 6.928E-03 1.30E+00 1995 1.977E+05 6.928E-03 1.30E+00 1996 1.977E+05 6.928E-03 1.30E+00 1997 1.977E+05 6.928E-03 1.30E+00 1999 1.977E+05 6.928E-03 1.30E+00 1999 1.977E+05 6.928E-03 1.30E+00 1990 1.977E+05 6.928E-03 1.30E+00 1990 1.977E+05 6.928E-03 1.30E+00 1990 1.977E+05 6.928E-03 1.30E+00 1990 1.977E+05 6.928E-03 6.666E-01 1900 1.977E+05 6.928E-03 6.666E-01 1900 1.977E+05 6.928E-03 6.948E-01 1.900 1.977E+05 6.928E-03 6.948E-01 1.900 1.977E+05 6.928E-03 6.948E-01 1.900 1.977E+05 6.928E-03 6.948E-01 1.900 1.977E+05 6.928E-03 6.966E-01 1.900 1.977E+05 6.928E-03 6.966E-01 1.900 1.977E+05 6.928E-03 6.9 | 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.318E+04                                         |                                            |              |
| 1971 5.272E+04 3.191E-03 8.327E-01 1972 6.590E+04 3.894E-03 1.016E+00 1973 7.908E+04 4.563E-03 1.191E+00 1974 9.226E+04 5.199E-03 1.357E+00 1975 1.054E+05 5.804E-03 1.515E+00 1976 1.186E+05 6.380E-03 1.665E+00 1977 1.318E+05 6.927E-03 1.808E+00 1977 1.318E+05 7.448E-03 1.943E+00 1979 1.582E+05 7.944E-03 2.073E+00 1980 1.713E+05 8.815E-03 2.196E+00 1981 1.845E+05 8.863E-03 2.313E+00 1982 1.977E+05 9.289E-03 2.424E+00 1983 1.977E+05 8.836E-03 2.306E+00 1984 1.977E+05 8.405E-03 2.193E+00 1985 1.977E+05 7.995E-03 2.086E+00 1986 1.977E+05 7.995E-03 1.888E+00 1987 1.977E+05 7.235E-03 1.888E+00 1988 1.977E+05 6.82E-03 1.708E+00 1989 1.977E+05 6.546E-03 1.708E+00 1989 1.977E+05 6.527E-03 1.625E+00 1990 1.977E+05 5.634E-03 1.708E+00 1991 1.977E+05 5.923E-03 1.470E+00 1992 1.977E+05 5.634E-03 1.308E+00 1993 1.977E+05 6.227E-03 1.625E+00 1994 1.977E+05 5.634E-03 1.308E+00 1995 1.977E+05 5.360E-03 1.330E+00 1996 1.977E+05 6.227E-03 1.625E+00 1997 1.977E+05 6.34E-03 1.308E+00 1999 1.977E+05 6.36E-03 1.308E+00 1999 1.977E+05 6.36E-03 1.308E+00 1999 1.977E+05 6.46E-03 1.308E-00 1999 1.977E+05 6.46E-03 1.308E-00 1990 1.977E+05 6.46E-03 1.308E-00 1990 1.977E+05 6.46E-03 1.308E-00 1991 1.977E+05 6.46E-03 1.308E-00 1991 1.977E+05 6.46E-03 1.308E-00 1.977E+05 6.46E-03 6.46E-03 6.46E-03 1.977E+05 6.46E-03 6.46E-03 6.46E-03 1.977E+05 6.46E-03 6.46E-03 6.46E-03 1.977E+05 7.97E-05 7.98E-03 7.308E-01 1.977E+05 7.97E-05  | 7.7.7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |                                            |              |
| 1972 6.590E+04 3.894E-03 1.016E+00 1973 7.908E+04 4.563B-03 1.191E+00 1974 9.226E+04 5.199E-03 1.357E+00 1975 1.054E+05 5.804E-03 1.515E+00 1976 1.166E+05 6.380E-03 1.665E+00 1977 1.318E+05 6.927E-03 1.808E+00 1978 1.450E+05 7.448E-03 1.943E+00 1979 1.582E+05 7.944E-03 2.073E+00 1980 1.713E+05 8.415E-03 2.196E+00 1981 1.845E+05 8.863E-03 2.196E+00 1982 1.977E+05 8.836E-03 2.313E+00 1983 1.977E+05 8.836E-03 2.306E+00 1984 1.977E+05 7.995E-03 2.086E+00 1985 1.977E+05 7.995E-03 2.086E+00 1986 1.977E+05 7.235E-03 1.888E+00 1987 1.977E+05 7.235E-03 1.985E+00 1988 1.977E+05 6.8405E-03 1.796E+00 1989 1.977E+05 6.227E-03 1.796E+00 1990 1.977E+05 6.227E-03 1.546E+00 1991 1.977E+05 5.536E-03 1.546E+00 1992 1.977E+05 5.622E-03 1.546E+00 1993 1.977E+05 5.536E-03 1.398E+00 1994 1.977E+05 5.622E-03 1.20E+00 1995 1.977E+05 5.360E-03 1.398E+00 1996 1.977E+05 5.360E-03 1.398E+00 1997 1.977E+05 5.360E-03 1.398E+00 1999 1.977E+05 5.360E-03 1.308E+00 1999 1.977E+05 5.360E-03 1.398E+00 1999 1.977E+05 5.360E-03 1.398E+00 1999 1.977E+05 5.360E-03 1.308E+00 1999 1.977E+05 3.308E-03 1.204E+00 1999 1.977E+05 3.97E-03 9.97E+05 1999 1.977E+05 3.97E-03 9.97E+05 2000 1.977E+05 3.97E-03 9.97E-01 2001 1.977E+05 3.97E-03 9.97E-01 2002 1.977E+05 3.97E-03 9.97E-01 2004 1.977E+05 3.25E-03 9.374E-01 2005 1.977E+05 3.25E-03 9.374E-01 2006 1.977E+05 3.25E-03 6.696E-01 2007 1.977E+05 2.941E-03 6.945E-01 2009 1.977E+05 2.941E-03 6.945E-01 2009 1.977E+05 2.53E-03 6.06E-01 2009 1.977E+05 2.53E-03 6.06E-01 2001 1.977E+05 2.991E-03 6.945E-01 2001 1.977E+05 2.991E-03 6.945E-01 2001 1.977E+05 2.991E-03 6.984E-01 2001 1.977E+05 2.991E-03 6.945E-01                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1973 7.908E+04 4.563E-03 1.191E+00 1974 9.226E+04 5.199E-03 1.357E+00 1976 1.054E+05 5.804E-03 1.515E+00 1976 1.166E+05 6.380E-03 1.665E+00 1977 1.318E+05 6.927E-03 1.808E+00 1978 1.450E+05 7.448E-03 1.943E+00 1979 1.552E+05 7.944E-03 2.073E+00 1980 1.713E+05 8.415E-03 2.196E+00 1981 1.845E+05 8.63E-03 2.313E+00 1982 1.977E+05 8.863E-03 2.313E+00 1983 1.977E+05 8.836E-03 2.306E+00 1984 1.977E+05 8.805E-03 2.193E+00 1986 1.977E+05 7.995E-03 2.193E+00 1987 1.977E+05 7.235E-03 1.88EE+00 1988 1.977E+05 7.235E-03 1.88EE+00 1989 1.977E+05 6.82E-03 1.708E+00 1989 1.977E+05 6.546E-03 1.708E+00 1990 1.977E+05 6.227E-03 1.546E+00 1991 1.977E+05 5.634E-03 1.546E+00 1992 1.977E+05 5.634E-03 1.546E+00 1994 1.977E+05 5.360E-03 1.398E+00 1995 1.977E+05 5.360E-03 1.398E+00 1996 1.977E+05 5.360E-03 1.546E+00 1997 1.977E+05 5.360E-03 1.398E+00 1999 1.977E+05 5.360E-03 1.398E+00 1999 1.977E+05 5.360E-03 1.546E+00 1999 1.977E+05 5.360E-03 1.398E+00 1999 1.977E+05 5.360E-03 1.30E+00 1999 1.977E+05 3.360E-03 1.30E+00 1999 1.977E+05 3.360E-03 1.30E+00 1999 1.977E+05 3.560E-03 1.30E+00 1999 1.977E+05 3.59E-03 9.374E-01 2001 1.977E+05 3.59E-03 9.85E-01 2002 1.977E+05 3.59E-03 9.374E-01 2004 1.977E+05 3.59E-03 9.374E-01 2005 1.977E+05 2.94E-03 6.945E-01 2006 1.977E+05 2.94E-03 6.945E-01 2007 1.977E+05 2.798E-03 6.945E-01 2009 1.977E+05 2.798E-03 6.945E-01 2000 1.977E+05 2.798E-03 6.945E-01 2001 1.977E+05 2.798E-03 6.945E-01 2000 1.977E+05 2.798E-03 6.966E-01 2000 1.977E+05 2.798E-03 6.945E-01 2001 1.977E+05 2.798E-03 6.945E-01 2001 1.977E+05 2.798E-03 6.945E-01 2001 1.977E+05 2.591E-03 6.945E-01 2001 1.977E+05 2.591E-03 6.945E-01 2001 1.977E+05 2.591E-03 6.945E-01 2001 1.977E+05 2.591E-03 6.945E-01 2010 1.977E+05 2.591E-03 6.945E-01 2011 1.977E+05 2.591E-03 6.945E-0 | 100 Maria 100 Ma |                                                   |                                            |              |
| 1974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 3.12.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |              |
| 1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                            |              |
| 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1984       1.977E+05       8.405E-03       2.193E+00         1985       1.977E+05       7.995E-03       2.086E+00         1986       1.977E+05       7.606E-03       1.985E+00         1987       1.977E+05       7.235E-03       1.888E+00         1988       1.977E+05       6.882E-03       1.796E+00         1989       1.977E+05       6.546E-03       1.708E+00         1990       1.977E+05       6.227E-03       1.546E+00         1991       1.977E+05       5.932E-03       1.546E+00         1992       1.977E+05       5.634E-03       1.470E+00         1993       1.977E+05       5.360E-03       1.398E+00         1994       1.977E+05       5.098E-03       1.330E+00         1995       1.977E+05       4.849E-03       1.265E+00         1996       1.977E+05       4.613E-03       1.204E+00         1997       1.977E+05       4.388E-03       1.145E+00         1998       1.977E+05       4.174E-03       1.089E+00         1999       1.977E+05       3.593E-03       9.374E-01         2000       1.977E+05       3.593E-03       9.374E-01         2001       1.977E+05       3.593E-03       9.374E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1987       1.977E+05       7.235E-03       1.888E+00         1988       1.977E+05       6.882E-03       1.796E+00         1989       1.977E+05       6.546E-03       1.708E+00         1990       1.977E+05       6.227E-03       1.625E+00         1991       1.977E+05       5.923E-03       1.546E+00         1992       1.977E+05       5.634E-03       1.470E+00         1993       1.977E+05       5.360E-03       1.398E+00         1994       1.977E+05       5.098E-03       1.330E+00         1995       1.977E+05       4.849E-03       1.265E+00         1996       1.977E+05       4.613E-03       1.204E+00         1997       1.977E+05       4.388E-03       1.145E+00         1998       1.977E+05       4.174E-03       1.089E+00         1999       1.977E+05       3.970E-03       1.036E+00         2000       1.977E+05       3.777E-03       9.855E-01         2001       1.977E+05       3.593E-03       9.374E-01         2002       1.977E+05       3.251E-03       8.482E-01         2004       1.977E+05       3.251E-03       8.069E-01         2005       1.977E+05       2.94E-03       7.675E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1988       1.977E+05       6.882E-03       1.796E+00         1989       1.977E+05       6.546E-03       1.708E+00         1990       1.977E+05       6.227E-03       1.625E+00         1991       1.977E+05       5.923E-03       1.546E+00         1992       1.977E+05       5.634E-03       1.470E+00         1993       1.977E+05       5.360E-03       1.398E+00         1994       1.977E+05       5.098E-03       1.330E+00         1995       1.977E+05       4.643E-03       1.265E+00         1996       1.977E+05       4.613E-03       1.204E+00         1997       1.977E+05       4.388E-03       1.145E+00         1998       1.977E+05       4.174E-03       1.089E+00         1999       1.977E+05       3.970E-03       1.036E+00         2000       1.977E+05       3.777E-03       9.855E-01         2001       1.977E+05       3.417E-03       8.917E-01         2002       1.977E+05       3.251E-03       8.482E-01         2004       1.977E+05       3.092E-03       8.069E-01         2005       1.977E+05       2.941E-03       7.675E-01         2006       1.977E+05       2.532E-03       6.606E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 770.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                                            |              |
| 1989       1.977E+05       6.546E-03       1.708E+00         1990       1.977E+05       6.227E-03       1.625E+00         1991       1.977E+05       5.923E-03       1.546E+00         1992       1.977E+05       5.634E-03       1.470E+00         1993       1.977E+05       5.360E-03       1.398E+00         1994       1.977E+05       5.098E-03       1.330E+00         1995       1.977E+05       4.643E-03       1.204E+00         1996       1.977E+05       4.388E-03       1.145E+00         1997       1.977E+05       4.174E-03       1.089E+00         1998       1.977E+05       3.970E-03       1.036E+00         2000       1.977E+05       3.777E-03       9.855E-01         2001       1.977E+05       3.593E-03       9.374E-01         2002       1.977E+05       3.251E-03       8.482E-01         2003       1.977E+05       3.251E-03       8.069E-01         2004       1.977E+05       2.941E-03       7.675E-01         2005       1.977E+05       2.798E-03       7.301E-01         2006       1.977E+05       2.532E-03       6.66E-01         2009       1.977E+05       2.408E-03       6.284E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1991       1.977E+05       5.923E-03       1.546E+00         1992       1.977E+05       5.634E-03       1.470E+00         1993       1.977E+05       5.360E-03       1.398E+00         1994       1.977E+05       5.098E-03       1.330E+00         1995       1.977E+05       4.849E-03       1.265E+00         1996       1.977E+05       4.388E-03       1.145E+00         1997       1.977E+05       4.388E-03       1.145E+00         1998       1.977E+05       4.174E-03       1.089E+00         1999       1.977E+05       3.970E-03       1.036E+00         2000       1.977E+05       3.777E-03       9.855E-01         2001       1.977E+05       3.593E-03       9.374E-01         2002       1.977E+05       3.251E-03       8.482E-01         2003       1.977E+05       3.251E-03       8.482E-01         2004       1.977E+05       2.941E-03       7.675E-01         2005       1.977E+05       2.798E-03       7.301E-01         2007       1.977E+05       2.532E-03       6.606E-01         2009       1.977E+05       2.408E-03       6.284E-01         2010       1.977E+05       2.408E-03       5.977E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 15 (1 T) T) T) T) T) T) T)                 |              |
| 1994       1.977E+05       5.098E-03       1.330E+00         1995       1.977E+05       4.849E-03       1.265E+00         1996       1.977E+05       4.613E-03       1.204E+00         1997       1.977E+05       4.388E-03       1.145E+00         1998       1.977E+05       4.174E-03       1.089E+00         1999       1.977E+05       3.970E-03       1.036E+00         2000       1.977E+05       3.777E-03       9.855E-01         2001       1.977E+05       3.593E-03       9.374E-01         2002       1.977E+05       3.417E-03       8.917E-01         2003       1.977E+05       3.251E-03       8.482E-01         2004       1.977E+05       3.092E-03       8.069E-01         2005       1.977E+05       2.941E-03       7.675E-01         2006       1.977E+05       2.798E-03       7.301E-01         2007       1.977E+05       2.532E-03       6.60E-01         2009       1.977E+05       2.532E-03       6.284E-01         2010       1.977E+05       2.291E-03       5.977E-01         2011       1.977E+05       2.179E-03       5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1995       1.977E+05       4.849E-03       1.265E+00         1996       1.977E+05       4.613E-03       1.204E+00         1997       1.977E+05       4.388E-03       1.145E+00         1998       1.977E+05       4.174E-03       1.089E+00         1999       1.977E+05       3.970E-03       1.036E+00         2000       1.977E+05       3.77FE-03       9.855E-01         2001       1.977E+05       3.593E-03       9.374E-01         2002       1.977E+05       3.417E-03       8.917E-01         2003       1.977E+05       3.251E-03       8.482E-01         2004       1.977E+05       3.092E-03       8.069E-01         2005       1.977E+05       2.941E-03       7.675E-01         2006       1.977E+05       2.798E-03       7.301E-01         2007       1.977E+05       2.661E-03       6.945E-01         2008       1.977E+05       2.532E-03       6.60E-01         2010       1.977E+05       2.408E-03       5.977E-01         2011       1.977E+05       2.179E-03       5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1996       1.977E+05       4.613E-03       1.204E+00         1997       1.977E+05       4.388E-03       1.145E+00         1998       1.977E+05       4.174E-03       1.089E+00         1999       1.977E+05       3.970E-03       1.036E+00         2000       1.977E+05       3.777E-03       9.855E-01         2001       1.977E+05       3.593E-03       9.374E-01         2002       1.977E+05       3.417E-03       8.917E-01         2003       1.977E+05       3.251E-03       8.482E-01         2004       1.977E+05       3.092E-03       8.069E-01         2005       1.977E+05       2.941E-03       7.675E-01         2006       1.977E+05       2.798E-03       7.301E-01         2007       1.977E+05       2.661E-03       6.945E-01         2008       1.977E+05       2.532E-03       6.60E-01         2010       1.977E+05       2.408E-03       5.977E-01         2011       1.977E+05       2.179E-03       5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1997 1.977E+05 4.388E-03 1.145E+00 1998 1.977E+05 4.174E-03 1.089E+00 1999 1.977E+05 3.970E-03 1.036E+00 2000 1.977E+05 3.777E-03 9.855E-01 2001 1.977E+05 3.593E-03 9.374E-01 2002 1.977E+05 3.417E-03 8.917E-01 2003 1.977E+05 3.251E-03 8.482E-01 2004 1.977E+05 3.092E-03 8.069E-01 2005 1.977E+05 2.941E-03 7.675E-01 2006 1.977E+05 2.798E-03 7.301E-01 2007 1.977E+05 2.661E-03 6.945E-01 2008 1.977E+05 2.532E-03 6.606E-01 2009 1.977E+05 2.408E-03 5.977E-01 2010 1.977E+05 2.291E-03 5.977E-01 2011 1.977E+05 2.179E-03 5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 1999       1.977E+05       3.970E-03       1.036E+00         2000       1.977E+05       3.777E-03       9.855E-01         2001       1.977E+05       3.593E-03       9.374E-01         2002       1.977E+05       3.417E-03       8.917E-01         2003       1.977E+05       3.251E-03       8.482E-01         2004       1.977E+05       3.092E-03       8.069E-01         2005       1.977E+05       2.941E-03       7.675E-01         2006       1.977E+05       2.798E-03       7.301E-01         2007       1.977E+05       2.661E-03       6.945E-01         2008       1.977E+05       2.532E-03       6.606E-01         2009       1.977E+05       2.408E-03       6.284E-01         2010       1.977E+05       2.291E-03       5.977E-01         2011       1.977E+05       2.179E-03       5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 2000       1.977E+05       3.777E-03       9.855E-01         2001       1.977E+05       3.593E-03       9.374E-01         2002       1.977E+05       3.417E-03       8.917E-01         2003       1.977E+05       3.251E-03       8.482E-01         2004       1.977E+05       3.092E-03       8.069E-01         2005       1.977E+05       2.941E-03       7.675E-01         2006       1.977E+05       2.798E-03       7.301E-01         2007       1.977E+05       2.661E-03       6.945E-01         2008       1.977E+05       2.532E-03       6.606E-01         2009       1.977E+05       2.408E-03       6.284E-01         2010       1.977E+05       2.291E-03       5.977E-01         2011       1.977E+05       2.179E-03       5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 2001     1.977E+05     3.593E-03     9.374E-01       2002     1.977E+05     3.417E-03     8.917E-01       2003     1.977E+05     3.251E-03     8.482E-01       2004     1.977E+05     3.092E-03     8.069E-01       2005     1.977E+05     2.941E-03     7.675E-01       2006     1.977E+05     2.798E-03     7.301E-01       2007     1.977E+05     2.661E-03     6.945E-01       2008     1.977E+05     2.532E-03     6.606E-01       2010     1.977E+05     2.408E-03     5.977E-01       2011     1.977E+05     2.291E-03     5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 2002     1.977E+05     3.417E-03     8.917E-01       2003     1.977E+05     3.251E-03     8.482E-01       2004     1.977E+05     3.092E-03     8.069E-01       2005     1.977E+05     2.941E-03     7.675E-01       2006     1.977E+05     2.798E-03     7.301E-01       2007     1.977E+05     2.661E-03     6.945E-01       2008     1.977E+05     2.532E-03     6.606E-01       2010     1.977E+05     2.408E-03     6.284E-01       2010     1.977E+05     2.291E-03     5.977E-01       2011     1.977E+05     2.179E-03     5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 2003     1.977E+05     3.251E-03     8.482E-01       2004     1.977E+05     3.092E-03     8.069E-01       2005     1.977E+05     2.941E-03     7.675E-01       2006     1.977E+05     2.798E-03     7.301E-01       2007     1.977E+05     2.661E-03     6.945E-01       2008     1.977E+05     2.532E-03     6.606E-01       2010     1.977E+05     2.408E-03     6.284E-01       2010     1.977E+05     2.291E-03     5.977E-01       2011     1.977E+05     2.179E-03     5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 2004     1.977E+05     3.092E-03     8.069E-01       2005     1.977E+05     2.941E-03     7.675E-01       2006     1.977E+05     2.798E-03     7.301E-01       2007     1.977E+05     2.661E-03     6.945E-01       2008     1.977E+05     2.532E-03     6.606E-01       2009     1.977E+05     2.408E-03     6.284E-01       2010     1.977E+05     2.291E-03     5.977E-01       2011     1.977E+05     2.179E-03     5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 2005     1.977E+05     2.941E-03     7.675E-01       2006     1.977E+05     2.798E-03     7.301E-01       2007     1.977E+05     2.661E-03     6.945E-01       2008     1.977E+05     2.532E-03     6.606E-01       2009     1.977E+05     2.408E-03     6.284E-01       2010     1.977E+05     2.291E-03     5.977E-01       2011     1.977E+05     2.179E-03     5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 2006     1.977E+05     2.798E-03     7.301E-01       2007     1.977E+05     2.661E-03     6.945E-01       2008     1.977E+05     2.532E-03     6.606E-01       2009     1.977E+05     2.408E-03     6.284E-01       2010     1.977E+05     2.291E-03     5.977E-01       2011     1.977E+05     2.179E-03     5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 2008     1.977E+05     2.532E-03     6.606E-01       2009     1.977E+05     2.408E-03     6.284E-01       2010     1.977E+05     2.291E-03     5.977E-01       2011     1.977E+05     2.179E-03     5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                            |              |
| 2009     1.977E+05     2.408E-03     6.284E-01       2010     1.977E+05     2.291E-03     5.977E-01       2011     1.977E+05     2.179E-03     5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.977E+05                                         | 2.661E-03                                  | 6.945E-01    |
| 2009     1.977E+05     2.408E-03     6.284E-01       2010     1.977E+05     2.291E-03     5.977E-01       2011     1.977E+05     2.179E-03     5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.977E+05                                         | 2.532E-03                                  |              |
| 2010 1.977E+05 2.291E-03 5.977E-01<br>2011 1.977E+05 2.179E-03 5.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.977E+05                                         | 2.408E-03                                  |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.977E+05                                         | 2.291E-03                                  | 5.977E-01    |
| 2012 1.977E+05 2.073E-03 5.409E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.977E+05                                         | 2.179E-03                                  | 5.686E-01    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.977E+05                                         | 2.073E-03                                  | 5.409E-01    |

Table D-8. Northern Parcel Toluene Emisson Rate from Year 1968 to 2203 (continued).

| Year | Refuse In Place (M | (Mg/yr)   | (Cubic m/yr) |
|------|--------------------|-----------|--------------|
| 2013 | 1.977E+05          | 1.972E-03 | 5.145E-01    |
| 2014 | 1.977E+05          | 1.876E-03 | 4.894E-01    |
| 2015 | 1.977E+05          | 1.784E-03 | 4.655E-01    |
| 2016 | 1.977E+05          | 1.697E-03 | 4.428E-01    |
| 2017 | 1.977E+05          | 1.614E-03 | 4.212E-01    |
| 2018 | 1.977E+05          | 1.536E-03 | 4.007E-01    |
| 2019 | 1.977E+05          | 1.461E-03 | 3.811E-01    |
| 2020 | 1.977E+05          | 1.389E-03 | 3.625E-01    |
| 2021 | 1.977E+05          | 1.322E-03 | 3.449E-01    |
| 2022 | 1.977E+05          | 1.257E-03 | 3.280E-01    |
| 2023 | 1.977E+05          | 1.196E-03 | 3.120E-01    |
| 2024 | 1.977E+05          | 1.138E-03 | 2.968E-01    |
| 2025 | 1.977E+05          | 1.082E-03 | 2.824E-01    |
| 2026 | 1.977E+05          | 1.029E-03 | 2.686E-01    |
| 2027 | 1.977E+05          | 9.791E-04 | 2.555E-01    |
| 2028 | 1.977E+05          | 9.313E-04 | 2.430E-01    |
| 2029 | 1.977E+05          | 8.859E-04 | 2.312E-01    |
| 2030 | 1.977E+05          | 8.427E-04 | 2.199E-01    |
| 2031 | 1.977E+05          | 8.016E-04 | 2.092E-01    |
| 2032 | 1.977E+05          | 7.625E-04 | 1.990E-01    |
| 2033 | 1.977E+05          | 7.253E-04 | 1.893E-01    |
| 2034 | 1.977E+05          | 6.900E-04 | 1.800E-01    |
| 2035 | 1.977E+05          | 6.563E-04 | 1.713E-01    |
| 2036 | 1.977E+05          | 6.243E-04 | 1.629E-01    |
| 2037 | 1.977E+05          | 5.939E-04 | 1.550E-01    |
| 2038 | 1.977E+05          | 5.649E-04 | 1.474E-01    |
| 2039 | 1.977E+05          | 5.373E-04 | 1.402E-01    |
| 2040 | 1.977E+05          | 5.111E-04 | 1.334E-01    |
| 2041 | 1.977E+05          | 4.862E-04 | 1.269E-01    |
| 2042 | 1.977E+05          | 4.625E-04 | 1.207E-01    |
| 2043 | 1.977E+05          | 4.399E-04 | 1.148E-01    |
| 2044 | 1.977E+05          | 4.185E-04 | 1.092E-01    |
| 2045 | 1.977E+05          | 3.981E-04 | 1.039E-01    |
| 2046 | 1.977E+05          | 3.787E-04 | 9.881E-02    |
| 2047 | 1.977E+05          | 3.602E-04 | 9.399E-02    |
| 2048 | 1.977E+05          | 3.426E-04 | 8.940E-02    |
| 2049 | 1.977E+05          | 3.259E-04 | 8.504E-02    |
| 2050 | 1.977E+05          | 3.100E-04 | 8.090E-02    |
| 2051 | 1.977E+05          | 2.949E-04 | 7.695E-02    |
| 2052 | 1.977E+05          | 2.805E-04 | 7.320E-02    |
| 2053 | 1.977E+05          | 2.668E-04 | 6.963E-02    |
| 2054 | 1.977E+05          | 2.538E-04 | 6.623E-02    |
| 2055 | 1.977E+05          | 2.414E-04 | 6.300E-02    |
| 2056 | 1.977E+05          | 2.297E-04 | 5.993E-02    |
| 2057 | 1.977E+05          | 2.185E-04 | 5.701E-02    |
| 2058 | 1.977E+05          | 2.078E-04 | 5.423E-02    |
| 2059 | 1.977E+05          | 1.977E-04 | 5.158E-02    |
| 2060 | 1.977E+05          | 1.880E-04 | 4.907E-02    |
| 2061 | 1.977E+05          | 1.789E-04 | 4.667E-02    |
| 2062 | 1.977E+05          | 1.701E-04 | 4.440E-02    |
| 2063 | 1.977E+05          | 1.618E-04 | 4.223E-02    |
| 2064 | 1.977E+05          | 1.540E-04 | 4.017E-02    |
| 2065 | 1.977E+05          | 1.464E-04 | 3.821E-02    |
| 2066 | 1.977E+05          | 1.393E-04 | 3.635E-02    |
| 2067 | 1.977E+05          | 1.325E-04 | 3.458E-02    |
| 2068 | 1.977E+05          | 1.260E-04 | 3.289E-02    |
| 2069 | 1.977E+05          | 1.199E-04 | 3.129E-02    |
| 2070 | 1.977E+05          | 1.140E-04 | 2.976E-02    |
| 2071 | 1.977E+05          | 1.085E-04 | 2.831E-02    |
| 2072 | 1.977E+05          | 1.032E-04 | 2.693E-02    |
| 2073 | 1.977E+05          | 9.816E-05 | 2.561E-02    |
| 2074 | 1.977E+05          | 9.338E-05 | 2.437E-02    |
| 2075 | 1.977E+05          | 8.882E-05 | 2.318E-02    |
| 2076 | 1.977E+05          | 8.449E-05 | 2.205E-02    |
| 2077 | 1.977E+05          | 8.037E-05 | 2.097E-02    |
| 2078 | 1.977E+05          | 7.645E-05 | 1.995E-02    |
| 2079 | 1.977E+05          | 7.272E-05 | 1.898E-02    |
| 2080 | 1.977E+05          | 6.917E-05 | 1.805E-02    |
| 2081 | 1.977E+05          | 6.580E-05 | 1.717E-02    |
| 2082 | 1.977E+05          | 6.259E-05 | 1.633E-02    |
| 2083 | 1.977E+05          | 5.954E-05 | 1.554E-02    |
|      |                    |           |              |

**Table D-8.** Northern Parcel Toluene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 5.664E-05              | 1.478E-02              |
| 2085         | 1.977E+05              | 5.387E-05              | 1.406E-02              |
| 2086         | 1.977E+05              | 5.125E-05              | 1.337E-02              |
| 2087         | 1.977E+05              | 4.875E-05              | 1.272E-02              |
| 2088         | 1.977E+05              | 4.637E-05              | 1.210E-02              |
| 2089         | 1.977E+05              | 4.411E-05              | 1.151E-02              |
| 2090         | 1.977E+05              | 4.196E-05              | 1.095E-02              |
| 2091         | 1.977E+05              | 3.991E-05              | 1.041E-02              |
| 2092         | 1.977E+05              | 3.796E-05              | 9.906E-03              |
| 2093         | 1.977E+05<br>1.977E+05 | 3.611E-05              | 9.423E-03              |
| 2094<br>2095 | 1.977E+05<br>1.977E+05 | 3.435E-05<br>3.268E-05 | 8.963E-03<br>8.526E-03 |
| 2095         | 1.977E+05              | 3.208E-05              | 8.110E-03              |
| 2097         | 1.977E+05              | 2.957E-05              | 7.715E-03              |
| 2098         | 1.977E+05              | 2.812E-05              | 7.339E-03              |
| 2099         | 1.977E+05              | 2.675E-05              | 6.981E-03              |
| 2100         | 1.977E+05              | 2.545E-05              | 6.640E-03              |
| 2101         | 1.977E+05              | 2.421E-05              | 6.316E-03              |
| 2102         | 1.977E+05              | 2.303E-05              | 6.008E-03              |
| 2103         | 1.977E+05              | 2.190E-05              | 5.715E-03              |
| 2104         | 1.977E+05              | 2.084E-05              | 5.437E-03              |
| 2105         | 1.977E+05              | 1.982E-05              | 5.171E-03              |
| 2106         | 1.977E+05              | 1.885E-05              | 4.919E-03              |
| 2107         | 1.977E+05              | 1.793E-05              | 4.679E-03              |
| 2108         | 1.977E+05<br>1.977E+05 | 1.706E-05              | 4.451E-03              |
| 2109<br>2110 | 1.977E+05<br>1.977E+05 | 1.623E-05<br>1.543E-05 | 4.234E-03<br>4.028E-03 |
| 2111         | 1.977E+05              | 1.468E-05              | 3.831E-03              |
| 2112         | 1.977E+05              | 1.397E-05              | 3.644E-03              |
| 2113         | 1.977E+05              | 1.328E-05              | 3.467E-03              |
| 2114         | 1.977E+05              | 1.264E-05              | 3.297E-03              |
| 2115         | 1.977E+05              | 1.202E-05              | 3.137E-03              |
| 2116         | 1.977E+05              | 1.143E-05              | 2.984E-03              |
| 2117         | 1.977E+05              | 1.088E-05              | 2.838E-03              |
| 2118         | 1.977E+05              | 1.035E-05              | 2.700E-03              |
| 2119         | 1.977E+05              | 9.842E-06              | 2.568E-03              |
| 2120         | 1.977E+05              | 9.362E-06              | 2.443E-03              |
| 2121         | 1.977E+05              | 8.905E-06              | 2.324E-03              |
| 2122         | 1.977E+05              | 8.471E-06              | 2.210E-03              |
| 2123<br>2124 | 1.977E+05<br>1.977E+05 | 8.058E-06<br>7.665E-06 | 2.103E-03<br>2.000E-03 |
| 2125         | 1.977E+05              | 7.291E-06              | 1.902E-03              |
| 2126         | 1.977E+05              | 6.935E-06              | 1.810E-03              |
| 2127         | 1.977E+05              | 6.597E-06              | 1.721E-03              |
| 2128         | 1.977E+05              | 6.275E-06              | 1.637E-03              |
| 2129         | 1.977E+05              | 5.969E-06              | 1.558E-03              |
| 2130         | 1.977E+05              | 5.678E-06              | 1.482E-03              |
| 2131         | 1.977E+05              | 5.401E-06              | 1.409E-03              |
| 2132         | 1.977E+05              | 5.138E-06              | 1.341E-03              |
| 2133         | 1.977E+05              | 4.887E-06              | 1.275E-03              |
| 2134         | 1.977E+05              | 4.649E-06              | 1.213E-03              |
| 2135         | 1.977E+05              | 4.422E-06              | 1.154E-03              |
| 2136<br>2137 | 1.977E+05<br>1.977E+05 | 4.207E-06<br>4.001E-06 | 1.098E-03<br>1.044E-03 |
| 2138         | 1.977E+05              | 3.806E-06              | 9.932E-04              |
| 2139         | 1.977E+05              | 3.621E-06              | 9.447E-04              |
| 2140         | 1.977E+05              | 3.444E-06              | 8.987E-04              |
| 2141         | 1.977E+05              | 3.276E-06              | 8.548E-04              |
| 2142         | 1.977E+05              | 3.116E-06              | 8.131E-04              |
| 2143         | 1.977E+05              | 2.964E-06              | 7.735E-04              |
| 2144         | 1.977E+05              | 2.820E-06              | 7.358E-04              |
| 2145         | 1.977E+05              | 2.682E-06              | 6.999E-04              |
| 2146         | 1.977E+05              | 2.551E-06              | 6.657E-04              |
| 2147         | 1.977E+05              | 2.427E-06              | 6.333E-04              |
| 2148         | 1.977E+05              | 2.309E-06              | 6.024E-04              |
| 2149         | 1.977E+05<br>1.977E+05 | 2.196E-06<br>2.089E-06 | 5.730E-04<br>5.451E-04 |
| 2150<br>2151 | 1.977E+05<br>1.977E+05 | 1.987E-06              | 5.185E-04<br>5.185E-04 |
| 2152         | 1.977E+05              | 1.890E-06              | 4.932E-04              |
| 2153         | 1.977E+05              | 1.798E-06              | 4.691E-04              |
| 2154         | 1.977E+05              | 1.710E-06              | 4.463E-04              |
|              |                        |                        |                        |

**Table D-8.** Northern Parcel Toluene Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)                | (Cubic m/yr) |
|------|----------------------|------------------------|--------------|
| 2155 | 1.977E+05            | 1.627E-06              | 4.245E-04    |
| 2156 | 1.977E+05            | 1.547E-06              | 4.038E-04    |
| 2157 | 1.977E+05            | 1.472E-06              | 3.841E-04    |
| 2158 | 1.977E+05            | 1.400E-06              | 3.654E-04    |
| 2159 | 1.977E+05            | 1.332E-06              | 3.476E-04    |
| 2160 | 1.977E+05            | 1.267E-06              | 3.306E-04    |
| 2161 | 1.977E+05            | 1.205E-06              | 3.145E-04    |
| 2162 | 1.977E+05            | 1.146E-06              | 2.991E-04    |
| 2163 | 1.977E+05            | 1.090E-06              | 2.846E-04    |
| 2164 | 1.977E+05            | 1.037E-06              | 2.707E-04    |
| 2165 | 1.977E+05            | 9.867E-07              | 2.575E-04    |
| 2166 | 1.977E+05            | 9.386E-07              | 2.449E-04    |
| 2167 | 1.977E+05            | 8.928E-07              | 2.330E-04    |
| 2168 | 1.977E+05            | 8.493E-07              | 2.216E-04    |
| 2169 | 1.977E+05            | 8.079E-07              | 2.108E-04    |
| 2170 | 1.977E+05            | 7.685E-07              | 2.005E-04    |
| 2171 | 1.977E+05            | 7.310E-07              | 1.907E-04    |
| 2172 | 1.977E+05            | 6.953E-07              | 1.814E-04    |
| 2173 | 1.977E+05            | 6.614E-07              | 1.726E-04    |
| 2174 | 1.977E+05            | 6.292E-07              | 1.642E-04    |
| 2175 | 1.977E+05            | 5.985E-07              | 1.562E-04    |
| 2176 | 1.977E+05            | 5.693E-07              | 1.485E-04    |
| 2177 | 1.977E+05            | 5.415E-07              | 1.413E-04    |
| 2178 | 1.977E+05            | 5.151E-07              | 1.344E-04    |
| 2179 | 1.977E+05            | 4.900E-07              | 1.279E-04    |
| 2180 | 1.977E+05            | 4.661E-07              | 1.216E-04    |
| 2181 | 1.977E+05            | 4.434E-07              | 1.157E-04    |
| 2182 | 1.977E+05            | 4.217E-07              | 1.100E-04    |
| 2183 | 1.977E+05            | 4.012E-07              | 1.047E-04    |
| 2184 | 1.977E+05            | 3.816E-07              | 9.957E-05    |
| 2185 | 1.977E+05            | 3.630E-07              | 9.472E-05    |
| 2186 | 1.977E+05            | 3.453E-07              | 9.010E-05    |
| 2187 | 1.977E+05            | 3.285E-07              | 8.570E-05    |
| 2188 | 1.977E+05            | 3.124E-07              | 8.152E-05    |
| 2189 | 1.977E+05            | 2.972E-07              | 7.755E-05    |
| 2190 | 1.977E+05            | 2.827E-07              | 7.377E-05    |
| 2191 | 1.977E+05            | 2.689E-07              | 7.017E-05    |
| 2192 | 1.977E+05            | 2.558E-07              | 6.675E-05    |
| 2193 | 1.977E+05            | 2.433E-07              | 6.349E-05    |
| 2193 | 1.977E+05            | 2.433E-07<br>2.315E-07 | 6.040E-05    |
| 2195 | 1.977E+05            | 2.202E-07              | 5.745E-05    |
| 2196 | 1.977E+05            | 2.094E-07              | 5.465E-05    |
| 2197 | 1.977E+05            | 1.992E-07              | 5.198E-05    |
| 2198 | 1.977E+05            | 1.895E-07              | 4.945E-05    |
| 2199 | 1.977E+05            | 1.803E-07              | 4.704E-05    |
| 2200 | 1.977E+05            | 1.715E-07              | 4.474E-05    |
| 2200 | 1.977E+05            | 1.631E-07              | 4.256E-05    |
| 2201 | 1.977E+05            | 1.551E-07              | 4.236E-05    |
| 2202 | 1.977E+05            | 1.476E-07              | 3.851E-05    |
| 2200 | 1.5//00              | 1.4.00 0.              | J.031L 03    |

Table D-9. Northern Parcel Trichloroethene Emisson Rate from Year 1968 to 2203.

\_\_\_\_\_\_\_

### Model Parameters

\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC: 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 56.0000 % volume

Carbon Dioxide : 44.0000 % volume

Air Pollutant : Trichloroethene (HAP/VOC)
Molecular Wt = 131.38 Concentration =

Vmqq 0000000.0 Concentration =

## Landfill Parameters

\_\_\_\_\_\_

Landfill type : Co-Disposal

Year Opened: 1967 Current Year: 2003 Closure Year: 2004

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 13179.47 Mg/year

\_\_\_\_\_

| Year | Refuse In Place (Mg) | Trichloroethene (Mg/yr) | HAP/VOC) Emission Rate<br>(Cubic m/yr) |  |
|------|----------------------|-------------------------|----------------------------------------|--|
| Tear | Reluse in Flace (Mg) | (Mg/yr)                 | (CUDIC M/YI)                           |  |
| 1968 | 1.318E+04            | 6.559E-05               | 1.200E-02                              |  |
| 1969 | 2.636E+04            | 1.280E-04               | 2.342E-02                              |  |
| 1970 | 3.954E+04            | 1.873E-04               | 3.428E-02                              |  |
| 1971 | 5.272E+04            | 2.438E-04               | 4.461E-02                              |  |
| 1972 | 6.590E+04            | 2.975E-04               | 5.444E-02                              |  |
| 1973 | 7.908E+04            | 3.486E-04               | 6.379E-02                              |  |
| 1974 | 9.226E+04            | 3.971E-04               | 7.268E-02                              |  |
| 1975 | 1.054E+05            | 4.434E-04               | 8.114E-02                              |  |
| 1976 | 1.186E+05            | 4.873E-04               | 8.918E-02                              |  |
| 1977 | 1.318E+05            | 5.292E-04               | 9.684E-02                              |  |
| 1978 | 1.450E+05            | 5.689E-04               | 1.041E-01                              |  |
| 1979 | 1.582E+05            | 6.068E-04               | 1.110E-01                              |  |
| 1980 | 1.713E+05            | 6.428E-04               | 1.176E-01                              |  |
| 1981 | 1.845E+05            | 6.770E-04               | 1.239E-01                              |  |
| 1982 | 1.977E+05            | 7.096E-04               | 1.299E-01                              |  |
| 1983 | 1.977E+05            | 6.750E-04               | 1.235E-01                              |  |
| 1984 | 1.977E+05            | 6.421E-04               | 1.175E-01                              |  |
| 1985 | 1.977E+05            | 6.107E-04               | 1.118E-01                              |  |
| 1986 | 1.977E+05            | 5.810E-04               | 1.063E-01                              |  |
| 1987 | 1.977E+05            | 5.526E-04               | 1.011E-01                              |  |
| 1988 | 1.977E+05            | 5.257E-04               | 9.620E-02                              |  |
| 1989 | 1.977E+05            | 5.000E-04               | 9.151E-02                              |  |
| 1990 | 1.977E+05            | 4.756E-04               | 8.704E-02                              |  |
| 1991 | 1.977E+05            | 4.524E-04               | 8.280E-02                              |  |
| 1992 | 1.977E+05            | 4.304E-04               | 7.876E-02                              |  |
| 1993 | 1.977E+05            | 4.094E-04               | 7.492E-02                              |  |
| 1994 | 1.977E+05            | 3.894E-04               | 7.127E-02                              |  |
| 1995 | 1.977E+05            | 3.704E-04               | 6.779E-02                              |  |
| 1996 | 1.977E+05            | 3.524E-04               | 6.448E-02                              |  |
| 1997 | 1.977E+05            | 3.352E-04               | 6.134E-02                              |  |
| 1998 | 1.977E+05            | 3.188E-04               | 5.835E-02                              |  |
| 1999 | 1.977E+05            | 3.033E-04               | 5.550E-02                              |  |
| 2000 | 1.977E+05            | 2.885E-04               | 5.279E-02                              |  |
| 2001 | 1.977E+05            | 2.744E-04               | 5.022E-02                              |  |
| 2002 | 1.977E+05            | 2.610E-04               | 4.777E-02                              |  |
| 2003 | 1.977E+05            | 2.483E-04               | 4.544E-02                              |  |
| 2004 | 1.977E+05            | 2.362E-04               | 4.322E-02                              |  |
| 2005 | 1.977E+05            | 2.247E-04               | 4.112E-02                              |  |
| 2006 | 1.977E+05            | 2.137E-04               | 3.911E-02                              |  |
| 2007 | 1.977E+05            | 2.033E-04               | 3.720E-02                              |  |
| 2008 | 1.977E+05            | 1.934E-04               | 3.539E-02                              |  |
| 2009 | 1.977E+05            | 1.840E-04               | 3.366E-02                              |  |
| 2010 | 1.977E+05            | 1.750E-04               | 3.202E-02                              |  |
| 2011 | 1.977E+05            | 1.664E-04               | 3.046E-02                              |  |
| 2012 | 1.977E+05            | 1.583E-04               | 2.897E-02                              |  |

**Table D-9.** Northern Parcel Trichloroethene Emisson Rate from Year 1968 to 2203 (continued).

| Year | Refuse In Place (M     | g) (Mg/yr)             | (Cubic m/yr) |
|------|------------------------|------------------------|--------------|
| 2013 | 1.977E+05              | 1.506E-04              | 2.756E-02    |
| 2014 | 1.977E+05              | 1.433E-04              | 2.622E-02    |
| 2015 | 1.977E+05              | 1.363E-04              | 2.494E-02    |
| 2016 | 1.977E+05              | 1.296E-04              | 2.372E-02    |
| 2017 | 1.977E+05              | 1.233E-04              | 2.257E-02    |
| 2018 | 1.977E+05              | 1.173E-04              | 2.146E-02    |
| 2019 | 1.977E+05              | 1.116E-04              | 2.042E-02    |
| 2020 | 1.977E+05              | 1.061E-04              | 1.942E-02    |
| 2020 | 1.977E+05              | 1.010E-04              | 1.847E-02    |
| 2021 | 1.977E+05              | 9.603E-05              | 1.757E-02    |
|      | 1.977E+05              |                        |              |
| 2023 |                        | 9.135E-05<br>8.689E-05 | 1.672E-02    |
| 2024 | 1.977E+05              |                        | 1.590E-02    |
| 2025 | 1.977E+05              | 8.266E-05              | 1.513E-02    |
| 2026 | 1.977E+05              | 7.862E-05              | 1.439E-02    |
| 2027 | 1.977E+05              | 7.479E-05              | 1.369E-02    |
| 2028 | 1.977E+05              | 7.114E-05              | 1.302E-02    |
| 2029 | 1.977E+05              | 6.767E-05              | 1.238E-02    |
| 2030 | 1.977E+05              | 6.437E-05              | 1.178E-02    |
| 2031 | 1.977E+05              | 6.123E-05              | 1.121E-02    |
| 2032 | 1.977E+05              | 5.825E-05              | 1.066E-02    |
| 2033 | 1.977E+05              | 5.541E-05              | 1.014E-02    |
| 2034 | 1.977E+05              | 5.270E-05              | 9.645E-03    |
| 2035 | 1.977E+05              | 5.013E-05              | 9.174E-03    |
| 2036 | 1.977E+05              | 4.769E-05              | 8.727E-03    |
| 2037 | 1.977E+05              | 4.536E-05              | 8.301E-03    |
| 2038 | 1.977E+05              | 4.315E-05              | 7.896E-03    |
| 2039 | 1.977E+05              | 4.105E-05              | 7.511E-03    |
| 2040 | 1.977E+05              | 3.904E-05              | 7.145E-03    |
| 2041 | 1.977E+05              | 3.714E-05              | 6.797E-03    |
| 2042 | 1.977E+05              | 3.533E-05              | 6.465E-03    |
| 2043 | 1.977E+05              | 3.361E-05              | 6.150E-03    |
| 2044 | 1.977E+05              | 3.197E-05              | 5.850E-03    |
| 2045 | 1.977E+05              | 3.041E-05              | 5.565E-03    |
| 2045 |                        |                        | 5.293E-03    |
|      | 1.977E+05              | 2.892E-05              |              |
| 2047 | 1.977E+05              | 2.751E-05              | 5.035E-03    |
| 2048 | 1.977E+05              | 2.617E-05              | 4.789E-03    |
| 2049 | 1.977E+05              | 2.490E-05              | 4.556E-03    |
| 2050 | 1.977E+05              | 2.368E-05              | 4.334E-03    |
| 2051 | 1.977E+05              | 2.253E-05              | 4.122E-03    |
| 2052 | 1.977E+05              | 2.143E-05              | 3.921E-03    |
| 2053 | 1.977E+05              | 2.038E-05              | 3.730E-03    |
| 2054 | 1.977E+05              | 1.939E-05              | 3.548E-03    |
| 2055 | 1.977E+05              | 1.844E-05              | 3.375E-03    |
| 2056 | 1.977E+05              | 1.754E-05              | 3.210E-03    |
| 2057 | 1.977E+05              | 1.669E-05              | 3.054E-03    |
| 2058 | 1.977E+05              | 1.587E-05              | 2.905E-03    |
| 2059 | 1.977E+05              | 1.510E-05              | 2.763E-03    |
| 2060 | 1.977E+05              | 1.436E-05              | 2.629E-03    |
| 2061 | 1.977E+05              | 1.366E-05              | 2.500E-03    |
| 2062 | 1.977E+05              | 1.300E-05              | 2.378E-03    |
| 2063 | 1.977E+05              | 1.236E-05              | 2.262E-03    |
| 2064 | 1.977E+05              | 1.176E-05              | 2.152E-03    |
| 2065 | 1.977E+05              | 1.119E-05              | 2.047E-03    |
| 2066 | 1,977E+05              | 1.064E-05              | 1.947E-03    |
| 2067 | 1.977E+05              | 1.012E-05              | 1.852E-03    |
| 2068 | 1.977E+05              | 9.628E-06              | 1.762E-03    |
| 2069 | 1.977E+05              | 9.158E-06              | 1.676E-03    |
| 2070 | 1.977E+05              | 8.712E-06              | 1.594E-03    |
| 2071 | 1.977E+05              | 8.287E-06              | 1.517E-03    |
| 2072 | 1.977E+05              | 7.883E-06              | 1.443E-03    |
| 2072 | 1.977E+05              | 7.498E-06              | 1.372E-03    |
|      | 1.977E+05<br>1.977E+05 | 7.133E-06              | 1.305E-03    |
| 2074 |                        |                        |              |
| 2075 | 1.977E+05              | 6.785E-06              | 1.242E-03    |
| 2076 | 1.977E+05              | 6.454E-06              | 1.181E-03    |
| 2077 | 1.977E+05              | 6.139E-06              | 1.123E-03    |
| 2078 | 1.977E+05              | 5.840E-06              | 1.069E-03    |
| 2079 | 1.977E+05              | 5.555E-06              | 1.017E-03    |
| 2080 | 1.977E+05              | 5.284E-06              | 9.670E-04    |
| 2081 | 1.977E+05              | 5.026E-06              | 9.198E-04    |
| 2082 | 1.977E+05              | 4.781E-06              | 8.750E-04    |
| 2083 | 1.977E+05              | 4.548E-06              | 8.323E-04    |
|      |                        |                        |              |

**Table D-9.** Northern Parcel Trichloroethene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 4.326E-06              | 7.917E-04              |
| 2085         | 1.977E+05              | 4.115E-06              | 7.531E-04              |
| 2086         | 1.977E+05              | 3.914E-06              | 7.164E-04              |
| 2087         | 1.977E+05              | 3.724E-06              | 6.814E-04              |
| 2088         | 1.977E+05              | 3.542E-06              | 6.482E-04              |
| 2089         | 1.977E+05              | 3.369E-06              | 6.166E-04              |
| 2090         | 1.977E+05              | 3.205E-06              | 5.865E-04              |
| 2091         | 1.977E+05              | 3.049E-06              | 5.579E-04              |
| 2092         | 1.977E+05              | 2.900E-06              | 5.307E-04              |
| 2093         | 1.977E+05              | 2.758E-06              | 5.048E-04              |
| 2094         | 1.977E+05              | 2.624E-06              | 4.802E-04              |
| 2095         | 1.977E+05              | 2.496E-06              | 4.568E-04              |
| 2096         | 1.977E+05              | 2.374E-06              | 4.345E-04              |
| 2097<br>2098 | 1.977E+05<br>1.977E+05 | 2.258E-06<br>2.148E-06 | 4.133E-04<br>3.931E-04 |
| 2099         | 1.977E+05              | 2.148E-06<br>2.044E-06 | 3.740E-04              |
| 2100         | 1.977E+05              | 1.944E-06              | 3.557E-04              |
| 2101         | 1.977E+05              | 1.849E-06              | 3.384E-04              |
| 2102         | 1.977E+05              | 1.759E-06              | 3.219E-04              |
| 2103         | 1.977E+05              | 1.673E-06              | 3.062E-04              |
| 2104         | 1.977E+05              | 1.592E-06              | 2.912E-04              |
| 2105         | 1.977E+05              | 1.514E-06              | 2.770E-04              |
| 2106         | 1.977E+05              | 1.440E-06              | 2.635E-04              |
| 2107         | 1.977E+05              | 1.370E-06              | 2.507E-04              |
| 2108         | 1.977E+05              | 1.303E-06              | 2.385E-04              |
| 2109         | 1.977E+05              | 1.239E-06              | 2.268E-04              |
| 2110         | 1.977E+05              | 1.179E-06              | 2.158E-04              |
| 2111         | 1.977E+05              | 1.122E-06              | 2.052E-04              |
| 2112         | 1.977E+05              | 1.067E-06              | 1.952E-04              |
| 2113         | 1.977E+05              | 1.015E-06              | 1.857E-04              |
| 2114         | 1.977E+05              | 9.653E-07              | 1.766E-04              |
| 2115         | 1.977E+05              | 9.182E-07              | 1.680E-04              |
| 2116         | 1.977E+05              | 8.734E-07              | 1.598E-04              |
| 2117         | 1.977E+05              | 8.308E-07              | 1.520E-04              |
| 2118         | 1.977E+05              | 7.903E-07              | 1.446E-04              |
| 2119         | 1.977E+05              | 7.518E-07              | 1.376E-04              |
| 2120<br>2121 | 1.977E+05<br>1.977E+05 | 7.151E-07<br>6.802E-07 | 1.309E-04<br>1.245E-04 |
| 2121         | 1.977E+05              | 6.471E-07              | 1.184E-04              |
| 2123         | 1.977E+05              | 6.155E-07              | 1.126E-04              |
| 2124         | 1.977E+05              | 5.855E-07              | 1.071E-04              |
| 2125         | 1.977E+05              | 5.569E-07              | 1.019E-04              |
| 2126         | 1.977E+05              | 5.298E-07              | 9.695E-05              |
| 2127         | 1.977E+05              | 5.039E-07              | 9.222E-05              |
| 2128         | 1.977E+05              | 4.794E-07              | 8.772E-05              |
| 2129         | 1.977E+05              | 4.560E-07              | 8.344E-05              |
| 2130         | 1.977E+05              | 4.337E-07              | 7.937E-05              |
| 2131         | 1.977E+05              | 4.126E-07              | 7.550E-05              |
| 2132         | 1.977E+05              | 3.925E-07              | 7.182E-05              |
| 2133         | 1.977E+05              | 3.733E-07              | 6.832E-05              |
| 2134         | 1.977E+05              | 3.551E-07              | 6.499E-05              |
| 2135         | 1.977E+05              | 3.378E-07              | 6.182E-05              |
| 2136         | 1.977E+05              | 3.213E-07              | 5.880E-05              |
| 2137         | 1.977E+05              | 3.056E-07              | 5.593E-05              |
| 2138         | 1.977E+05              | 2.907E-07              | 5.321E-05              |
| 2139         | 1.977E+05<br>1.977E+05 | 2.766E-07              | 5.061E-05              |
| 2140<br>2141 | 1.977E+05              | 2.631E-07<br>2.502E-07 | 4.814E-05<br>4.579E-05 |
| 2141         | 1.977E+05              | 2.380E-07              | 4.356E-05              |
| 2143         | 1.977E+05              | 2.264E-07              | 4.144E-05              |
| 2143         | 1.977E+05              | 2.154E-07              | 3.942E-05              |
| 2145         | 1.977E+05              | 2.134E-07<br>2.049E-07 | 3.749E-05              |
| 2146         | 1.977E+05              | 1.949E-07              | 3.567E-05              |
| 2147         | 1.977E+05              | 1.854E-07              | 3.393E-05              |
| 2148         | 1.977E+05              | 1.763E-07              | 3.227E-05              |
| 2149         | 1.977E+05              | 1.677E-07              | 3.070E-05              |
| 2150         | 1.977E+05              | 1.596E-07              | 2.920E-05              |
| 2151         | 1.977E+05              | 1.518E-07              | 2.778E-05              |
| 2152         | 1.977E+05              | 1.444E-07              | 2.642E-05              |
| 2153         | 1.977E+05              | 1.373E-07              | 2.513E-05              |
| 2154         | 1.977E+05              | 1.306E-07              | 2.391E-05              |
|              |                        |                        |                        |

**Table D-9.** Northern Parcel Trichloroethene Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)   | (Cubic m/yr) |  |
|------|----------------------|-----------|--------------|--|
| 2155 | 1.977E+05            | 1.243E-07 | 2.274E-05    |  |
| 2156 | 1.977E+05            | 1.182E-07 | 2.163E-05    |  |
| 2157 | 1.977E+05            | 1.124E-07 | 2.058E-05    |  |
| 2158 | 1.977E+05            | 1.070E-07 | 1.957E-05    |  |
| 2159 | 1.977E+05            | 1.017E-07 | 1.862E-05    |  |
| 2160 | 1.977E+05            | 9.678E-08 | 1.771E-05    |  |
| 2161 | 1.977E+05            | 9.206E-08 | 1.685E-05    |  |
| 2162 | 1.977E+05            | 8.757E-08 | 1.603E-05    |  |
| 2163 | 1.977E+05            | 8.330E-08 | 1.524E-05    |  |
| 2164 | 1.977E+05            | 7.924E-08 | 1.450E-05    |  |
| 2165 | 1.977E+05            | 7.537E-08 | 1.379E-05    |  |
| 2166 | 1.977E+05            | 7.170E-08 | 1.312E-05    |  |
| 2167 | 1.977E+05            | 6.820E-08 | 1.248E-05    |  |
| 2168 | 1.977E+05            | 6.487E-08 | 1.187E-05    |  |
| 2169 | 1.977E+05            | 6.171E-08 | 1.129E-05    |  |
| 2170 | 1.977E+05            | 5.870E-08 | 1.074E-05    |  |
| 2171 | 1.977E+05            | 5.584E-08 | 1.022E-05    |  |
| 2172 | 1.977E+05            | 5.311E-08 | 9.720E-06    |  |
| 2173 | 1.977E+05            | 5.052E-08 | 9.246E-06    |  |
| 2174 | 1.977E+05            | 4.806E-08 | 8.795E-06    |  |
| 2175 | 1.977E+05            | 4.572E-08 | 8.366E-06    |  |
| 2176 | 1.977E+05            | 4.349E-08 | 7.958E-06    |  |
| 2177 | 1.977E+05            | 4.137E-08 | 7.570E-06    |  |
| 2178 | 1.977E+05            | 3.935E-08 | 7.201E-06    |  |
| 2179 | 1.977E+05            | 3.743E-08 | 6.849E-06    |  |
| 2180 | 1.977E+05            | 3.560E-08 | 6.515E-06    |  |
| 2181 | 1.977E+05            | 3.387E-08 | 6.198E-06    |  |
| 2182 | 1.977E+05            | 3.222E-08 | 5.895E-06    |  |
| 2183 | 1.977E+05            | 3.064E-08 | 5.608E-06    |  |
| 2184 | 1.977E+05            | 2.915E-08 | 5.334E-06    |  |
| 2185 | 1.977E+05            | 2.773E-08 | 5.074E-06    |  |
| 2186 | 1.977E+05            | 2.638E-08 | 4.827E-06    |  |
| 2187 | 1.977E+05            | 2.509E-08 | 4.591E-06    |  |
| 2188 | 1.977E+05            | 2.387E-08 | 4.367E-06    |  |
| 2189 | 1.977E+05            | 2.270E-08 | 4.154E-06    |  |
| 2190 | 1.977E+05            | 2.159E-08 | 3.952E-06    |  |
| 2191 | 1.977E+05            | 2.054E-08 | 3.759E-06    |  |
| 2192 | 1.977E+05            | 1.954E-08 | 3.576E-06    |  |
| 2193 | 1.977E+05            | 1.859E-08 | 3.401E-06    |  |
| 2194 | 1.977E+05            | 1.768E-08 | 3.235E-06    |  |
| 2195 | 1.977E+05            | 1.682E-08 | 3.078E-06    |  |
| 2196 | 1.977E+05            | 1.600E-08 | 2.928E-06    |  |
| 2197 | 1.977E+05            | 1.522E-08 | 2.785E-06    |  |
| 2198 | 1.977E+05            | 1.448E-08 | 2.649E-06    |  |
| 2199 | 1.977E+05            | 1.377E-08 | 2.520E-06    |  |
| 2200 | 1.977E+05            | 1.310E-08 | 2.397E-06    |  |
| 2201 | 1.977E+05            | 1.246E-08 | 2.280E-06    |  |
| 2202 | 1.977E+05            | 1.185E-08 | 2.169E-06    |  |
| 2203 | 1.977E+05            | 1.127E-08 | 2.063E-06    |  |
|      |                      |           |              |  |

Table D-10. Northern Parcel Vinyl Chloride Emisson Rate from Year 1968 to 2203.

\_\_\_\_\_\_

## Model Parameters

Lo: 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\*

NMOC: 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 56.0000 % volume

Carbon Dioxide : 44.0000 % volume

Air Pollutant : Vinyl Chloride (HAP/VOC)

Molecular Wt = 62.50 Concentration = 0.620000 ppmV

\_\_\_\_\_\_

#### Landfill Parameters

\_\_\_\_\_\_

Landfill type : Co-Disposal

Year Opened: 1967 Current Year: 2003 Closure Year: 2004

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 13179.47 Mg/year

| Year | Refuse In Place (Mg) | Vinyl Chloride<br>(Mg/yr) | (HAP/VOC) Emission Rate<br>(Cubic m/yr) |
|------|----------------------|---------------------------|-----------------------------------------|
| 1968 | 1.318E+04            | 3.224E-04                 | 1.240E-01                               |
| 1969 | 2.636E+04            | 6.291E-04                 | 2.420E-01                               |
| 1970 | 3.954E+04            | 9.208E-04                 | 3.542E-01                               |
| 1971 | 5.272E+04            | 1.198E-03                 | 4.610E-01                               |
| 1972 | 6.590E+04            | 1.462E-03                 | 5.625E-01                               |
| 1973 | 7.908E+04            | 1.713E-03                 | 6.591E-01                               |
| 1974 | 9.226E+04            | 1.952E-03                 | 7.510E-01                               |
| 1975 | 1.054E+05            | 2.179E-03                 | 8.384E-01                               |
| 1976 | 1.186E+05            | 2.396E-03                 | 9.215E-01                               |
| 1977 | 1.318E+05            | 2.601E-03                 | 1.001E+00                               |
| 1978 | 1.450E+05            | 2.797E-03                 | 1.076E+00                               |
| 1979 | 1.582E+05            | 2.983E-03                 | 1.147E+00                               |
| 1980 | 1.713E+05            | 3.160E-03                 | 1.215E+00                               |
| 1981 | 1.845E+05            | 3.328E-03                 | 1.280E+00                               |
| 1982 | 1.977E+05            | 3.488E-03                 | 1.342E+00                               |
| 1983 | 1.977E+05            | 3.318E-03                 | 1.276E+00                               |
| 1984 | 1.977E+05            | 3.156E-03                 | 1.214E+00                               |
| 1985 | 1.977E+05            | 3.002E-03                 | 1.155E+00                               |
| 1986 | 1.977E+05            | 2.856E-03                 | 1.099E+00                               |
| 1987 | 1.977E+05            | 2.717E-03                 | 1.045E+00                               |
| 1988 | 1.977E+05            | 2.584E-03                 | 9.940E-01                               |
| 1989 | 1.977E+05            | 2.458E-03                 | 9.456E-01                               |
| 1990 | 1.977E+05            | 2.338E-03                 | 8.995E-01                               |
| 1991 | 1.977E+05            | 2.224E-03                 | 8.556E-01                               |
| 1992 | 1.977E+05            | 2.116E-03                 | 8.139E-01                               |
| 1993 | 1.977E+05            | 2.012E-03                 | 7.742E-01                               |
| 1994 | 1.977E+05            | 1.914E-03                 | 7.364E-01                               |
| 1995 | 1.977E+05            | 1.821E-03                 | 7.005E-01                               |
| 1996 | 1.977E+05            | 1.732E-03                 | 6.663E-01                               |
| 1997 | 1.977E+05            | 1.648E-03                 | 6.338E-01                               |
| 1998 | 1.977E+05            | 1.567E-03                 | 6.029E-01                               |
| 1999 | 1.977E+05            | 1.491E-03                 | 5.735E-01                               |
| 2000 | 1.977E+05            | 1.418E-03                 | 5.455E-01                               |
| 2001 | 1.977E+05            | 1.349E-03                 | 5.189E-01                               |
| 2002 | 1.977E+05            | 1.283E-03                 | 4.936E-01                               |
| 2003 | 1.977E+05            | 1.221E-03                 | 4.696E-01                               |
| 2004 | 1.977E+05            | 1.161E-03                 | 4.467E-01                               |
| 2005 | 1.977E+05            | 1.104E-03                 | 4.249E-01                               |
| 2006 | 1.977E+05            | 1.051E-03                 | 4.042E-01                               |
| 2007 | 1.977E+05            | 9.994E-04                 | 3.844E-01                               |
| 2008 | 1.977E+05            | 9.506E-04                 | 3.657E-01                               |
| 2009 | 1.977E+05            | 9.043E-04                 | 3.479E-01                               |
| 2010 | 1.977E+05            | 8.602E-04                 | 3.309E-01                               |
| 2011 | 1.977E+05            | 8.182E-04                 | 3.148E-01                               |
| 2012 | 1.977E+05            | 7.783E-04                 | 2.994E-01                               |

Table D-10. Northern Parcel Vinyl Chloride Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (M     | g) (Mg/yr)             | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 7.404E-04              | 2.848E-01              |
| 2014         | 1.977E+05              | 7.042E-04              | 2.709E-01              |
| 2015         | 1.977E+05              | 6.699E-04              | 2.577E-01              |
| 2016         | 1.977E+05              | 6.372E-04              | 2.451E-01              |
| 2017         | 1.977E+05              | 6.062E-04              | 2.332E-01              |
| 2018         | 1.977E+05              | 5.766E-04              | 2.218E-01              |
| 2019         | 1.977E+05              | 5.485E-04              | 2.110E-01              |
| 2020         | 1.977E+05              | 5.217E-04              | 2.007E-01              |
| 2021         | 1.977E+05              | 4.963E-04              | 1.909E-01              |
| 2022         | 1.977E+05              | 4.721E-04              | 1.816E-01              |
| 2023         | 1.977E+05              | 4.490E-04              | 1.727E-01              |
| 2024         | 1.977E+05              | 4.271E-04              | 1.643E-01              |
| 2025         | 1.977E+05              | 4.063E-04              | 1.563E-01              |
| 2026         | 1.977E+05              | 3.865E-04              | 1.487E-01              |
| 2027         | 1.977E+05              | 3.676E-04              | 1.414E-01              |
| 2028         | 1.977E+05              | 3.497E-04              | 1.345E-01              |
| 2029         | 1.977E+05<br>1.977E+05 | 3.327E-04              | 1.280E-01              |
| 2030<br>2031 | 1.977E+05              | 3.164E-04<br>3.010E-04 | 1.217E-01<br>1.158E-01 |
| 2031         | 1.977E+05              | 2.863E-04              | 1.101E-01              |
| 2032         | 1.977E+05              | 2.724E-04              | 1.048E-01              |
| 2033         | 1.977E+05              | 2.724E-04<br>2.591E-04 | 9.966E-02              |
| 2035         | 1.977E+05              | 2.464E-04              | 9.480E-02              |
| 2036         | 1.977E+05              | 2.344E-04              | 9.018E-02              |
| 2037         | 1.977E+05              | 2.230E-04              | 8.578E-02              |
| 2038         | 1.977E+05              | 2.121E-04              | 8.160E-02              |
| 2039         | 1.977E+05              | 2.018E-04              | 7.762E-02              |
| 2040         | 1.977E+05              | 1.919E-04              | 7.383E-02              |
| 2041         | 1.977E+05              | 1.826E-04              | 7.023E-02              |
| 2042         | 1.977E+05              | 1.737E-04              | 6.681E-02              |
| 2043         | 1.977E+05              | 1.652E-04              | 6.355E-02              |
| 2044         | 1.977E+05              | 1.571E-04              | 6.045E-02              |
| 2045         | 1.977E+05              | 1.495E-04              | 5.750E-02              |
| 2046         | 1.977E+05              | 1.422E-04              | 5.470E-02              |
| 2047         | 1.977E+05              | 1.353E-04              | 5.203E-02              |
| 2048         | 1.977E+05              | 1.287E-04              | 4.949E-02              |
| 2049         | 1.977E+05              | 1.224E-04              | 4.708E-02              |
| 2050         | 1.977E+05              | 1.164E-04              | 4.478E-02              |
| 2051         | 1.977E+05              | 1.107E-04              | 4.260E-02              |
| 2052         | 1.977E+05              | 1.053E-04              | 4.052E-02              |
| 2053         | 1.977E+05              | 1.002E-04              | 3.854E-02              |
| 2054         | 1.977E+05              | 9.531E-05              | 3.666E-02              |
| 2055         | 1.977E+05              | 9.066E-05              | 3.488E-02              |
| 2056         | 1.977E+05              | 8.624E-05              | 3.317E-02              |
| 2057         | 1.977E+05              | 8.203E-05              | 3.156E-02              |
| 2058         | 1.977E+05              | 7.803E-05              | 3.002E-02              |
| 2059         | 1.977E+05              | 7.423E-05              | 2.855E-02              |
| 2060         | 1.977E+05              | 7.061E-05              | 2.716E-02              |
| 2061         | 1.977E+05              | 6.716E-05              | 2.584E-02              |
| 2062         | 1.977E+05              | 6.389E-05              | 2.458E-02              |
| 2063         | 1.977E+05<br>1.977E+05 | 6.077E-05<br>5.781E-05 | 2.338E-02<br>2.224E-02 |
| 2064<br>2065 | 1.977E+05              | 5.499E-05              | 2.115E-02              |
| 2066         | 1.977E+05              | 5.231E-05              | 2.113E-02<br>2.012E-02 |
| 2067         | 1.977E+05              | 4.976E-05              | 1.914E-02              |
| 2068         | 1.977E+05              | 4.733E-05              | 1.821E-02              |
| 2069         | 1.977E+05              | 4.502E-05              | 1.732E-02              |
| 2070         | 1.977E+05              | 4.283E-05              | 1.647E-02              |
| 2071         | 1.977E+05              | 4.074E-05              | 1.567E-02              |
| 2072         | 1.977E+05              | 3.875E-05              | 1.491E-02              |
| 2073         | 1.977E+05              | 3.686E-05              | 1.418E-02              |
| 2074         | 1.977E+05              | 3.506E-05              | 1.349E-02              |
| 2075         | 1.977E+05              | 3.335E-05              | 1.283E-02              |
| 2076         | 1.977E+05              | 3.173E-05              | 1.220E-02              |
| 2077         | 1.977E+05              | 3.018E-05              | 1.161E-02              |
| 2078         | 1.977E+05              | 2.871E-05              | 1.104E-02              |
| 2079         | 1.977E+05              | 2.731E-05              | 1.050E-02              |
| 2080         | 1.977E+05              | 2.597E-05              | 9.992E-03              |
| 2081         | 1.977E+05              | 2.471E-05              | 9.505E-03              |
| 2082         | 1.977E+05              | 2.350E-05              | 9.041E-03              |
| 2083         | 1.977E+05              | 2.236E-05              | 8.600E-03              |
|              |                        |                        |                        |

Table D-10. Northern Parcel Vinyl Chloride Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 2.127E-05              | 8.181E-03              |
| 2085         | 1.977E+05              | 2.023E-05              | 7.782E-03              |
| 2086         | 1.977E+05              | 1.924E-05              | 7.402E-03              |
| 2087         | 1.977E+05              | 1.830E-05              | 7.041E-03              |
| 2088         | 1.977E+05              | 1.741E-05              | 6.698E-03              |
| 2089         | 1.977E+05              | 1.656E-05              | 6.371E-03              |
| 2090         | 1.977E+05              | 1.575E-05              | 6.060E-03              |
| 2091         | 1.977E+05              | 1.499E-05              | 5.765E-03              |
| 2092         | 1.977E+05              | 1.426E-05              | 5.484E-03              |
| 2093         | 1.977E+05              | 1.356E-05              | 5.216E-03              |
| 2094         | 1.977E+05              | 1.290E-05              | 4.962E-03              |
| 2095         | 1.977E+05<br>1.977E+05 | 1.227E-05              | 4.720E-03              |
| 2096<br>2097 | 1.977E+05              | 1.167E-05<br>1.110E-05 | 4.490E-03<br>4.271E-03 |
| 2097         | 1.977E+05              | 1.056E-05              | 4.062E-03              |
| 2099         | 1.977E+05              | 1.005E-05              | 3.864E-03              |
| 2100         | 1.977E+05              | 9.556E-06              | 3.676E-03              |
| 2101         | 1.977E+05              | 9.090E-06              | 3.497E-03              |
| 2102         | 1.977E+05              | 8.646E-06              | 3.326E-03              |
| 2103         | 1.977E+05              | 8.225E-06              | 3.164E-03              |
| 2104         | 1.977E+05              | 7.823E-06              | 3.010E-03              |
| 2105         | 1.977E+05              | 7.442E-06              | 2.863E-03              |
| 2106         | 1.977E+05              | 7.079E-06              | 2.723E-03              |
| 2107         | 1.977E+05              | 6.734E-06              | 2.590E-03              |
| 2108         | 1.977E+05              | 6.405E-06              | 2.464E-03              |
| 2109         | 1.977E+05              | 6.093E-06              | 2.344E-03              |
| 2110         | 1.977E+05              | 5.796E-06              | 2.230E-03              |
| 2111         | 1.977E+05              | 5.513E-06              | 2.121E-03              |
| 2112         | 1.977E+05              | 5.244E-06              | 2.017E-03              |
| 2113         | 1.977E+05              | 4.988E-06              | 1.919E-03              |
| 2114         | 1.977E+05              | 4.745E-06              | 1.825E-03              |
| 2115         | 1.977E+05              | 4.514E-06              | 1.736E-03              |
| 2116<br>2117 | 1.977E+05<br>1.977E+05 | 4.294E-06<br>4.084E-06 | 1.652E-03<br>1.571E-03 |
| 2118         | 1.977E+05              | 3.885E-06              | 1.494E-03              |
| 2119         | 1.977E+05              | 3.696E-06              | 1.422E-03              |
| 2120         | 1.977E+05              | 3.515E-06              | 1.352E-03              |
| 2121         | 1.977E+05              | 3.344E-06              | 1.286E-03              |
| 2122         | 1.977E+05              | 3.181E-06              | 1.224E-03              |
| 2123         | 1.977E+05              | 3.026E-06              | 1.164E-03              |
| 2124         | 1.977E+05              | 2.878E-06              | 1.107E-03              |
| 2125         | 1.977E+05              | 2.738E-06              | 1.053E-03              |
| 2126         | 1.977E+05              | 2.604E-06              | 1.002E-03              |
| 2127         | 1.977E+05              | 2.477E-06              | 9.529E-04              |
| 2128         | 1.977E+05              | 2.356E-06              | 9.065E-04              |
| 2129         | 1.977E+05              | 2.241E-06              | 8.622E-04              |
| 2130         | 1.977E+05              | 2.132E-06              | 8.202E-04              |
| 2131         | 1.977E+05              | 2.028E-06              | 7.802E-04              |
| 2132         | 1.977E+05              | 1.929E-06              | 7.421E-04              |
| 2133         | 1.977E+05<br>1.977E+05 | 1.835E-06              | 7.060E-04<br>6.715E-04 |
| 2134<br>2135 | 1.977E+05              | 1.746E-06<br>1.661E-06 | 6.388E-04              |
| 2136         | 1.977E+05              | 1.580E-06              | 6.076E-04              |
| 2137         | 1.977E+05              | 1.502E-06              | 5.780E-04              |
| 2138         | 1.977E+05              | 1.429E-06              | 5.498E-04              |
| 2139         | 1.977E+05              | 1.360E-06              | 5.230E-04              |
| 2140         | 1.977E+05              | 1.293E-06              | 4.975E-04              |
| 2141         | 1.977E+05              | 1.230E-06              | 4.732E-04              |
| 2142         | 1.977E+05              | 1.170E-06              | 4.501E-04              |
| 2143         | 1.977E+05              | 1.113E-06              | 4.282E-04              |
| 2144         | 1.977E+05              | 1.059E-06              | 4.073E-04              |
| 2145         | 1.977E+05              | 1.007E-06              | 3.874E-04              |
| 2146         | 1.977E+05              | 9.580E-07              | 3.685E-04              |
| 2147         | 1.977E+05              | 9.113E-07              | 3.506E-04              |
| 2148         | 1.977E+05              | 8.669E-07              | 3.335E-04              |
| 2149         | 1.977E+05              | 8.246E-07              | 3.172E-04              |
| 2150         | 1.977E+05              | 7.844E-07              | 3.017E-04              |
| 2151         | 1.977E+05<br>1.977E+05 | 7.461E-07<br>7.097E-07 | 2.870E-04<br>2.730E-04 |
| 2152<br>2153 | 1.977E+05<br>1.977E+05 | 6.751E-07              | 2.730E-04<br>2.597E-04 |
| 2154         | 1.977E+05              | 6.422E-07              | 2.470E-04              |
| 2204         | 1.0.75100              | J. 4225-01             | 2.1.00.04              |

Table D-10. Northern Parcel Vinyl Chloride Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)   | (Cubic m/yr) |
|------|----------------------|-----------|--------------|
| 2155 | 1.977E+05            | 6.109E-07 | 2.350E-04    |
| 2156 | 1.977E+05            | 5.811E-07 | 2.235E-04    |
| 2157 | 1.977E+05            | 5.527E-07 | 2.126E-04    |
| 2158 | 1.977E+05            | 5.258E-07 | 2.023E-04    |
| 2159 | 1.977E+05            | 5.001E-07 | 1.924E-04    |
| 2160 | 1.977E+05            | 4.757E-07 | 1.830E-04    |
| 2161 | 1.977E+05            | 4.525E-07 | 1.741E-04    |
| 2162 | 1.977E+05            | 4.305E-07 | 1.656E-04    |
| 2163 | 1.977E+05            | 4.095E-07 | 1.575E-04    |
| 2164 | 1.977E+05            | 3.895E-07 | 1.498E-04    |
| 2165 | 1.977E+05            | 3.705E-07 | 1.425E-04    |
| 2166 | 1.977E+05            | 3.524E-07 | 1.356E-04    |
| 2167 | 1.977E+05            | 3.353E-07 | 1.290E-04    |
| 2168 | 1.977E+05            | 3.189E-07 | 1.227E-04    |
| 2169 | 1.977E+05            | 3.033E-07 | 1.167E-04    |
| 2170 | 1.977E+05            | 2.886E-07 | 1.110E-04    |
| 2171 | 1.977E+05            | 2.745E-07 | 1.056E-04    |
| 2172 | 1.977E+05            | 2.611E-07 | 1.004E-04    |
| 2173 | 1.977E+05            | 2.484E-07 | 9.554E-05    |
| 2174 | 1.977E+05            | 2.362E-07 | 9.088E-05    |
| 2175 | 1.977E+05            | 2.247E-07 | 8.645E-05    |
| 2176 | 1.977E+05            | 2.138E-07 | 8.223E-05    |
| 2177 | 1.977E+05            | 2.033E-07 | 7.822E-05    |
| 2178 | 1.977E+05            | 1.934E-07 | 7.441E-05    |
| 2179 | 1.977E+05            | 1.840E-07 | 7.078E-05    |
| 2180 | 1.977E+05            | 1.750E-07 | 6.733E-05    |
| 2181 | 1.977E+05            | 1.665E-07 | 6.404E-05    |
| 2182 | 1.977E+05            | 1.584E-07 | 6.092E-05    |
| 2183 | 1.977E+05            | 1.506E-07 | 5.795E-05    |
| 2184 | 1.977E+05            | 1.433E-07 | 5.512E-05    |
| 2185 | 1.977E+05            | 1.363E-07 | 5.243E-05    |
| 2186 | 1.977E+05            | 1.297E-07 | 4.988E-05    |
| 2187 | 1.977E+05            | 1.233E-07 | 4.744E-05    |
| 2188 | 1.977E+05            | 1.173E-07 | 4.513E-05    |
| 2189 | 1.977E+05            | 1.116E-07 | 4.293E-05    |
| 2190 | 1.977E+05            | 1.062E-07 | 4.084E-05    |
| 2191 | 1.977E+05            | 1.010E-07 | 3.884E-05    |
| 2192 | 1.977E+05            | 9.605E-08 | 3.695E-05    |
| 2193 | 1.977E+05            | 9.137E-08 | 3.515E-05    |
| 2194 | 1.977E+05            | 8.691E-08 | 3.343E-05    |
| 2195 | 1.977E+05            | 8.267E-08 | 3.180E-05    |
| 2196 | 1.977E+05            | 7.864E-08 | 3.025E-05    |
| 2197 | 1.977E+05            | 7.480E-08 | 2.878E-05    |
| 2198 | 1.977E+05            | 7.116E-08 | 2.737E-05    |
| 2199 | 1.977E+05            | 6.769E-08 | 2.604E-05    |
| 2200 | 1.977E+05            | 6.439E-08 | 2.477E-05    |
| 2201 | 1.977E+05            | 6.125E-08 | 2.356E-05    |
| 2202 | 1.977E+05            | 5.826E-08 | 2.241E-05    |
| 2203 | 1.977E+05            | 5.542E-08 | 2.132E-05    |

Table D-11. Northern Parcel m,p-Xylene Emisson Rate from Year 1968 to 2203.

### Model Parameters \_\_\_\_\_\_

Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\* k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\*

NMOC: 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 56.0000 % volume

Carbon Dioxide : 44.0000 % volume

Air Pollutant : m,p-Xylene (HAP/VOC)
Molecular Wt = 106.17 Concentration = 6.730000 ppmV

# Landfill Parameters

\_\_\_\_\_

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 13179.47 Mg/year

\_\_\_\_\_\_

| Year | Refuse In Place (Mg) | m,p-Xylene<br>(Mg/yr) | (HAP/VOC) Emission Rate<br>(Cubic m/yr) |
|------|----------------------|-----------------------|-----------------------------------------|
|      |                      |                       |                                         |
| 1968 | 1.318E+04            | 5.945E-03             | 1.346E+00                               |
| 1969 | 2.636E+04            | 1.160E-02             | 2.627E+00                               |
| 1970 | 3.954E+04            | 1.698E-02             | 3.845E+00                               |
| 1971 | 5.272E+04            | 2.210E-02             | 5.004E+00                               |
| 1972 | 6.590E+04            | 2.696E-02             | 6.106E+00                               |
| 1973 | 7.908E+04            | 3.159E-02             | 7.155E+00                               |
| 1974 | 9.226E+04            | 3.600E-02             | 8.152E+00                               |
| 1975 | 1.054E+05            | 4.019E-02             | 9.101E+00                               |
| 1976 | 1.186E+05            | 4.417E-02             | 1.000E+01                               |
| 1977 | 1.318E+05            | 4.796E-02             | 1.086E+01                               |
| 1978 | 1.450E+05            | 5.157E-02             | 1.168E+01                               |
| 1979 | 1.582E+05            | 5.500E-02             | 1.246E+01                               |
| 1980 | 1.713E+05            | 5.826E-02             | 1.319E+01                               |
| 1981 | 1.845E+05            | 6.137E-02             | 1.390E+01                               |
| 1982 | 1.977E+05            | 6.432E-02             | 1.457E+01                               |
| 1983 | 1.977E+05            | 6.118E-02             | 1.385E+01                               |
| 1984 | 1.977E+05            | 5.820E-02             | 1.318E+01                               |
| 1985 | 1.977E+05            | 5.536E-02             | 1.254E+01                               |
| 1986 | 1.977E+05            | 5.266E-02             | 1.193E+01                               |
| 1987 | 1.977E+05            | 5.009E-02             | 1.134E+01                               |
| 1988 | 1.977E+05            | 4.765E-02             | 1.079E+01                               |
| 1989 | 1.977E+05            | 4.532E-02             | 1.026E+01                               |
| 1990 | 1.977E+05            | 4.311E-02             | 9.763E+00                               |
| 1991 | 1.977E+05            | 4.101E-02             | 9.287E+00                               |
| 1992 | 1.977E+05            | 3.901E-02             | 8.834E+00                               |
| 1993 | 1.977E+05            | 3.711E-02             | 8.403E+00                               |
| 1994 | 1.977E+05            | 3.530E-02             | 7.994E+00                               |
| 1995 | 1.977E+05            | 3.358E-02             | 7.604E+00                               |
| 1996 | 1.977E+05            | 3.194E-02             | 7.233E+00                               |
| 1997 | 1.977E+05            | 3.038E-02             | 6.880E+00                               |
| 1998 | 1.977E+05            | 2.890E-02             | 6.545E+00                               |
| 1999 | 1.977E+05            | 2.749E-02             | 6.225E+00                               |
| 2000 | 1.977E+05            | 2.615E-02             | 5.922E+00                               |
| 2001 | 1.977E+05            | 2.487E-02             | 5.633E+00                               |
| 2002 | 1.977E+05            | 2.366E-02             | 5.358E+00                               |
| 2003 | 1.977E+05            | 2.251E-02             | 5.097E+00                               |
| 2004 | 1.977E+05            | 2.141E-02             | 4.848E+00                               |
| 2005 | 1.977E+05            | 2.037E-02             | 4.612E+00                               |
| 2006 | 1.977E+05            | 1.937E-02             | 4.387E+00                               |
| 2007 | 1.977E+05            | 1.843E-02             | 4.173E+00                               |
| 2008 | 1.977E+05            | 1.753E-02             | 3.970E+00                               |
| 2009 | 1.977E+05            | 1.667E-02             | 3.776E+00                               |
| 2010 | 1.977E+05            | 1.586E-02             | 3.592E+00                               |
| 2011 | 1.977E+05            | 1.509E-02             | 3.417E+00                               |
| 2012 | 1.977E+05            | 1.435E-02             | 3.250E+00                               |

 Table D-11.
 Northern Parcel m,p-Xylene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg    | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 1.365E-02              | 3.091E+00              |
| 2014         | 1.977E+05              | 1.299E-02              | 2.941E+00              |
| 2015         | 1.977E+05              | 1.235E-02              | 2.797E+00              |
| 2016         | 1.977E+05              | 1.175E-02              | 2.661E+00              |
| 2017         | 1.977E+05              | 1.118E-02              | 2.531E+00              |
| 2018         | 1.977E+05              | 1.063E-02              | 2.408E+00              |
| 2019         | 1.977E+05              | 1.011E-02              | 2.290E+00              |
| 2020         | 1.977E+05              | 9.620E-03              | 2.179E+00              |
| 2021         | 1.977E+05              | 9.151E-03              | 2.072E+00              |
| 2022         | 1.977E+05              | 8.705E-03              | 1.971E+00              |
| 2023         | 1.977E+05              | 8.280E-03              | 1.875E+00              |
| 2024         | 1.977E+05              | 7.876E-03              | 1.784E+00              |
| 2025         | 1.977E+05              | 7.492E-03              | 1.697E+00              |
| 2026         | 1.977E+05              | 7.127E-03              | 1.614E+00              |
| 2027         | 1.977E+05              | 6.779E-03              | 1.535E+00              |
| 2028         | 1.977E+05              | 6.449E-03              | 1.460E+00              |
| 2029         | 1.977E+05              | 6.134E-03              | 1.389E+00              |
| 2030         | 1.977E+05              | 5.835E-03              | 1.321E+00              |
| 2031         | 1.977E+05              | 5.550E-03              | 1.257E+00              |
| 2032         | 1.977E+05              | 5.280E-03              | 1.196E+00              |
| 2033         | 1.977E+05              | 5.022E-03              | 1.137E+00              |
| 2034         | 1.977E+05              | 4.777E-03              | 1.082E+00              |
| 2035         | 1.977E+05              | 4.544E-03              | 1.029E+00              |
| 2036         | 1.977E+05              | 4.323E-03              | 9.789E-01              |
| 2037         | 1.977E+05              | 4.112E-03              | 9.311E-01              |
| 2038         | 1.977E+05              | 3.911E-03              | 8.857E-01              |
| 2039         | 1.977E+05              | 3.721E-03              | 8.425E-01              |
| 2040         | 1.977E+05              | 3.539E-03              | 8.014E-01              |
| 2041         | 1.977E+05              | 3.366E-03              | 7.623E-01              |
| 2042         | 1.977E+05              | 3.202E-03              | 7.252E-01              |
| 2043         | 1.977E+05              | 3.046E-03              | 6.898E-01              |
| 2044         | 1.977E+05              | 2.898E-03              | 6.562E-01              |
| 2045         | 1.977E+05              | 2.756E-03              | 6.242E-01              |
| 2046         | 1.977E+05              | 2.622E-03              | 5.937E-01              |
| 2047         | 1.977E+05              | 2.494E-03              | 5.648E-01              |
| 2048         | 1.977E+05              | 2.372E-03              | 5.372E-01              |
| 2049         | 1.977E+05              | 2.257E-03              | 5.110E-01              |
| 2050         | 1.977E+05              | 2.147E-03              | 4.861E-01              |
| 2051         | 1.977E+05              | 2.042E-03              | 4.624E-01              |
| 2052         | 1.977E+05              | 1.942E-03              | 4.398E-01              |
| 2053         | 1.977E+05              | 1.848E-03              | 4.184E-01              |
| 2054         | 1.977E+05              | 1.757E-03              | 3.980E-01              |
| 2055         | 1.977E+05              | 1.672E-03              | 3.786E-01              |
| 2056         | 1.977E+05              | 1.590E-03              | 3.601E-01              |
| 2057         | 1.977E+05              | 1.513E-03              | 3.425E-01              |
| 2058         | 1.977E+05              | 1.439E-03              | 3.258E-01              |
| 2059         | 1.977E+05              | 1.369E-03              | 3.099E-01              |
| 2060         | 1.977E+05              | 1.302E-03              | 2.948E-01              |
| 2061         | 1.977E+05              | 1.238E-03              | 2.805E-01              |
| 2062         | 1.977E+05              | 1.178E-03              | 2.668E-01              |
| 2063         | 1.977E+05              | 1.121E-03              | 2.538E-01              |
| 2064         | 1.977E+05              | 1.066E-03              | 2.414E-01              |
| 2065         | 1.977E+05              | 1.014E-03              | 2.296E-01              |
| 2066         | 1.977E+05              | 9.645E-04              | 2.184E-01              |
| 2067         | 1.977E+05              | 9.175E-04              | 2.078E-01              |
| 2068         | 1.977E+05              | 8.727E-04              | 1.976E-01              |
| 2069         | 1.977E+05<br>1.977E+05 | 8.302E-04              | 1.880E-01              |
| 2070         |                        | 7.897E-04              | 1.788E-01<br>1.701E-01 |
| 2071         | 1.977E+05              | 7.512E-04              |                        |
| 2072<br>2073 | 1.977E+05              | 7.145E-04              | 1.618E-01              |
|              | 1.977E+05<br>1.977E+05 | 6.797E-04<br>6.465E-04 | 1.539E-01<br>1.464E-01 |
| 2074<br>2075 | 1.977E+05<br>1.977E+05 | 6.465E-04<br>6.150E-04 |                        |
| 2075         | 1.977E+05<br>1.977E+05 | 5.850E-04              | 1.393E-01<br>1.325E-01 |
| 2076         | 1.977E+05              | 5.565E-04              | 1.260E-01              |
| 2077         | 1.977E+05              | 5.293E-04              | 1.199E-01              |
| 2078         | 1.977E+05              | 5.035E-04              | 1.199E-01<br>1.140E-01 |
| 2079         | 1.977E+05              | 4.790E-04              | 1.140E-01<br>1.085E-01 |
| 2081         | 1.977E+05              | 4.790E-04<br>4.556E-04 | 1.032E-01              |
| 2081         | 1.977E+05              | 4.334E-04              | 9.814E-02              |
| 2083         | 1.977E+05              | 4.122E-04              | 9.335E-02              |
| 2000         | 1.5172100              | 4.1225-04              | J. 555B 02             |

 Table D-11.
 Northern Parcel m,p-Xylene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 3.921E-04              | 8.880E-02              |
| 2085         | 1.977E+05              | 3.730E-04              | 8.447E-02              |
| 2086         | 1.977E+05              | 3.548E-04              | 8.035E-02              |
| 2087         | 1.977E+05              | 3.375E-04              | 7.643E-02              |
| 2088         | 1.977E+05              | 3.211E-04              | 7.270E-02              |
| 2089         | 1.977E+05              | 3.054E-04              | 6.916E-02              |
| 2090         | 1.977E+05              | 2.905E-04              | 6.579E-02              |
| 2091         | 1.977E+05              | 2.763E-04              | 6.258E-02              |
| 2092         | 1.977E+05<br>1.977E+05 | 2.629E-04              | 5.953E-02<br>5.662E-02 |
| 2093<br>2094 | 1.977E+05              | 2.500E-04<br>2.378E-04 | 5.86ZE-02<br>5.386E-02 |
| 2094         | 1.977E+05              | 2.262E-04              | 5.123E-02              |
| 2096         | 1.977E+05              | 2.152E-04              | 4.874E-02              |
| 2097         | 1.977E+05              | 2.047E-04              | 4.636E-02              |
| 2098         | 1.977E+05              | 1.947E-04              | 4.410E-02              |
| 2099         | 1.977E+05              | 1.852E-04              | 4.195E-02              |
| 2100         | 1.977E+05              | 1.762E-04              | 3.990E-02              |
| 2101         | 1.977E+05              | 1.676E-04              | 3.795E-02              |
| 2102         | 1.977E+05              | 1.594E-04              | 3.610E-02              |
| 2103         | 1.977E+05              | 1.517E-04              | 3.434E-02              |
| 2104         | 1.977E+05              | 1.443E-04              | 3.267E-02              |
| 2105         | 1.977E+05              | 1.372E-04              | 3.107E-02              |
| 2106         | 1.977E+05              | 1.305E-04              | 2.956E-02              |
| 2107         | 1.977E+05              | 1.242E-04              | 2.812E-02              |
| 2108         | 1.977E+05<br>1.977E+05 | 1.181E-04<br>1.123E-04 | 2.675E-02              |
| 2109<br>2110 | 1.977E+05<br>1.977E+05 | 1.123E-04<br>1.069E-04 | 2.544E-02<br>2.420E-02 |
| 2111         | 1.977E+05              | 1.017E-04              | 2.420E-02<br>2.302E-02 |
| 2112         | 1.977E+05              | 9.670E-05              | 2.190E-02              |
| 2113         | 1.977E+05              | 9.198E-05              | 2.083E-02              |
| 2114         | 1.977E+05              | 8.750E-05              | 1.981E-02              |
| 2115         | 1.977E+05              | 8.323E-05              | 1.885E-02              |
| 2116         | 1.977E+05              | 7.917E-05              | 1.793E-02              |
| 2117         | 1.977E+05              | 7.531E-05              | 1.705E-02              |
| 2118         | 1.977E+05              | 7.164E-05              | 1.622E-02              |
| 2119         | 1.977E+05              | 6.814E-05              | 1.543E-02              |
| 2120         | 1.977E+05              | 6.482E-05              | 1.468E-02              |
| 2121         | 1.977E+05              | 6.166E-05              | 1.396E-02              |
| 2122         | 1.977E+05              | 5.865E-05              | 1.328E-02              |
| 2123         | 1.977E+05              | 5.579E-05              | 1.263E-02              |
| 2124<br>2125 | 1.977E+05<br>1.977E+05 | 5.307E-05<br>5.048E-05 | 1.202E-02<br>1.143E-02 |
| 2126         | 1.977E+05              | 4.802E-05              | 1.087E-02              |
| 2127         | 1.977E+05              | 4.568E-05              | 1.034E-02              |
| 2128         | 1.977E+05              | 4.345E-05              | 9.839E-03              |
| 2129         | 1.977E+05              | 4.133E-05              | 9.360E-03              |
| 2130         | 1.977E+05              | 3.932E-05              | 8.903E-03              |
| 2131         | 1.977E+05              | 3.740E-05              | 8.469E-03              |
| 2132         | 1.977E+05              | 3.557E-05              | 8.056E-03              |
| 2133         | 1.977E+05              | 3.384E-05              | 7.663E-03              |
| 2134         | 1.977E+05              | 3.219E-05              | 7.289E-03              |
| 2135         | 1.977E+05              | 3.062E-05              | 6.934E-03              |
| 2136         | 1.977E+05              | 2.913E-05              | 6.596E-03              |
| 2137         | 1.977E+05              | 2.771E-05              | 6.274E-03              |
| 2138         | 1.977E+05              | 2.635E-05              | 5.968E-03              |
| 2139<br>2140 | 1.977E+05<br>1.977E+05 | 2.507E-05<br>2.385E-05 | 5.677E-03<br>5.400E-03 |
| 2141         | 1.977E+05              | 2.268E-05              | 5.137E-03              |
| 2142         | 1.977E+05              | 2.158E-05              | 4.886E-03              |
| 2143         | 1.977E+05              | 2.052E-05              | 4.648E-03              |
| 2144         | 1.977E+05              | 1.952E-05              | 4.421E-03              |
| 2145         | 1.977E+05              | 1.857E-05              | 4.206E-03              |
| 2146         | 1.977E+05              | 1.767E-05              | 4.000E-03              |
| 2147         | 1.977E+05              | 1.680E-05              | 3.805E-03              |
| 2148         | 1.977E+05              | 1.598E-05              | 3.620E-03              |
| 2149         | 1.977E+05              | 1.520E-05              | 3.443E-03              |
| 2150         | 1.977E+05              | 1.446E-05              | 3.275E-03              |
| 2151         | 1.977E+05              | 1.376E-05              | 3.116E-03              |
| 2152         | 1.977E+05              | 1.309E-05              | 2.964E-03              |
| 2153         | 1.977E+05              | 1.245E-05              | 2.819E-03              |
| 2154         | 1.977E+05              | 1.184E-05              | 2.682E-03              |

**Table D-11.** Northern Parcel m,p-Xylene Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg)   | (Mg/yr)   | (Cubic m/yr)           |
|------|------------------------|-----------|------------------------|
| 2155 | 1.977E+05              | 1.126E-05 | 2.551E-03              |
| 2156 | 1.977E+05              | 1.071E-05 | 2.426E-03              |
| 2157 | 1.977E+05              | 1.071E-05 | 2.426E-03              |
| 2157 | 1.977E+05<br>1.977E+05 | 9.695E-06 | 2.195E-03              |
| 2150 | 1.977E+05              | 9.095E-06 |                        |
|      |                        |           | 2.088E-03              |
| 2160 | 1.977E+05              | 8.772E-06 | 1.987E-03              |
| 2161 | 1.977E+05              | 8.345E-06 | 1.890E-03              |
| 2162 | 1.977E+05              | 7.938E-06 | 1.798E-03              |
| 2163 | 1.977E+05              | 7.551E-06 | 1.710E-03              |
| 2164 | 1.977E+05              | 7.182E-06 | 1.626E-03              |
| 2165 | 1.977E+05              | 6.832E-06 | 1.547E-03              |
| 2166 | 1.977E+05              | 6.499E-06 | 1.472E-03              |
| 2167 | 1.977E+05              | 6.182E-06 | 1.400E-03              |
| 2168 | 1.977E+05              | 5.880E-06 | 1.332E-03              |
| 2169 | 1.977E+05              | 5.594E-06 | 1.267E-03              |
| 2170 | 1.977E+05              | 5.321E-06 | 1.205E-03              |
| 2171 | 1.977E+05              | 5.061E-06 | 1.146E-03              |
| 2172 | 1.977E+05              | 4.814E-06 | 1.090E-03              |
| 2173 | 1.977E+05              | 4.580E-06 | 1.037E-03              |
| 2174 | 1.977E+05              | 4.356E-06 | 9.865E-04              |
| 2175 | 1.977E+05              | 4.144E-06 | 9.384E-04              |
| 2176 | 1.977E+05              | 3.942E-06 | 8.926E-04              |
| 2177 | 1.977E+05              | 3.749E-06 | 8.491E-04              |
| 2178 | 1.977E+05              | 3.567E-06 | 8.077E-04              |
| 2179 | 1.977E+05              | 3.393E-06 | 7.683E-04              |
| 2180 | 1.977E+05              | 3.227E-06 | 7.308E-04              |
| 2181 | 1.977E+05              | 3.070E-06 | 6.952E-04              |
| 2182 | 1.977E+05              | 2.920E-06 | 6.613E-04              |
| 2183 | 1.977E+05              | 2.778E-06 | 6.290E-04              |
| 2184 | 1.977E+05              | 2.642E-06 | 5.983E-04              |
| 2185 | 1.977E+05              | 2.513E-06 | 5.692E-04              |
| 2186 | 1.977E+05              | 2.391E-06 | 5.414E-04              |
| 2187 | 1.977E+05              | 2.274E-06 | 5.150E-04              |
| 2188 | 1.977E+05              | 2.163E-06 | 4.899E-04              |
| 2189 | 1.977E+05              | 2.058E-06 | 4.660E-04              |
| 2190 | 1.977E+05              | 1.957E-06 | 4.433E-04              |
| 2191 | 1.977E+05              | 1.862E-06 | 4.216E-04              |
| 2192 | 1.977E+05              | 1.771E-06 | 4.011E-04              |
| 2193 | 1.977E+05              | 1.685E-06 | 3.815E-04              |
| 2194 | 1.977E+05              | 1.603E-06 | 3.629E-04              |
| 2195 | 1.977E+05              | 1.524E-06 | 3.452E-04              |
| 2196 | 1.977E+05              | 1.450E-06 | 3.284E-04              |
| 2197 | 1.977E+05              | 1.379E-06 | 3.124E-04              |
| 2198 | 1.977E+05              | 1.312E-06 | 2.971E-04              |
| 2199 | 1.977E+05              | 1.248E-06 | 2.826E-04              |
| 2200 | 1.977E+05              | 1.187E-06 | 2.689E-04              |
| 2200 | 1.977E+05              | 1.129E-06 | 2.557E-04              |
| 2201 | 1.977E+05              | 1.074E-06 | 2.433E-04              |
| 2202 | 1.977E+05<br>1.977E+05 | 1.022E-06 | 2.433E-04<br>2.314E-04 |
| 2203 | T. 21 (ETO2            | T.022E-00 | 2.3140-04              |
|      |                        |           |                        |

**Table D-12.** Northern Parcel o-Xylene Emisson Rate from Year 1968 to 2203.

### Model Parameters

Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\* k : 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC : 4500.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 56.0000 % volume

Carbon Dioxide : 44.0000 % volume Air Pollutant : o-Xylene (HAP/VOC) Molecular Wt = 106.17 Concent

Concentration = 1.100000 ppmV

#### Landfill Parameters

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 13179.47 Mg/year

| Model Results |                      |               |                     |  |
|---------------|----------------------|---------------|---------------------|--|
|               |                      | o-Xvlene (HAP | /VOC) Emission Rate |  |
| Year          | Refuse In Place (Mg) | (Mg/yr)       | (Cubic m/yr)        |  |
| 1968          | 1.318E+04            | 9.717E-04     | 2.201E-01           |  |
| 1969          | 2.636E+04            | 1.896E-03     | 4.294E-01           |  |
| 1970          | 3.954E+04            | 2.775E-03     | 6.285E-01           |  |
| 1971          | 5.272E+04            | 3.612E-03     | 8.179E-01           |  |
| 1972          | 6.590E+04            | 4.407E-03     | 9.980E-01           |  |
| 1973          | 7.908E+04            | 5.164E-03     | 1.169E+00           |  |
| 1974          | 9.226E+04            | 5.884E-03     | 1.332E+00           |  |
| 1975          | 1.054E+05            | 6.569E-03     | 1.487E+00           |  |
| 1976          | 1.186E+05            | 7.220E-03     | 1.635E+00           |  |
| 1977          | 1.318E+05            | 7.840E-03     | 1.775E+00           |  |
| 1978          | 1.450E+05            | 8.429E-03     | 1.909E+00           |  |
| 1979          | 1.582E+05            | 8.990E-03     | 2.036E+00           |  |
| 1980          | 1.713E+05            | 9.523E-03     | 2.157E+00           |  |
| 1981          | 1.845E+05            | 1.003E-02     | 2.271E+00           |  |
| 1982          | 1.977E+05            | 1.051E-02     | 2.381E+00           |  |
| 1983          | 1.977E+05            | 1.000E-02     | 2.265E+00           |  |
| 1984          | 1.977E+05            | 9.512E-03     | 2.154E+00           |  |
| 1985          | 1.977E+05            | 9.048E-03     | 2.049E+00           |  |
| 1986          | 1.977E+05            | 8.607E-03     | 1.949E+00           |  |
| 1987          | 1.977E+05            | 8.187E-03     | 1.854E+00           |  |
| 1988          | 1.977E+05            | 7.788E-03     | 1.764E+00           |  |
| 1989          | 1.977E+05            | 7.408E-03     | 1.678E+00           |  |
| 1990          | 1.977E+05            | 7.047E-03     | 1.596E+00           |  |
| 1991          | 1.977E+05            | 6.703E-03     | 1.518E+00           |  |
| 1992          | 1.977E+05            | 6.376E-03     | 1.444E+00           |  |
| 1993          | 1.977E+05            | 6.065E-03     | 1.374E+00           |  |
| 1994          | 1.977E+05            | 5.770E-03     | 1.307E+00           |  |
| 1995          | 1.977E+05            | 5.488E-03     | 1.243E+00           |  |
| 1996          | 1.977E+05            | 5.220E-03     | 1.182E+00           |  |
| 1997          | 1.977E+05            | 4.966E-03     | 1.125E+00           |  |
| 1998          | 1.977E+05            | 4.724E-03     | 1.070E+00           |  |
| 1999          | 1.977E+05            | 4.493E-03     | 1.018E+00           |  |
| 2000          | 1.977E+05            | 4.274E-03     | 9.679E-01           |  |
| 2001          | 1.977E+05            | 4.066E-03     | 9.207E-01           |  |
| 2002          | 1.977E+05            | 3.867E-03     | 8.758E-01           |  |
| 2003          | 1.977E+05            | 3.679E-03     | 8.331E-01           |  |
| 2004          | 1.977E+05            | 3.499E-03     | 7.925E-01           |  |
| 2005          | 1.977E+05            | 3.329E-03     | 7.538E-01           |  |
| 2006          | 1.977E+05            | 3.166E-03     | 7.170E-01           |  |
| 2007          | 1.977E+05            | 3.012E-03     | 6.821E-01           |  |
| 2008          | 1.977E+05            | 2.865E-03     | 6.488E-01           |  |
| 2009          | 1.977E+05            | 2.725E-03     | 6.172E-01           |  |
| 2010          | 1.977E+05            | 2.592E-03     | 5.871E-01           |  |
| 2011          | 1.977E+05            | 2.466E-03     | 5.584E-01           |  |
| 2012          | 1.977E+05            | 2.346E-03     | 5.312E-01           |  |
|               |                      |               |                     |  |

Table D-12. Northern Parcel o-Xylene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (M     | (Cubic m/yr)                               |
|--------------|------------------------|--------------------------------------------|
| 2013         | 1.977E+05              | 2.231E-03 5.053E-01                        |
| 2014         | 1.977E+05              | 2.122E-03 4.806E-01                        |
| 2015         | 1.977E+05              | 2.019E-03 4.572E-01                        |
| 2016         | 1.977E+05              | 1.921E-03 4.349E-01                        |
| 2017         | 1.977E+05              | 1.827E-03 4.137E-01                        |
| 2018<br>2019 | 1.977E+05<br>1.977E+05 | 1.738E-03 3.935E-01<br>1.653E-03 3.743E-01 |
| 2020         | 1.977E+05              | 1.572E-03 3.561E-01                        |
| 2021         | 1.977E+05              | 1.496E-03 3.387E-01                        |
| 2022         | 1.977E+05              | 1.423E-03 3.222E-01                        |
| 2023         | 1.977E+05              | 1.353E-03 3.065E-01                        |
| 2024         | 1.977E+05              | 1.287E-03 2.915E-01                        |
| 2025         | 1.977E+05              | 1.225E-03 2.773E-01                        |
| 2026         | 1.977E+05              | 1.165E-03 2.638E-01                        |
| 2027         | 1.977E+05              | 1.108E-03 2.509E-01                        |
| 2028         | 1.977E+05              | 1.054E-03 2.387E-01                        |
| 2029         | 1.977E+05              | 1.003E-03 2.270E-01                        |
| 2030<br>2031 | 1.977E+05<br>1.977E+05 | 9.537E-04 2.160E-01<br>9.072E-04 2.054E-01 |
| 2031         | 1.977E+05              | 8.629E-04 2.054E-01<br>8.629E-04 1.954E-01 |
| 2032         | 1.977E+05              | 8.209E-04 1.859E-01                        |
| 2034         | 1.977E+05              | 7.808E-04 1.768E-01                        |
| 2035         | 1.977E+05              | 7.427E-04 1.682E-01                        |
| 2036         | 1.977E+05              | 7.065E-04 1.600E-01                        |
| 2037         | 1.977E+05              | 6.721E-04 1.522E-01                        |
| 2038         | 1.977E+05              | 6.393E-04 1.448E-01                        |
| 2039         | 1.977E+05              | 6.081E-04 1.377E-01                        |
| 2040         | 1.977E+05              | 5.784E-04 1.310E-01                        |
| 2041         | 1.977E+05              | 5.502E-04 1.246E-01                        |
| 2042         | 1.977E+05              | 5.234E-04 1.185E-01                        |
| 2043         | 1.977E+05              | 4.979E-04 1.127E-01                        |
| 2044<br>2045 | 1.977E+05<br>1.977E+05 | 4.736E-04 1.072E-01<br>4.505E-04 1.020E-01 |
| 2045         | 1.977E+05              | 4.285E-04 1.020E-01<br>4.285E-04 9.704E-02 |
| 2047         | 1.977E+05              | 4.076E-04 9.231E-02                        |
| 2048         | 1.977E+05              | 3.877E-04 8.781E-02                        |
| 2049         | 1.977E+05              | 3.688E-04 8.352E-02                        |
| 2050         | 1.977E+05              | 3.508E-04 7.945E-02                        |
| 2051         | 1.977E+05              | 3.337E-04 7.558E-02                        |
| 2052         | 1.977E+05              | 3.175E-04 7.189E-02                        |
| 2053         | 1.977E+05              | 3.020E-04 6.838E-02                        |
| 2054         | 1.977E+05              | 2.872E-04 6.505E-02                        |
| 2055<br>2056 | 1.977E+05<br>1.977E+05 | 2.732E-04 6.188E-02<br>2.599E-04 5.886E-02 |
| 2057         | 1.977E+05              | 2.472E-04 5.599E-02                        |
| 2058         | 1.977E+05              | 2.352E-04 5.326E-02                        |
| 2059         | 1.977E+05              | 2.237E-04 5.066E-02                        |
| 2060         | 1.977E+05              | 2.128E-04 4.819E-02                        |
| 2061         | 1.977E+05              | 2.024E-04 4.584E-02                        |
| 2062         | 1.977E+05              | 1.925E-04 4.360E-02                        |
| 2063         | 1.977E+05              | 1.832E-04 4.148E-02                        |
| 2064         | 1.977E+05              | 1.742E-04 3.945E-02                        |
| 2065         | 1.977E+05              | 1.657E-04 3.753E-02                        |
| 2066<br>2067 | 1.977E+05<br>1.977E+05 | 1.576E-04 3.570E-02<br>1.500E-04 3.396E-02 |
| 2067         | 1.977E+05              | 1.426E-04 3.230E-02                        |
| 2069         | 1.977E+05              | 1.357E-04 3.073E-02                        |
| 2070         | 1.977E+05              | 1.291E-04 2.923E-02                        |
| 2071         | 1.977E+05              | 1.228E-04 2.780E-02                        |
| 2072         | 1.977E+05              | 1.168E-04 2.645E-02                        |
| 2073         | 1.977E+05              | 1.111E-04 2.516E-02                        |
| 2074         | 1.977E+05              | 1.057E-04 2.393E-02                        |
| 2075         | 1.977E+05              | 1.005E-04 2.276E-02                        |
| 2076         | 1.977E+05              | 9.562E-05 2.165E-02                        |
| 2077         | 1.977E+05              | 9.095E-05 2.060E-02                        |
| 2078<br>2079 | 1.977E+05<br>1.977E+05 | 8.652E-05 1.959E-02<br>8.230E-05 1.864E-02 |
| 2079         | 1.977E+05              | 7.828E-05 1.773E-02                        |
| 2081         | 1.977E+05              | 7.447E-05 1.686E-02                        |
| 2082         | 1.977E+05              | 7.083E-05 1.604E-02                        |
| 2083         | 1.977E+05              | 6.738E-05 1.526E-02                        |
|              |                        |                                            |

Table D-12. Northern Parcel o-Xylene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 6.409E-05              | 1.451E-02              |
| 2085         | 1.977E+05              | 6.097E-05              | 1.381E-02              |
| 2086         | 1.977E+05              | 5.799E-05              | 1.313E-02              |
| 2087         | 1.977E+05              | 5.517E-05              | 1.249E-02              |
| 2088         | 1.977E+05              | 5.248E-05              | 1.188E-02              |
| 2089         | 1.977E+05              | 4.992E-05              | 1.130E-02              |
| 2090         | 1.977E+05              | 4.748E-05              | 1.075E-02              |
| 2091         | 1.977E+05              | 4.517E-05              | 1.023E-02              |
| 2092<br>2093 | 1.977E+05<br>1.977E+05 | 4.296E-05              | 9.729E-03              |
| 2093         | 1.977E+05              | 4.087E-05<br>3.887E-05 | 9.255E-03<br>8.803E-03 |
| 2094         | 1.977E+05              | 3.698E-05              | 8.374E-03              |
| 2096         | 1.977E+05              | 3.518E-05              | 7.966E-03              |
| 2097         | 1.977E+05              | 3.346E-05              | 7.577E-03              |
| 2098         | 1.977E+05              | 3.183E-05              | 7.208E-03              |
| 2099         | 1.977E+05              | 3.028E-05              | 6.856E-03              |
| 2100         | 1.977E+05              | 2.880E-05              | 6.522E-03              |
| 2101         | 1.977E+05              | 2.739E-05              | 6.204E-03              |
| 2102         | 1.977E+05              | 2.606E-05              | 5.901E-03              |
| 2103         | 1.977E+05              | 2.479E-05              | 5.613E-03              |
| 2104         | 1.977E+05              | 2.358E-05              | 5.340E-03              |
| 2105         | 1.977E+05              | 2.243E-05              | 5.079E-03              |
| 2106         | 1.977E+05              | 2.134E-05              | 4.831E-03              |
| 2107         | 1.977E+05              | 2.029E-05              | 4.596E-03              |
| 2108         | 1.977E+05<br>1.977E+05 | 1.930E-05              | 4.372E-03              |
| 2109<br>2110 | 1.977E+05<br>1.977E+05 | 1.836E-05<br>1.747E-05 | 4.158E-03<br>3.956E-03 |
| 2111         | 1.977E+05              | 1.662E-05              | 3.763E-03              |
| 2112         | 1.977E+05              | 1.581E-05              | 3.579E-03              |
| 2113         | 1.977E+05              | 1.503E-05              | 3.405E-03              |
| 2114         | 1.977E+05              | 1.430E-05              | 3.239E-03              |
| 2115         | 1.977E+05              | 1.360E-05              | 3.081E-03              |
| 2116         | 1.977E+05              | 1.294E-05              | 2.930E-03              |
| 2117         | 1.977E+05              | 1.231E-05              | 2.787E-03              |
| 2118         | 1.977E+05              | 1.171E-05              | 2.652E-03              |
| 2119         | 1.977E+05              | 1.114E-05              | 2.522E-03              |
| 2120         | 1.977E+05              | 1.059E-05              | 2.399E-03              |
| 2121         | 1.977E+05              | 1.008E-05              | 2.282E-03              |
| 2122         | 1.977E+05              | 9.586E-06              | 2.171E-03              |
| 2123         | 1.977E+05              | 9.119E-06              | 2.065E-03              |
| 2124<br>2125 | 1.977E+05<br>1.977E+05 | 8.674E-06<br>8.251E-06 | 1.964E-03<br>1.868E-03 |
| 2126         | 1.977E+05              | 7.849E-06              | 1.777E-03              |
| 2127         | 1.977E+05              | 7.466E-06              | 1.691E-03              |
| 2128         | 1.977E+05              | 7.102E-06              | 1.608E-03              |
| 2129         | 1.977E+05              | 6.755E-06              | 1.530E-03              |
| 2130         | 1.977E+05              | 6.426E-06              | 1.455E-03              |
| 2131         | 1.977E+05              | 6.113E-06              | 1.384E-03              |
| 2132         | 1.977E+05              | 5.814E-06              | 1.317E-03              |
| 2133         | 1.977E+05              | 5.531E-06              | 1.252E-03              |
| 2134         | 1.977E+05              | 5.261E-06              | 1.191E-03              |
| 2135         | 1.977E+05              | 5.005E-06              | 1.133E-03              |
| 2136         | 1.977E+05              | 4.760E-06              | 1.078E-03              |
| 2137         | 1.977E+05              | 4.528E-06              | 1.025E-03              |
| 2138<br>2139 | 1.977E+05<br>1.977E+05 | 4.307E-06<br>4.097E-06 | 9.754E-04<br>9.279E-04 |
| 2139         | 1.977E+05              | 3.898E-06              | 8.826E-04              |
| 2141         | 1.977E+05              | 3.707E-06              | 8.396E-04              |
| 2142         | 1.977E+05              | 3.527E-06              | 7.986E-04              |
| 2143         | 1.977E+05              | 3.355E-06              | 7.597E-04              |
| 2144         | 1.977E+05              | 3.191E-06              | 7.226E-04              |
| 2145         | 1.977E+05              | 3.035E-06              | 6.874E-04              |
| 2146         | 1.977E+05              | 2.887E-06              | 6.539E-04              |
| 2147         | 1.977E+05              | 2.747E-06              | 6.220E-04              |
| 2148         | 1.977E+05              | 2.613E-06              | 5.916E-04              |
| 2149         | 1.977E+05              | 2.485E-06              | 5.628E-04              |
| 2150         | 1.977E+05              | 2.364E-06              | 5.353E-04              |
| 2151         | 1.977E+05              | 2.249E-06              | 5.092E-04              |
| 2152         | 1.977E+05              | 2.139E-06              | 4.844E-04              |
| 2153<br>2154 | 1.977E+05<br>1.977E+05 | 2.035E-06<br>1.935E-06 | 4.608E-04<br>4.383E-04 |
| 2134         | 1.9//6+03              | 1.9356-00              | 4.3035-04              |

Table D-12. Northern Parcel o-Xylene Emisson Rate from Year 1968 to 2203 (concluded).

| Year                                   | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|----------------------------------------|------------------------|------------------------|------------------------|
| 2155                                   | 1.977E+05              | 1.841E-06              | 4.169E-04              |
| 2156                                   | 1.977E+05              | 1.751E-06              | 3.966E-04              |
| 2156                                   | 1.977E+05              | 1.666E-06              | 3.772E-04              |
| 2158                                   | 1.977E+05              | 1.585E-06              | 3.588E-04              |
| 2159                                   | 1.977E+05              | 1.507E-06              | 3.413E-04              |
| 2160                                   | 1.977E+05              | 1.434E-06              | 3.247E-04              |
| 2161                                   | 1.977E+05              | 1.364E-06              | 3.089E-04              |
| 2162                                   | 1.977E+05              | 1.297E-06              | 2.938E-04              |
| 2163                                   | 1.977E+05              | 1.234E-06              | 2.795E-04<br>2.795E-04 |
| 2164                                   | 1.977E+05              | 1.174E-06              | 2.658E-04              |
| 2165                                   | 1.977E+05              | 1.117E-06              | 2.529E-04              |
| 2166                                   | 1.977E+05              | 1.062E-06              | 2.405E-04              |
| 2167                                   | 1.977E+05              | 1.002E-06              | 2.405E-04<br>2.288E-04 |
| 2168                                   | 1.977E+05              | 9.611E-07              | 2.177E-04              |
| 2169                                   | 1.977E+05              | 9.143E-07              | 2.177E-04<br>2.070E-04 |
| 2170                                   | 1.977E+05              | 8.697E-07              | 1.969E-04              |
| 2171                                   | 1.977E+05              | 8.272E-07              | 1.873E-04              |
| 2172                                   | 1.977E+05              | 7.869E-07              | 1.782E-04              |
| 2172                                   | 1.977E+05              |                        | 1.782E-04<br>1.695E-04 |
|                                        | 1.977E+05              | 7.485E-07              | 1.695E-04<br>1.612E-04 |
| 2174                                   |                        | 7.120E-07              |                        |
| 2175<br>2176                           | 1.977E+05<br>1.977E+05 | 6.773E-07<br>6.443E-07 | 1.534E-04<br>1.459E-04 |
| 2177                                   | 1.977E+05              | 6.128E-07              |                        |
|                                        |                        |                        | 1.388E-04              |
| 2178                                   | 1.977E+05<br>1.977E+05 | 5.830E-07<br>5.545E-07 | 1.320E-04<br>1.256E-04 |
| 2179                                   |                        |                        |                        |
| 2180                                   | 1.977E+05              | 5.275E-07              | 1.194E-04              |
| 2181<br>2182                           | 1.977E+05<br>1.977E+05 | 5.018E-07<br>4.773E-07 | 1.136E-04<br>1.081E-04 |
| 2182                                   |                        |                        |                        |
|                                        | 1.977E+05              | 4.540E-07              | 1.028E-04              |
| 2184                                   | 1.977E+05              | 4.319E-07              | 9.780E-05              |
| 2185<br>2186                           | 1.977E+05<br>1.977E+05 | 4.108E-07<br>3.908E-07 | 9.303E-05<br>8.849E-05 |
| 2186                                   | 1.977E+05              | 3.908E-07<br>3.717E-07 | 8.417E-05              |
| 100 (100 (100 (100 (100 (100 (100 (100 |                        |                        |                        |
| 2188<br>2189                           | 1.977E+05              | 3.536E-07              | 8.007E-05              |
|                                        | 1.977E+05              | 3.363E-07              | 7.616E-05              |
| 2190                                   | 1.977E+05              | 3.199E-07              | 7.245E-05              |
| 2191                                   | 1.977E+05              | 3.043E-07              | 6.892E-05              |
| 2192                                   | 1.977E+05              | 2.895E-07              | 6.556E-05              |
| 2193<br>2194                           | 1.977E+05<br>1.977E+05 | 2.754E-07              | 6.236E-05<br>5.932E-05 |
| 2194                                   |                        | 2.619E-07              |                        |
| 2195                                   | 1.977E+05              | 2.492E-07              | 5.642E-05              |
|                                        | 1.977E+05              | 2.370E-07              | 5.367E-05              |
| 2197<br>2198                           | 1.977E+05              | 2.255E-07<br>2.145E-07 | 5.105E-05              |
| 2198                                   | 1.977E+05<br>1.977E+05 |                        | 4.856E-05<br>4.620E-05 |
| 25.12.12.22.22.22.2                    |                        | 2.040E-07              |                        |
| 2200                                   | 1.977E+05              | 1.940E-07              | 4.394E-05              |
| 2201                                   | 1.977E+05<br>1.977E+05 | 1.846E-07<br>1.756E-07 | 4.180E-05<br>3.976E-05 |
| 2202                                   |                        |                        | 3.782E-05              |
| 2203                                   | 1.977E+05              | 1.670E-07              | 3.78ZE-U5              |

Table D-13. Southern Parcel Methane Emisson Rate from Year 1968 to 2203.

### Model Parameters

\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\* k : 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\*

NMOC : 2550.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 59.0000 % volume

Carbon Dioxide : 41.0000 % volume

\_\_\_\_\_\_

## Landfill Parameters

\_\_\_\_\_

Landfill type : Co-Disposal

Year Opened: 1967 Current Year: 2003 Closure Year: 2002

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 12238.07 Mg/year

\_\_\_\_\_\_ \_\_\_\_\_\_

| Methane Emission R |                      | Emission Rate |              |  |
|--------------------|----------------------|---------------|--------------|--|
| Year               | Refuse In Place (Mg) | (Mg/yr)       | (Cubic m/yr) |  |
| 1968               | 1.318E+04            | 7.474E+01     | 1.120E+05    |  |
| 1969               | 2.636E+04            | 1.458E+02     | 2.186E+05    |  |
| 1970               | 3.954E+04            | 2.135E+02     | 3.200E+05    |  |
| 1971               | 5.272E+04            | 2.778E+02     | 4.164E+05    |  |
| 1972               | 6.590E+04            | 3.390E+02     | 5.081E+05    |  |
| 1973               | 7.908E+04            | 3.972E+02     | 5.953E+05    |  |
| 1974               | 9.226E+04            | 4.525E+02     | 6.783E+05    |  |
| 1975               | 1.054E+05            | 5.052E+02     | 7.573E+05    |  |
| 1976               | 1.186E+05            | 5.553E+02     | 8.324E+05    |  |
| 1977               | 1.318E+05            | 6.030E+02     | 9.038E+05    |  |
| 1978               | 1.450E+05            | 6.483E+02     | 9.717E+05    |  |
| 1979               | 1.582E+05            | 6.914E+02     | 1.036E+06    |  |
| 1980               | 1.713E+05            | 7.324E+02     | 1.098E+06    |  |
| 1981               | 1.845E+05            | 7.714E+02     | 1.156E+06    |  |
| 1982               | 1.977E+05            | 8.086E+02     | 1.212E+06    |  |
| 1983               | 1.977E+05            | 7.691E+02     | 1.153E+06    |  |
| 1984               | 1.977E+05            | 7.316E+02     | 1.097E+06    |  |
| 1985               | 1.977E+05            | 6.959E+02     | 1.043E+06    |  |
| 1986               | 1.977E+05            | 6.620E+02     | 9.923E+05    |  |
| 1987               | 1.977E+05            | 6.297E+02     | 9.439E+05    |  |
| 1988               | 1.977E+05            | 5.990E+02     | 8.978E+05    |  |
| 1989               | 1.977E+05            | 5.698E+02     | 8.541E+05    |  |
| 1990               | 1.977E+05            | 5.420E+02     | 8.124E+05    |  |
| 1991               | 1.977E+05            | 5.156E+02     | 7.728E+05    |  |
| 1992               | 1.977E+05            | 4.904E+02     | 7.351E+05    |  |
| 1993               | 1.977E+05            | 4.665E+02     | 6.992E+05    |  |
| 1994               | 1.977E+05            | 4.437E+02     | 6.651E+05    |  |
| 1995               | 1.977E+05            | 4.221E+02     | 6.327E+05    |  |
| 1996               | 1.977E+05            | 4.015E+02     | 6.018E+05    |  |
| 1997               | 1.977E+05            | 3.819E+02     | 5.725E+05    |  |
| 1998               | 1.977E+05            | 3.633E+02     | 5.446E+05    |  |
| 1999               | 1.977E+05            | 3.456E+02     | 5.180E+05    |  |
| 2000               | 1.977E+05            | 3.287E+02     | 4.927E+05    |  |
| 2001               | 1.977E+05            | 3.127E+02     | 4.687E+05    |  |
| 2002               | 1.977E+05            | 2.975E+02     | 4.459E+05    |  |
| 2003               | 1.977E+05            | 2.829E+02     | 4.241E+05    |  |
| 2004               | 1.977E+05            | 2.691E+02     | 4.034E+05    |  |
| 2005               | 1.977E+05            | 2.560E+02     | 3.838E+05    |  |
| 2006               | 1.977E+05            | 2.435E+02     | 3.650E+05    |  |
| 2007               | 1.977E+05            | 2.317E+02     | 3.472E+05    |  |
| 2008               | 1.977E+05            | 2.204E+02     | 3.303E+05    |  |
| 2009               | 1.977E+05            | 2.096E+02     | 3.142E+05    |  |
| 2010               | 1.977E+05            | 1.994E+02     | 2.989E+05    |  |
| 2011               | 1.977E+05            | 1.897E+02     | 2.843E+05    |  |
| 2012               | 1.977E+05            | 1.804E+02     | 2.704E+05    |  |
| 2013               | 1.977E+05            | 1.716E+02     | 2.572E+05    |  |
| 2014               | 1.977E+05            | 1.632E+02     | 2.447E+05    |  |
|                    |                      |               |              |  |

Table D-13. Southern Parcel Methane Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2015         | 1.977E+05              | 1.553E+02              | 2.328E+05              |
| 2016         | 1.977E+05              | 1.477E+02              | 2.214E+05              |
| 2017         | 1.977E+05              | 1.405E+02              | 2.106E+05              |
| 2018         | 1.977E+05              | 1.337E+02              | 2.003E+05              |
| 2019         | 1.977E+05              | 1.271E+02              | 1.906E+05              |
| 2020         | 1.977E+05              | 1.209E+02              | 1.813E+05              |
| 2021         | 1.977E+05              | 1.150E+02              | 1.724E+05              |
| 2022         | 1.977E+05              | 1.094E+02              | 1.640E+05              |
| 2023         | 1.977E+05              | 1.041E+02              | 1.560E+05              |
| 2024         | 1.977E+05              | 9.901E+01              | 1.484E+05              |
| 2025         | 1.977E+05              | 9.418E+01              | 1.412E+05              |
| 2026         | 1.977E+05              | 8.959E+01              | 1.343E+05              |
| 2027         | 1.977E+05              | 8.522E+01              | 1.277E+05              |
| 2028         | 1.977E+05              | 8.107E+01              | 1.215E+05              |
| 2029         | 1.977E+05              | 7.711E+01              | 1.156E+05              |
| 2030         | 1.977E+05              | 7.335E+01              | 1.099E+05              |
| 2031<br>2032 | 1.977E+05<br>1.977E+05 | 6.977E+01<br>6.637E+01 | 1.046E+05<br>9.948E+04 |
| 2032         | 1.977E+05              | 6.313E+01              | 9.463E+04              |
| 2033         | 1.977E+05              | 6.005E+01              | 9.463E+04<br>9.002E+04 |
| 2034         | 1.977E+05              | 5.713E+01              | 8.563E+04              |
| 2036         | 1.977E+05              | 5.434E+01              | 8.145E+04              |
| 2037         | 1.977E+05              | 5.169E+01              | 7.748E+04              |
| 2037         | 1.977E+05              | 4.917E+01              | 7.370E+04              |
| 2039         | 1.977E+05              | 4.677E+01              | 7.011E+04              |
| 2040         | 1.977E+05              | 4.449E+01              | 6.669E+04              |
| 2041         | 1.977E+05              | 4.232E+01              | 6.343E+04              |
| 2042         | 1.977E+05              | 4.026E+01              | 6.034E+04              |
| 2043         | 1.977E+05              | 3.829E+01              | 5.740E+04              |
| 2044         | 1.977E+05              | 3.643E+01              | 5.460E+04              |
| 2045         | 1.977E+05              | 3.465E+01              | 5.194E+04              |
| 2046         | 1.977E+05              | 3.296E+01              | 4.940E+04              |
| 2047         | 1.977E+05              | 3.135E+01              | 4.699E+04              |
| 2048         | 1.977E+05              | 2.982E+01              | 4.470E+04              |
| 2049         | 1.977E+05              | 2.837E+01              | 4.252E+04              |
| 2050         | 1.977E+05              | 2.698E+01              | 4.045E+04              |
| 2051         | 1.977E+05              | 2.567E+01              | 3.847E+04              |
| 2052         | 1.977E+05              | 2.442E+01              | 3.660E+04              |
| 2053         | 1.977E+05              | 2.323E+01              | 3.481E+04              |
| 2054         | 1.977E+05              | 2.209E+01              | 3.312E+04              |
| 2055         | 1.977E+05              | 2.102E+01              | 3.150E+04              |
| 2056         | 1.977E+05              | 1.999E+01              | 2.996E+04              |
| 2057         | 1.977E+05              | 1.902E+01              | 2.850E+04              |
| 2058         | 1.977E+05              | 1.809E+01              | 2.711E+04              |
| 2059         | 1.977E+05              | 1.721E+01              | 2.579E+04              |
| 2060         | 1.977E+05              | 1.637E+01              | 2.453E+04              |
| 2061         | 1.977E+05              | 1.557E+01              | 2.334E+04              |
| 2062         | 1.977E+05              | 1.481E+01              | 2.220E+04              |
| 2063         | 1.977E+05              | 1.409E+01              | 2.112E+04              |
| 2064         | 1.977E+05              | 1.340E+01              | 2.009E+04              |
| 2065         | 1.977E+05<br>1.977E+05 | 1.275E+01<br>1.212E+01 | 1.911E+04<br>1.817E+04 |
| 2066<br>2067 | 1.977E+05              | 1.153E+01              | 1.729E+04              |
| 2067         | 1.977E+05              | 1.097E+01              | 1.644E+04              |
| 2069         | 1.977E+05              | 1.044E+01              | 1.564E+04              |
| 2070         | 1.977E+05              | 9.927E+00              | 1.488E+04              |
| 2071         | 1.977E+05              | 9.443E+00              | 1.415E+04              |
| 2072         | 1.977E+05              | 8.982E+00              | 1.346E+04              |
| 2073         | 1.977E+05              | 8.544E+00              | 1.281E+04              |
| 2074         | 1.977E+05              | 8.128E+00              | 1.218E+04              |
| 2075         | 1.977E+05              | 7.731E+00              | 1.159E+04              |
| 2076         | 1.977E+05              | 7.354E+00              | 1.102E+04              |
| 2077         | 1.977E+05              | 6.995E+00              | 1.049E+04              |
| 2078         | 1.977E+05              | 6.654E+00              | 9.974E+03              |
| 2079         | 1.977E+05              | 6.330E+00              | 9.488E+03              |
| 2080         | 1.977E+05              | 6.021E+00              | 9.025E+03              |
| 2081         | 1.977E+05              | 5.727E+00              | 8.585E+03              |
| 2082         | 1.977E+05              | 5.448E+00              | 8.166E+03              |
| 2083         | 1.977E+05              | 5.182E+00              | 7.768E+03              |
| 2084         | 1.977E+05              | 4.930E+00              | 7.389E+03              |
| 2085         | 1.977E+05              | 4.689E+00              | 7.029E+03              |
|              |                        |                        |                        |

Table D-13. Southern Parcel Methane Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   |                        | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2086         | 1.977E+05              | 4.460E+00              | 6.686E+03              |
| 2087         | 1.977E+05              | 4.243E+00              | 6.360E+03              |
| 2088         | 1.977E+05              | 4.036E+00              | 6.050E+03              |
| 2089         | 1.977E+05              | 3.839E+00              | 5.755E+03              |
| 2090         | 1.977E+05              | 3.652E+00              | 5.474E+03              |
| 2091         | 1.977E+05              | 3.474E+00              | 5.207E+03              |
| 2092<br>2093 | 1.977E+05<br>1.977E+05 | 3.304E+00<br>3.143E+00 | 4.953E+03<br>4.711E+03 |
| 2093         | 1.977E+05              | 2.990E+00              | 4.711E+03<br>4.482E+03 |
| 2095         | 1.977E+05              | 2.844E+00              | 4.263E+03              |
| 2096         | 1.977E+05              | 2.705E+00              | 4.055E+03              |
| 2097         | 1.977E+05              | 2.573E+00              | 3.857E+03              |
| 2098         | 1.977E+05              | 2.448E+00              | 3.669E+03              |
| 2099         | 1.977E+05              | 2.329E+00              | 3.490E+03              |
| 2100         | 1.977E+05              | 2.215E+00              | 3.320E+03              |
| 2101         | 1.977E+05              | 2.107E+00              | 3.158E+03              |
| 2102         | 1.977E+05              | 2.004E+00              | 3.004E+03              |
| 2103         | 1.977E+05              | 1.906E+00              | 2.858E+03              |
| 2104<br>2105 | 1.977E+05<br>1.977E+05 | 1.813E+00<br>1.725E+00 | 2.718E+03<br>2.586E+03 |
| 2105         | 1.977E+05              | 1.641E+00              | 2.460E+03              |
| 2107         | 1.977E+05              | 1.561E+00              | 2.460E+03<br>2.340E+03 |
| 2108         | 1.977E+05              | 1.485E+00              | 2.226E+03              |
| 2109         | 1.977E+05              | 1.412E+00              | 2.117E+03              |
| 2110         | 1.977E+05              | 1.343E+00              | 2.014E+03              |
| 2111         | 1.977E+05              | 1.278E+00              | 1.916E+03              |
| 2112         | 1.977E+05              | 1.216E+00              | 1.822E+03              |
| 2113         | 1.977E+05              | 1.156E+00              | 1.733E+03              |
| 2114         | 1.977E+05              | 1.100E+00              | 1.649E+03              |
| 2115         | 1.977E+05              | 1.046E+00              | 1.568E+03              |
| 2116         | 1.977E+05              | 9.953E-01              | 1.492E+03              |
| 2117         | 1.977E+05              | 9.467E-01              | 1.419E+03              |
| 2118         | 1.977E+05              | 9.006E-01              | 1.350E+03              |
| 2119<br>2120 | 1.977E+05<br>1.977E+05 | 8.566E-01<br>8.149E-01 | 1.284E+03<br>1.221E+03 |
| 2121         | 1.977E+05              | 7.751E-01              | 1.162E+03              |
| 2122         | 1.977E+05              | 7.373E-01              | 1.105E+03              |
| 2123         | 1.977E+05              | 7.014E-01              | 1.051E+03              |
| 2124         | 1.977E+05              | 6.671E-01              | 1.000E+03              |
| 2125         | 1.977E+05              | 6.346E-01              | 9.512E+02              |
| 2126         | 1.977E+05              | 6.037E-01              | 9.048E+02              |
| 2127         | 1.977E+05              | 5.742E-01              | 8.607E+02              |
| 2128         | 1.977E+05              | 5.462E-01              | 8.187E+02              |
| 2129         | 1.977E+05              | 5.196E-01              | 7.788E+02              |
| 2130         | 1.977E+05              | 4.942E-01              | 7.408E+02              |
| 2131<br>2132 | 1.977E+05<br>1.977E+05 | 4.701E-01<br>4.472E-01 | 7.047E+02<br>6.703E+02 |
| 2133         | 1.977E+05              | 4.472E-01<br>4.254E-01 | 6.376E+02              |
| 2134         | 1.977E+05              | 4.046E-01              | 6.065E+02              |
| 2135         | 1.977E+05              | 3.849E-01              | 5.770E+02              |
| 2136         | 1.977E+05              | 3.661E-01              | 5.488E+02              |
| 2137         | 1.977E+05              | 3.483E-01              | 5.220E+02              |
| 2138         | 1.977E+05              | 3.313E-01              | 4.966E+02              |
| 2139         | 1.977E+05              | 3.151E-01              | 4.724E+02              |
| 2140         | 1.977E+05              | 2.998E-01              | 4.493E+02              |
| 2141         | 1.977E+05              | 2.851E-01              | 4.274E+02              |
| 2142         | 1.977E+05              | 2.712E-01              | 4.066E+02              |
| 2143         | 1.977E+05              | 2.580E-01              | 3.867E+02              |
| 2144<br>2145 | 1.977E+05<br>1.977E+05 | 2.454E-01<br>2.335E-01 | 3.679E+02<br>3.499E+02 |
| 2146         | 1.977E+05              | 2.221E-01              | 3.329E+02              |
| 2147         | 1.977E+05              | 2.112E-01              | 3.166E+02              |
| 2148         | 1.977E+05              | 2.009E-01              | 3.012E+02              |
| 2149         | 1.977E+05              | 1.911E-01              | 2.865E+02              |
| 2150         | 1.977E+05              | 1.818E-01              | 2.725E+02              |
| 2151         | 1.977E+05              | 1.730E-01              | 2.592E+02              |
| 2152         | 1.977E+05              | 1.645E-01              | 2.466E+02              |
| 2153         | 1.977E+05              | 1.565E-01              | 2.346E+02              |
| 2154         | 1.977E+05              | 1.489E-01              | 2.231E+02              |
| 2155         | 1.977E+05              | 1.416E-01              | 2.122E+02              |
| 2156         | 1.977E+05              | 1.347E-01              | 2.019E+02              |

Table D-13. Southern Parcel Methane Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)                | (Cubic m/yr) |
|------|----------------------|------------------------|--------------|
| 2157 | 1.977E+05            | 1.281E-01              | 1.921E+02    |
| 2158 | 1.977E+05            | 1.219E-01              | 1.827E+02    |
| 2159 | 1.977E+05            | 1.159E-01              | 1.738E+02    |
| 2160 | 1.977E+05            | 1.103E-01              | 1.653E+02    |
| 2161 | 1.977E+05            | 1.049E-01              | 1.572E+02    |
| 2162 | 1.977E+05            | 9.978E-02              | 1.496E+02    |
| 2163 | 1.977E+05            | 9.492E-02              | 1.423E+02    |
|      |                      |                        |              |
| 2164 | 1.977E+05            | 9.029E-02              | 1.353E+02    |
| 2165 | 1.977E+05            | 8.589E-02              | 1.287E+02    |
| 2166 | 1.977E+05            | 8.170E-02              | 1.225E+02    |
| 2167 | 1.977E+05            | 7.771E-02              | 1.165E+02    |
| 2168 | 1.977E+05            | 7.392E-02              | 1.108E+02    |
| 2169 | 1.977E+05            | 7.032E-02              | 1.054E+02    |
| 2170 | 1.977E+05            | 6.689E-02              | 1.003E+02    |
| 2171 | 1.977E+05            | 6.363E-02              | 9.537E+01    |
| 2172 | 1.977E+05            | 6.052E-02              | 9.072E+01    |
| 2173 | 1.977E+05            | 5.757E-02              | 8.629E+01    |
| 2174 | 1.977E+05            | 5.476E-02              | 8.209E+01    |
| 2175 | 1.977E+05            | 5.209E-02              | 7.808E+01    |
| 2176 | 1.977E+05            | 4.955E-02              | 7.427E+01    |
| 2177 | 1.977E+05            | 4.713E-02              | 7.065E+01    |
| 2178 | 1.977E+05            | 4.484E-02              | 6.721E+01    |
| 2179 | 1.977E+05            | 4.265E-02              | 6.393E+01    |
| 2180 | 1.977E+05            | 4.057E-02              | 6.081E+01    |
| 2181 | 1.977E+05            | 3.859E-02              | 5.784E+01    |
| 2182 | 1.977E+05            | 3.671E-02              | 5.502E+01    |
| 2183 | 1.977E+05            | 3.492E-02              | 5.234E+01    |
| 2184 | 1.977E+05            | 3.322E-02              | 4.979E+01    |
| 2185 | 1.977E+05            | 3.160E-02              | 4.736E+01    |
| 2186 | 1.977E+05            | 3.005E-02              | 4.505E+01    |
| 2187 | 1.977E+05            | 2.859E-02              | 4.285E+01    |
| 2188 | 1.977E+05            | 2.719E-02              | 4.076E+01    |
| 2189 | 1.977E+05            | 2.587E-02              | 3.877E+01    |
| 2190 | 1.977E+05            | 2.461E-02              | 3.688E+01    |
| 2191 | 1.977E+05            | 2.401E-02              | 3.508E+01    |
| 2191 | 1.977E+05            | 2.226E-02              | 3.337E+01    |
| 2192 | 1.977E+05            | 2.226E-02<br>2.118E-02 | 3.175E+01    |
|      | 1.977E+05            |                        |              |
| 2194 |                      | 2.015E-02              | 3.020E+01    |
| 2195 | 1.977E+05            | 1.916E-02              | 2.872E+01    |
| 2196 | 1.977E+05            | 1.823E-02              | 2.732E+01    |
| 2197 | 1.977E+05            | 1.734E-02              | 2.599E+01    |
| 2198 | 1.977E+05            | 1.649E-02              | 2.472E+01    |
| 2199 | 1.977E+05            | 1.569E-02              | 2.352E+01    |
| 2200 | 1.977E+05            | 1.492E-02              | 2.237E+01    |
| 2201 | 1.977E+05            | 1.420E-02              | 2.128E+01    |

Table D-14. Southern Parcel NMOC Emisson Rate from Year 1968 to 2203.

### Model Parameters

\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\* k : 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\*

NMOC : 2550.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 59.0000 % volume

Carbon Dioxide : 41.0000 % volume

\_\_\_\_\_\_

## Landfill Parameters

\_\_\_\_\_

Landfill type : Co-Disposal

Year Opened: 1967 Current Year: 2003 Closure Year: 2002

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 12238.07 Mg/year

\_\_\_\_\_\_ \_\_\_\_\_\_

|      |                      | NMOC En   | NMOC Emission Rate |  |
|------|----------------------|-----------|--------------------|--|
| Year | Refuse In Place (Mg) | (Mg/yr)   | (Cubic m/yr)       |  |
|      |                      |           |                    |  |
| 1968 | 1.318E+04            | 1.736E+00 | 4.842E+02          |  |
| 1969 | 2.636E+04            | 3.386E+00 | 9.447E+02          |  |
| 1970 | 3.954E+04            | 4.957E+00 | 1.383E+03          |  |
| 1971 | 5.272E+04            | 6.451E+00 | 1.800E+03          |  |
| 1972 | 6.590E+04            | 7.871E+00 | 2.196E+03          |  |
| 1973 | 7.908E+04            | 9.223E+00 | 2.573E+03          |  |
| 1974 | 9.226E+04            | 1.051E+01 | 2.932E+03          |  |
| 1975 | 1.054E+05            | 1.173E+01 | 3.273E+03          |  |
| 1976 | 1.186E+05            | 1.290E+01 | 3.598E+03          |  |
| 1977 | 1.318E+05            | 1.400E+01 | 3.906E+03          |  |
| 1978 | 1.450E+05            | 1.505E+01 | 4.200E+03          |  |
| 1979 | 1.582E+05            | 1.606E+01 | 4.479E+03          |  |
| 1980 | 1.713E+05            | 1.701E+01 | 4.745E+03          |  |
| 1981 | 1.845E+05            | 1.791E+01 | 4.998E+03          |  |
| 1982 | 1.977E+05            | 1.878E+01 | 5.238E+03          |  |
| 1983 | 1.977E+05            | 1.786E+01 | 4.983E+03          |  |
| 1984 | 1.977E+05            | 1.699E+01 | 4.740E+03          |  |
| 1985 | 1.977E+05            | 1.616E+01 | 4.509E+03          |  |
| 1986 | 1.977E+05            | 1.537E+01 | 4.289E+03          |  |
| 1987 | 1.977E+05            | 1.462E+01 | 4.079E+03          |  |
| 1988 | 1.977E+05            | 1.391E+01 | 3.881E+03          |  |
| 1989 | 1.977E+05            | 1.323E+01 | 3.691E+03          |  |
| 1990 | 1.977E+05            | 1.259E+01 | 3.511E+03          |  |
| 1991 | 1.977E+05            | 1.197E+01 | 3.340E+03          |  |
| 1992 | 1.977E+05            | 1.139E+01 | 3.177E+03          |  |
| 1993 | 1.977E+05            | 1.083E+01 | 3.022E+03          |  |
| 1994 | 1.977E+05            | 1.030E+01 | 2.875E+03          |  |
| 1995 | 1.977E+05            | 9.802E+00 | 2.735E+03          |  |
| 1996 | 1.977E+05            | 9.324E+00 | 2.601E+03          |  |
| 1997 | 1.977E+05            | 8.869E+00 | 2.474E+03          |  |
| 1998 | 1.977E+05            | 8.437E+00 | 2.354E+03          |  |
| 1999 | 1.977E+05            | 8.025E+00 | 2.239E+03          |  |
| 2000 | 1.977E+05            | 7.634E+00 | 2.130E+03          |  |
| 2001 | 1.977E+05            | 7.261E+00 | 2.026E+03          |  |
| 2002 | 1.977E+05            | 6.907E+00 | 1.927E+03          |  |
| 2003 | 1.977E+05            | 6.570E+00 | 1.833E+03          |  |
| 2004 | 1.977E+05            | 6.250E+00 | 1.744E+03          |  |
| 2005 | 1.977E+05            | 5.945E+00 | 1.659E+03          |  |
| 2006 | 1.977E+05            | 5.655E+00 | 1.578E+03          |  |
| 2007 | 1.977E+05            | 5.379E+00 | 1.501E+03          |  |
| 2008 | 1.977E+05            | 5.117E+00 | 1.428E+03          |  |
| 2009 | 1.977E+05            | 4.868E+00 | 1.358E+03          |  |
| 2010 | 1.977E+05            | 4.630E+00 | 1.292E+03          |  |
| 2011 | 1.977E+05            | 4.404E+00 | 1.229E+03          |  |
| 2012 | 1.977E+05            | 4.190E+00 | 1.169E+03          |  |
| 2013 | 1.977E+05            | 3.985E+00 | 1.112E+03          |  |
| 2014 | 1.977E+05            | 3.791E+00 | 1.058E+03          |  |
|      |                      |           |                    |  |

Table D-14. Southern Parcel NMOC Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr) (Cubic m/yr)                       |
|--------------|------------------------|--------------------------------------------|
| 2015         | 1.977E+05              | 3.606E+00 1.006E+03                        |
| 2016         | 1.977E+05              | 3.430E+00 9.569E+02                        |
| 2017         | 1.977E+05              | 3.263E+00 9.103E+02                        |
| 2018         | 1.977E+05              | 3.104E+00 8.659E+02                        |
| 2019         | 1.977E+05              | 2.952E+00 8.236E+02                        |
| 2020         | 1.977E+05              | 2.808E+00 7.835E+02                        |
| 2021         | 1.977E+05              | 2.671E+00 7.453E+02                        |
| 2022         | 1.977E+05              | 2.541E+00 7.089E+02                        |
| 2023         | 1.977E+05              | 2.417E+00 6.743E+02                        |
| 2024         | 1.977E+05              | 2.299E+00 6.414E+02                        |
| 2025         | 1.977E+05              | 2.187E+00 6.102E+02                        |
| 2026         | 1.977E+05              | 2.080E+00 5.804E+02                        |
| 2027         | 1.977E+05              | 1.979E+00 5.521E+02                        |
| 2028         | 1.977E+05              | 1.882E+00 5.252E+02                        |
| 2029         | 1.977E+05              | 1.791E+00 4.996E+02                        |
| 2030         | 1.977E+05              | 1.703E+00 4.752E+02                        |
| 2031         | 1.977E+05              | 1.620E+00 4.520E+02                        |
| 2032         | 1.977E+05              | 1.541E+00 4.300E+02                        |
| 2033         | 1.977E+05              | 1.466E+00 4.090E+02                        |
| 2034         | 1.977E+05<br>1.977E+05 | 1.395E+00 3.891E+02                        |
| 2035<br>2036 | 1.977E+05<br>1.977E+05 | 1.327E+00 3.701E+02<br>1.262E+00 3.520E+02 |
| 2036         | 1.977E+05              | 1.200E+00 3.349E+02                        |
| 2037         | 1.977E+05              | 1.142E+00 3.185E+02                        |
| 2039         | 1.977E+05              | 1.086E+00 3.030E+02                        |
| 2040         | 1.977E+05              | 1.033E+00 2.882E+02                        |
| 2041         | 1.977E+05              | 9.827E-01 2.742E+02                        |
| 2042         | 1.977E+05              | 9.348E-01 2.608E+02                        |
| 2043         | 1.977E+05              | 8.892E-01 2.481E+02                        |
| 2044         | 1.977E+05              | 8.458E-01 2.360E+02                        |
| 2045         | 1.977E+05              | 8.046E-01 2.245E+02                        |
| 2046         | 1.977E+05              | 7.654E-01 2.135E+02                        |
| 2047         | 1.977E+05              | 7.280E-01 2.031E+02                        |
| 2048         | 1.977E+05              | 6.925E-01 1.932E+02                        |
| 2049         | 1.977E+05              | 6.587E-01 1.838E+02                        |
| 2050         | 1.977E+05              | 6.266E-01 1.748E+02                        |
| 2051         | 1.977E+05              | 5.961E-01 1.663E+02                        |
| 2052         | 1.977E+05              | 5.670E-01 1.582E+02                        |
| 2053         | 1.977E+05              | 5.393E-01 1.505E+02                        |
| 2054         | 1.977E+05              | 5.130E-01 1.431E+02                        |
| 2055         | 1.977E+05              | 4.880E-01 1.361E+02                        |
| 2056         | 1.977E+05              | 4.642E-01 1.295E+02                        |
| 2057         | 1.977E+05              | 4.416E-01 1.232E+02                        |
| 2058         | 1.977E+05              | 4.200E-01 1.172E+02                        |
| 2059         | 1.977E+05              | 3.995E-01 1.115E+02                        |
| 2060         | 1.977E+05              | 3.801E-01 1.060E+02                        |
| 2061         | 1.977E+05              | 3.615E-01 1.009E+02                        |
| 2062         | 1.977E+05              | 3.439E-01 9.594E+01                        |
| 2063         | 1.977E+05              | 3.271E-01 9.126E+01                        |
| 2064         | 1.977E+05              | 3.112E-01 8.681E+01                        |
| 2065         | 1.977E+05              | 2.960E-01 8.258E+01<br>2.816E-01 7.855E+01 |
| 2066         | 1.977E+05              |                                            |
| 2067         | 1.977E+05<br>1.977E+05 |                                            |
| 2068         | 1.977E+05              |                                            |
| 2069         | 1.977E+05<br>1.977E+05 | 2.423E-01 6.761E+01<br>2.305E-01 6.431E+01 |
| 2070<br>2071 | 1.977E+05              | 2.193E-01 6.117E+01                        |
| 2072         | 1.977E+05              | 2.086E-01 5.819E+01                        |
| 2073         | 1.977E+05              | 1.984E-01 5.535E+01                        |
| 2074         | 1.977E+05              | 1.887E-01 5.265E+01                        |
| 2075         | 1.977E+05              | 1.795E-01 5.009E+01                        |
| 2076         | 1.977E+05              | 1.708E-01 4.764E+01                        |
| 2077         | 1.977E+05              | 1.624E-01 4.532E+01                        |
| 2078         | 1.977E+05              | 1.545E-01 4.311E+01                        |
| 2079         | 1.977E+05              | 1.470E-01 4.101E+01                        |
| 2080         | 1.977E+05              | 1.398E-01 3.901E+01                        |
| 2081         | 1.977E+05              | 1.330E-01 3.710E+01                        |
| 2082         | 1.977E+05              | 1.265E-01 3.529E+01                        |
| 2083         | 1.977E+05              | 1.203E-01 3.357E+01                        |
| 2084         | 1.977E+05              | 1.145E-01 3.194E+01                        |
| 2085         | 1.977E+05              | 1.089E-01 3.038E+01                        |
|              |                        |                                            |

Table D-14. Southern Parcel NMOC Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2086         | 1.977E+05              | 1.036E-01              | 2.890E+01              |
| 2087         | 1.977E+05              | 9.853E-02              | 2.749E+01              |
| 2088         | 1.977E+05              | 9.372E-02              | 2.615E+01              |
| 2089         | 1.977E+05              | 8.915E-02              | 2.487E+01              |
| 2090         | 1.977E+05              | 8.480E-02              | 2.366E+01              |
| 2091         | 1.977E+05              | 8.067E-02              | 2.250E+01              |
| 2092         | 1.977E+05              | 7.673E-02              | 2.141E+01              |
| 2093         | 1.977E+05              | 7.299E-02              | 2.036E+01              |
| 2094         | 1.977E+05              | 6.943E-02              | 1.937E+01              |
|              | 1.977E+05<br>1.977E+05 | 6.605E-02<br>6.282E-02 | 1.843E+01<br>1.753E+01 |
| 2096<br>2097 | 1.977E+05              | 5.976E-02              | 1.667E+01              |
| 2097         | 1.977E+05              | 5.685E-02              | 1.586E+01              |
| 2099         | 1.977E+05              | 5.407E-02              | 1.509E+01              |
| 2100         | 1.977E+05              | 5.144E-02              | 1.435E+01              |
| 2101         | 1.977E+05              | 4.893E-02              | 1.365E+01              |
| 2102         | 1.977E+05              | 4.654E-02              | 1.298E+01              |
| 2103         | 1.977E+05              | 4.427E-02              | 1.235E+01              |
| 2104         | 1.977E+05              | 4.211E-02              | 1.175E+01              |
| 2105         | 1.977E+05              | 4.006E-02              | 1.118E+01              |
| 2106         | 1.977E+05              | 3.810E-02              | 1.063E+01              |
| 2107         | 1.977E+05              | 3.625E-02              | 1.011E+01              |
| 2108         | 1.977E+05              | 3.448E-02              | 9.619E+00              |
| 2109         | 1.977E+05              | 3.280E-02              | 9.150E+00              |
| 2110         | 1.977E+05              | 3.120E-02              | 8.704E+00              |
| 2111         | 1.977E+05              | 2.968E-02              | 8.279E+00              |
| 2112         | 1.977E+05              | 2.823E-02              | 7.875E+00              |
| 2113         | 1.977E+05              | 2.685E-02              | 7.491E+00              |
| 2114         | 1.977E+05<br>1.977E+05 | 2.554E-02              | 7.126E+00              |
| 2115<br>2116 | 1.977E+05              | 2.430E-02<br>2.311E-02 | 6.778E+00<br>6.448E+00 |
| 2117         | 1.977E+05              | 2.198E-02              | 6.133E+00              |
| 2118         | 1.977E+05              | 2.091E-02              | 5.834E+00              |
| 2119         | 1.977E+05              | 1.989E-02              | 5.550E+00              |
| 2120         | 1.977E+05              | 1.892E-02              | 5.279E+00              |
| 2121         | 1.977E+05              | 1.800E-02              | 5.021E+00              |
| 2122         | 1.977E+05              | 1.712E-02              | 4.777E+00              |
| 2123         | 1.977E+05              | 1.629E-02              | 4.544E+00              |
| 2124         | 1.977E+05              | 1.549E-02              | 4.322E+00              |
| 2125         | 1.977E+05              | 1.474E-02              | 4.111E+00              |
| 2126         | 1.977E+05              | 1.402E-02              | 3.911E+00              |
| 2127         | 1.977E+05              | 1.333E-02              | 3.720E+00              |
| 2128         | 1.977E+05              | 1.268E-02              | 3.539E+00              |
| 2129         | 1.977E+05              | 1.207E-02              | 3.366E+00              |
| 2130         | 1.977E+05              | 1.148E-02              | 3.202E+00              |
| 2131<br>2132 | 1.977E+05<br>1.977E+05 | 1.092E-02<br>1.038E-02 | 3.046E+00<br>2.897E+00 |
| 2132         | 1.977E+05              | 9.878E-03              | 2.756E+00              |
| 2134         | 1.977E+05              | 9.396E-03              | 2.621E+00              |
| 2135         | 1.977E+05              | 8.938E-03              | 2.494E+00              |
| 2136         | 1.977E+05              | 8.502E-03              | 2.372E+00              |
| 2137         | 1.977E+05              | 8.088E-03              | 2.256E+00              |
| 2138         | 1.977E+05              | 7.693E-03              | 2.146E+00              |
| 2139         | 1.977E+05              | 7.318E-03              | 2.042E+00              |
| 2140         | 1.977E+05              | 6.961E-03              | 1.942E+00              |
| 2141         | 1.977E+05              | 6.622E-03              | 1.847E+00              |
| 2142         | 1.977E+05              | 6.299E-03              | 1.757E+00              |
| 2143         | 1.977E+05              | 5.991E-03              | 1.672E+00              |
| 2144         | 1.977E+05              | 5.699E-03              | 1.590E+00              |
| 2145         | 1.977E+05              | 5.421E-03              | 1.512E+00              |
| 2146         | 1.977E+05              | 5.157E-03              | 1.439E+00              |
| 2147         | 1.977E+05              | 4.905E-03              | 1.369E+00<br>1.302E+00 |
| 2148<br>2149 | 1.977E+05<br>1.977E+05 | 4.666E-03<br>4.439E-03 | 1.302E+00<br>1.238E+00 |
| 2149         | 1.977E+05              | 4.439E-03<br>4.222E-03 | 1.178E+00              |
| 2151         | 1.977E+05              | 4.016E-03              | 1.120E+00              |
| 2152         | 1.977E+05              | 3.820E-03              | 1.066E+00              |
| 2153         | 1.977E+05              | 3.634E-03              | 1.014E+00              |
| 2154         | 1.977E+05              | 3.457E-03              | 9.644E-01              |
| 2155         | 1.977E+05              | 3.288E-03              | 9.173E-01              |
| 2156         | 1.977E+05              | 3.128E-03              | 8.726E-01              |
|              |                        |                        |                        |

Table D-14. Southern Parcel NMOC Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|------|------------------------|------------------------|------------------------|
| 2157 | 1.977E+05              | 2.975E-03              | 8.300E-01              |
| 2158 | 1.977E+05              | 2.830E-03              | 7.896E-01              |
| 2159 | 1.977E+05              | 2.692E-03              | 7.511E-01              |
| 2160 | 1.977E+05              | 2.561E-03              | 7.144E-01              |
| 2161 | 1.977E+05              | 2.436E-03              | 6.796E-01              |
| 2162 | 1.977E+05              | 2.317E-03              | 6.464E-01              |
| 2163 | 1.977E+05              | 2.204E-03              | 6.149E-01              |
| 2164 | 1.977E+05              | 2.097E-03              | 5.849E-01              |
| 2165 | 1.977E+05              | 1.994E-03              | 5.564E-01              |
| 2166 | 1.977E+05              | 1.897E-03              | 5.293E-01              |
| 2167 | 1.977E+05              | 1.805E-03              | 5.034E-01              |
| 2168 | 1.977E+05              | 1.717E-03              | 4.789E-01              |
| 2169 | 1.977E+05              | 1.633E-03              | 4.555E-01              |
| 2170 | 1.977E+05              | 1.553E-03              | 4.333E-01              |
| 2171 | 1.977E+05              | 1.477E-03              | 4.122E-01              |
| 2172 | 1.977E+05              | 1.405E-03              | 3.921E-01              |
| 2173 | 1.977E+05              | 1.337E-03              | 3.730E-01              |
| 2174 | 1.977E+05              | 1.272E-03              | 3.548E-01              |
| 2175 | 1.977E+05              | 1.210E-03              | 3.375E-01              |
| 2176 | 1.977E+05              | 1.151E-03              | 3.210E-01              |
| 2177 | 1.977E+05              | 1.095E-03              | 3.054E-01              |
| 2178 | 1.977E+05              | 1.041E-03              | 2.905E-01              |
| 2179 | 1.977E+05              | 9.904E-04              | 2.763E-01              |
| 2180 | 1.977E+05              | 9.421E-04              | 2.628E-01              |
| 2181 | 1.977E+05              | 8.961E-04              | 2.500E-01              |
| 2182 | 1.977E+05              | 8.524E-04              | 2.378E-01              |
| 2183 | 1.977E+05              | 8.109E-04              | 2.262E-01              |
| 2184 | 1.977E+05              | 7.713E-04              | 2.152E-01              |
| 2185 | 1.977E+05              | 7.337E-04              | 2.047E-01              |
| 2186 | 1.977E+05              | 6.979E-04              | 1.947E-01              |
| 2187 | 1.977E+05              | 6.639E-04              | 1.852E-01              |
| 2188 | 1.977E+05              | 6.315E-04              | 1.762E-01              |
| 2189 | 1.977E+05              | 6.007E-04              | 1.676E-01              |
| 2109 | 1.977E+05              | 5.714E-04              | 1.594E-01              |
| 2190 | 1.977E+05              | 5.435E-04              | 1.516E-01              |
| 2191 | 1.977E+05              | 5.170E-04              | 1.442E-01              |
| 2192 | 1.977E+05              | 4.918E-04              | 1.442E-01<br>1.372E-01 |
| 2193 | 1.977E+05              | 4.678E-04              | 1.305E-01              |
| 2194 | 1.977E+05              | 4.450E-04              | 1.241E-01              |
| 2195 | 1.977E+05              | 4.450E-04<br>4.233E-04 | 1.241E-01<br>1.181E-01 |
| 2196 | 1.977E+05              | 4.233E-04<br>4.027E-04 | 1.181E-01<br>1.123E-01 |
| 2197 |                        |                        |                        |
| 2198 | 1.977E+05              | 3.830E-04              | 1.069E-01              |
|      | 1.977E+05<br>1.977E+05 | 3.643E-04              | 1.016E-01              |
| 2200 |                        | 3.466E-04              | 9.669E-02              |
| 2201 | 1.977E+05              | 3.297E-04              | 9.197E-02              |

Table D-15. Southern Parcel Benzene Emisson Rate from Year 1968 to 2203.

### Model Parameters

\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\*

NMOC : 2550.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 59.0000 % volume

Carbon Dioxide : 41.0000 % volume Air Pollutant : Benzene (HAP/VOC)

Molecular Wt = 78.12 Concentration = 0.240000 ppmV

### Landfill Parameters

\_\_\_\_\_\_

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 12238.07 Mg/year

\_\_\_\_\_\_

| Year<br>1968<br>1969<br>1970<br>1971 | Refuse In Place (Mg)  1.318E+04 2.636E+04 3.954E+04 | (Mg/yr)<br><br>1.481E-04                     | P/VOC) Emission Rate<br>(Cubic m/yr) |
|--------------------------------------|-----------------------------------------------------|----------------------------------------------|--------------------------------------|
| 1969<br>1970<br>1971                 | 1.318E+04<br>2.636E+04                              | 1.481E-04                                    |                                      |
| 1969<br>1970<br>1971                 | 2.636E+04                                           |                                              |                                      |
| 1970<br>1971                         |                                                     | 12 T 5 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 4.557E-02                            |
| 1971                                 | 3 05 45104                                          | 2.889E-04                                    | 8.892E-02                            |
|                                      | 3.9346704                                           | 4.229E-04                                    | 1.302E-01                            |
|                                      | 5.272E+04                                           | 5.503E-04                                    | 1.694E-01                            |
| 1972                                 | 6.590E+04                                           | 6.716E-04                                    | 2.067E-01                            |
| 1973                                 | 7.908E+04                                           | 7.869E-04                                    | 2.422E-01                            |
| 1974                                 | 9.226E+04                                           | 8.966E-04                                    | 2.759E-01                            |
| 1975                                 | 1.054E+05                                           | 1.001E-03                                    | 3.080E-01                            |
| 1976                                 | 1.186E+05                                           | 1.100E-03                                    | 3.386E-01                            |
| 1977                                 | 1.318E+05                                           | 1.195E-03                                    | 3.676E-01                            |
| 1978                                 | 1.450E+05                                           | 1.284E-03                                    | 3.953E-01                            |
| 1979                                 | 1.582E+05                                           | 1.370E-03                                    | 4.216E-01                            |
| 1980                                 | 1.713E+05                                           | 1.451E-03                                    | 4.466E-01                            |
| 1981                                 | 1.845E+05                                           | 1.528E-03                                    | 4.704E-01                            |
| 1982                                 | 1.977E+05                                           | 1.602E-03                                    | 4.930E-01                            |
| 1983                                 | 1.977E+05                                           | 1.524E-03                                    | 4.690E-01                            |
| 1984                                 | 1.977E+05                                           | 1.449E-03                                    | 4.461E-01                            |
| 1985                                 | 1.977E+05                                           | 1.379E-03                                    | 4.243E-01                            |
| 1986                                 | 1.977E+05                                           | 1.312E-03                                    | 4.036E-01                            |
| 1987                                 | 1.977E+05                                           | 1.248E-03                                    | 3.840E-01                            |
| 1988                                 | 1.977E+05                                           | 1.187E-03                                    | 3.652E-01                            |
| 1989                                 | 1.977E+05                                           | 1.129E-03                                    | 3.474E-01                            |
| 1990                                 | 1.977E+05                                           | 1.074E-03                                    | 3.305E-01                            |
| 1991                                 | 1.977E+05                                           | 1.021E-03                                    | 3.144E-01                            |
| 1992                                 | 1.977E+05                                           | 9.716E-04                                    | 2.990E-01                            |
| 1993                                 | 1.977E+05                                           | 9.242E-04                                    | 2.844E-01                            |
| 1994                                 | 1.977E+05                                           | 8.791E-04                                    | 2.706E-01                            |
| 1995                                 | 1.977E+05                                           | 8.363E-04                                    | 2.574E-01                            |
| 1996                                 | 1.977E+05                                           | 7.955E-04                                    | 2.448E-01                            |
| 1997                                 | 1.977E+05                                           | 7.567E-04                                    | 2.329E-01                            |
| 1998                                 | 1.977E+05                                           | 7.198E-04                                    | 2.215E-01                            |
| 1999                                 | 1.977E+05                                           | 6.847E-04                                    | 2.107E-01                            |
| 2000                                 | 1.977E+05                                           | 6.513E-04                                    | 2.004E-01                            |
| 2001                                 | 1.977E+05                                           | 6.195E-04                                    | 1.907E-01                            |
| 2002                                 | 1.977E+05                                           | 5.893E-04                                    | 1.814E-01                            |
| 2003                                 | 1.977E+05                                           | 5.606E-04                                    | 1.725E-01                            |
| 2004                                 | 1.977E+05                                           | 5.332E-04                                    | 1.641E-01                            |
| 2005                                 | 1.977E+05                                           | 5.072E-04                                    | 1.561E-01                            |
| 2006                                 | 1.977E+05                                           | 4.825E-04                                    | 1.485E-01                            |
| 2007                                 | 1.977E+05                                           | 4.589E-04                                    | 1.412E-01                            |
| 2008                                 | 1.977E+05                                           | 4.366E-04                                    | 1.344E-01                            |
| 2009                                 | 1.977E+05                                           | 4.153E-04                                    | 1.278E-01                            |
| 2010                                 | 1.977E+05                                           | 3.950E-04                                    | 1.216E-01                            |
| 2011                                 | 1.977E+05                                           | 3.758E-04                                    | 1.156E-01                            |
| 2012                                 | 1.977E+05                                           | 3.574E-04                                    | 1.100E-01                            |

Table D-15. Southern Parcel Benzene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 3.400E-04              | 1.046E-01              |
| 2014         | 1.977E+05              | 3.234E-04              | 9.954E-02              |
| 2015         | 1.977E+05              | 3.076E-04              | 9.468E-02              |
| 2016         | 1.977E+05              | 2.926E-04              | 9.006E-02              |
| 2017         | 1.977E+05              | 2.784E-04              | 8.567E-02              |
| 2018<br>2019 | 1.977E+05<br>1.977E+05 | 2.648E-04<br>2.519E-04 | 8.149E-02<br>7.752E-02 |
| 2019         | 1.977E+05              | 2.319E-04<br>2.396E-04 | 7.752E-02<br>7.374E-02 |
| 2021         | 1.977E+05              | 2.279E-04              | 7.014E-02              |
| 2022         | 1.977E+05              | 2.168E-04              | 6.672E-02              |
| 2023         | 1.977E+05              | 2.062E-04              | 6.347E-02              |
| 2024         | 1.977E+05              | 1.962E-04              | 6.037E-02              |
| 2025         | 1.977E+05              | 1.866E-04              | 5.743E-02              |
| 2026         | 1.977E+05              | 1.775E-04              | 5.463E-02              |
| 2027<br>2028 | 1.977E+05<br>1.977E+05 | 1.688E-04              | 5.196E-02<br>4.943E-02 |
| 2028         | 1.977E+05              | 1.606E-04<br>1.528E-04 | 4.702E-02              |
| 2030         | 1.977E+05              | 1.453E-04              | 4.472E-02              |
| 2031         | 1.977E+05              | 1.382E-04              | 4.254E-02              |
| 2032         | 1.977E+05              | 1.315E-04              | 4.047E-02              |
| 2033         | 1.977E+05              | 1.251E-04              | 3.849E-02              |
| 2034         | 1.977E+05              | 1.190E-04              | 3.662E-02              |
| 2035         | 1.977E+05              | 1.132E-04              | 3.483E-02              |
| 2036         | 1.977E+05              | 1.077E-04<br>1.024E-04 | 3.313E-02              |
| 2037<br>2038 | 1.977E+05<br>1.977E+05 | 9.741E-05              | 3.152E-02<br>2.998E-02 |
| 2039         | 1.977E+05              | 9.266E-05              | 2.852E-02              |
| 2040         | 1.977E+05              | 8.814E-05              | 2.713E-02              |
| 2041         | 1.977E+05              | 8.384E-05              | 2.580E-02              |
| 2042         | 1.977E+05              | 7.975E-05              | 2.455E-02              |
| 2043         | 1.977E+05              | 7.586E-05              | 2.335E-02              |
| 2044         | 1.977E+05              | 7.216E-05              | 2.221E-02              |
| 2045         | 1.977E+05              | 6.864E-05              | 2.113E-02              |
| 2046         | 1.977E+05              | 6.530E-05              | 2.010E-02              |
| 2047<br>2048 | 1.977E+05<br>1.977E+05 | 6.211E-05<br>5.908E-05 | 1.912E-02<br>1.818E-02 |
| 2049         | 1.977E+05              | 5.620E-05              | 1.730E-02              |
| 2050         | 1.977E+05              | 5.346E-05              | 1.645E-02              |
| 2051         | 1.977E+05              | 5.085E-05              | 1.565E-02              |
| 2052         | 1.977E+05              | 4.837E-05              | 1.489E-02              |
| 2053         | 1.977E+05              | 4.601E-05              | 1.416E-02              |
| 2054         | 1.977E+05              | 4.377E-05              | 1.347E-02              |
| 2055<br>2056 | 1.977E+05<br>1.977E+05 | 4.163E-05<br>3.960E-05 | 1.281E-02<br>1.219E-02 |
| 2057         | 1.977E+05              | 3.767E-05              | 1.159E-02              |
| 2058         | 1.977E+05              | 3.584E-05              | 1.103E-02              |
| 2059         | 1.977E+05              | 3.409E-05              | 1.049E-02              |
| 2060         | 1.977E+05              | 3.243E-05              | 9.979E-03              |
| 2061         | 1.977E+05              | 3.084E-05              | 9.493E-03              |
| 2062         | 1.977E+05              | 2.934E-05              | 9.030E-03              |
| 2063         | 1.977E+05              | 2.791E-05              | 8.589E-03              |
| 2064<br>2065 | 1.977E+05<br>1.977E+05 | 2.655E-05<br>2.525E-05 | 8.170E-03<br>7.772E-03 |
| 2066         | 1.977E+05              | 2.402E-05              | 7.393E-03              |
| 2067         | 1.977E+05              | 2.285E-05              | 7.032E-03              |
| 2068         | 1.977E+05              | 2.174E-05              | 6.689E-03              |
| 2069         | 1.977E+05              | 2.068E-05              | 6.363E-03              |
| 2070         | 1.977E+05              | 1.967E-05              | 6.053E-03              |
| 2071         | 1.977E+05              | 1.871E-05              | 5.758E-03              |
| 2072         | 1.977E+05              | 1.780E-05              | 5.477E-03              |
| 2073<br>2074 | 1.977E+05<br>1.977E+05 | 1.693E-05<br>1.610E-05 | 5.210E-03<br>4.956E-03 |
| 2074         | 1.977E+05              | 1.532E-05              | 4.714E-03              |
| 2076         | 1.977E+05              | 1.457E-05              | 4.484E-03              |
| 2077         | 1.977E+05              | 1.386E-05              | 4.265E-03              |
| 2078         | 1.977E+05              | 1.318E-05              | 4.057E-03              |
| 2079         | 1.977E+05              | 1.254E-05              | 3.859E-03              |
| 2080         | 1.977E+05              | 1.193E-05              | 3.671E-03              |
| 2081         | 1.977E+05              | 1.135E-05              | 3.492E-03              |
| 2082         | 1.977E+05<br>1.977E+05 | 1.079E-05<br>1.027E-05 | 3.322E-03              |
| 2083         | 1.9//6+05              | 1.02/E-05              | 3.160E-03              |

Table D-15. Southern Parcel Benzene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 9.766E-06              | 3.006E-03              |
| 2085         | 1.977E+05              | 9.290E-06              | 2.859E-03              |
| 2086         | 1.977E+05              | 8.837E-06              | 2.720E-03              |
| 2087         | 1.977E+05              | 8.406E-06              | 2.587E-03              |
| 2088         | 1.977E+05              | 7.996E-06              | 2.461E-03              |
| 2089         | 1.977E+05              | 7.606E-06              | 2.341E-03              |
| 2090         | 1.977E+05              | 7.235E-06              | 2.227E-03              |
| 2091         | 1.977E+05              | 6.882E-06              | 2.118E-03              |
| 2092         | 1.977E+05              | 6.547E-06              | 2.015E-03              |
| 2093         | 1.977E+05              | 6.227E-06              | 1.917E-03              |
| 2094         | 1.977E+05              | 5.924E-06              | 1.823E-03              |
| 2095<br>2096 | 1.977E+05<br>1.977E+05 | 5.635E-06              | 1.734E-03<br>1.650E-03 |
| 2096         | 1.977E+05              | 5.360E-06<br>5.098E-06 | 1.569E-03              |
| 2098         | 1.977E+05              | 4.850E-06              | 1.493E-03              |
| 2099         | 1.977E+05              | 4.613E-06              | 1.420E-03              |
| 2100         | 1.977E+05              | 4.388E-06              | 1.351E-03              |
| 2101         | 1.977E+05              | 4.174E-06              | 1.285E-03              |
| 2102         | 1.977E+05              | 3.971E-06              | 1.222E-03              |
| 2103         | 1.977E+05              | 3.777E-06              | 1.162E-03              |
| 2104         | 1.977E+05              | 3.593E-06              | 1.106E-03              |
| 2105         | 1.977E+05              | 3.418E-06              | 1.052E-03              |
| 2106         | 1.977E+05              | 3.251E-06              | 1.001E-03              |
| 2107         | 1.977E+05              | 3.092E-06              | 9.517E-04              |
| 2108         | 1.977E+05              | 2.942E-06              | 9.053E-04              |
| 2109         | 1.977E+05              | 2.798E-06              | 8.612E-04              |
| 2110         | 1.977E+05              | 2.662E-06              | 8.192E-04              |
| 2111         | 1.977E+05              | 2.532E-06              | 7.792E-04              |
| 2112         | 1.977E+05              | 2.408E-06              | 7.412E-04              |
| 2113         | 1.977E+05              | 2.291E-06              | 7.051E-04              |
| 2114         | 1.977E+05              | 2.179E-06              | 6.707E-04              |
| 2115<br>2116 | 1.977E+05<br>1.977E+05 | 2.073E-06<br>1.972E-06 | 6.380E-04<br>6.068E-04 |
| 2117         | 1.977E+05              | 1.876E-06              | 5.772E-04              |
| 2118         | 1.977E+05              | 1.784E-06              | 5.491E-04              |
| 2119         | 1.977E+05              | 1.697E-06              | 5.223E-04              |
| 2120         | 1.977E+05              | 1.614E-06              | 4.968E-04              |
| 2121         | 1.977E+05              | 1.536E-06              | 4.726E-04              |
| 2122         | 1.977E+05              | 1.461E-06              | 4.496E-04              |
| 2123         | 1.977E+05              | 1.389E-06              | 4.276E-04              |
| 2124         | 1.977E+05              | 1.322E-06              | 4.068E-04              |
| 2125         | 1.977E+05              | 1.257E-06              | 3.869E-04              |
| 2126         | 1.977E+05              | 1.196E-06              | 3.681E-04              |
| 2127         | 1.977E+05              | 1.138E-06              | 3.501E-04              |
| 2128         | 1.977E+05              | 1.082E-06              | 3.330E-04              |
| 2129         | 1.977E+05              | 1.029E-06              | 3.168E-04              |
| 2130         | 1.977E+05              | 9.792E-07              | 3.014E-04              |
| 2131         | 1.977E+05              | 9.314E-07              | 2.867E-04              |
| 2132<br>2133 | 1.977E+05<br>1.977E+05 | 8.860E-07<br>8.428E-07 | 2.727E-04<br>2.594E-04 |
| 2134         | 1.977E+05              | 8.017E-07              | 2.467E-04              |
| 2135         | 1.977E+05              | 7.626E-07              | 2.347E-04              |
| 2136         | 1.977E+05              | 7.254E-07              | 2.232E-04              |
| 2137         | 1.977E+05              | 6.900E-07              | 2.124E-04              |
| 2138         | 1.977E+05              | 6.563E-07              | 2.020E-04              |
| 2139         | 1.977E+05              | 6.243E-07              | 1.921E-04              |
| 2140         | 1.977E+05              | 5.939E-07              | 1.828E-04              |
| 2141         | 1.977E+05              | 5.649E-07              | 1.739E-04              |
| 2142         | 1.977E+05              | 5.374E-07              | 1.654E-04              |
| 2143         | 1.977E+05              | 5.112E-07              | 1.573E-04              |
| 2144         | 1.977E+05              | 4.862E-07              | 1.496E-04              |
| 2145         | 1.977E+05              | 4.625E-07              | 1.423E-04              |
| 2146         | 1.977E+05              | 4.400E-07              | 1.354E-04              |
| 2147         | 1.977E+05              | 4.185E-07              | 1.288E-04              |
| 2148         | 1.977E+05              | 3.981E-07              | 1.225E-04              |
| 2149         | 1.977E+05<br>1.977E+05 | 3.787E-07<br>3.602E-07 | 1.165E-04<br>1.109E-04 |
| 2150<br>2151 | 1.977E+05<br>1.977E+05 | 3.426E-07              | 1.055E-04              |
| 2152         | 1.977E+05              | 3.426E-07              | 1.003E-04<br>1.003E-04 |
| 2153         | 1.977E+05              | 3.100E-07              | 9.542E-05              |
| 2154         | 1.977E+05              | 2.949E-07              | 9.076E-05              |
|              |                        |                        |                        |

Table D-15. Southern Parcel Benzene Emisson Rate from Year 1968 to 2203 (concluded).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2155         | 1.977E+05              | 2.805E-07              | 8.634E-05              |
| 2156         | 1.977E+05              | 2.669E-07              | 8.213E-05              |
| 2157         | 1.977E+05              | 2.538E-07              | 7.812E-05              |
| 2158         | 1.977E+05              | 2.415E-07              | 7.431E-05              |
| 2159         | 1.977E+05              | 2.413E-07<br>2.297E-07 | 7.069E-05              |
| 2160         | 1.977E+05              | 2.185E-07              | 6.724E-05              |
| 2160         | 1.977E+05              | 2.183E-07<br>2.078E-07 | 6.396E-05              |
| 2162         | 1.977E+05              | 1.977E-07              | 6.084E-05              |
| 2000         | 1.977E+05              | 1.880E-07              | 5.787E-05              |
| 2163<br>2164 | 1.977E+05<br>1.977E+05 | 1.880E-07<br>1.789E-07 | 5.787E-05<br>5.505E-05 |
|              | 1.977E+05              |                        | 5.237E-05              |
| 2165         |                        | 1.702E-07              |                        |
| 2166         | 1.977E+05              | 1.619E-07              | 4.981E-05              |
| 2167         | 1.977E+05              | 1.540E-07              | 4.738E-05              |
| 2168         | 1.977E+05              | 1.465E-07              | 4.507E-05              |
| 2169         | 1.977E+05              | 1.393E-07              | 4.287E-05              |
| 2170         | 1.977E+05              | 1.325E-07              | 4.078E-05              |
| 2171         | 1.977E+05              | 1.261E-07              | 3.879E-05              |
| 2172         | 1.977E+05              | 1.199E-07              | 3.690E-05              |
| 2173         | 1.977E+05              | 1.141E-07              | 3.510E-05              |
| 2174         | 1.977E+05              | 1.085E-07              | 3.339E-05              |
| 2175         | 1.977E+05              | 1.032E-07              | 3.176E-05              |
| 2176         | 1.977E+05              | 9.817E-08              | 3.021E-05              |
| 2177         | 1.977E+05              | 9.338E-08              | 2.874E-05              |
| 2178         | 1.977E+05              | 8.883E-08              | 2.734E-05              |
| 2179         | 1.977E+05              | 8.449E-08              | 2.600E-05              |
| 2180         | 1.977E+05              | 8.037E-08              | 2.474E-05              |
| 2181         | 1.977E+05              | 7.645E-08              | 2.353E-05              |
| 2182         | 1.977E+05              | 7.273E-08              | 2.238E-05              |
| 2183         | 1.977E+05              | 6.918E-08              | 2.129E-05              |
| 2184         | 1.977E+05              | 6.580E-08              | 2.025E-05              |
| 2185         | 1.977E+05              | 6.260E-08              | 1.926E-05              |
| 2186         | 1.977E+05              | 5.954E-08              | 1.833E-05              |
| 2187         | 1.977E+05              | 5.664E-08              | 1.743E-05              |
| 2188         | 1.977E+05              | 5.388E-08              | 1.658E-05              |
| 2189         | 1.977E+05              | 5.125E-08              | 1.577E-05              |
| 2190         | 1.977E+05              | 4.875E-08              | 1.500E-05              |
| 2191         | 1.977E+05              | 4.637E-08              | 1.427E-05              |
| 2192         | 1.977E+05              | 4.411E-08              | 1.358E-05              |
| 2193         | 1.977E+05              | 4.196E-08              | 1.291E-05              |
| 2194         | 1.977E+05              | 3.991E-08              | 1.228E-05              |
| 2195         | 1.977E+05              | 3.797E-08              | 1.168E-05              |
| 2196         | 1.977E+05              | 3.611E-08              | 1.111E-05              |
| 2197         | 1.977E+05              | 3.435E-08              | 1.057E-05              |
| 2198         | 1.977E+05              | 3.268E-08              | 1.006E-05              |
| 2199         | 1.977E+05              | 3.108E-08              | 9.567E-06              |
| 2200         | 1.977E+05              | 2.957E-08              | 9.100E-06              |
| 2201         | 1.977E+05              | 2.813E-08              | 8.656E-06              |
|              |                        |                        |                        |

Table D-16. Southern Parcel Chlorobenzene Emisson Rate from Year 1968 to 2203.

### Model Parameters

\_\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC: 2550.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 59.0000 % volume

Carbon Dioxide : 41.0000 % volume Air Pollutant : Chlorobenzene (HAP/VOC) Molecular Wt = 112.56 Concentration

Concentration = 0.720000 ppmV

#### Landfill Parameters

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 12238.07 Mg/year

| Model Results |   |
|---------------|---|
|               | - |

| Year | Refuse In Place (Mg) | Chlorobenzene<br>(Mg/yr) | (HAP/VOC) Emission Rate<br>(Cubic m/yr) |
|------|----------------------|--------------------------|-----------------------------------------|
|      |                      |                          |                                         |
| 1968 | 1.318E+04            | 6.400E-04                | 1.367E-01                               |
| 1969 | 2.636E+04            | 1.249E-03                | 2.668E-01                               |
| 1970 | 3.954E+04            | 1.828E-03                | 3.905E-01                               |
| 1971 | 5.272E+04            | 2.379E-03                | 5.081E-01                               |
| 1972 | 6.590E+04            | 2.903E-03                | 6.200E-01                               |
| 1973 | 7.908E+04            | 3.401E-03                | 7.265E-01                               |
| 1974 | 9.226E+04            | 3.875E-03                | 8.278E-01                               |
| 1975 | 1.054E+05            | 4.326E-03                | 9.241E-01                               |
| 1976 | 1.186E+05            | 4.755E-03                | 1.016E+00                               |
| 1977 | 1.318E+05            | 5.164E-03                | 1.103E+00                               |
| 1978 | 1.450E+05            | 5.552E-03                | 1.186E+00                               |
| 1979 | 1.582E+05            | 5.921E-03                | 1.265E+00                               |
| 1980 | 1.713E+05            | 6.272E-03                | 1.340E+00                               |
| 1981 | 1.845E+05            | 6.606E-03                | 1.411E+00                               |
| 1982 | 1.977E+05            | 6.924E-03                | 1.479E+00                               |
| 1983 | 1.977E+05            | 6.587E-03                | 1.407E+00                               |
| 1984 | 1.977E+05            | 6.265E-03                | 1.338E+00                               |
| 1985 | 1.977E+05            | 5.960E-03                | 1.273E+00                               |
| 1986 | 1.977E+05            | 5.669E-03                | 1.211E+00                               |
| 1987 | 1.977E+05            | 5.393E-03                | 1.152E+00                               |
| 1988 | 1.977E+05            | 5.130E-03                | 1.096E+00                               |
| 1989 | 1.977E+05            | 4.879E-03                | 1.042E+00                               |
| 1990 | 1.977E+05            | 4.641E-03                | 9.914E-01                               |
| 1991 | 1.977E+05            | 4.415E-03                | 9.431E-01                               |
| 1992 | 1.977E+05            | 4.200E-03                | 8.971E-01                               |
| 1993 | 1.977E+05            | 3.995E-03                | 8.533E-01                               |
| 1994 | 1.977E+05            | 3.800E-03                | 8.117E-01                               |
| 1995 | 1.977E+05            | 3.615E-03                | 7.721E-01                               |
| 1996 | 1.977E+05            | 3.438E-03                | 7.345E-01                               |
| 1997 | 1.977E+05            | 3.271E-03                | 6.986E-01                               |
| 1998 | 1.977E+05            | 3.111E-03                | 6.646E-01                               |
| 1999 | 1.977E+05            | 2.960E-03                | 6.322E-01                               |
| 2000 | 1.977E+05            | 2.815E-03                | 6.013E-01                               |
| 2001 | 1.977E+05            | 2.678E-03                | 5.720E-01                               |
| 2002 | 1.977E+05            | 2.547E-03                | 5.441E-01                               |
| 2003 | 1.977E+05            | 2.423E-03                | 5.176E-01                               |
| 2004 | 1.977E+05            | 2.305E-03                | 4.923E-01                               |
| 2005 | 1.977E+05            | 2.192E-03                | 4.683E-01                               |
| 2006 | 1.977E+05            | 2.086E-03                | 4.455E-01                               |
| 2007 | 1.977E+05            | 1.984E-03                | 4.237E-01                               |
| 2008 | 1.977E+05            | 1.887E-03                | 4.031E-01                               |
| 2009 | 1.977E+05            | 1.795E-03                | 3.834E-01                               |
| 2010 | 1.977E+05            | 1.708E-03                | 3.647E-01                               |
| 2011 | 1.977E+05            | 1.624E-03                | 3.469E-01                               |
| 2012 | 1.977E+05            | 1.545E-03                | 3.300E-01                               |

Table D-16. Southern Parcel Chlorobenzene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 1.470E-03              | 3.139E-01              |
| 2014         | 1.977E+05              | 1.398E-03              | 2.986E-01              |
| 2015         | 1.977E+05              | 1.330E-03              | 2.840E-01              |
| 2016         | 1.977E+05              | 1.265E-03              | 2.702E-01              |
| 2017         | 1.977E+05              | 1.203E-03              | 2.570E-01              |
| 2018         | 1.977E+05              | 1.145E-03              | 2.445E-01              |
| 2019         | 1.977E+05              | 1.089E-03              | 2.326E-01              |
| 2020         | 1.977E+05<br>1.977E+05 | 1.036E-03              | 2.212E-01<br>2.104E-01 |
| 2021<br>2022 | 1.977E+05              | 9.851E-04<br>9.371E-04 | 2.104E-01<br>2.002E-01 |
| 2023         | 1.977E+05              | 8.914E-04              | 1.904E-01              |
| 2024         | 1.977E+05              | 8.479E-04              | 1.811E-01              |
| 2025         | 1.977E+05              | 8.066E-04              | 1.723E-01              |
| 2026         | 1.977E+05              | 7.672E-04              | 1.639E-01              |
| 2027         | 1.977E+05              | 7.298E-04              | 1.559E-01              |
| 2028         | 1.977E+05              | 6.942E-04              | 1.483E-01              |
| 2029         | 1.977E+05              | 6.604E-04              | 1.411E-01              |
| 2030         | 1.977E+05              | 6.282E-04              | 1.342E-01              |
| 2031         | 1.977E+05              | 5.975E-04              | 1.276E-01              |
| 2032<br>2033 | 1.977E+05<br>1.977E+05 | 5.684E-04<br>5.407E-04 | 1.214E-01<br>1.155E-01 |
| 2033         | 1.977E+05<br>1.977E+05 | 5.143E-04              | 1.099E-01              |
| 2035         | 1.977E+05              | 4.892E-04              | 1.045E-01              |
| 2036         | 1.977E+05              | 4.653E-04              | 9.940E-02              |
| 2037         | 1.977E+05              | 4.427E-04              | 9.455E-02              |
| 2038         | 1.977E+05              | 4.211E-04              | 8.994E-02              |
| 2039         | 1.977E+05              | 4.005E-04              | 8.555E-02              |
| 2040         | 1.977E+05              | 3.810E-04              | 8.138E-02              |
| 2041         | 1.977E+05              | 3.624E-04              | 7.741E-02              |
| 2042         | 1.977E+05              | 3.447E-04              | 7.364E-02              |
| 2043         | 1.977E+05<br>1.977E+05 | 3.279E-04<br>3.119E-04 | 7.004E-02<br>6.663E-02 |
| 2045         | 1.977E+05              | 2.967E-04              | 6.338E-02              |
| 2046         | 1.977E+05              | 2.822E-04              | 6.029E-02              |
| 2047         | 1.977E+05              | 2.685E-04              | 5.735E-02              |
| 2048         | 1.977E+05              | 2.554E-04              | 5.455E-02              |
| 2049         | 1.977E+05              | 2.429E-04              | 5.189E-02              |
| 2050         | 1.977E+05              | 2.311E-04              | 4.936E-02              |
| 2051         | 1.977E+05              | 2.198E-04              | 4.695E-02              |
| 2052<br>2053 | 1.977E+05<br>1.977E+05 | 2.091E-04<br>1.989E-04 | 4.466E-02<br>4.248E-02 |
| 2054         | 1.977E+05              | 1.892E-04              | 4.041E-02              |
| 2055         | 1.977E+05              | 1.800E-04              | 3.844E-02              |
| 2056         | 1.977E+05              | 1.712E-04              | 3.657E-02              |
| 2057         | 1.977E+05              | 1.628E-04              | 3.478E-02              |
| 2058         | 1.977E+05              | 1.549E-04              | 3.309E-02              |
| 2059         | 1.977E+05              | 1.473E-04              | 3.147E-02              |
| 2060         | 1.977E+05              | 1.402E-04              | 2.994E-02              |
| 2061         | 1.977E+05<br>1.977E+05 | 1.333E-04              | 2.848E-02              |
| 2062<br>2063 | 1.977E+05              | 1.268E-04<br>1.206E-04 | 2.709E-02<br>2.577E-02 |
| 2064         | 1.977E+05              | 1.148E-04              | 2.451E-02              |
| 2065         | 1.977E+05              | 1.092E-04              | 2.332E-02              |
| 2066         | 1.977E+05              | 1.038E-04              | 2.218E-02              |
| 2067         | 1.977E+05              | 9.877E-05              | 2.110E-02              |
| 2068         | 1.977E+05              | 9.395E-05              | 2.007E-02              |
| 2069         | 1.977E+05              | 8.937E-05              | 1.909E-02              |
| 2070         | 1.977E+05              | 8.501E-05              | 1.816E-02              |
| 2071<br>2072 | 1.977E+05<br>1.977E+05 | 8.087E-05<br>7.692E-05 | 1.727E-02<br>1.643E-02 |
| 2073         | 1.977E+05              | 7.317E-05              | 1.563E-02              |
| 2074         | 1.977E+05              | 6.960E-05              | 1.487E-02              |
| 2075         | 1.977E+05              | 6.621E-05              | 1.414E-02              |
| 2076         | 1.977E+05              | 6.298E-05              | 1.345E-02              |
| 2077         | 1.977E+05              | 5.991E-05              | 1.280E-02              |
| 2078         | 1.977E+05              | 5.698E-05              | 1.217E-02              |
| 2079         | 1.977E+05              | 5.421E-05              | 1.158E-02              |
| 2080         | 1.977E+05              | 5.156E-05              | 1.101E-02              |
| 2081<br>2082 | 1.977E+05<br>1.977E+05 | 4.905E-05<br>4.666E-05 | 1.048E-02<br>9.966E-03 |
| 2083         | 1.977E+05              | 4.438E-05              | 9.479E-03              |
|              |                        |                        |                        |

Table D-16. Southern Parcel Chlorobenzene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 4.222E-05              | 9.017E-03              |
| 2085         | 1.977E+05              | 4.016E-05              | 8.577E-03              |
| 2086         | 1.977E+05              | 3.820E-05              | 8.159E-03              |
| 2087         | 1.977E+05              | 3.634E-05              | 7.761E-03              |
| 2088         | 1.977E+05              | 3.456E-05              | 7.383E-03              |
| 2089         | 1.977E+05              | 3.288E-05              | 7.023E-03              |
| 2090<br>2091 | 1.977E+05<br>1.977E+05 | 3.127E-05<br>2.975E-05 | 6.680E-03<br>6.354E-03 |
| 2091         | 1.977E+05              | 2.830E-05              | 6.044E-03              |
| 2093         | 1.977E+05              | 2.692E-05              | 5.750E-03              |
| 2094         | 1.977E+05              | 2.560E-05              | 5.469E-03              |
| 2095         | 1.977E+05              | 2.436E-05              | 5.202E-03              |
| 2096         | 1.977E+05              | 2.317E-05              | 4.949E-03              |
| 2097         | 1.977E+05              | 2.204E-05              | 4.707E-03              |
| 2098         | 1.977E+05              | 2.096E-05              | 4.478E-03              |
| 2099         | 1.977E+05              | 1.994E-05              | 4.259E-03              |
| 2100         | 1.977E+05              | 1.897E-05              | 4.052E-03              |
| 2101<br>2102 | 1.977E+05<br>1.977E+05 | 1.804E-05<br>1.716E-05 | 3.854E-03<br>3.666E-03 |
| 2102         | 1.977E+05              | 1.633E-05              | 3.487E-03              |
| 2103         | 1.977E+05              | 1.553E-05              | 3.317E-03              |
| 2105         | 1.977E+05              | 1.477E-05              | 3.155E-03              |
| 2106         | 1.977E+05              | 1.405E-05              | 3.002E-03              |
| 2107         | 1.977E+05              | 1.337E-05              | 2.855E-03              |
| 2108         | 1.977E+05              | 1.272E-05              | 2.716E-03              |
| 2109         | 1.977E+05              | 1.209E-05              | 2.583E-03              |
| 2110         | 1.977E+05              | 1.151E-05              | 2.457E-03              |
| 2111         | 1.977E+05              | 1.094E-05              | 2.338E-03              |
| 2112         | 1.977E+05              | 1.041E-05              | 2.224E-03              |
| 2113         | 1.977E+05              | 9.903E-06              | 2.115E-03              |
| 2114<br>2115 | 1.977E+05<br>1.977E+05 | 9.420E-06<br>8.960E-06 | 2.012E-03<br>1.914E-03 |
| 2116         | 1.977E+05              | 8.523E-06              | 1.821E-03              |
| 2117         | 1.977E+05              | 8.107E-06              | 1.732E-03              |
| 2118         | 1.977E+05              | 7.712E-06              | 1.647E-03              |
| 2119         | 1.977E+05              | 7.336E-06              | 1.567E-03              |
| 2120         | 1.977E+05              | 6.978E-06              | 1.491E-03              |
| 2121         | 1.977E+05              | 6.638E-06              | 1.418E-03              |
| 2122         | 1.977E+05              | 6.314E-06              | 1.349E-03              |
| 2123         | 1.977E+05              | 6.006E-06              | 1.283E-03              |
| 2124<br>2125 | 1.977E+05<br>1.977E+05 | 5.713E-06<br>5.435E-06 | 1.220E-03<br>1.161E-03 |
| 2125         | 1.977E+05              | 5.170E-06              | 1.104E-03              |
| 2127         | 1.977E+05              | 4.917E-06              | 1.050E-03              |
| 2128         | 1.977E+05              | 4.678E-06              | 9.991E-04              |
| 2129         | 1.977E+05              | 4.449E-06              | 9.504E-04              |
| 2130         | 1.977E+05              | 4.232E-06              | 9.041E-04              |
| 2131         | 1.977E+05              | 4.026E-06              | 8.600E-04              |
| 2132         | 1.977E+05              | 3.830E-06              | 8.180E-04              |
| 2133         | 1.977E+05              | 3.643E-06              | 7.781E-04              |
| 2134         | 1.977E+05              | 3.465E-06              | 7.402E-04              |
| 2135<br>2136 | 1.977E+05<br>1.977E+05 | 3.296E-06<br>3.135E-06 | 7.041E-04<br>6.697E-04 |
| 2137         | 1.977E+05              | 2.983E-06              | 6.371E-04              |
| 2138         | 1.977E+05              | 2.837E-06              | 6.060E-04              |
| 2139         | 1.977E+05              | 2.699E-06              | 5.764E-04              |
| 2140         | 1.977E+05              | 2.567E-06              | 5.483E-04              |
| 2141         | 1.977E+05              | 2.442E-06              | 5.216E-04              |
| 2142         | 1.977E+05              | 2.323E-06              | 4.962E-04              |
| 2143         | 1.977E+05              | 2.210E-06              | 4.720E-04              |
| 2144         | 1.977E+05              | 2.102E-06              | 4.489E-04              |
| 2145         | 1.977E+05              | 1.999E-06              | 4.270E-04              |
| 2146<br>2147 | 1.977E+05<br>1.977E+05 | 1.902E-06<br>1.809E-06 | 4.062E-04<br>3.864E-04 |
| 2147         | 1.977E+05              | 1.721E-06              | 3.676E-04              |
| 2149         | 1.977E+05              | 1.637E-06              | 3.496E-04              |
| 2150         | 1.977E+05              | 1.557E-06              | 3.326E-04              |
| 2151         | 1.977E+05              | 1.481E-06              | 3.164E-04              |
| 2152         | 1.977E+05              | 1.409E-06              | 3.009E-04              |
| 2153         | 1.977E+05              | 1.340E-06              | 2.863E-04              |
| 2154         | 1.977E+05              | 1.275E-06              | 2.723E-04              |
|              |                        |                        |                        |

Table D-16. Southern Parcel Chlorobenzene Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)                | (Cubic m/yr)           |
|------|----------------------|------------------------|------------------------|
| 2155 | 1.977E+05            | 1.213E-06              | 2.590E-04              |
| 2156 | 1.977E+05            | 1.153E-06              | 2.464E-04              |
| 2157 | 1.977E+05            | 1.097E-06              | 2.344E-04              |
| 2158 | 1.977E+05            | 1.044E-06              | 2.229E-04              |
| 2159 | 1.977E+05            | 9.928E-07              | 2.121E-04              |
| 2160 | 1.977E+05            | 9.444E-07              | 2.017E-04              |
| 2161 | 1.977E+05            | 8.983E-07              | 1.919E-04              |
| 2162 | 1.977E+05            | 8.545E-07              | 1.825E-04              |
| 2163 | 1.977E+05            | 8.128E-07              | 1.736E-04              |
| 2164 | 1.977E+05            | 7.732E-07              | 1.652E-04              |
| 2165 | 1.977E+05            | 7.355E-07              | 1.571E-04              |
| 2166 | 1.977E+05            | 6.996E-07              | 1.494E-04              |
| 2167 | 1.977E+05            | 6.655E-07              | 1.422E-04              |
| 2168 | 1.977E+05            | 6.330E-07              | 1.352E-04              |
| 2169 | 1.977E+05            | 6.022E-07              | 1.286E-04              |
| 2170 | 1.977E+05            | 5.728E-07              | 1.223E-04              |
| 2171 | 1.977E+05            | 5.449E-07              | 1.164E-04              |
| 2172 | 1.977E+05            | 5.183E-07              | 1.107E-04              |
| 2173 | 1.977E+05            | 4.930E-07              | 1.053E-04              |
| 2173 | 1.977E+05            | 4.690E-07              | 1.003E-04<br>1.002E-04 |
| 2175 | 1.977E+05            | 4.690E-07<br>4.461E-07 | 9.529E-05              |
| 2176 | 1.977E+05            | 4.461E-07<br>4.243E-07 | 9.064E-05              |
| 2177 | 1.977E+05            | 4.243E-07<br>4.036E-07 | 8.622E-05              |
| 2178 | 1.977E+05            |                        | 8.201E-05              |
| 2178 | 1.977E+05            | 3.840E-07              | 7.801E-05              |
| 21/9 | 1.977E+05            | 3.652E-07              | 7.421E-05              |
|      |                      | 3.474E-07              |                        |
| 2181 | 1.977E+05            | 3.305E-07              | 7.059E-05              |
| 2182 | 1.977E+05            | 3.144E-07              | 6.715E-05              |
| 2183 | 1.977E+05            | 2.990E-07              | 6.387E-05              |
| 2184 | 1.977E+05            | 2.844E-07              | 6.076E-05              |
| 2185 | 1.977E+05            | 2.706E-07              | 5.779E-05              |
| 2186 | 1.977E+05            | 2.574E-07              | 5.498E-05              |
| 2187 | 1.977E+05            | 2.448E-07              | 5.229E-05              |
| 2188 | 1.977E+05            | 2.329E-07              | 4.974E-05              |
| 2189 | 1.977E+05            | 2.215E-07              | 4.732E-05              |
| 2190 | 1.977E+05            | 2.107E-07              | 4.501E-05              |
| 2191 | 1.977E+05            | 2.004E-07              | 4.281E-05              |
| 2192 | 1.977E+05            | 1.907E-07              | 4.073E-05              |
| 2193 | 1.977E+05            | 1.814E-07              | 3.874E-05              |
| 2194 | 1.977E+05            | 1.725E-07              | 3.685E-05              |
| 2195 | 1.977E+05            | 1.641E-07              | 3.505E-05              |
| 2196 | 1.977E+05            | 1.561E-07              | 3.334E-05              |
| 2197 | 1.977E+05            | 1.485E-07              | 3.172E-05              |
| 2198 | 1.977E+05            | 1.413E-07              | 3.017E-05              |
| 2199 | 1.977E+05            | 1.344E-07              | 2.870E-05              |
| 2200 | 1.977E+05            | 1.278E-07              | 2.730E-05              |
| 2201 | 1.977E+05            | 1.216E-07              | 2.597E-05              |
|      |                      |                        |                        |

Table D-17. Southern Parcel Chloroethane Emisson Rate from Year 1968 to 2203.

#### Model Parameters

\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC : 2550.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 59.0000 % volume

Carbon Dioxide : 41.0000 % volume Air Pollutant : Chloroethane (HAP/VOC)

Molecular Wt = 64.52 Concentration = 0.320000 ppmV

# Landfill Parameters

\_\_\_\_\_\_

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 12238.07 Mg/year

\_\_\_\_\_\_

| 17           | Refuse In Place (Mg)   |                        | (HAP/VOC) Emission Rate |
|--------------|------------------------|------------------------|-------------------------|
| Year         | Refuse in Flace (Mg)   | (Mg/yr)                | (Cubic m/yr)            |
| 1968         | 1.318E+04              | 1.631E-04              | 6.076E-02               |
| 1969         | 2.636E+04              | 3.182E-04              | 1.186E-01               |
| 1970         | 3.954E+04              | 4.657E-04              | 1.735E-01               |
| 1971         | 5.272E+04              | 6.060E-04              | 2.258E-01               |
| 1972         | 6.590E+04              | 7.395E-04              | 2.756E-01               |
| 1973         | 7.908E+04              | 8.665E-04              | 3.229E-01               |
| 1974         | 9.226E+04              | 9.873E-04              | 3.679E-01               |
| 1975         | 1.054E+05              | 1.102E-03              | 4.107E-01               |
| 1976         | 1.186E+05              | 1.212E-03              | 4.515E-01               |
| 1977         | 1.318E+05              | 1.315E-03              | 4.902E-01               |
| 1978         | 1.450E+05              | 1.414E-03              | 5.270E-01               |
| 1979         | 1.582E+05              | 1.508E-03              | 5.621E-01               |
| 1980         | 1.713E+05              | 1.508E-03              | 5.954E-01               |
| 1981         | 1.845E+05              | 1.683E-03              | 6.272E-01               |
| 1982         | 1.977E+05              | 1.764E-03              | 6.573E-01               |
| 1983         | 1.977E+05              | 1.678E-03              | 6.253E-01               |
| 1984         | 1.977E+05              | 1.596E-03              | 5.948E-01               |
| 1985         | 1.977E+05              | 1.518E-03              | 5.658E-01               |
| 1986         |                        |                        |                         |
| 1987         | 1.977E+05<br>1.977E+05 | 1.444E-03<br>1.374E-03 | 5.382E-01<br>5.119E-01  |
|              |                        |                        |                         |
| 1988<br>1989 | 1.977E+05<br>1.977E+05 | 1.307E-03<br>1.243E-03 | 4.870E-01<br>4.632E-01  |
| 1990         | 1.977E+05              | 1.243E-03<br>1.182E-03 | 4.406E-01               |
| 1990         | 1.977E+05              | 1.182E-03<br>1.125E-03 | 4.406E-01<br>4.191E-01  |
|              |                        |                        |                         |
| 1992<br>1993 | 1.977E+05<br>1.977E+05 | 1.070E-03<br>1.018E-03 | 3.987E-01<br>3.793E-01  |
| 1993         | 1.977E+05              | 9.681E-04              | 3.608E-01               |
|              | 1.977E+05              | 9.681E-04<br>9.209E-04 | 3.432E-01               |
| 1995         |                        |                        |                         |
| 1996         | 1.977E+05              | 8.760E-04              | 3.264E-01               |
| 1997<br>1998 | 1.977E+05              | 8.333E-04              | 3.105E-01<br>2.954E-01  |
| 1998         | 1.977E+05<br>1.977E+05 | 7.926E-04              | 2.954E-01<br>2.810E-01  |
| 2000         |                        | 7.540E-04              |                         |
|              | 1.977E+05              | 7.172E-04              | 2.673E-01               |
| 2001<br>2002 | 1.977E+05<br>1.977E+05 | 6.822E-04              | 2.542E-01               |
|              |                        | 6.489E-04              | 2.418E-01               |
| 2003         | 1.977E+05              | 6.173E-04              | 2.300E-01               |
| 2004         | 1.977E+05              | 5.872E-04              | 2.188E-01               |
| 2005<br>2006 | 1.977E+05              | 5.586E-04              | 2.081E-01               |
| 2006         | 1.977E+05              | 5.313E-04              | 1.980E-01               |
| 2007         | 1.977E+05              | 5.054E-04              | 1.883E-01               |
|              | 1.977E+05              | 4.807E-04              | 1.791E-01               |
| 2009         | 1.977E+05              | 4.573E-04              | 1.704E-01               |
| 2010         | 1.977E+05              | 4.350E-04              | 1.621E-01               |
| 2011         | 1.977E+05              | 4.138E-04              | 1.542E-01               |
| 2012         | 1.977E+05              | 3.936E-04              | 1.467E-01               |

Table D-17. Southern Parcel Chloroethane Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 3.744E-04              | 1.395E-01              |
| 2014         | 1.977E+05              | 3.561E-04              | 1.327E-01              |
| 2015         | 1.977E+05              | 3.388E-04              | 1.262E-01              |
| 2016         | 1.977E+05              | 3.223E-04              | 1.201E-01              |
| 2017         | 1.977E+05              | 3.065E-04              | 1.142E-01              |
| 2018<br>2019 | 1.977E+05<br>1.977E+05 | 2.916E-04<br>2.774E-04 | 1.087E-01<br>1.034E-01 |
| 2020         | 1.977E+05              | 2.638E-04              | 9.832E-02              |
| 2021         | 1.977E+05              | 2.510E-04              | 9.352E-02              |
| 2022         | 1.977E+05              | 2.387E-04              | 8.896E-02              |
| 2023         | 1.977E+05              | 2.271E-04              | 8.462E-02              |
| 2024         | 1.977E+05              | 2.160E-04              | 8.050E-02              |
| 2025         | 1.977E+05              | 2.055E-04              | 7.657E-02              |
| 2026         | 1.977E+05              | 1.955E-04              | 7.284E-02              |
| 2027         | 1.977E+05              | 1.859E-04              | 6.928E-02              |
| 2028         | 1.977E+05              | 1.769E-04              | 6.590E-02              |
| 2029         | 1.977E+05              | 1.682E-04              | 6.269E-02              |
| 2030<br>2031 | 1.977E+05<br>1.977E+05 | 1.600E-04<br>1.522E-04 | 5.963E-02<br>5.672E-02 |
| 2031         | 1.977E+05              | 1.448E-04              | 5.396E-02              |
| 2032         | 1.977E+05              | 1.377E-04              | 5.133E-02              |
| 2034         | 1.977E+05              | 1.310E-04              | 4.882E-02              |
| 2035         | 1.977E+05              | 1.246E-04              | 4.644E-02              |
| 2036         | 1.977E+05              | 1.186E-04              | 4.418E-02              |
| 2037         | 1.977E+05              | 1.128E-04              | 4.202E-02              |
| 2038         | 1.977E+05              | 1.073E-04              | 3.997E-02              |
| 2039         | 1.977E+05              | 1.020E-04              | 3.802E-02              |
| 2040         | 1.977E+05              | 9.706E-05              | 3.617E-02              |
| 2041         | 1.977E+05              | 9.233E-05              | 3.440E-02              |
| 2042         | 1.977E+05<br>1.977E+05 | 8.782E-05<br>8.354E-05 | 3.273E-02<br>3.113E-02 |
| 2043         | 1.977E+05              | 7.947E-05              | 2.961E-02              |
| 2045         | 1.977E+05              | 7.559E-05              | 2.817E-02              |
| 2046         | 1.977E+05              | 7.191E-05              | 2.679E-02              |
| 2047         | 1.977E+05              | 6.840E-05              | 2.549E-02              |
| 2048         | 1.977E+05              | 6.506E-05              | 2.424E-02              |
| 2049         | 1.977E+05              | 6.189E-05              | 2.306E-02              |
| 2050         | 1.977E+05              | 5.887E-05              | 2.194E-02              |
| 2051         | 1.977E+05              | 5.600E-05              | 2.087E-02              |
| 2052<br>2053 | 1.977E+05<br>1.977E+05 | 5.327E-05<br>5.067E-05 | 1.985E-02<br>1.888E-02 |
| 2054         | 1.977E+05              | 4.820E-05              | 1.796E-02              |
| 2055         | 1.977E+05              | 4.585E-05              | 1.708E-02              |
| 2056         | 1.977E+05              | 4.361E-05              | 1.625E-02              |
| 2057         | 1.977E+05              | 4.149E-05              | 1.546E-02              |
| 2058         | 1.977E+05              | 3.946E-05              | 1.471E-02              |
| 2059         | 1.977E+05              | 3.754E-05              | 1.399E-02              |
| 2060         | 1.977E+05              | 3.571E-05              | 1.331E-02              |
| 2061         | 1.977E+05              | 3.397E-05              | 1.266E-02              |
| 2062         | 1.977E+05              | 3.231E-05              | 1.204E-02              |
| 2063<br>2064 | 1.977E+05<br>1.977E+05 | 3.073E-05<br>2.923E-05 | 1.145E-02<br>1.089E-02 |
| 2065         | 1.977E+05              | 2.781E-05              | 1.036E-02              |
| 2066         | 1.977E+05              | 2.645E-05              | 9.857E-03              |
| 2067         | 1.977E+05              | 2.516E-05              | 9.376E-03              |
| 2068         | 1.977E+05              | 2.394E-05              | 8.919E-03              |
| 2069         | 1.977E+05              | 2.277E-05              | 8.484E-03              |
| 2070         | 1.977E+05              | 2.166E-05              | 8.070E-03              |
| 2071         | 1.977E+05              | 2.060E-05              | 7.677E-03              |
| 2072         | 1.977E+05              | 1.960E-05              | 7.302E-03              |
| 2073         | 1.977E+05              | 1.864E-05              | 6.946E-03              |
| 2074         | 1.977E+05<br>1.977E+05 | 1.773E-05              | 6.607E-03              |
| 2075<br>2076 | 1.977E+05<br>1.977E+05 | 1.687E-05<br>1.604E-05 | 6.285E-03<br>5.979E-03 |
| 2077         | 1.977E+05              | 1.526E-05              | 5.687E-03              |
| 2078         | 1.977E+05              | 1.452E-05              | 5.410E-03              |
| 2079         | 1.977E+05              | 1.381E-05              | 5.146E-03              |
| 2080         | 1.977E+05              | 1.314E-05              | 4.895E-03              |
| 2081         | 1.977E+05              | 1.250E-05              | 4.656E-03              |
| 2082         | 1.977E+05              | 1.189E-05              | 4.429E-03              |
| 2083         | 1.977E+05              | 1.131E-05              | 4.213E-03              |
|              |                        |                        |                        |

Table D-17. Southern Parcel Chloroethane Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 1.075E-05              | 4.008E-03              |
| 2085         | 1.977E+05              | 1.023E-05              | 3.812E-03              |
| 2086         | 1.977E+05              | 9.731E-06              | 3.626E-03              |
| 2087         | 1.977E+05              | 9.257E-06              | 3.449E-03              |
| 2088         | 1.977E+05              | 8.805E-06              | 3.281E-03              |
| 2089         | 1.977E+05              | 8.376E-06              | 3.121E-03              |
| 2090         | 1.977E+05              | 7.967E-06              | 2.969E-03              |
| 2091         | 1.977E+05              | 7.579E-06              | 2.824E-03              |
| 2092         | 1.977E+05              | 7.209E-06              | 2.686E-03              |
| 2093         | 1.977E+05              | 6.858E-06              | 2.555E-03              |
| 2094         | 1.977E+05              | 6.523E-06              | 2.431E-03              |
| 2095<br>2096 | 1.977E+05<br>1.977E+05 | 6.205E-06<br>5.902E-06 | 2.312E-03<br>2.199E-03 |
| 2097         | 1.977E+05              | 5.614E-06              | 2.092E-03              |
| 2098         | 1.977E+05              | 5.341E-06              | 1.990E-03              |
| 2099         | 1.977E+05              | 5.080E-06              | 1.893E-03              |
| 2100         | 1.977E+05              | 4.832E-06              | 1.801E-03              |
| 2101         | 1.977E+05              | 4.597E-06              | 1.713E-03              |
| 2102         | 1.977E+05              | 4.373E-06              | 1.629E-03              |
| 2103         | 1.977E+05              | 4.159E-06              | 1.550E-03              |
| 2104         | 1.977E+05              | 3.956E-06              | 1.474E-03              |
| 2105         | 1.977E+05              | 3.763E-06              | 1.402E-03              |
| 2106         | 1.977E+05              | 3.580E-06              | 1.334E-03              |
| 2107         | 1.977E+05              | 3.405E-06              | 1.269E-03              |
| 2108         | 1.977E+05              | 3.239E-06              | 1.207E-03              |
| 2109         | 1.977E+05              | 3.081E-06              | 1.148E-03              |
| 2110         | 1.977E+05              | 2.931E-06              | 1.092E-03              |
| 2111         | 1.977E+05              | 2.788E-06              | 1.039E-03              |
| 2112         | 1.977E+05<br>1.977E+05 | 2.652E-06              | 9.883E-04              |
| 2113<br>2114 | 1.977E+05<br>1.977E+05 | 2.523E-06<br>2.400E-06 | 9.401E-04<br>8.942E-04 |
| 2114         | 1.977E+05              | 2.283E-06              | 8.506E-04              |
| 2116         | 1.977E+05              | 2.171E-06              | 8.091E-04              |
| 2117         | 1.977E+05              | 2.065E-06              | 7.697E-04              |
| 2118         | 1.977E+05              | 1.965E-06              | 7.321E-04              |
| 2119         | 1.977E+05              | 1.869E-06              | 6.964E-04              |
| 2120         | 1.977E+05              | 1.778E-06              | 6.625E-04              |
| 2121         | 1.977E+05              | 1.691E-06              | 6.301E-04              |
| 2122         | 1.977E+05              | 1.609E-06              | 5.994E-04              |
| 2123         | 1.977E+05              | 1.530E-06              | 5.702E-04              |
| 2124         | 1.977E+05              | 1.455E-06              | 5.424E-04              |
| 2125         | 1.977E+05              | 1.385E-06              | 5.159E-04              |
| 2126         | 1.977E+05              | 1.317E-06              | 4.908E-04              |
| 2127         | 1.977E+05              | 1.253E-06              | 4.668E-04              |
| 2128         | 1.977E+05<br>1.977E+05 | 1.192E-06              | 4.441E-04              |
| 2129<br>2130 | 1.977E+05<br>1.977E+05 | 1.134E-06<br>1.078E-06 | 4.224E-04<br>4.018E-04 |
| 2131         | 1.977E+05              | 1.026E-06              | 3.822E-04              |
| 2132         | 1.977E+05              | 9.756E-07              | 3.636E-04              |
| 2133         | 1.977E+05              | 9.281E-07              | 3.458E-04              |
| 2134         | 1.977E+05              | 8.828E-07              | 3.290E-04              |
| 2135         | 1.977E+05              | 8.397E-07              | 3.129E-04              |
| 2136         | 1.977E+05              | 7.988E-07              | 2.977E-04              |
| 2137         | 1.977E+05              | 7.598E-07              | 2.831E-04              |
| 2138         | 1.977E+05              | 7.228E-07              | 2.693E-04              |
| 2139         | 1.977E+05              | 6.875E-07              | 2.562E-04              |
| 2140         | 1.977E+05              | 6.540E-07              | 2.437E-04              |
| 2141         | 1.977E+05              | 6.221E-07              | 2.318E-04              |
| 2142         | 1.977E+05              | 5.918E-07              | 2.205E-04              |
| 2143         | 1.977E+05              | 5.629E-07              | 2.098E-04              |
| 2144         | 1.977E+05              | 5.354E-07              | 1.995E-04              |
| 2145         | 1.977E+05<br>1.977E+05 | 5.093E-07<br>4.845E-07 | 1.898E-04<br>1.805E-04 |
| 2146<br>2147 | 1.977E+05<br>1.977E+05 | 4.845E-07<br>4.609E-07 | 1.717E-04              |
| 2148         | 1.977E+05              | 4.809E-07              | 1.634E-04              |
| 2149         | 1.977E+05              | 4.170E-07              | 1.554E-04              |
| 2150         | 1.977E+05              | 3.967E-07              | 1.478E-04              |
| 2151         | 1.977E+05              | 3.773E-07              | 1.406E-04              |
| 2152         | 1.977E+05              | 3.589E-07              | 1.337E-04              |
| 2153         | 1.977E+05              | 3.414E-07              | 1.272E-04              |
| 2154         | 1.977E+05              | 3.248E-07              | 1.210E-04              |
|              |                        |                        |                        |

Table D-17. Southern Parcel Chloroethane Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)   | (Cubic m/yr)           |
|------|----------------------|-----------|------------------------|
| 2155 | 1.977E+05            | 3.089E-07 | 1.151E-04              |
| 2156 | 1.977E+05            | 2.939E-07 | 1.095E-04              |
| 2157 | 1.977E+05            | 2.795E-07 | 1.042E-04              |
| 2158 | 1.977E+05            | 2.659E-07 | 9.908E-05              |
| 2159 | 1.977E+05            | 2.529E-07 | 9.425E-05              |
| 2160 | 1.977E+05            | 2.406E-07 | 8.965E-05              |
| 2161 | 1.977E+05            | 2.289E-07 | 8.528E-05              |
| 2162 | 1.977E+05            | 2.177E-07 | 8.112E-05              |
| 2163 | 1.977E+05            | 2.071E-07 | 7.717E-05              |
| 2164 | 1.977E+05            | 1.970E-07 | 7.340E-05              |
| 2165 | 1.977E+05            | 1.874E-07 | 6.982E-05              |
| 2166 | 1.977E+05            | 1.782E-07 | 6.642E-05              |
| 2167 | 1.977E+05            | 1.695E-07 | 6.318E-05              |
| 2168 | 1.977E+05            | 1.613E-07 | 6.010E-05              |
| 2169 | 1.977E+05            | 1.534E-07 | 5.717E-05              |
| 2170 | 1.977E+05            | 1.459E-07 | 5.438E-05              |
| 2170 | 1.977E+05            | 1.459E-07 | 5.438E-05<br>5.173E-05 |
|      |                      |           |                        |
| 2172 | 1.977E+05            | 1.320E-07 | 4.920E-05              |
| 2173 | 1.977E+05            | 1.256E-07 | 4.680E-05              |
| 2174 | 1.977E+05            | 1.195E-07 | 4.452E-05              |
| 2175 | 1.977E+05            | 1.136E-07 | 4.235E-05              |
| 2176 | 1.977E+05            | 1.081E-07 | 4.028E-05              |
| 2177 | 1.977E+05            | 1.028E-07 | 3.832E-05              |
| 2178 | 1.977E+05            | 9.782E-08 | 3.645E-05              |
| 2179 | 1.977E+05            | 9.305E-08 | 3.467E-05              |
| 2180 | 1.977E+05            | 8.851E-08 | 3.298E-05              |
| 2181 | 1.977E+05            | 8.419E-08 | 3.137E-05              |
| 2182 | 1.977E+05            | 8.009E-08 | 2.984E-05              |
| 2183 | 1.977E+05            | 7.618E-08 | 2.839E-05              |
| 2184 | 1.977E+05            | 7.246E-08 | 2.700E-05              |
| 2185 | 1.977E+05            | 6.893E-08 | 2.569E-05              |
| 2186 | 1.977E+05            | 6.557E-08 | 2.443E-05              |
| 2187 | 1.977E+05            | 6.237E-08 | 2.324E-05              |
| 2188 | 1.977E+05            | 5.933E-08 | 2.211E-05              |
| 2189 | 1.977E+05            | 5.644E-08 | 2.103E-05              |
| 2190 | 1.977E+05            | 5.368E-08 | 2.000E-05              |
| 2191 | 1.977E+05            | 5.107E-08 | 1.903E-05              |
| 2192 | 1.977E+05            | 4.857E-08 | 1.810E-05              |
| 2193 | 1.977E+05            | 4.621E-08 | 1.722E-05              |
| 2194 | 1.977E+05            | 4.395E-08 | 1.638E-05              |
| 2195 | 1.977E+05            | 4.181E-08 | 1.558E-05              |
| 2196 | 1.977E+05            | 3.977E-08 | 1.482E-05              |
| 2197 | 1.977E+05            | 3.783E-08 | 1.410E-05              |
| 2198 | 1.977E+05            | 3.598E-08 | 1.341E-05              |
| 2199 | 1.977E+05            | 3.423E-08 | 1.276E-05              |
| 2200 | 1.977E+05            | 3.256E-08 | 1.213E-05              |
| 2201 | 1.977E+05            | 3.097E-08 | 1.154E-05              |
|      |                      |           |                        |

Table D-18. Southern Parcel Dichlorobenzene Emisson Rate from Year 1968 to 2203.

Model Parameters

Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC: 2550.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 59.0000 % volume

Carbon Dioxide : 41.0000 % volume

Air Pollutant : Dichlorobenzene (VOC/HAP for 1,4 isomer) Molecular Wt = 147.00 0.190000 ppmV Concentration =

### Landfill Parameters

\_\_\_\_\_

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 12238.07 Mg/year

\_\_\_\_\_\_

| Year | Refuse In Place        |                        | for 1,4 isomer) Emission (Cubic m/yr) | Ra |
|------|------------------------|------------------------|---------------------------------------|----|
|      |                        |                        |                                       | -  |
| 1968 | 1.318E+04              | 2.206E-04              | 3.608E-02                             |    |
| 1969 | 2.636E+04              | 4.304E-04              | 7.039E-02                             |    |
| 1970 | 3.954E+04              | 6.300E-04              | 1.030E-01                             |    |
| 1971 | 5.272E+04              | 8.198E-04              | 1.341E-01                             |    |
| 1972 | 6.590E+04              | 1.000E-03              | 1.636E-01                             |    |
| 1973 | 7.908E+04              | 1.172E-03              | 1.917E-01                             |    |
| 1974 | 9.226E+04              | 1.336E-03              | 2.184E-01                             |    |
| 1975 | 1.054E+05              | 1.491E-03              | 2.439E-01                             |    |
| 1976 | 1.186E+05              | 1.639E-03              | 2.680E-01                             |    |
| 1977 | 1.318E+05              | 1.780E-03              | 2.911E-01                             |    |
| 1978 | 1.450E+05              | 1.913E-03              | 3.129E-01                             |    |
| 1979 | 1.582E+05              | 2.041E-03              | 3.337E-01                             |    |
| 1980 | 1.713E+05              | 2.162E-03              | 3.535E-01                             |    |
| 1981 | 1.845E+05              | 2.277E-03              | 3.724E-01                             |    |
| 1982 | 1.977E+05              | 2.386E-03              | 3.903E-01                             |    |
| 1983 | 1.977E+05              | 2.270E-03              | 3.713E-01                             |    |
| 1984 | 1.977E+05              | 2.159E-03              | 3.532E-01                             |    |
| 1985 | 1.977E+05              | 2.054E-03              | 3.359E-01                             |    |
| 1986 | 1.977E+05              | 1.954E-03              | 3.195E-01                             |    |
| 1987 | 1.977E+05              | 1.858E-03              | 3.040E-01                             |    |
| 1988 | 1.977E+05              | 1.768E-03              | 2.891E-01                             |    |
| 1989 | 1.977E+05              | 1.682E-03              | 2.750E-01                             |    |
| 1990 | 1.977E+05              | 1.600E-03              | 2.616E-01                             |    |
| 1991 | 1.977E+05              | 1.522E-03              | 2.489E-01                             |    |
| 1992 | 1.977E+05              | 1.447E-03              | 2.367E-01                             |    |
| 1993 | 1.977E+05              | 1.377E-03              | 2.252E-01                             |    |
| 1994 | 1.977E+05              | 1.310E-03              | 2.142E-01                             |    |
| 1995 | 1.977E+05              | 1.246E-03              | 2.038E-01                             |    |
| 1996 | 1.977E+05              | 1.185E-03              | 1.938E-01                             |    |
| 1997 | 1.977E+05              | 1.127E-03              | 1.844E-01                             |    |
| 1998 | 1.977E+05              | 1.072E-03              | 1.754E-01                             |    |
| 1999 | 1.977E+05              | 1.020E-03              | 1.668E-01                             |    |
| 2000 | 1.977E+05              | 9.702E-04              | 1.587E-01                             |    |
| 2001 | 1.977E+05<br>1.977E+05 | 9.229E-04              | 1.509E-01                             |    |
|      |                        | 8.779E-04              | 1.436E-01                             |    |
| 2003 | 1.977E+05              | 8.351E-04              | 1.366E-01                             |    |
| 2004 | 1.977E+05              | 7.943E-04              | 1.299E-01                             |    |
| 2005 | 1.977E+05              | 7.556E-04              | 1.236E-01                             |    |
| 2006 | 1.977E+05<br>1.977E+05 | 7.187E-04<br>6.837E-04 | 1.176E-01                             |    |
|      |                        |                        | 1.118E-01                             |    |
| 2008 | 1.977E+05              | 6.503E-04              | 1.064E-01                             |    |
| 2009 | 1.977E+05              | 6.186E-04              | 1.012E-01                             |    |
| 2010 | 1.977E+05              | 5.885E-04              | 9.625E-02                             |    |
| 2011 | 1.977E+05<br>1.977E+05 | 5.598E-04<br>5.325E-04 | 9.155E-02<br>8.709E-02                |    |
| ZUIZ | 1.9//6+05              | 5.325E-U4              | 8.709E-02                             |    |

Table D-18. Southern Parcel Dichlorobenzene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 5.065E-04              | 8.284E-02              |
| 2014         | 1.977E+05              | 4.818E-04              | 7.880E-02              |
| 2015         | 1.977E+05              | 4.583E-04              | 7.496E-02              |
| 2016         | 1.977E+05              | 4.359E-04              | 7.130E-02              |
| 2017         | 1.977E+05              | 4.147E-04              | 6.782E-02              |
| 2018         | 1.977E+05              | 3.945E-04              | 6.452E-02              |
| 2019         | 1.977E+05              | 3.752E-04              | 6.137E-02              |
| 2020         | 1.977E+05              | 3.569E-04              | 5.838E-02              |
| 2021         | 1.977E+05              | 3.395E-04              | 5.553E-02              |
| 2022         | 1.977E+05              | 3.230E-04              | 5.282E-02              |
| 2023         | 1.977E+05              | 3.072E-04              | 5.024E-02              |
| 2024         | 1.977E+05              | 2.922E-04              | 4.779E-02              |
| 2025         | 1.977E+05              | 2.780E-04              | 4.546E-02              |
| 2026<br>2027 | 1.977E+05              | 2.644E-04<br>2.515E-04 | 4.325E-02              |
| 2027         | 1.977E+05<br>1.977E+05 | 2.392E-04              | 4.114E-02<br>3.913E-02 |
| 2020         | 1.977E+05              | 2.392E-04<br>2.276E-04 | 3.722E-02              |
| 2030         | 1.977E+05              | 2.165E-04              | 3.541E-02              |
| 2031         | 1.977E+05              | 2.059E-04              | 3.368E-02              |
| 2032         | 1.977E+05              | 1.959E-04              | 3.204E-02              |
| 2033         | 1.977E+05              | 1.863E-04              | 3.047E-02              |
| 2034         | 1.977E+05              | 1.772E-04              | 2.899E-02              |
| 2035         | 1.977E+05              | 1.686E-04              | 2.757E-02              |
| 2036         | 1.977E+05              | 1.604E-04              | 2.623E-02              |
| 2037         | 1.977E+05              | 1.526E-04              | 2.495E-02              |
| 2038         | 1.977E+05              | 1.451E-04              | 2.373E-02              |
| 2039         | 1.977E+05              | 1.380E-04              | 2.258E-02              |
| 2040         | 1.977E+05              | 1.313E-04              | 2.148E-02              |
| 2041         | 1.977E+05              | 1.249E-04              | 2.043E-02              |
| 2042         | 1.977E+05              | 1.188E-04              | 1.943E-02              |
| 2043         | 1.977E+05              | 1.130E-04              | 1.848E-02              |
| 2044         | 1.977E+05              | 1.075E-04              | 1.758E-02              |
| 2045         | 1.977E+05              | 1.023E-04              | 1.672E-02              |
| 2046         | 1.977E+05              | 9.727E-05              | 1.591E-02              |
| 2047         | 1.977E+05              | 9.253E-05              | 1.513E-02              |
| 2048         | 1.977E+05              | 8.801E-05              | 1.440E-02              |
| 2049         | 1.977E+05              | 8.372E-05              | 1.369E-02              |
| 2050         | 1.977E+05              | 7.964E-05              | 1.303E-02              |
| 2051<br>2052 | 1.977E+05<br>1.977E+05 | 7.576E-05<br>7.206E-05 | 1.239E-02<br>1.179E-02 |
| 2052         | 1.977E+05              | 6.855E-05              | 1.121E-02              |
| 2054         | 1.977E+05              | 6.520E-05              | 1.066E-02              |
| 2055         | 1.977E+05              | 6.202E-05              | 1.014E-02              |
| 2056         | 1.977E+05              | 5.900E-05              | 9.649E-03              |
| 2057         | 1.977E+05              | 5.612E-05              | 9.179E-03              |
| 2058         | 1.977E+05              | 5.338E-05              | 8.731E-03              |
| 2059         | 1.977E+05              | 5.078E-05              | 8.305E-03              |
| 2060         | 1.977E+05              | 4.830E-05              | 7.900E-03              |
| 2061         | 1.977E+05              | 4.595E-05              | 7.515E-03              |
| 2062         | 1.977E+05              | 4.371E-05              | 7.148E-03              |
| 2063         | 1.977E+05              | 4.158E-05              | 6.800E-03              |
| 2064         | 1.977E+05              | 3.955E-05              | 6.468E-03              |
| 2065         | 1.977E+05              | 3.762E-05              | 6.153E-03              |
| 2066         | 1.977E+05              | 3.578E-05              | 5.853E-03              |
| 2067         | 1.977E+05              | 3.404E-05              | 5.567E-03              |
| 2068         | 1.977E+05              | 3.238E-05              | 5.296E-03              |
| 2069         | 1.977E+05              | 3.080E-05              | 5.037E-03              |
| 2070         | 1.977E+05              | 2.930E-05              | 4.792E-03              |
| 2071<br>2072 | 1.977E+05<br>1.977E+05 | 2.787E-05<br>2.651E-05 | 4.558E-03<br>4.336E-03 |
| 2072         |                        | 2.522E-05              | 4.124E-03              |
| 2074         | 1.977E+05<br>1.977E+05 | 2.399E-05              | 3.923E-03              |
| 2075         | 1.977E+05              | 2.282E-05              | 3.732E-03              |
| 2076         | 1.977E+05              | 2.170E-05              | 3.550E-03              |
| 2077         | 1.977E+05              | 2.065E-05              | 3.377E-03              |
| 2078         | 1.977E+05              | 1.964E-05              | 3.212E-03              |
| 2079         | 1.977E+05              | 1.868E-05              | 3.055E-03              |
| 2080         | 1.977E+05              | 1.777E-05              | 2.906E-03              |
| 2081         | 1.977E+05              | 1.690E-05              | 2.765E-03              |
| 2082         | 1.977E+05              | 1.608E-05              | 2.630E-03              |
| 2083         | 1.977E+05              | 1.529E-05              | 2.502E-03              |
|              |                        |                        |                        |

Table D-18. Southern Parcel Dichlorobenzene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 1.455E-05              | 2.380E-03              |
| 2085         | 1.977E+05              | 1.384E-05              | 2.263E-03              |
| 2086         | 1.977E+05              | 1.316E-05              | 2.153E-03              |
| 2087         | 1.977E+05              | 1.252E-05              | 2.048E-03              |
| 2088         | 1.977E+05              | 1.191E-05              | 1.948E-03              |
| 2089         | 1.977E+05              | 1.133E-05              | 1.853E-03              |
| 2090         | 1.977E+05              | 1.078E-05              | 1.763E-03              |
| 2091         | 1.977E+05              | 1.025E-05              | 1.677E-03              |
| 2092         | 1.977E+05              | 9.752E-06              | 1.595E-03              |
| 2093         | 1.977E+05              | 9.277E-06              | 1.517E-03              |
| 2094         | 1.977E+05              | 8.824E-06              | 1.443E-03              |
| 2095         | 1.977E+05              | 8.394E-06              | 1.373E-03              |
| 2096         | 1.977E+05              | 7.985E-06              | 1.306E-03              |
| 2097         | 1.977E+05              | 7.595E-06              | 1.242E-03              |
| 2098         | 1.977E+05              | 7.225E-06              | 1.182E-03              |
| 2099         | 1.977E+05              | 6.872E-06              | 1.124E-03              |
| 2100         | 1.977E+05              | 6.537E-06              | 1.069E-03              |
| 2101         | 1.977E+05              | 6.218E-06              | 1.017E-03              |
| 2102         | 1.977E+05              | 5.915E-06              | 9.674E-04              |
| 2103         | 1.977E+05              | 5.627E-06              | 9.203E-04              |
| 2104         | 1.977E+05              | 5.352E-06              | 8.754E-04              |
| 2105         | 1.977E+05              | 5.091E-06              | 8.327E-04              |
| 2106         | 1.977E+05              | 4.843E-06              | 7.921E-04              |
| 2107         | 1.977E+05              | 4.607E-06              | 7.534E-04              |
| 2108         | 1.977E+05              | 4.382E-06              | 7.167E-04              |
| 2109         | 1.977E+05              | 4.168E-06              | 6.817E-04              |
| 2110         | 1.977E+05              | 3.965E-06              | 6.485E-04              |
| 2111<br>2112 | 1.977E+05<br>1.977E+05 | 3.772E-06<br>3.588E-06 | 6.169E-04              |
| 2112         | 1.977E+05              | 3.413E-06              | 5.868E-04<br>5.582E-04 |
| 2113         | 1.977E+05              | 3.246E-06              | 5.309E-04              |
| 2115         | 1.977E+05              | 3.088E-06              | 5.051E-04              |
| 2116         | 1.977E+05              | 2.937E-06              | 4.804E-04              |
| 2117         | 1.977E+05              | 2.794E-06              | 4.570E-04              |
| 2118         | 1.977E+05              | 2.658E-06              | 4.347E-04              |
| 2119         | 1.977E+05              | 2.528E-06              | 4.135E-04              |
| 2120         | 1.977E+05              | 2.405E-06              | 3.933E-04              |
| 2121         | 1.977E+05              | 2.288E-06              | 3.742E-04              |
| 2122         | 1.977E+05              | 2.176E-06              | 3.559E-04              |
| 2123         | 1.977E+05              | 2.070E-06              | 3.385E-04              |
| 2124         | 1.977E+05              | 1.969E-06              | 3.220E-04              |
| 2125         | 1.977E+05              | 1.873E-06              | 3.063E-04              |
| 2126         | 1.977E+05              | 1.782E-06              | 2.914E-04              |
| 2127         | 1.977E+05              | 1.695E-06              | 2.772E-04              |
| 2128         | 1.977E+05              | 1.612E-06              | 2.637E-04              |
| 2129         | 1.977E+05              | 1.533E-06              | 2.508E-04              |
| 2130         | 1.977E+05              | 1.459E-06              | 2.386E-04              |
| 2131         | 1.977E+05              | 1.388E-06              | 2.269E-04              |
| 2132         | 1.977E+05              | 1.320E-06              | 2.159E-04              |
| 2133         | 1.977E+05              | 1.255E-06              | 2.053E-04              |
| 2134         | 1.977E+05              | 1.194E-06              | 1.953E-04              |
| 2135         | 1.977E+05              | 1.136E-06              | 1.858E-04              |
| 2136         | 1.977E+05              | 1.081E-06              | 1.767E-04              |
| 2137         | 1.977E+05              | 1.028E-06              | 1.681E-04              |
| 2138         | 1.977E+05              | 9.778E-07              | 1.599E-04              |
| 2139         | 1.977E+05              | 9.301E-07              | 1.521E-04              |
| 2140         | 1.977E+05              | 8.847E-07              | 1.447E-04              |
| 2141         | 1.977E+05              | 8.416E-07              | 1.376E-04              |
| 2142         | 1.977E+05              | 8.005E-07              | 1.309E-04              |
| 2143         | 1.977E+05              | 7.615E-07              | 1.245E-04              |
| 2144         | 1.977E+05              | 7.243E-07              | 1.185E-04              |
| 2145         | 1.977E+05              | 6.890E-07              | 1.127E-04              |
| 2146         | 1.977E+05              | 6.554E-07              | 1.072E-04              |
| 2147         | 1.977E+05              | 6.234E-07              | 1.020E-04              |
| 2148         | 1.977E+05              | 5.930E-07              | 9.699E-05              |
| 2149         | 1.977E+05              | 5.641E-07              | 9.226E-05              |
| 2150         | 1.977E+05              | 5.366E-07              | 8.776E-05              |
| 2151         | 1.977E+05              | 5.104E-07              | 8.348E-05              |
| 2152         | 1.977E+05              | 4.855E-07              | 7.941E-05              |
| 2153         | 1.977E+05              | 4.619E-07              | 7.554E-05              |
| 2154         | 1.977E+05              | 4.393E-07              | 7.186E-05              |

Table D-18. Southern Parcel Dichlorobenzene Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)   | (Cubic m/yr) |  |
|------|----------------------|-----------|--------------|--|
| 2155 | 1.977E+05            | 4.179E-07 | 6.835E-05    |  |
| 2156 | 1.977E+05            | 3.975E-07 | 6.502E-05    |  |
| 2157 | 1.977E+05            | 3.781E-07 | 6.185E-05    |  |
| 2158 | 1.977E+05            | 3.597E-07 | 5.883E-05    |  |
| 2159 | 1.977E+05            | 3.422E-07 | 5.596E-05    |  |
| 2160 | 1.977E+05            | 3.255E-07 | 5.323E-05    |  |
| 2161 | 1.977E+05            | 3.096E-07 | 5.064E-05    |  |
| 2162 | 1.977E+05            | 2.945E-07 | 4.817E-05    |  |
| 2163 | 1.977E+05            | 2.801E-07 | 4.582E-05    |  |
| 2164 | 1.977E+05            | 2.665E-07 | 4.358E-05    |  |
| 2165 | 1.977E+05            | 2.535E-07 | 4.146E-05    |  |
| 2166 | 1.977E+05            | 2.411E-07 | 3.944E-05    |  |
| 2167 | 1.977E+05            | 2.294E-07 | 3.751E-05    |  |
| 2168 | 1.977E+05            | 2.182E-07 | 3.568E-05    |  |
| 2169 | 1.977E+05            | 2.075E-07 | 3.394E-05    |  |
| 2170 | 1.977E+05            | 1.974E-07 | 3.229E-05    |  |
| 2171 | 1.977E+05            | 1.878E-07 | 3.071E-05    |  |
| 2172 | 1.977E+05            | 1.786E-07 | 2.921E-05    |  |
| 2173 | 1.977E+05            | 1.699E-07 | 2.779E-05    |  |
| 2174 | 1.977E+05            | 1.616E-07 | 2.643E-05    |  |
| 2175 | 1.977E+05            | 1.537E-07 | 2.514E-05    |  |
| 2176 | 1.977E+05            | 1.462E-07 | 2.392E-05    |  |
| 2177 | 1.977E+05            | 1.391E-07 | 2.275E-05    |  |
| 2178 | 1.977E+05            | 1.323E-07 | 2.164E-05    |  |
| 2179 | 1.977E+05            | 1.259E-07 | 2.059E-05    |  |
| 2180 | 1.977E+05            | 1.197E-07 | 1.958E-05    |  |
| 2181 | 1.977E+05            | 1.139E-07 | 1.863E-05    |  |
| 2182 | 1.977E+05            | 1.083E-07 | 1.772E-05    |  |
| 2183 | 1.977E+05            | 1.031E-07 | 1.686E-05    |  |
| 2184 | 1.977E+05            | 9.803E-08 | 1.603E-05    |  |
| 2185 | 1.977E+05            | 9.325E-08 | 1.525E-05    |  |
| 2186 | 1.977E+05            | 8.870E-08 | 1.451E-05    |  |
| 2187 | 1.977E+05            | 8.437E-08 | 1.380E-05    |  |
| 2188 | 1.977E+05            | 8.026E-08 | 1.313E-05    |  |
| 2189 | 1.977E+05            | 7.634E-08 | 1.249E-05    |  |
| 2190 | 1.977E+05            | 7.262E-08 | 1.188E-05    |  |
| 2191 | 1.977E+05            | 6.908E-08 | 1.130E-05    |  |
| 2192 | 1.977E+05            | 6.571E-08 | 1.075E-05    |  |
| 2193 | 1.977E+05            | 6.251E-08 | 1.022E-05    |  |
| 2194 | 1.977E+05            | 5.946E-08 | 9.725E-06    |  |
| 2195 | 1.977E+05            | 5.656E-08 | 9.250E-06    |  |
| 2196 | 1.977E+05            | 5.380E-08 | 8.799E-06    |  |
| 2197 | 1.977E+05            | 5.118E-08 | 8.370E-06    |  |
| 2198 | 1.977E+05            | 4.868E-08 | 7.962E-06    |  |
| 2199 | 1.977E+05            | 4.631E-08 | 7.574E-06    |  |
| 2200 | 1.977E+05            | 4.405E-08 | 7.204E-06    |  |
| 2201 | 1.977E+05            | 4.190E-08 | 6.853E-06    |  |
|      |                      |           |              |  |

**Table D-19.** Southern Parcel Toluene Emisson Rate from Year 1968 to 2203.

### Model Parameters

\_\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC : 2550.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 59.0000 % volume

Carbon Dioxide : 41.0000 % volume Air Pollutant : Toluene (HAP/VOC)

Concentration = 2.550000 ppmV Molecular Wt = 92.14

\_\_\_\_\_\_\_

#### Landfill Parameters

Landfill type : Co-Disposal

Year Opened: 1967 Current Year: 2003 Closure Year: 2002

Capacity: 197692 Mg

2012

Average Acceptance Rate Required from

Current Year to Closure Year: 12238.07 Mg/year

#### Model Results \_\_\_\_\_\_ Toluene (HAP/VOC) Emission Rate Year Refuse In Place (Mg) (Mg/yr) (Cubic m/yr) 1.318E+04 2.636E+04 3.954E+04 5.272E+04 6.590E+04 1.856E-03 4.842E-01 3.621E-03 9.447E-01 1968 1969 1.383E+00 1.800E+00 2.196E+00 1970 5.300E-03 6.897E-03 8.416E-03 1971 1972 6.590E+04 7.908E+04 1973 9.861E-03 2.573E+00 9.226E+04 2.932E+00 3.273E+00 1974 1.124E-02 1.054E+05 1975 1.254E-02 3.598E+00 1.379E-02 1976 1.186E+05 3.906E+00 1.318E+05 1.450E+05 1977 1.497E-02 1978 1.610E-02 4.200E+00 1.582E+05 1.713E+05 1.845E+05 1.717E-02 1979 4.479E+00 1980 1.818E-02 4.745E+00 1.915E-02 1981 4.998E+00 1982 1.977E+05 2.007E-02 5.238E+00 1.977E+05 1.977E+05 4.983E+00 1983 1.910E-02 4.740E+00 1984 1.816E-02 1.977E+05 1.728E-02 4.509E+00 1985 1.977E+05 1.977E+05 1986 1.644E-02 4.289E+00 1987 1.563E-02 4.079E+00 1988 1.977E+05 1.487E-02 3.881E+00 3.691E+00 3.511E+00 1.977E+05 1.977E+05 1989 1.415E-02 1.346E-02 1990 1.977E+05 1991 1.280E-02 3.340E+00 1.977E+05 1.977E+05 3.177E+00 3.022E+00 1992 1.218E-02 1.158E-02 1993 2.875E+00 1994 1.977E+05 1.102E-02 1.977E+05 1.977E+05 1995 1.048E-02 2.735E+00 2.601E+00 1996 9.969E-03 2.474E+00 1997 1.977E+05 9.483E-03 2.354E+00 1.977E+05 1.977E+05 1998 9.020E-03 8.580E-03 1999 2.239E+00 1.977E+05 2.130E+00 2000 8.162E-03 1.977E+05 1.977E+05 2.026E+00 1.927E+00 2001 7.764E-03 7.385E-03 2002 1.977E+05 2003 7.025E-03 1.833E+00 1.977E+05 1.977E+05 2004 6.682E-03 1.744E+00 1.659E+00 2005 6.356E-03 2006 1.977E+05 6.046E-03 1.578E+00 1.501E+00 1.428E+00 2007 1.977E+05 5.751E-03 1.977E+05 2008 5.471E-03 1.977E+05 1.977E+05 1.977E+05 1.977E+05 5.204E-03 2009 1.358E+00 4.950E-03 2010 1.292E+00 1.229E+00 4.709E-03 2011 1.977E+05 4.479E-03 1.169E+00

Table D-19. Southern Parcel Toluene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)                             |
|--------------|------------------------|------------------------|------------------------------------------|
| 2013         | 1.977E+05              | 4.261E-03              | 1.112E+00                                |
| 2014         | 1.977E+05              | 4.053E-03              | 1.058E+00                                |
| 2015         | 1.977E+05              | 3.855E-03              | 1.006E+00                                |
| 2016         | 1.977E+05              | 3.667E-03              | 9.569E-01                                |
| 2017         | 1.977E+05              | 3.488E-03              | 9.103E-01                                |
| 2018         | 1.977E+05              | 3.318E-03              | 8.659E-01                                |
| 2019         | 1.977E+05              | 3.156E-03              | 8.236E-01                                |
| 2020         | 1.977E+05              | 3.003E-03              | 7.835E-01                                |
| 2021<br>2022 | 1.977E+05<br>1.977E+05 | 2.856E-03<br>2.717E-03 | 7.453E-01<br>7.089E-01                   |
| 2022         | 1.977E+05              | 2.717E-03<br>2.584E-03 | 6.743E-01                                |
| 2023         | 1.977E+05              | 2.458E-03              | 6.414E-01                                |
| 2025         | 1.977E+05              | 2.338E-03              | 6.102E-01                                |
| 2026         | 1.977E+05              | 2.224E-03              | 5.804E-01                                |
| 2027         | 1.977E+05              | 2.116E-03              | 5.521E-01                                |
| 2028         | 1.977E+05              | 2.013E-03              | 5.252E-01                                |
| 2029         | 1.977E+05              | 1.914E-03              | 4.996E-01                                |
| 2030         | 1.977E+05              | 1.821E-03              | 4.752E-01                                |
| 2031         | 1.977E+05              | 1.732E-03              | 4.520E-01                                |
| 2032         | 1.977E+05              | 1.648E-03              | 4.300E-01                                |
| 2033<br>2034 | 1.977E+05<br>1.977E+05 | 1.567E-03<br>1.491E-03 | 4.090E-01<br>3.891E-01                   |
| 2034         | 1.977E+05              | 1.418E-03              | 3.701E-01                                |
| 2036         | 1.977E+05              | 1.349E-03              | 3.520E-01                                |
| 2037         | 1.977E+05              | 1.283E-03              | 3.349E-01                                |
| 2038         | 1.977E+05              | 1.221E-03              | 3.185E-01                                |
| 2039         | 1.977E+05              | 1.161E-03              | 3.030E-01                                |
| 2040         | 1.977E+05              | 1.105E-03              | 2.882E-01                                |
| 2041         | 1.977E+05              | 1.051E-03              | 2.742E-01                                |
| 2042         | 1.977E+05              | 9.995E-04              | 2.608E-01                                |
| 2043         | 1.977E+05<br>1.977E+05 | 9.507E-04<br>9.043E-04 | 2.481E-01<br>2.360E-01                   |
| 2044         | 1.977E+05              | 8.602E-04              | 2.360E-01<br>2.245E-01                   |
| 2046         | 1.977E+05              | 8.183E-04              | 2.135E-01                                |
| 2047         | 1.977E+05              | 7.784E-04              | 2.031E-01                                |
| 2048         | 1.977E+05              | 7.404E-04              | 1.932E-01                                |
| 2049         | 1.977E+05              | 7.043E-04              | 1.838E-01                                |
| 2050         | 1.977E+05              | 6.700E-04              | 1.748E-01                                |
| 2051         | 1.977E+05              | 6.373E-04              | 1.663E-01                                |
| 2052<br>2053 | 1.977E+05<br>1.977E+05 | 6.062E-04              | 1.582E-01                                |
| 2053         | 1.977E+05<br>1.977E+05 | 5.766E-04<br>5.485E-04 | 1.505E-01<br>1.431E-01                   |
| 2055         | 1.977E+05              | 5.218E-04              | 1.361E-01                                |
| 2056         | 1.977E+05              | 4.963E-04              | 1.295E-01                                |
| 2057         | 1.977E+05              | 4.721E-04              | 1.232E-01                                |
| 2058         | 1.977E+05              | 4.491E-04              | 1.172E-01                                |
| 2059         | 1.977E+05              | 4.272E-04              | 1.115E-01                                |
| 2060         | 1.977E+05              | 4.063E-04              | 1.060E-01                                |
| 2061         | 1.977E+05              | 3.865E-04              | 1.009E-01                                |
| 2062<br>2063 | 1.977E+05<br>1.977E+05 | 3.677E-04<br>3.497E-04 | 9.594E-02<br>9.126E-02                   |
| 2064         | 1.977E+05              | 3.327E-04              | 8.681E-02                                |
| 2065         | 1.977E+05              | 3.165E-04              | 8.258E-02                                |
| 2066         | 1.977E+05              | 3.010E-04              | 7.855E-02                                |
| 2067         | 1.977E+05              | 2.863E-04              | 7.472E-02                                |
| 2068         | 1.977E+05              | 2.724E-04              | 7.107E-02                                |
| 2069         | 1.977E+05              | 2.591E-04              | 6.761E-02                                |
| 2070         | 1.977E+05              | 2.465E-04              | 6.431E-02                                |
| 2071         | 1.977E+05              | 2.344E-04              | 6.117E-02<br>5.819E-02                   |
| 2072<br>2073 | 1.977E+05<br>1.977E+05 | 2.230E-04<br>2.121E-04 | 5.535E-02                                |
| 2074         | 1.977E+05              | 2.018E-04              | 5.265E-02                                |
| 2075         | 1.977E+05              | 1.919E-04              | 5.009E-02                                |
| 2076         | 1.977E+05              | 1.826E-04              | 4.764E-02                                |
| 2077         | 1.977E+05              | 1.737E-04              | 4.532E-02                                |
| 2078         | 1.977E+05              | 1.652E-04              | 4.311E-02                                |
| 2079         | 1.977E+05              | 1.572E-04              | 4.101E-02                                |
| 2080         | 1.977E+05              | 1.495E-04              | 3.901E-02                                |
| 2081<br>2082 | 1.977E+05<br>1.977E+05 | 1.422E-04<br>1.353E-04 | 3.710E-02<br>3.529E-02                   |
| 2082         | 1.977E+05              | 1.287E-04              | 3.357E-02                                |
| 2000         | 1.0.100                | 1.20.20                | J. J |

Table D-19. Southern Parcel Toluene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 1.224E-04              | 3.194E-02              |
| 2085         | 1.977E+05              | 1.164E-04              | 3.038E-02              |
| 2086         | 1.977E+05              | 1.107E-04              | 2.890E-02              |
| 2087         | 1.977E+05              | 1.053E-04              | 2.749E-02              |
| 2088<br>2089 | 1.977E+05<br>1.977E+05 | 1.002E-04<br>9.532E-05 | 2.615E-02<br>2.487E-02 |
| 2009         | 1.977E+05              | 9.067E-05              | 2.366E-02              |
| 2091         | 1.977E+05              | 8.625E-05              | 2.250E-02              |
| 2092         | 1.977E+05              | 8.204E-05              | 2.141E-02              |
| 2093         | 1.977E+05              | 7.804E-05              | 2.036E-02              |
| 2094         | 1.977E+05              | 7.423E-05              | 1.937E-02              |
| 2095         | 1.977E+05              | 7.061E-05              | 1.843E-02              |
| 2096         | 1.977E+05              | 6.717E-05              | 1.753E-02              |
| 2097         | 1.977E+05              | 6.389E-05              | 1.667E-02              |
| 2098<br>2099 | 1.977E+05<br>1.977E+05 | 6.078E-05<br>5.781E-05 | 1.586E-02<br>1.509E-02 |
| 2100         | 1.977E+05              | 5.499E-05              | 1.435E-02              |
| 2101         | 1.977E+05              | 5.231E-05              | 1.365E-02              |
| 2102         | 1.977E+05              | 4.976E-05              | 1.298E-02              |
| 2103         | 1.977E+05              | 4.733E-05              | 1.235E-02              |
| 2104         | 1.977E+05              | 4.502E-05              | 1.175E-02              |
| 2105         | 1.977E+05              | 4.283E-05              | 1.118E-02              |
| 2106         | 1.977E+05              | 4.074E-05              | 1.063E-02              |
| 2107         | 1.977E+05              | 3.875E-05              | 1.011E-02              |
| 2108         | 1.977E+05              | 3.686E-05              | 9.619E-03              |
| 2109         | 1.977E+05              | 3.507E-05              | 9.150E-03<br>8.704E-03 |
| 2110<br>2111 | 1.977E+05<br>1.977E+05 | 3.336E-05<br>3.173E-05 | 8.704E-03<br>8.279E-03 |
| 2112         | 1.977E+05              | 3.018E-05              | 7.875E-03              |
| 2113         | 1.977E+05              | 2.871E-05              | 7.491E-03              |
| 2114         | 1.977E+05              | 2.731E-05              | 7.126E-03              |
| 2115         | 1.977E+05              | 2.598E-05              | 6.778E-03              |
| 2116         | 1.977E+05              | 2.471E-05              | 6.448E-03              |
| 2117         | 1.977E+05              | 2.350E-05              | 6.133E-03              |
| 2118         | 1.977E+05              | 2.236E-05              | 5.834E-03              |
| 2119         | 1.977E+05              | 2.127E-05              | 5.550E-03              |
| 2120<br>2121 | 1.977E+05<br>1.977E+05 | 2.023E-05<br>1.924E-05 | 5.279E-03<br>5.021E-03 |
| 2122         | 1.977E+05              | 1.831E-05              | 4.777E-03              |
| 2123         | 1.977E+05              | 1.741E-05              | 4.544E-03              |
| 2124         | 1.977E+05              | 1.656E-05              | 4.322E-03              |
| 2125         | 1.977E+05              | 1.576E-05              | 4.111E-03              |
| 2126         | 1.977E+05              | 1.499E-05              | 3.911E-03              |
| 2127         | 1.977E+05              | 1.426E-05              | 3.720E-03              |
| 2128         | 1.977E+05<br>1.977E+05 | 1.356E-05              | 3.539E-03              |
| 2129<br>2130 | 1.977E+05              | 1.290E-05<br>1.227E-05 | 3.366E-03<br>3.202E-03 |
| 2131         | 1.977E+05              | 1.167E-05              | 3.046E-03              |
| 2132         | 1.977E+05              | 1.110E-05              | 2.897E-03              |
| 2133         | 1.977E+05              | 1.056E-05              | 2.756E-03              |
| 2134         | 1.977E+05              | 1.005E-05              | 2.621E-03              |
| 2135         | 1.977E+05              | 9.556E-06              | 2.494E-03              |
| 2136         | 1.977E+05              | 9.090E-06              | 2.372E-03              |
| 2137         | 1.977E+05              | 8.647E-06              | 2.256E-03              |
| 2138         | 1.977E+05              | 8.225E-06              | 2.146E-03              |
| 2139         | 1.977E+05              | 7.824E-06              | 2.042E-03              |
| 2140<br>2141 | 1.977E+05<br>1.977E+05 | 7.443E-06<br>7.080E-06 | 1.942E-03<br>1.847E-03 |
| 2142         | 1.977E+05              | 6.734E-06              | 1.757E-03              |
| 2143         | 1.977E+05              | 6.406E-06              | 1.672E-03              |
| 2144         | 1.977E+05              | 6.093E-06              | 1.590E-03              |
| 2145         | 1.977E+05              | 5.796E-06              | 1.512E-03              |
| 2146         | 1.977E+05              | 5.514E-06              | 1.439E-03              |
| 2147         | 1.977E+05              | 5.245E-06              | 1.369E-03              |
| 2148         | 1.977E+05              | 4.989E-06              | 1.302E-03              |
| 2149         | 1.977E+05              | 4.746E-06              | 1.238E-03              |
| 2150         | 1.977E+05              | 4.514E-06              | 1.178E-03              |
| 2151<br>2152 | 1.977E+05<br>1.977E+05 | 4.294E-06<br>4.085E-06 | 1.120E-03<br>1.066E-03 |
| 2152         | 1.977E+05              | 3.885E-06              | 1.006E-03              |
| 2154         | 1.977E+05              | 3.696E-06              | 9.644E-04              |
|              |                        |                        |                        |

Table D-19. Southern Parcel Toluene Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)   | (Cubic m/yr)           |
|------|----------------------|-----------|------------------------|
| 2155 | 1.977E+05            | 3.516E-06 | 9.173E-04              |
| 2156 | 1.977E+05            | 3.344E-06 | 8.726E-04              |
| 2157 | 1.977E+05            | 3.181E-06 | 8.300E-04              |
| 2158 | 1.977E+05            | 3.026E-06 | 7.896E-04              |
| 2159 | 1.977E+05            | 2.878E-06 | 7.511E-04              |
| 2160 | 1.977E+05            | 2.738E-06 | 7.144E-04              |
| 2161 | 1.977E+05            | 2.604E-06 | 6.796E-04              |
| 2162 | 1.977E+05            | 2.477E-06 | 6.464E-04              |
| 2163 | 1.977E+05            | 2.357E-06 | 6.149E-04              |
| 2164 | 1.977E+05            | 2.242E-06 | 5.849E-04              |
| 2165 | 1.977E+05            | 2.132E-06 | 5.564E-04              |
| 2166 | 1.977E+05            | 2.028E-06 | 5.293E-04              |
| 2167 | 1.977E+05            | 1.929E-06 | 5.034E-04              |
| 2168 | 1.977E+05            | 1.835E-06 | 4.789E-04              |
| 2169 | 1.977E+05            | 1.746E-06 | 4.769E-04<br>4.555E-04 |
| 2170 | 1.977E+05            | 1.661E-06 | 4.333E-04<br>4.333E-04 |
| 2171 | 1.977E+05            | 1.580E-06 | 4.122E-04              |
| 2172 | 1.977E+05            | 1.503E-06 | 3.921E-04              |
| 2173 | 1.977E+05            | 1.429E-06 | 3.730E-04              |
| 2173 | 1.977E+05            | 1.360E-06 | 3.548E-04              |
| 2175 | 1.977E+05            | 1.293E-06 | 3.375E-04              |
| 2176 | 1.977E+05            | 1.230E-06 | 3.210E-04              |
| 2177 | 1.977E+05            | 1.230E-06 | 3.054E-04              |
| 2178 | 1.977E+05            | 1.113E-06 | 2.905E-04              |
| 2178 | 1.977E+05            | 1.059E-06 | 2.763E-04              |
| 21/9 | 1.977E+05            | 1.059E-06 | 2.763E-04<br>2.628E-04 |
|      |                      |           |                        |
| 2181 | 1.977E+05            | 9.581E-07 | 2.500E-04              |
| 2182 | 1.977E+05            | 9.114E-07 | 2.378E-04              |
| 2183 | 1.977E+05            | 8.669E-07 | 2.262E-04              |
| 2184 | 1.977E+05            | 8.247E-07 | 2.152E-04              |
| 2185 | 1.977E+05            | 7.844E-07 | 2.047E-04              |
| 2186 | 1.977E+05            | 7.462E-07 | 1.947E-04              |
| 2187 | 1.977E+05            | 7.098E-07 | 1.852E-04              |
| 2188 | 1.977E+05            | 6.752E-07 | 1.762E-04              |
| 2189 | 1.977E+05            | 6.422E-07 | 1.676E-04              |
| 2190 | 1.977E+05            | 6.109E-07 | 1.594E-04              |
| 2191 | 1.977E+05            | 5.811E-07 | 1.516E-04              |
| 2192 | 1.977E+05            | 5.528E-07 | 1.442E-04              |
| 2193 | 1.977E+05            | 5.258E-07 | 1.372E-04              |
| 2194 | 1.977E+05            | 5.002E-07 | 1.305E-04              |
| 2195 | 1.977E+05            | 4.758E-07 | 1.241E-04              |
| 2196 | 1.977E+05            | 4.526E-07 | 1.181E-04              |
| 2197 | 1.977E+05            | 4.305E-07 | 1.123E-04              |
| 2198 | 1.977E+05            | 4.095E-07 | 1.069E-04              |
| 2199 | 1.977E+05            | 3.895E-07 | 1.016E-04              |
| 2200 | 1.977E+05            | 3.705E-07 | 9.669E-05              |
| 2201 | 1.977E+05            | 3.525E-07 | 9.197E-05              |
|      |                      |           |                        |

Table D-20. Southern Parcel Trichloroethene Emisson Rate from Year 1968 to 2203.

\_\_\_\_\_\_

#### Model Parameters

Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC : 2550.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 59.0000 % volume

Carbon Dioxide : 41.0000 % volume

Air Pollutant : Trichloroethene (HAP/VOC) Molecular Wt = 131.38 Concentration =

0.030000 ppmV Concentration =

# Landfill Parameters

\_\_\_\_\_\_

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 12238.07 Mg/year

\_\_\_\_\_\_

| .,           | D. C T. Dl ()(.)     |                        | (HAP/VOC) Emission Rate |
|--------------|----------------------|------------------------|-------------------------|
| Year         | Refuse In Place (Mg) | (Mg/yr)                | (Cubic m/yr)            |
| 1968         | 1.318E+04            | 3.113E-05              | 5.696E-03               |
| 1969         | 2.636E+04            | 6.074E-05              | 1.111E-02               |
| 1970         | 3.954E+04            | 8.890E-05              | 1.111E-02<br>1.627E-02  |
| 1971         | 5.272E+04            | 1.157E-04              | 2.117E-02               |
|              | 6.590E+04            |                        | 2.11/E-02<br>2.584E-02  |
| 1972<br>1973 | 7.908E+04            | 1.412E-04<br>1.654E-04 | 3.027E-02               |
| 1974         | 9.226E+04            | 1.885E-04              | 3.449E-02               |
| 1974         | 1.054E+05            | 2.104E-04              | 3.851E-02               |
| 1976         | 1.186E+05            | 2.313E-04              | 4.232E-02               |
| 1976         | 1.318E+05            | 2.313E-04              | 4.232E-02<br>4.596E-02  |
| 1978         |                      | 2.511E-04<br>2.700E-04 | 4.941E-02               |
|              | 1.450E+05            | 2.700E-04              |                         |
| 1979         | 1.582E+05            | 2.880E-04<br>3.050E-04 | 5.270E-02               |
| 1980         | 1.713E+05            | 3.050E-04              | 5.582E-02               |
| 1981         | 1.845E+05            | 3.213E-04              | 5.880E-02               |
| 1982         | 1.977E+05            | 3.368E-04              | 6.163E-02               |
| 1983         | 1.977E+05            | 3.203E-04              | 5.862E-02               |
| 1984         | 1.977E+05            | 3.047E-04              | 5.576E-02               |
| 1985         | 1.977E+05            | 2.898E-04              | 5.304E-02               |
| 1986         | 1.977E+05            | 2.757E-04              | 5.045E-02               |
| 1987         | 1.977E+05            | 2.623E-04              | 4.799E-02               |
| 1988         | 1.977E+05            | 2.495E-04              | 4.565E-02               |
| 1989         | 1.977E+05            | 2.373E-04              | 4.343E-02               |
| 1990         | 1.977E+05            | 2.257E-04              | 4.131E-02               |
| 1991         | 1.977E+05            | 2.147E-04              | 3.929E-02               |
| 1992         | 1.977E+05            | 2.042E-04              | 3.738E-02               |
| 1993         | 1.977E+05            | 1.943E-04              | 3.555E-02               |
| 1994         | 1.977E+05            | 1.848E-04              | 3.382E-02               |
| 1995         | 1.977E+05            | 1.758E-04              | 3.217E-02               |
| 1996         | 1.977E+05            | 1.672E-04              | 3.060E-02               |
| 1997         | 1.977E+05            | 1.591E-04              | 2.911E-02               |
| 1998         | 1.977E+05            | 1.513E-04              | 2.769E-02               |
| 1999         | 1.977E+05            | 1.439E-04              | 2.634E-02               |
| 2000         | 1.977E+05            | 1.369E-04              | 2.506E-02               |
| 2001         | 1.977E+05            | 1.302E-04              | 2.383E-02               |
| 2002         | 1.977E+05            | 1.239E-04              | 2.267E-02               |
| 2003         | 1.977E+05            | 1.178E-04              | 2.157E-02               |
| 2004         | 1.977E+05            | 1.121E-04              | 2.051E-02               |
| 2005         | 1.977E+05            | 1.066E-04              | 1.951E-02               |
| 2006         | 1.977E+05            | 1.014E-04              | 1.856E-02               |
| 2007         | 1.977E+05            | 9.648E-05              | 1.766E-02               |
| 2008         | 1.977E+05            | 9.178E-05              | 1.679E-02               |
| 2009         | 1.977E+05            | 8.730E-05              | 1.598E-02               |
| 2010         | 1.977E+05            | 8.304E-05              | 1.520E-02               |
| 2011         | 1.977E+05            | 7.899E-05              | 1.446E-02               |
| 2012         | 1.977E+05            | 7.514E-05              | 1.375E-02               |

Table D-20. Southern Parcel Trichloroethene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg    |                        | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 7.147E-05              | 1.308E-02              |
| 2014         | 1.977E+05              | 6.799E-05              | 1.244E-02              |
| 2015         | 1.977E+05              | 6.467E-05              | 1.184E-02              |
| 2016         | 1.977E+05              | 6.152E-05              | 1.126E-02              |
| 2017         | 1.977E+05              | 5.852E-05              | 1.071E-02              |
| 2018         | 1.977E+05              | 5.566E-05              | 1.019E-02              |
| 2019         | 1.977E+05              | 5.295E-05              | 9.690E-03              |
| 2020         | 1.977E+05              | 5.037E-05              | 9.217E-03              |
| 2021         | 1.977E+05<br>1.977E+05 | 4.791E-05              | 8.768E-03              |
| 2022<br>2023 | 1.977E+05              | 4.557E-05<br>4.335E-05 | 8.340E-03<br>7.933E-03 |
| 2023         | 1.977E+05              | 4.124E-05              | 7.546E-03              |
| 2025         | 1.977E+05              | 3.923E-05              | 7.178E-03              |
| 2026         | 1.977E+05              | 3.731E-05              | 6.828E-03              |
| 2027         | 1.977E+05              | 3.549E-05              | 6.495E-03              |
| 2028         | 1.977E+05              | 3.376E-05              | 6.179E-03              |
| 2029         | 1.977E+05              | 3.212E-05              | 5.877E-03              |
| 2030         | 1.977E+05              | 3.055E-05              | 5.591E-03              |
| 2031         | 1.977E+05              | 2.906E-05              | 5.318E-03              |
| 2032         | 1.977E+05              | 2.764E-05              | 5.059E-03              |
| 2033         | 1.977E+05              | 2.629E-05              | 4.812E-03              |
| 2034         | 1.977E+05              | 2.501E-05              | 4.577E-03              |
| 2035         | 1.977E+05              | 2.379E-05              | 4.354E-03              |
| 2036         | 1.977E+05              | 2.263E-05              | 4.142E-03              |
| 2037         | 1.977E+05<br>1.977E+05 | 2.153E-05              | 3.940E-03              |
| 2038<br>2039 | 1.977E+05<br>1.977E+05 | 2.048E-05<br>1.948E-05 | 3.747E-03<br>3.565E-03 |
| 2039         | 1.977E+05              | 1.853E-05              | 3.391E-03              |
| 2041         | 1.977E+05              | 1.763E-05              | 3.225E-03              |
| 2042         | 1.977E+05              | 1.677E-05              | 3.068E-03              |
| 2043         | 1.977E+05              | 1.595E-05              | 2.919E-03              |
| 2044         | 1.977E+05              | 1.517E-05              | 2.776E-03              |
| 2045         | 1.977E+05              | 1.443E-05              | 2.641E-03              |
| 2046         | 1.977E+05              | 1.373E-05              | 2.512E-03              |
| 2047         | 1.977E+05              | 1.306E-05              | 2.389E-03              |
| 2048         | 1.977E+05              | 1.242E-05              | 2.273E-03              |
| 2049         | 1.977E+05              | 1.181E-05              | 2.162E-03              |
| 2050         | 1.977E+05              | 1.124E-05              | 2.057E-03              |
| 2051         | 1.977E+05              | 1.069E-05              | 1.956E-03              |
| 2052         | 1.977E+05              | 1.017E-05              | 1.861E-03              |
| 2053<br>2054 | 1.977E+05<br>1.977E+05 | 9.673E-06<br>9.201E-06 | 1.770E-03<br>1.684E-03 |
| 2054         | 1.977E+05              | 8.753E-06              | 1.602E-03              |
| 2056         | 1.977E+05              | 8.326E-06              | 1.524E-03              |
| 2057         | 1.977E+05              | 7.920E-06              | 1.449E-03              |
| 2058         | 1.977E+05              | 7.533E-06              | 1.379E-03              |
| 2059         | 1.977E+05              | 7.166E-06              | 1.311E-03              |
| 2060         | 1.977E+05              | 6.816E-06              | 1.247E-03              |
| 2061         | 1.977E+05              | 6.484E-06              | 1.187E-03              |
| 2062         | 1.977E+05              | 6.168E-06              | 1.129E-03              |
| 2063         | 1.977E+05              | 5.867E-06              | 1.074E-03              |
| 2064         | 1.977E+05              | 5.581E-06              | 1.021E-03              |
| 2065         | 1.977E+05              | 5.309E-06              | 9.715E-04              |
| 2066         | 1.977E+05              | 5.050E-06              | 9.241E-04              |
| 2067         | 1.977E+05<br>1.977E+05 | 4.803E-06<br>4.569E-06 | 8.790E-04<br>8.362E-04 |
| 2068<br>2069 | 1.977E+05              | 4.346E-06              | 7.954E-04              |
| 2070         | 1.977E+05              | 4.134E-06              | 7.566E-04              |
| 2071         | 1.977E+05              | 3.933E-06              | 7.197E-04              |
| 2072         | 1.977E+05              | 3.741E-06              | 6.846E-04              |
| 2073         | 1.977E+05              | 3.559E-06              | 6.512E-04              |
| 2074         | 1.977E+05              | 3.385E-06              | 6.194E-04              |
| 2075         | 1.977E+05              | 3.220E-06              | 5.892E-04              |
| 2076         | 1.977E+05              | 3.063E-06              | 5.605E-04              |
| 2077         | 1.977E+05              | 2.913E-06              | 5.332E-04              |
| 2078         | 1.977E+05              | 2.771E-06              | 5.072E-04              |
| 2079         | 1.977E+05              | 2.636E-06              | 4.824E-04              |
| 2080         | 1.977E+05              | 2.508E-06              | 4.589E-04              |
| 2081<br>2082 | 1.977E+05<br>1.977E+05 | 2.385E-06<br>2.269E-06 | 4.365E-04<br>4.152E-04 |
| 2082         | 1.977E+05              | 2.269E-06<br>2.158E-06 | 3.950E-04              |
| 2000         | 1.5776703              | 2.1305-00              | 3.3300 04              |

Table D-20. Southern Parcel Trichloroethene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 2.053E-06              | 3.757E-04              |
| 2085         | 1.977E+05              | 1.953E-06              | 3.574E-04              |
| 2086         | 1.977E+05              | 1.858E-06              | 3.400E-04              |
| 2087         | 1.977E+05              | 1.767E-06              | 3.234E-04              |
| 2088         | 1.977E+05              | 1.681E-06              | 3.076E-04              |
| 2089         | 1.977E+05<br>1.977E+05 | 1.599E-06              | 2.926E-04              |
| 2090<br>2091 | 1.977E+05              | 1.521E-06<br>1.447E-06 | 2.783E-04<br>2.648E-04 |
| 2092         | 1.977E+05              | 1.376E-06              | 2.518E-04              |
| 2093         | 1.977E+05              | 1.309E-06              | 2.396E-04              |
| 2094         | 1.977E+05              | 1.245E-06              | 2.279E-04              |
| 2095         | 1.977E+05              | 1.185E-06              | 2.168E-04              |
| 2096         | 1.977E+05              | 1.127E-06              | 2.062E-04              |
| 2097         | 1.977E+05              | 1.072E-06              | 1.961E-04              |
| 2098         | 1.977E+05              | 1.020E-06              | 1.866E-04              |
| 2099         | 1.977E+05              | 9.698E-07              | 1.775E-04              |
| 2100         | 1.977E+05              | 9.225E-07              | 1.688E-04              |
| 2101         | 1.977E+05              | 8.775E-07              | 1.606E-04              |
| 2102<br>2103 | 1.977E+05<br>1.977E+05 | 8.347E-07<br>7.940E-07 | 1.528E-04<br>1.453E-04 |
| 2103         | 1.977E+05              | 7.553E-07              | 1.455E-04<br>1.382E-04 |
| 2104         | 1.977E+05              | 7.185E-07              | 1.315E-04              |
| 2106         | 1.977E+05              | 6.834E-07              | 1.251E-04              |
| 2107         | 1.977E+05              | 6.501E-07              | 1.190E-04              |
| 2108         | 1.977E+05              | 6.184E-07              | 1.132E-04              |
| 2109         | 1.977E+05              | 5.882E-07              | 1.076E-04              |
| 2110         | 1.977E+05              | 5.595E-07              | 1.024E-04              |
| 2111         | 1.977E+05              | 5.322E-07              | 9.740E-05              |
| 2112         | 1.977E+05              | 5.063E-07              | 9.265E-05              |
| 2113         | 1.977E+05              | 4.816E-07              | 8.813E-05              |
| 2114         | 1.977E+05              | 4.581E-07              | 8.383E-05              |
| 2115         | 1.977E+05              | 4.358E-07              | 7.974E-05              |
| 2116         | 1.977E+05              | 4.145E-07              | 7.586E-05              |
| 2117<br>2118 | 1.977E+05<br>1.977E+05 | 3.943E-07<br>3.751E-07 | 7.216E-05<br>6.864E-05 |
| 2119         | 1.977E+05              | 3.751E-07<br>3.568E-07 | 6.529E-05              |
| 2120         | 1.977E+05              | 3.394E-07              | 6.211E-05              |
| 2121         | 1.977E+05              | 3.228E-07              | 5.908E-05              |
| 2122         | 1.977E+05              | 3.071E-07              | 5.620E-05              |
| 2123         | 1.977E+05              | 2.921E-07              | 5.345E-05              |
| 2124         | 1.977E+05              | 2.779E-07              | 5.085E-05              |
| 2125         | 1.977E+05              | 2.643E-07              | 4.837E-05              |
| 2126         | 1.977E+05              | 2.514E-07              | 4.601E-05              |
| 2127         | 1.977E+05              | 2.392E-07              | 4.376E-05              |
| 2128         | 1.977E+05              | 2.275E-07              | 4.163E-05              |
| 2129         | 1.977E+05              | 2.164E-07              | 3.960E-05              |
| 2130         | 1.977E+05<br>1.977E+05 | 2.058E-07<br>1.958E-07 | 3.767E-05<br>3.583E-05 |
| 2131<br>2132 | 1.977E+05<br>1.977E+05 | 1.863E-07              | 3.408E-05              |
| 2133         | 1.977E+05              | 1.772E-07              | 3.242E-05              |
| 2134         | 1.977E+05              | 1.685E-07              | 3.084E-05              |
| 2135         | 1.977E+05              | 1.603E-07              | 2.934E-05              |
| 2136         | 1.977E+05              | 1.525E-07              | 2.791E-05              |
| 2137         | 1.977E+05              | 1.451E-07              | 2.654E-05              |
| 2138         | 1.977E+05              | 1.380E-07              | 2.525E-05              |
| 2139         | 1.977E+05              | 1.312E-07              | 2.402E-05              |
| 2140         | 1.977E+05              | 1.248E-07              | 2.285E-05              |
| 2141         | 1.977E+05              | 1.188E-07              | 2.173E-05              |
| 2142         | 1.977E+05              | 1.130E-07              | 2.067E-05              |
| 2143         | 1.977E+05              | 1.075E-07              | 1.966E-05              |
| 2144         | 1.977E+05<br>1.977E+05 | 1.022E-07<br>9.723E-08 | 1.871E-05<br>1.779E-05 |
| 2145<br>2146 | 1.977E+05<br>1.977E+05 | 9.723E-08<br>9.249E-08 | 1.779E-05<br>1.693E-05 |
| 2146         | 1.977E+05<br>1.977E+05 | 8.798E-08              | 1.610E-05              |
| 2148         | 1.977E+05              | 8.369E-08              | 1.531E-05              |
| 2149         | 1.977E+05              | 7.961E-08              | 1.457E-05              |
| 2150         | 1.977E+05              | 7.572E-08              | 1.386E-05              |
| 2151         | 1.977E+05              | 7.203E-08              | 1.318E-05              |
| 2152         | 1.977E+05              | 6.852E-08              | 1.254E-05              |
| 2153         | 1.977E+05              | 6.518E-08              | 1.193E-05              |
| 2154         | 1.977E+05              | 6.200E-08              | 1.135E-05              |
|              |                        |                        |                        |

Table D-20. Southern Parcel Trichloroethene Emisson Rate from Year 1968 to 2203 (concluded).

| 2155 |           |           |           |
|------|-----------|-----------|-----------|
|      | 1.977E+05 | 5.897E-08 | 1.079E-05 |
| 2156 | 1.977E+05 | 5.610E-08 | 1.027E-05 |
| 2157 | 1.977E+05 | 5.336E-08 | 9.765E-06 |
| 2158 | 1.977E+05 | 5.076E-08 | 9.289E-06 |
| 2159 | 1.977E+05 | 4.828E-08 | 8.836E-06 |
| 2160 | 1.977E+05 | 4.593E-08 | 8.405E-06 |
| 2161 | 1.977E+05 | 4.369E-08 | 7.995E-06 |
| 2162 | 1.977E+05 | 4.156E-08 | 7.605E-06 |
| 2163 | 1.977E+05 | 3.953E-08 | 7.234E-06 |
| 2164 | 1.977E+05 | 3.760E-08 | 6.881E-06 |
| 2165 | 1.977E+05 | 3.577E-08 | 6.546E-06 |
| 2166 | 1.977E+05 | 3.403E-08 | 6.227E-06 |
| 2167 | 1.977E+05 | 3.237E-08 | 5.923E-06 |
| 2168 | 1.977E+05 | 3.079E-08 | 5.634E-06 |
| 2169 | 1.977E+05 | 2.929E-08 | 5.359E-06 |
| 2170 | 1.977E+05 | 2.786E-08 | 5.098E-06 |
| 2171 | 1.977E+05 | 2.650E-08 | 4.849E-06 |
| 2172 | 1.977E+05 | 2.521E-08 | 4.613E-06 |
| 2173 | 1.977E+05 | 2.398E-08 | 4.388E-06 |
| 2174 | 1.977E+05 | 2.281E-08 | 4.174E-06 |
| 2175 | 1.977E+05 | 2.170E-08 | 3.970E-06 |
| 2176 | 1.977E+05 | 2.064E-08 | 3.777E-06 |
| 2177 | 1.977E+05 | 1.963E-08 | 3.592E-06 |
| 2178 | 1.977E+05 | 1.867E-08 | 3.417E-06 |
| 2179 | 1.977E+05 | 1.776E-08 | 3.251E-06 |
| 2180 | 1.977E+05 | 1.690E-08 | 3.092E-06 |
| 2181 | 1.977E+05 | 1.607E-08 | 2.941E-06 |
| 2182 | 1.977E+05 | 1.529E-08 | 2.798E-06 |
| 2183 | 1.977E+05 | 1.454E-08 | 2.661E-06 |
| 2184 | 1.977E+05 | 1.383E-08 | 2.532E-06 |
| 2185 | 1.977E+05 | 1.316E-08 | 2,408E-06 |
| 2186 | 1.977E+05 | 1.252E-08 | 2.291E-06 |
| 2187 | 1.977E+05 | 1.191E-08 | 2.179E-06 |
| 2188 | 1.977E+05 | 1.133E-08 | 2.073E-06 |
| 2189 | 1.977E+05 | 1.077E-08 | 1.972E-06 |
| 2190 | 1.977E+05 | 1.025E-08 | 1.875E-06 |
| 2191 | 1.977E+05 | 9.748E-09 | 1.784E-06 |
| 2192 | 1.977E+05 | 9.273E-09 | 1.697E-06 |
| 2193 | 1.977E+05 | 8.821E-09 | 1.614E-06 |
| 2194 | 1.977E+05 | 8.390E-09 | 1.535E-06 |
| 2195 | 1.977E+05 | 7.981E-09 | 1.461E-06 |
| 2196 | 1.977E+05 | 7.592E-09 | 1.389E-06 |
| 2197 | 1.977E+05 | 7.222E-09 | 1.322E-06 |
| 2198 | 1.977E+05 | 6.870E-09 | 1.257E-06 |
| 2199 | 1.977E+05 | 6.535E-09 | 1.196E-06 |
| 2200 | 1.977E+05 | 6.216E-09 | 1.137E-06 |
| 2201 | 1.977E+05 | 5.913E-09 | 1.082E-06 |

Table D-21. Southern Parcel Vinyl Chloride Emisson Rate from Year 1968 to 2203.

Model Parameters

\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC : 2550.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 59.0000 % volume

Carbon Dioxide : 41.0000 % volume

Air Pollutant : Vinyl Chloride (HAP/VOC) Molecular Wt = 62.50 Concentration 0.300000 ppmV Concentration =

# Landfill Parameters

\_\_\_\_\_\_

Landfill type : Co-Disposal

Year Opened: 1967 Current Year: 2003 Closure Year: 2002

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 12238.07 Mg/year

\_\_\_\_\_

| Year | Refuse In Place (Mg) | Vinyl Chloride (H<br>(Mg/yr) | AP/VOC) Emission Rate<br>(Cubic m/vr) |  |
|------|----------------------|------------------------------|---------------------------------------|--|
| 1ear | Reluse in Flace (Mg) | (Mg/yr)                      | (Cubic myyl)                          |  |
| 1968 | 1.318E+04            | 1.481E-04                    | 5.696E-02                             |  |
| 1969 | 2.636E+04            | 2.889E-04                    | 1.111E-01                             |  |
| 1970 | 3.954E+04            | 4.229E-04                    | 1.627E-01                             |  |
| 1971 | 5.272E+04            | 5.504E-04                    | 2.117E-01                             |  |
| 1972 | 6.590E+04            | 6.716E-04                    | 2.584E-01                             |  |
| 1973 | 7.908E+04            | 7.869E-04                    | 3.027E-01                             |  |
| 1974 | 9.226E+04            | 8.966E-04                    | 3.449E-01                             |  |
| 1975 | 1.054E+05            | 1.001E-03                    | 3.851E-01                             |  |
| 1976 | 1.186E+05            | 1.100E-03                    | 4.232E-01                             |  |
| 1977 | 1.318E+05            | 1.195E-03                    | 4.596E-01                             |  |
| 1978 | 1.450E+05            | 1.284E-03                    | 4.941E-01                             |  |
| 1979 | 1.582E+05            | 1.370E-03                    | 5.270E-01                             |  |
| 1980 | 1.713E+05            | 1.451E-03                    | 5.582E-01                             |  |
| 1981 | 1.845E+05            | 1.528E-03                    | 5.880E-01                             |  |
| 1982 | 1.977E+05            | 1.602E-03                    | 6.163E-01                             |  |
| 1983 | 1.977E+05            | 1.524E-03                    | 5.862E-01                             |  |
| 1984 | 1.977E+05            | 1.450E-03                    | 5.576E-01                             |  |
| 1985 | 1.977E+05            | 1.379E-03                    | 5.304E-01                             |  |
| 1986 | 1.977E+05            | 1.312E-03                    | 5.045E-01                             |  |
| 1987 | 1.977E+05            | 1.248E-03                    | 4.799E-01                             |  |
| 1988 | 1.977E+05            | 1.187E-03                    | 4.565E-01                             |  |
| 1989 | 1.977E+05            | 1.129E-03                    | 4.343E-01                             |  |
| 1990 | 1.977E+05            | 1.074E-03                    | 4.131E-01                             |  |
| 1991 | 1.977E+05            | 1.021E-03                    | 3.929E-01                             |  |
| 1992 | 1.977E+05            | 9.717E-04                    | 3.738E-01                             |  |
| 1993 | 1.977E+05            | 9.243E-04                    | 3.555E-01                             |  |
| 1994 | 1.977E+05            | 8.792E-04                    | 3.382E-01                             |  |
| 1995 | 1.977E+05            | 8.363E-04                    | 3.217E-01                             |  |
| 1996 | 1.977E+05            | 7.955E-04                    | 3.060E-01                             |  |
| 1997 | 1.977E+05            | 7.567E-04                    | 2.911E-01                             |  |
| 1998 | 1.977E+05            | 7.198E-04                    | 2.769E-01                             |  |
| 1999 | 1.977E+05            | 6.847E-04                    | 2.634E-01                             |  |
| 2000 | 1.977E+05            | 6.513E-04                    | 2.506E-01                             |  |
| 2001 | 1.977E+05            | 6.196E-04                    | 2.383E-01                             |  |
| 2002 | 1.977E+05            | 5.893E-04                    | 2.267E-01                             |  |
| 2003 | 1.977E+05            | 5.606E-04                    | 2.157E-01                             |  |
| 2004 | 1.977E+05            | 5.333E-04                    | 2.051E-01                             |  |
| 2005 | 1.977E+05            | 5.072E-04                    | 1.951E-01                             |  |
| 2006 | 1.977E+05            | 4.825E-04                    | 1.856E-01                             |  |
| 2007 | 1.977E+05            | 4.590E-04                    | 1.766E-01                             |  |
| 2008 | 1.977E+05            | 4.366E-04                    | 1.679E-01                             |  |
| 2009 | 1.977E+05            | 4.153E-04                    | 1.598E-01                             |  |
| 2010 | 1.977E+05            | 3.950E-04                    | 1.520E-01                             |  |
| 2011 | 1.977E+05            | 3.758E-04                    | 1.446E-01                             |  |
| 2012 | 1.977E+05            | 3.575E-04                    | 1.375E-01                             |  |

Table D-21. Southern Parcel Vinyl Chloride Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 3.400E-04              | 1.308E-01              |
| 2014         | 1.977E+05              | 3.234E-04              | 1.244E-01              |
| 2015         | 1.977E+05              | 3.077E-04              | 1.184E-01              |
| 2016         | 1.977E+05              | 2.927E-04              | 1.126E-01              |
| 2017<br>2018 | 1.977E+05<br>1.977E+05 | 2.784E-04<br>2.648E-04 | 1.071E-01<br>1.019E-01 |
| 2018         | 1.977E+05<br>1.977E+05 | 2.519E-04              | 9.690E-02              |
| 2020         | 1.977E+05              | 2.396E-04              | 9.217E-02              |
| 2021         | 1.977E+05              | 2.279E-04              | 8.768E-02              |
| 2022         | 1.977E+05              | 2.168E-04              | 8.340E-02              |
| 2023         | 1.977E+05              | 2.062E-04              | 7.933E-02              |
| 2024         | 1.977E+05              | 1.962E-04              | 7.546E-02              |
| 2025         | 1.977E+05              | 1.866E-04              | 7.178E-02              |
| 2026         | 1.977E+05              | 1.775E-04              | 6.828E-02              |
| 2027<br>2028 | 1.977E+05<br>1.977E+05 | 1.688E-04<br>1.606E-04 | 6.495E-02<br>6.179E-02 |
| 2029         | 1.977E+05              | 1.528E-04              | 5.877E-02              |
| 2030         | 1.977E+05              | 1.453E-04              | 5.591E-02              |
| 2031         | 1.977E+05              | 1.382E-04              | 5.318E-02              |
| 2032         | 1.977E+05              | 1.315E-04              | 5.059E-02              |
| 2033         | 1.977E+05              | 1.251E-04              | 4.812E-02              |
| 2034         | 1.977E+05              | 1.190E-04              | 4.577E-02              |
| 2035         | 1.977E+05              | 1.132E-04              | 4.354E-02              |
| 2036         | 1.977E+05              | 1.077E-04              | 4.142E-02              |
| 2037<br>2038 | 1.977E+05<br>1.977E+05 | 1.024E-04<br>9.742E-05 | 3.940E-02<br>3.747E-02 |
| 2038         | 1.977E+05              | 9.742E-05<br>9.267E-05 | 3.565E-02              |
| 2040         | 1.977E+05              | 8.815E-05              | 3.391E-02              |
| 2041         | 1.977E+05              | 8.385E-05              | 3.225E-02              |
| 2042         | 1.977E+05              | 7.976E-05              | 3.068E-02              |
| 2043         | 1.977E+05              | 7.587E-05              | 2.919E-02              |
| 2044         | 1.977E+05              | 7.217E-05              | 2.776E-02              |
| 2045         | 1.977E+05              | 6.865E-05              | 2.641E-02              |
| 2046         | 1.977E+05              | 6.530E-05              | 2.512E-02              |
| 2047         | 1.977E+05<br>1.977E+05 | 6.212E-05<br>5.909E-05 | 2.389E-02<br>2.273E-02 |
| 2049         | 1.977E+05              | 5.620E-05              | 2.162E-02              |
| 2050         | 1.977E+05              | 5.346E-05              | 2.057E-02              |
| 2051         | 1.977E+05              | 5.086E-05              | 1.956E-02              |
| 2052         | 1.977E+05              | 4.838E-05              | 1.861E-02              |
| 2053         | 1.977E+05              | 4.602E-05              | 1.770E-02              |
| 2054         | 1.977E+05              | 4.377E-05              | 1.684E-02              |
| 2055         | 1.977E+05              | 4.164E-05              | 1.602E-02              |
| 2056<br>2057 | 1.977E+05<br>1.977E+05 | 3.961E-05<br>3.768E-05 | 1.524E-02<br>1.449E-02 |
| 2057         | 1.977E+05              | 3.584E-05              | 1.449E-02<br>1.379E-02 |
| 2059         | 1.977E+05              | 3.409E-05              | 1.311E-02              |
| 2060         | 1.977E+05              | 3.243E-05              | 1.247E-02              |
| 2061         | 1.977E+05              | 3.085E-05              | 1.187E-02              |
| 2062         | 1.977E+05              | 2.934E-05              | 1.129E-02              |
| 2063         | 1.977E+05              | 2.791E-05              | 1.074E-02              |
| 2064         | 1.977E+05              | 2.655E-05              | 1.021E-02              |
| 2065         | 1.977E+05              | 2.525E-05              | 9.715E-03              |
| 2066<br>2067 | 1.977E+05<br>1.977E+05 | 2.402E-05<br>2.285E-05 | 9.241E-03<br>8.790E-03 |
| 2068         | 1.977E+05              | 2.174E-05              | 8.362E-03              |
| 2069         | 1.977E+05              | 2.068E-05              | 7.954E-03              |
| 2070         | 1.977E+05              | 1.967E-05              | 7.566E-03              |
| 2071         | 1.977E+05              | 1.871E-05              | 7.197E-03              |
| 2072         | 1.977E+05              | 1.780E-05              | 6.846E-03              |
| 2073         | 1.977E+05              | 1.693E-05              | 6.512E-03              |
| 2074         | 1.977E+05              | 1.610E-05              | 6.194E-03              |
| 2075<br>2076 | 1.977E+05<br>1.977E+05 | 1.532E-05<br>1.457E-05 | 5.892E-03<br>5.605E-03 |
| 2076         | 1.977E+05              | 1.457E-05<br>1.386E-05 | 5.332E-03              |
| 2078         | 1.977E+05              | 1.318E-05              | 5.072E-03              |
| 2079         | 1.977E+05              | 1.254E-05              | 4.824E-03              |
| 2080         | 1.977E+05              | 1.193E-05              | 4.589E-03              |
| 2081         | 1.977E+05              | 1.135E-05              | 4.365E-03              |
| 2082         | 1.977E+05              | 1.079E-05              | 4.152E-03              |
| 2083         | 1.977E+05              | 1.027E-05              | 3.950E-03              |

Table D-21. Southern Parcel Vinyl Chloride Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 9.767E-06              | 3.757E-03              |
| 2085         | 1.977E+05              | 9.291E-06              | 3.574E-03              |
| 2086         | 1.977E+05              | 8.837E-06              | 3.400E-03              |
| 2087         | 1.977E+05              | 8.406E-06              | 3.234E-03              |
| 2088         | 1.977E+05              | 7.996E-06              | 3.076E-03              |
| 2089<br>2090 | 1.977E+05<br>1.977E+05 | 7.606E-06<br>7.235E-06 | 2.926E-03<br>2.783E-03 |
| 2090         | 1.977E+05              | 6.883E-06              | 2.648E-03              |
| 2092         | 1.977E+05              | 6.547E-06              | 2.518E-03              |
| 2093         | 1.977E+05              | 6.228E-06              | 2.396E-03              |
| 2094         | 1.977E+05              | 5.924E-06              | 2.279E-03              |
| 2095         | 1.977E+05              | 5.635E-06              | 2.168E-03              |
| 2096         | 1.977E+05              | 5.360E-06              | 2.062E-03              |
| 2097         | 1.977E+05              | 5.099E-06              | 1.961E-03              |
| 2098         | 1.977E+05              | 4.850E-06              | 1.866E-03              |
| 2099<br>2100 | 1.977E+05<br>1.977E+05 | 4.614E-06<br>4.389E-06 | 1.775E-03<br>1.688E-03 |
| 2101         | 1.977E+05              | 4.175E-06              | 1.606E-03              |
| 2102         | 1.977E+05              | 3.971E-06              | 1.528E-03              |
| 2103         | 1.977E+05              | 3.777E-06              | 1.453E-03              |
| 2104         | 1.977E+05              | 3.593E-06              | 1.382E-03              |
| 2105         | 1.977E+05              | 3.418E-06              | 1.315E-03              |
| 2106         | 1.977E+05              | 3.251E-06              | 1.251E-03              |
| 2107         | 1.977E+05              | 3.093E-06              | 1.190E-03              |
| 2108         | 1.977E+05              | 2.942E-06              | 1.132E-03              |
| 2109         | 1.977E+05              | 2.798E-06              | 1.076E-03              |
| 2110<br>2111 | 1.977E+05<br>1.977E+05 | 2.662E-06<br>2.532E-06 | 1.024E-03<br>9.740E-04 |
| 2112         | 1.977E+05              | 2.408E-06              | 9.265E-04              |
| 2113         | 1.977E+05              | 2.291E-06              | 8.813E-04              |
| 2114         | 1.977E+05              | 2.179E-06              | 8.383E-04              |
| 2115         | 1.977E+05              | 2.073E-06              | 7.974E-04              |
| 2116         | 1.977E+05              | 1.972E-06              | 7.586E-04              |
| 2117         | 1.977E+05              | 1.876E-06              | 7.216E-04              |
| 2118         | 1.977E+05              | 1.784E-06              | 6.864E-04              |
| 2119         | 1.977E+05              | 1.697E-06              | 6.529E-04              |
| 2120<br>2121 | 1.977E+05<br>1.977E+05 | 1.614E-06<br>1.536E-06 | 6.211E-04<br>5.908E-04 |
| 2121         | 1.977E+05              | 1.461E-06              | 5.620E-04              |
| 2123         | 1.977E+05              | 1.390E-06              | 5.345E-04              |
| 2124         | 1.977E+05              | 1.322E-06              | 5.085E-04              |
| 2125         | 1.977E+05              | 1.257E-06              | 4.837E-04              |
| 2126         | 1.977E+05              | 1.196E-06              | 4.601E-04              |
| 2127         | 1.977E+05              | 1.138E-06              | 4.376E-04              |
| 2128         | 1.977E+05              | 1.082E-06              | 4.163E-04              |
| 2129<br>2130 | 1.977E+05<br>1.977E+05 | 1.029E-06<br>9.792E-07 | 3.960E-04<br>3.767E-04 |
| 2130         | 1.977E+05              | 9.792E-07<br>9.315E-07 | 3.583E-04              |
| 2132         | 1.977E+05              | 8.860E-07              | 3.408E-04              |
| 2133         | 1.977E+05              | 8.428E-07              | 3.242E-04              |
| 2134         | 1.977E+05              | 8.017E-07              | 3.084E-04              |
| 2135         | 1.977E+05              | 7.626E-07              | 2.934E-04              |
| 2136         | 1.977E+05              | 7.254E-07              | 2.791E-04              |
| 2137         | 1.977E+05              | 6.900E-07              | 2.654E-04              |
| 2138         | 1.977E+05              | 6.564E-07              | 2.525E-04              |
| 2139         | 1.977E+05              | 6.244E-07              | 2.402E-04<br>2.285E-04 |
| 2140<br>2141 | 1.977E+05<br>1.977E+05 | 5.939E-07<br>5.650E-07 | 2.285E-04<br>2.173E-04 |
| 2142         | 1.977E+05              | 5.374E-07              | 2.067E-04              |
| 2143         | 1.977E+05              | 5.112E-07              | 1.966E-04              |
| 2144         | 1.977E+05              | 4.863E-07              | 1.871E-04              |
| 2145         | 1.977E+05              | 4.625E-07              | 1.779E-04              |
| 2146         | 1.977E+05              | 4.400E-07              | 1.693E-04              |
| 2147         | 1.977E+05              | 4.185E-07              | 1.610E-04              |
| 2148         | 1.977E+05              | 3.981E-07              | 1.531E-04              |
| 2149         | 1.977E+05              | 3.787E-07              | 1.457E-04              |
| 2150         | 1.977E+05              | 3.602E-07              | 1.386E-04              |
| 2151<br>2152 | 1.977E+05<br>1.977E+05 | 3.427E-07<br>3.260E-07 | 1.318E-04<br>1.254E-04 |
| 2153         | 1.977E+05              | 3.101E-07              | 1.193E-04              |
| 2154         | 1.977E+05              | 2.949E-07              | 1.135E-04              |
|              |                        |                        |                        |

Table D-21. Southern Parcel Vinyl Chloride Emisson Rate from Year 1968 to 2203 (concluded).

| Year | Refuse In Place (Mg) | (Mg/yr)   | (Cubic m/yr) |  |
|------|----------------------|-----------|--------------|--|
| 2155 | 1.977E+05            | 2.806E-07 | 1.079E-04    |  |
| 2156 | 1.977E+05            | 2.669E-07 | 1.027E-04    |  |
| 2157 | 1.977E+05            | 2.539E-07 | 9.765E-05    |  |
| 2158 | 1.977E+05            | 2.415E-07 | 9.289E-05    |  |
| 2159 | 1.977E+05            | 2.297E-07 | 8.836E-05    |  |
| 2160 | 1.977E+05            | 2.185E-07 | 8.405E-05    |  |
| 2161 | 1.977E+05            | 2.078E-07 | 7.995E-05    |  |
| 2162 | 1.977E+05            | 1.977E-07 | 7.605E-05    |  |
| 2163 | 1.977E+05            | 1.881E-07 | 7.234E-05    |  |
| 2164 | 1.977E+05            | 1.789E-07 | 6.881E-05    |  |
| 2165 | 1.977E+05            | 1.702E-07 | 6.546E-05    |  |
| 2166 | 1.977E+05            | 1.619E-07 | 6.227E-05    |  |
| 2167 | 1.977E+05            | 1.540E-07 | 5.923E-05    |  |
| 2168 | 1.977E+05            | 1.465E-07 | 5.634E-05    |  |
| 2169 | 1.977E+05            | 1.393E-07 | 5.359E-05    |  |
| 2170 | 1.977E+05            | 1.325E-07 | 5.098E-05    |  |
| 2171 | 1.977E+05            | 1.261E-07 | 4.849E-05    |  |
| 2172 | 1.977E+05            | 1.199E-07 | 4.613E-05    |  |
| 2173 | 1.977E+05            | 1.141E-07 | 4.388E-05    |  |
| 2174 | 1.977E+05            | 1.085E-07 | 4.174E-05    |  |
| 2175 | 1.977E+05            | 1.032E-07 | 3.970E-05    |  |
| 2176 | 1.977E+05            | 9.818E-08 | 3.777E-05    |  |
| 2177 | 1.977E+05            | 9.339E-08 | 3.592E-05    |  |
| 2178 | 1.977E+05            | 8.883E-08 | 3.417E-05    |  |
| 2179 | 1.977E+05            | 8.450E-08 | 3.251E-05    |  |
| 2180 | 1.977E+05            | 8.038E-08 | 3.092E-05    |  |
| 2181 | 1.977E+05            | 7.646E-08 | 2.941E-05    |  |
| 2182 | 1.977E+05            | 7.273E-08 | 2.798E-05    |  |
| 2183 | 1.977E+05            | 6.918E-08 | 2.661E-05    |  |
| 2184 | 1.977E+05            | 6.581E-08 | 2.532E-05    |  |
| 2185 | 1.977E+05            | 6.260E-08 | 2.408E-05    |  |
| 2186 | 1.977E+05            | 5.955E-08 | 2.291E-05    |  |
| 2187 | 1.977E+05            | 5.664E-08 | 2.179E-05    |  |
| 2188 | 1.977E+05            | 5.388E-08 | 2.073E-05    |  |
| 2189 | 1.977E+05            | 5.125E-08 | 1.972E-05    |  |
| 2190 | 1.977E+05            | 4.875E-08 | 1.875E-05    |  |
| 2191 | 1.977E+05            | 4.637E-08 | 1.784E-05    |  |
| 2192 | 1.977E+05            | 4.411E-08 | 1.697E-05    |  |
| 2193 | 1.977E+05            | 4.196E-08 | 1.614E-05    |  |
| 2194 | 1.977E+05            | 3.992E-08 | 1.535E-05    |  |
| 2195 | 1.977E+05            | 3.797E-08 | 1.461E-05    |  |
| 2196 | 1.977E+05            | 3.612E-08 | 1.389E-05    |  |
| 2197 | 1.977E+05            | 3.436E-08 | 1.322E-05    |  |
| 2198 | 1.977E+05            | 3.268E-08 | 1.257E-05    |  |
| 2199 | 1.977E+05            | 3.109E-08 | 1.196E-05    |  |
| 2200 | 1.977E+05            | 2.957E-08 | 1.137E-05    |  |
| 2201 | 1.977E+05            | 2.813E-08 | 1.082E-05    |  |
|      |                      |           |              |  |

Table D-22. Southern Parcel m,p-Xylene Emisson Rate from Year 1968 to 2203.

#### Model Parameters

\_\_\_\_\_\_ Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\*

k: 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC : 2550.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 59.0000 % volume

Carbon Dioxide : 41.0000 % volume Air Pollutant : m,p-Xylene (HAP/VOC)
Molecular Wt = 106.17 Concentration =

3.750000 ppmV

# Landfill Parameters

\_\_\_\_\_\_

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 12238.07 Mg/year

\_\_\_\_\_\_

|      |                      | m,p-Xylene | (HAP/VOC) Emission Rate |
|------|----------------------|------------|-------------------------|
| Year | Refuse In Place (Mg) | (Mg/yr)    | (Cubic m/yr)            |
|      |                      |            |                         |
| 1968 | 1.318E+04            | 3.144E-03  | 7.120E-01               |
| 1969 | 2.636E+04            | 6.135E-03  | 1.389E+00               |
| 1970 | 3.954E+04            | 8.980E-03  | 2.034E+00               |
| 1971 | 5.272E+04            | 1.169E-02  | 2.646E+00               |
| 1972 | 6.590E+04            | 1.426E-02  | 3.229E+00               |
| 1973 | 7.908E+04            | 1.671E-02  | 3.784E+00               |
| 1974 | 9.226E+04            | 1.904E-02  | 4.311E+00               |
| 1975 | 1.054E+05            | 2.125E-02  | 4.813E+00               |
| 1976 | 1.186E+05            | 2.336E-02  | 5.290E+00               |
| 1977 | 1.318E+05            | 2.537E-02  | 5.744E+00               |
| 1978 | 1.450E+05            | 2.727E-02  | 6.176E+00               |
| 1979 | 1.582E+05            | 2.909E-02  | 6.587E+00               |
| 1980 | 1.713E+05            | 3.081E-02  | 6.978E+00               |
| 1981 | 1.845E+05            | 3.246E-02  | 7.350E+00               |
| 1982 | 1.977E+05            | 3.402E-02  | 7.703E+00               |
| 1983 | 1.977E+05            | 3.236E-02  | 7.327E+00               |
| 1984 | 1.977E+05            | 3.078E-02  | 6.970E+00               |
| 1985 | 1.977E+05            | 2.928E-02  | 6.630E+00               |
| 1986 | 1.977E+05            | 2.785E-02  | 6.307E+00               |
| 1987 | 1.977E+05            | 2.649E-02  | 5.999E+00               |
| 1988 | 1.977E+05            | 2.520E-02  | 5.707E+00               |
| 1989 | 1.977E+05            | 2.397E-02  | 5.428E+00               |
| 1990 | 1.977E+05            | 2.280E-02  | 5.164E+00               |
| 1991 | 1.977E+05            | 2.169E-02  | 4.912E+00               |
| 1992 | 1.977E+05            | 2.063E-02  | 4.672E+00               |
| 1993 | 1.977E+05            | 1.963E-02  | 4.44E+00                |
| 1994 | 1.977E+05            | 1.867E-02  | 4.228E+00               |
| 1995 | 1.977E+05            | 1.776E-02  | 4.021E+00               |
| 1996 | 1.977E+05            | 1.689E-02  | 3.825E+00               |
| 1997 | 1.977E+05            | 1.607E-02  | 3.639E+00               |
| 1998 | 1.977E+05            | 1.528E-02  | 3.461E+00               |
| 1999 | 1.977E+05            | 1.454E-02  | 3.292E+00               |
| 2000 | 1.977E+05            | 1.383E-02  | 3.132E+00               |
| 2001 | 1.977E+05            | 1.316E-02  | 2.979E+00               |
| 2002 | 1.977E+05            | 1.251E-02  | 2.834E+00               |
| 2003 | 1.977E+05            | 1.190E-02  | 2.696E+00               |
| 2004 | 1.977E+05            | 1.132E-02  | 2.564E+00               |
| 2005 | 1.977E+05            | 1.077E-02  | 2.439E+00               |
| 2006 | 1.977E+05            | 1.025E-02  | 2.320E+00               |
| 2007 | 1.977E+05            | 9.746E-03  | 2.207E+00               |
| 2008 | 1.977E+05            | 9.271E-03  | 2.099E+00               |
| 2009 | 1.977E+05            | 8.818E-03  | 1.997E+00               |
| 2010 | 1.977E+05            | 8.388E-03  | 1.900E+00               |
| 2011 | 1.977E+05            | 7.979E-03  | 1.807E+00               |
| 2012 | 1.977E+05            | 7.590E-03  | 1.719E+00               |

Table D-22. Southern Parcel m,p-Xylene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg    | (Mg/yr) (Cubic m/yr)                       |
|--------------|------------------------|--------------------------------------------|
| 2013         | 1.977E+05              | 7.220E-03 1.635E+00                        |
| 2014         | 1.977E+05              | 6.868E-03 1.555E+00                        |
| 2015         | 1.977E+05              | 6.533E-03 1.479E+00                        |
| 2016         | 1.977E+05              | 6.214E-03 1.407E+00                        |
| 2017         | 1.977E+05              | 5.911E-03 1.339E+00                        |
| 2018         | 1.977E+05              | 5.623E-03 1.273E+00                        |
| 2019         | 1.977E+05              | 5.349E-03 1.211E+00                        |
| 2020         | 1.977E+05              | 5.088E-03 1.152E+00                        |
| 2021<br>2022 | 1.977E+05<br>1.977E+05 | 4.840E-03 1.096E+00<br>4.604E-03 1.043E+00 |
| 2023         | 1.977E+05              | 4.379E-03 9.917E-01                        |
| 2024         | 1.977E+05              | 4.166E-03 9.433E-01                        |
| 2025         | 1.977E+05              | 3.962E-03 8.973E-01                        |
| 2026         | 1.977E+05              | 3.769E-03 8.535E-01                        |
| 2027         | 1.977E+05              | 3.585E-03 8.119E-01                        |
| 2028         | 1.977E+05              | 3.410E-03 7.723E-01                        |
| 2029         | 1.977E+05              | 3.244E-03 7.346E-01                        |
| 2030         | 1.977E+05              | 3.086E-03 6.988E-01                        |
| 2031         | 1.977E+05              | 2.935E-03 6.647E-01                        |
| 2032         | 1.977E+05              | 2.792E-03 6.323E-01                        |
| 2033         | 1.977E+05              | 2.656E-03 6.015E-01                        |
| 2034<br>2035 | 1.977E+05<br>1.977E+05 | 2.527E-03 5.721E-01<br>2.403E-03 5.442E-01 |
| 2036         | 1.977E+05              | 2.286E-03 5.177E-01                        |
| 2037         | 1.977E+05              | 2.175E-03 4.924E-01                        |
| 2038         | 1.977E+05              | 2.069E-03 4.684E-01                        |
| 2039         | 1.977E+05              | 1.968E-03 4.456E-01                        |
| 2040         | 1.977E+05              | 1.872E-03 4.239E-01                        |
| 2041         | 1.977E+05              | 1.780E-03 4.032E-01                        |
| 2042         | 1.977E+05              | 1.694E-03 3.835E-01                        |
| 2043         | 1.977E+05              | 1.611E-03 3.648E-01                        |
| 2044         | 1.977E+05              | 1.532E-03 3.470E-01                        |
| 2045<br>2046 | 1.977E+05<br>1.977E+05 | 1.458E-03 3.301E-01<br>1.387E-03 3.140E-01 |
| 2047         | 1.977E+05              | 1.319E-03 2.987E-01                        |
| 2048         | 1.977E+05              | 1.255E-03 2.841E-01                        |
| 2049         | 1.977E+05              | 1.193E-03 2.703E-01                        |
| 2050         | 1.977E+05              | 1.135E-03 2.571E-01                        |
| 2051         | 1.977E+05              | 1.080E-03 2.445E-01                        |
| 2052         | 1.977E+05              | 1.027E-03 2.326E-01                        |
| 2053         | 1.977E+05              | 9.771E-04 2.213E-01                        |
| 2054         | 1.977E+05              | 9.295E-04 2.105E-01                        |
| 2055<br>2056 | 1.977E+05<br>1.977E+05 | 8.841E-04 2.002E-01<br>8.410E-04 1.904E-01 |
| 2057         | 1.977E+05              | 8.000E-04 1.812E-01                        |
| 2058         | 1.977E+05              | 7.610E-04 1.723E-01                        |
| 2059         | 1.977E+05              | 7.239E-04 1.639E-01                        |
| 2060         | 1.977E+05              | 6.886E-04 1.559E-01                        |
| 2061         | 1.977E+05              | 6.550E-04 1.483E-01                        |
| 2062         | 1.977E+05              | 6.230E-04 1.411E-01                        |
| 2063         | 1.977E+05              | 5.926E-04 1.342E-01                        |
| 2064         | 1.977E+05              | 5.637E-04 1.277E-01                        |
| 2065         | 1.977E+05              | 5.363E-04 1.214E-01                        |
| 2066<br>2067 | 1.977E+05<br>1.977E+05 | 5.101E-04                                  |
| 2068         | 1.977E+05              | 4.616E-04 1.045E-01                        |
| 2069         | 1.977E+05              | 4.390E-04 9.942E-02                        |
| 2070         | 1.977E+05              | 4.176E-04 9.457E-02                        |
| 2071         | 1.977E+05              | 3.973E-04 8.996E-02                        |
| 2072         | 1.977E+05              | 3.779E-04 8.557E-02                        |
| 2073         | 1.977E+05              | 3.595E-04 8.140E-02                        |
| 2074         | 1.977E+05              | 3.419E-04 7.743E-02                        |
| 2075         | 1.977E+05              | 3.253E-04 7.365E-02                        |
| 2076<br>2077 | 1.977E+05<br>1.977E+05 | 3.094E-04 7.006E-02<br>2.943E-04 6.665E-02 |
| 2077         | 1.977E+05              | 2.799E-04 6.340E-02                        |
| 2079         | 1.977E+05              | 2.663E-04 6.030E-02                        |
| 2080         | 1.977E+05              | 2.533E-04 5.736E-02                        |
| 2081         | 1.977E+05              | 2.410E-04 5.456E-02                        |
| 2082         | 1.977E+05              | 2.292E-04 5.190E-02                        |
| 2083         | 1.977E+05              | 2.180E-04 4.937E-02                        |

Table D-22. Southern Parcel m,p-Xylene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 2.074E-04              | 4.696E-02              |
| 2085         | 1.977E+05              | 1.973E-04              | 4.467E-02              |
| 2086         | 1.977E+05              | 1.877E-04              | 4.250E-02              |
| 2087         | 1.977E+05              | 1.785E-04              | 4.042E-02              |
| 2088         | 1.977E+05              | 1.698E-04              | 3.845E-02              |
| 2089<br>2090 | 1.977E+05<br>1.977E+05 | 1.615E-04<br>1.536E-04 | 3.658E-02<br>3.479E-02 |
| 2090         | 1.977E+05<br>1.977E+05 | 1.461E-04              | 3.479E-02<br>3.310E-02 |
| 2092         | 1.977E+05              | 1.390E-04              | 3.148E-02              |
| 2093         | 1.977E+05              | 1.322E-04              | 2.995E-02              |
| 2094         | 1.977E+05              | 1.258E-04              | 2.849E-02              |
| 2095         | 1.977E+05              | 1.197E-04              | 2.710E-02              |
| 2096         | 1.977E+05              | 1.138E-04              | 2.577E-02              |
| 2097         | 1.977E+05              | 1.083E-04              | 2.452E-02              |
| 2098         | 1.977E+05              | 1.030E-04              | 2.332E-02              |
| 2099<br>2100 | 1.977E+05<br>1.977E+05 | 9.796E-05<br>9.319E-05 | 2.218E-02<br>2.110E-02 |
| 2100         | 1.977E+05              | 8.864E-05              | 2.110E-02<br>2.007E-02 |
| 2102         | 1.977E+05              | 8.432E-05              | 1.909E-02              |
| 2103         | 1.977E+05              | 8.021E-05              | 1.816E-02              |
| 2104         | 1.977E+05              | 7.629E-05              | 1.728E-02              |
| 2105         | 1.977E+05              | 7.257E-05              | 1.643E-02              |
| 2106         | 1.977E+05              | 6.903E-05              | 1.563E-02              |
| 2107         | 1.977E+05              | 6.567E-05              | 1.487E-02              |
| 2108         | 1.977E+05<br>1.977E+05 | 6.246E-05              | 1.415E-02              |
| 2109<br>2110 | 1.977E+05<br>1.977E+05 | 5.942E-05<br>5.652E-05 | 1.346E-02<br>1.280E-02 |
| 2111         | 1.977E+05              | 5.376E-05              | 1.218E-02              |
| 2112         | 1.977E+05              | 5.114E-05              | 1.158E-02              |
| 2113         | 1.977E+05              | 4.865E-05              | 1.102E-02              |
| 2114         | 1.977E+05              | 4.628E-05              | 1.048E-02              |
| 2115         | 1.977E+05              | 4.402E-05              | 9.968E-03              |
| 2116         | 1.977E+05              | 4.187E-05              | 9.482E-03              |
| 2117         | 1.977E+05              | 3.983E-05              | 9.020E-03              |
| 2118         | 1.977E+05              | 3.789E-05              | 8.580E-03              |
| 2119<br>2120 | 1.977E+05<br>1.977E+05 | 3.604E-05<br>3.428E-05 | 8.161E-03<br>7.763E-03 |
| 2121         | 1.977E+05              | 3.261E-05              | 7.385E-03              |
| 2122         | 1.977E+05              | 3.102E-05              | 7.024E-03              |
| 2123         | 1.977E+05              | 2.951E-05              | 6.682E-03              |
| 2124         | 1.977E+05              | 2.807E-05              | 6.356E-03              |
| 2125         | 1.977E+05              | 2.670E-05              | 6.046E-03              |
| 2126         | 1.977E+05              | 2.540E-05              | 5.751E-03              |
| 2127         | 1.977E+05              | 2.416E-05              | 5.471E-03              |
| 2128<br>2129 | 1.977E+05<br>1.977E+05 | 2.298E-05<br>2.186E-05 | 5.204E-03<br>4.950E-03 |
| 2130         | 1.977E+05              | 2.079E-05              | 4.709E-03              |
| 2131         | 1.977E+05              | 1.978E-05              | 4.479E-03              |
| 2132         | 1.977E+05              | 1.881E-05              | 4.261E-03              |
| 2133         | 1.977E+05              | 1.790E-05              | 4.053E-03              |
| 2134         | 1.977E+05              | 1.702E-05              | 3.855E-03              |
| 2135         | 1.977E+05              | 1.619E-05              | 3.667E-03              |
| 2136         | 1.977E+05              | 1.540E-05              | 3.488E-03              |
| 2137         | 1.977E+05              | 1.465E-05              | 3.318E-03              |
| 2138<br>2139 | 1.977E+05<br>1.977E+05 | 1.394E-05<br>1.326E-05 | 3.156E-03<br>3.002E-03 |
| 2140         | 1.977E+05              | 1.261E-05              | 2.856E-03              |
| 2141         | 1.977E+05              | 1.200E-05              | 2.717E-03              |
| 2142         | 1.977E+05              | 1.141E-05              | 2.584E-03              |
| 2143         | 1.977E+05              | 1.085E-05              | 2.458E-03              |
| 2144         | 1.977E+05              | 1.033E-05              | 2.338E-03              |
| 2145         | 1.977E+05              | 9.822E-06              | 2.224E-03              |
| 2146         | 1.977E+05              | 9.343E-06              | 2.116E-03              |
| 2147         | 1.977E+05              | 8.887E-06              | 2.013E-03              |
| 2148         | 1.977E+05              | 8.454E-06              | 1.914E-03              |
| 2149<br>2150 | 1.977E+05<br>1.977E+05 | 8.041E-06<br>7.649E-06 | 1.821E-03<br>1.732E-03 |
| 2151         | 1.977E+05              | 7.849E-06<br>7.276E-06 | 1.648E-03              |
| 2152         | 1.977E+05              | 6.921E-06              | 1.567E-03              |
| 2153         | 1.977E+05              | 6.584E-06              | 1.491E-03              |
| 2154         | 1.977E+05              | 6.263E-06              | 1.418E-03              |
|              |                        |                        |                        |

Table D-22. Southern Parcel m,p-Xylene Emisson Rate from Year 1968 to 2203 (concluded).

| Year         | Refuse In Place (Mg) | (Mg/yr)                | (Cubic m/yr)           |
|--------------|----------------------|------------------------|------------------------|
| 2155         | 1.977E+05            | 5.957E-06              | 1.349E-03              |
| 2156         | 1.977E+05            | 5.667E-06              | 1.283E-03              |
| 2157         | 1.977E+05            | 5.390E-06              | 1.221E-03              |
| 2158         | 1.977E+05            | 5.127E-06              | 1.161E-03              |
| 2159         | 1.977E+05            | 4.877E-06              | 1.104E-03              |
| 2160         | 1.977E+05            | 4.677E-06              | 1.051E-03              |
| 2160         | 1.977E+05            | 4.413E-06              | 9.994E-04              |
| 2162         | 1.977E+05            | 4.413E-06<br>4.198E-06 | 9.506E-04              |
| 2000         | 1.977E+05            | 3.993E-06              | 9.043E-04              |
| 2163<br>2164 | 1.977E+05            | 3.798E-06              | 9.043E-04<br>8.602E-04 |
|              | 1.977E+05            |                        |                        |
| 2165         |                      | 3.613E-06              | 8.182E-04              |
| 2166         | 1.977E+05            | 3.437E-06              | 7.783E-04              |
| 2167         | 1.977E+05            | 3.269E-06              | 7.404E-04              |
| 2168         | 1.977E+05            | 3.110E-06              | 7.043E-04              |
| 2169         | 1.977E+05            | 2.958E-06              | 6.699E-04              |
| 2170         | 1.977E+05            | 2.814E-06              | 6.372E-04              |
| 2171         | 1.977E+05            | 2.677E-06              | 6.062E-04              |
| 2172         | 1.977E+05            | 2.546E-06              | 5.766E-04              |
| 2173         | 1.977E+05            | 2.422E-06              | 5.485E-04              |
| 2174         | 1.977E+05            | 2.304E-06              | 5.217E-04              |
| 2175         | 1.977E+05            | 2.192E-06              | 4.963E-04              |
| 2176         | 1.977E+05            | 2.085E-06              | 4.721E-04              |
| 2177         | 1.977E+05            | 1.983E-06              | 4.491E-04              |
| 2178         | 1.977E+05            | 1.886E-06              | 4.272E-04              |
| 2179         | 1.977E+05            | 1.794E-06              | 4.063E-04              |
| 2180         | 1.977E+05            | 1.707E-06              | 3.865E-04              |
| 2181         | 1.977E+05            | 1.624E-06              | 3.677E-04              |
| 2182         | 1.977E+05            | 1.544E-06              | 3.497E-04              |
| 2183         | 1.977E+05            | 1.469E-06              | 3.327E-04              |
| 2184         | 1.977E+05            | 1.397E-06              | 3.164E-04              |
| 2185         | 1.977E+05            | 1.329E-06              | 3.010E-04              |
| 2186         | 1.977E+05            | 1.264E-06              | 2.863E-04              |
| 2187         | 1.977E+05            | 1.203E-06              | 2.724E-04              |
| 2188         | 1.977E+05            | 1.144E-06              | 2.591E-04              |
| 2189         | 1.977E+05            | 1.088E-06              | 2.464E-04              |
| 2190         | 1.977E+05            | 1.035E-06              | 2.344E-04              |
| 2191         | 1.977E+05            | 9.847E-07              | 2.230E-04              |
| 2192         | 1.977E+05            | 9.367E-07              | 2.121E-04              |
| 2193         | 1.977E+05            | 8.910E-07              | 2.018E-04              |
| 2194         | 1.977E+05            | 8.476E-07              | 1.919E-04              |
| 2195         | 1.977E+05            | 8.062E-07              | 1.826E-04              |
| 2196         | 1.977E+05            | 7.669E-07              | 1.737E-04              |
| 2197         | 1.977E+05            | 7.295E-07              | 1.652E-04              |
| 2198         | 1.977E+05            | 6.939E-07              | 1.571E-04              |
| 2199         | 1.977E+05            | 6.601E-07              | 1.495E-04              |
| 2200         | 1.977E+05            | 6.279E-07              | 1.422E-04              |
| 2201         | 1.977E+05            | 5.973E-07              | 1.353E-04              |
|              |                      |                        |                        |

**Table D-23.** Southern Parcel o-Xylene Emisson Rate from Year 1968 to 2203.

#### Model Parameters

\_\_\_\_\_\_\_

Lo : 170.00 m^3 / Mg \*\*\*\*\* User Mode Selection \*\*\*\*\* k : 0.0500 1/yr \*\*\*\*\* User Mode Selection \*\*\*\*\* NMOC : 2550.00 ppmv \*\*\*\*\* User Mode Selection \*\*\*\*\*

Methane: 59.0000 % volume

Carbon Dioxide : 41.0000 % volume Air Pollutant : o-Xylene (HAP/VOC) Molecular Wt = 106.17 Concent

Concentration = 1.540000 ppmV

# Landfill Parameters

Capacity: 197692 Mg

Average Acceptance Rate Required from

Current Year to Closure Year : 12238.07 Mg/year

\_\_\_\_\_\_

| Year | Refuse In Place (Mg)   | o-Xylene (HAP/V<br>(Mg/yr) | OC) Emission Rate<br>(Cubic m/yr) |  |
|------|------------------------|----------------------------|-----------------------------------|--|
| 1968 | 1.318E+04              | 1.291E-03                  | 2.924E-01                         |  |
| 1969 | 2.636E+04              | 2.519E-03                  | 5.706E-01                         |  |
| 1970 | 3.954E+04              | 3.688E-03                  | 8.351E-01                         |  |
| 1971 | 5.272E+04              | 4.799E-03                  | 1.087E+00                         |  |
| 1972 | 6.590E+04              | 5.856E-03                  | 1.326E+00                         |  |
| 1973 | 7.908E+04              | 6.862E-03                  | 1.554E+00                         |  |
| 1973 |                        |                            |                                   |  |
| 1974 | 9.226E+04<br>1.054E+05 | 7.819E-03                  | 1.771E+00<br>1.977E+00            |  |
|      |                        | 8.729E-03                  |                                   |  |
| 1976 | 1.186E+05              | 9.594E-03                  | 2.173E+00                         |  |
| 1977 | 1.318E+05              | 1.042E-02                  | 2.359E+00                         |  |
| 1978 | 1.450E+05              | 1.120E-02                  | 2.536E+00                         |  |
| 1979 | 1.582E+05              | 1.195E-02                  | 2.705E+00                         |  |
| 1980 | 1.713E+05              | 1.265E-02                  | 2.866E+00                         |  |
| 1981 | 1.845E+05              | 1.333E-02                  | 3.018E+00                         |  |
| 1982 | 1.977E+05              | 1.397E-02                  | 3.163E+00                         |  |
| 1983 | 1.977E+05              | 1.329E-02                  | 3.009E+00                         |  |
| 1984 | 1.977E+05              | 1.264E-02                  | 2.862E+00                         |  |
| 1985 | 1.977E+05              | 1.202E-02                  | 2.723E+00                         |  |
| 1986 | 1.977E+05              | 1.144E-02                  | 2.590E+00                         |  |
| 1987 | 1.977E+05              | 1.088E-02                  | 2.464E+00                         |  |
| 1988 | 1.977E+05              | 1.035E-02                  | 2.344E+00                         |  |
| 1989 | 1.977E+05              | 9.844E-03                  | 2.229E+00                         |  |
| 1990 | 1.977E+05              | 9.364E-03                  | 2.121E+00                         |  |
| 1991 | 1.977E+05              | 8.907E-03                  | 2.017E+00                         |  |
| 1992 | 1.977E+05              | 8.473E-03                  | 1.919E+00                         |  |
| 1993 | 1.977E+05              | 8.060E-03                  | 1.825E+00                         |  |
| 1994 | 1.977E+05              | 7.667E-03                  | 1.736E+00                         |  |
| 1995 | 1.977E+05              | 7.293E-03                  | 1.651E+00                         |  |
| 1996 | 1.977E+05              | 6.937E-03                  | 1.571E+00                         |  |
| 1997 | 1.977E+05              | 6.599E-03                  | 1.494E+00                         |  |
| 1998 | 1.977E+05              | 6.277E-03                  | 1.421E+00                         |  |
| 1999 | 1.977E+05              | 5.971E-03                  | 1.352E+00                         |  |
| 2000 | 1.977E+05              | 5.680E-03                  | 1.286E+00                         |  |
| 2001 | 1.977E+05              | 5.403E-03                  | 1.223E+00                         |  |
| 2002 | 1.977E+05              | 5.139E-03                  | 1.164E+00                         |  |
| 2003 | 1.977E+05              | 4.888E-03                  | 1.107E+00                         |  |
| 2004 | 1.977E+05              | 4.650E-03                  | 1.053E+00                         |  |
| 2005 | 1.977E+05              | 4.423E-03                  | 1.002E+00                         |  |
| 2006 | 1.977E+05              | 4.208E-03                  | 9.528E-01                         |  |
| 2007 | 1.977E+05              | 4.002E-03                  | 9.063E-01                         |  |
| 2008 | 1.977E+05              | 3.807E-03                  | 8.621E-01                         |  |
| 2009 | 1.977E+05              | 3.607E-03                  | 8.201E-01                         |  |
| 2010 | 1.977E+05              | 3.445E-03                  | 7.801E-01                         |  |
| 2010 | 1.977E+05              | 3.445E-03<br>3.277E-03     | 7.420E-01                         |  |
| 2011 | 1.977E+05              | 3.277E-03                  | 7.420E-01<br>7.059E-01            |  |
| 2012 | 1.9//6+03              | 3.11/E-03                  | 1.039E-01                         |  |

Table D-23. Southern Parcel o-Xylene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2013         | 1.977E+05              | 2.965E-03              | 6.714E-01              |
| 2014         | 1.977E+05              | 2.820E-03              | 6.387E-01              |
| 2015         | 1.977E+05              | 2.683E-03              | 6.075E-01              |
| 2016         | 1.977E+05              | 2.552E-03              | 5.779E-01              |
| 2017         | 1.977E+05              | 2.428E-03              | 5.497E-01              |
| 2018<br>2019 | 1.977E+05<br>1.977E+05 | 2.309E-03<br>2.197E-03 | 5.229E-01<br>4.974E-01 |
| 2020         | 1.977E+05              | 2.089E-03              | 4.732E-01              |
| 2021         | 1.977E+05              | 1.987E-03              | 4.501E-01              |
| 2022         | 1.977E+05              | 1.891E-03              | 4.281E-01              |
| 2023         | 1.977E+05              | 1.798E-03              | 4.072E-01              |
| 2024         | 1.977E+05              | 1.711E-03              | 3.874E-01              |
| 2025         | 1.977E+05              | 1.627E-03              | 3.685E-01              |
| 2026         | 1.977E+05              | 1.548E-03              | 3.505E-01              |
| 2027         | 1.977E+05<br>1.977E+05 | 1.472E-03              | 3.334E-01<br>3.172E-01 |
| 2028<br>2029 | 1.977E+05              | 1.401E-03<br>1.332E-03 | 3.017E-01              |
| 2030         | 1.977E+05              | 1.267E-03              | 2.870E-01              |
| 2031         | 1.977E+05              | 1.205E-03              | 2.730E-01              |
| 2032         | 1.977E+05              | 1.147E-03              | 2.597E-01              |
| 2033         | 1.977E+05              | 1.091E-03              | 2.470E-01              |
| 2034         | 1.977E+05              | 1.038E-03              | 2.350E-01              |
| 2035         | 1.977E+05              | 9.870E-04              | 2.235E-01              |
| 2036         | 1.977E+05              | 9.388E-04              | 2.126E-01              |
| 2037         | 1.977E+05              | 8.930E-04              | 2.022E-01              |
| 2038         | 1.977E+05<br>1.977E+05 | 8.495E-04<br>8.081E-04 | 1.924E-01<br>1.830E-01 |
| 2040         | 1.977E+05<br>1.977E+05 | 7.686E-04              | 1.741E-01              |
| 2040         | 1.977E+05              | 7.312E-04              | 1.656E-01              |
| 2042         | 1.977E+05              | 6.955E-04              | 1.575E-01              |
| 2043         | 1.977E+05              | 6.616E-04              | 1.498E-01              |
| 2044         | 1.977E+05              | 6.293E-04              | 1.425E-01              |
| 2045         | 1.977E+05              | 5.986E-04              | 1.356E-01              |
| 2046         | 1.977E+05              | 5.694E-04              | 1.289E-01              |
| 2047         | 1.977E+05              | 5.417E-04              | 1.227E-01              |
| 2048         | 1.977E+05              | 5.152E-04              | 1.167E-01              |
| 2049<br>2050 | 1.977E+05<br>1.977E+05 | 4.901E-04<br>4.662E-04 | 1.110E-01<br>1.056E-01 |
| 2051         | 1.977E+05              | 4.435E-04              | 1.004E-01              |
| 2052         | 1.977E+05              | 4.218E-04              | 9.553E-02              |
| 2053         | 1.977E+05              | 4.013E-04              | 9.087E-02              |
| 2054         | 1.977E+05              | 3.817E-04              | 8.644E-02              |
| 2055         | 1.977E+05              | 3.631E-04              | 8.222E-02              |
| 2056         | 1.977E+05              | 3.454E-04              | 7.821E-02              |
| 2057         | 1.977E+05              | 3.285E-04              | 7.440E-02              |
| 2058<br>2059 | 1.977E+05<br>1.977E+05 | 3.125E-04<br>2.973E-04 | 7.077E-02<br>6.732E-02 |
| 2060         | 1.977E+05              | 2.828E-04              | 6.403E-02              |
| 2061         | 1.977E+05              | 2.690E-04              | 6.091E-02              |
| 2062         | 1.977E+05              | 2.559E-04              | 5.794E-02              |
| 2063         | 1.977E+05              | 2.434E-04              | 5.511E-02              |
| 2064         | 1.977E+05              | 2.315E-04              | 5.243E-02              |
| 2065         | 1.977E+05              | 2.202E-04              | 4.987E-02              |
| 2066         | 1.977E+05              | 2.095E-04              | 4.744E-02              |
| 2067         | 1.977E+05              | 1.993E-04              | 4.512E-02              |
| 2068<br>2069 | 1.977E+05<br>1.977E+05 | 1.895E-04<br>1.803E-04 | 4.292E-02<br>4.083E-02 |
| 2070         | 1.977E+05              | 1.715E-04              | 3.884E-02              |
| 2071         | 1.977E+05              | 1.631E-04              | 3.694E-02              |
| 2072         | 1.977E+05              | 1.552E-04              | 3.514E-02              |
| 2073         | 1.977E+05              | 1.476E-04              | 3.343E-02              |
| 2074         | 1.977E+05              | 1.404E-04              | 3.180E-02              |
| 2075         | 1.977E+05              | 1.336E-04              | 3.025E-02              |
| 2076         | 1.977E+05              | 1.271E-04              | 2.877E-02              |
| 2077         | 1.977E+05              | 1.209E-04              | 2.737E-02              |
| 2078         | 1.977E+05              | 1.150E-04              | 2.603E-02              |
| 2079         | 1.977E+05              | 1.094E-04              | 2.476E-02              |
| 2080<br>2081 | 1.977E+05<br>1.977E+05 | 1.040E-04<br>9.895E-05 | 2.356E-02<br>2.241E-02 |
| 2082         | 1.977E+05              | 9.413E-05              | 2.132E-02              |
| 2083         | 1.977E+05              | 8.953E-05              | 2.028E-02              |
|              |                        |                        |                        |

Table D-23. Southern Parcel o-Xylene Emisson Rate from Year 1968 to 2203 (continued).

| Year         | Refuse In Place (Mg)   | (Mg/yr)                | (Cubic m/yr)           |
|--------------|------------------------|------------------------|------------------------|
| 2084         | 1.977E+05              | 8.517E-05              | 1.929E-02              |
| 2085         | 1.977E+05              | 8.101E-05              | 1.835E-02              |
| 2086         | 1.977E+05              | 7.706E-05              | 1.745E-02              |
| 2087         | 1.977E+05              | 7.331E-05              | 1.660E-02              |
| 2088         | 1.977E+05              | 6.973E-05              | 1.579E-02              |
| 2089         | 1.977E+05              | 6.633E-05              | 1.502E-02              |
| 2090         | 1.977E+05              | 6.309E-05              | 1.429E-02              |
| 2091         | 1.977E+05              | 6.002E-05              | 1.359E-02              |
| 2092         | 1.977E+05              | 5.709E-05              | 1.293E-02              |
| 2093         | 1.977E+05              | 5.431E-05              | 1.230E-02              |
| 2094         | 1.977E+05<br>1.977E+05 | 5.166E-05              | 1.170E-02              |
| 2095<br>2096 | 1.977E+05<br>1.977E+05 | 4.914E-05<br>4.674E-05 | 1.113E-02              |
| 2096         | 1.977E+05              | 4.674E-05<br>4.446E-05 | 1.058E-02<br>1.007E-02 |
| 2098         | 1.977E+05              | 4.446E-05<br>4.229E-05 | 9.577E-03              |
| 2099         | 1.977E+05              | 4.023E-05              | 9.110E-03              |
| 2100         | 1.977E+05              | 3.827E-05              | 8.666E-03              |
| 2101         | 1.977E+05              | 3.640E-05              | 8.243E-03              |
| 2102         | 1.977E+05              | 3.463E-05              | 7.841E-03              |
| 2103         | 1.977E+05              | 3.294E-05              | 7.459E-03              |
| 2104         | 1.977E+05              | 3.133E-05              | 7.095E-03              |
| 2105         | 1.977E+05              | 2.980E-05              | 6.749E-03              |
| 2106         | 1.977E+05              | 2.835E-05              | 6.420E-03              |
| 2107         | 1.977E+05              | 2.697E-05              | 6.107E-03              |
| 2108         | 1.977E+05              | 2.565E-05              | 5.809E-03              |
| 2109         | 1.977E+05              | 2.440E-05              | 5.526E-03              |
| 2110         | 1.977E+05              | 2.321E-05              | 5.256E-03              |
| 2111         | 1.977E+05              | 2.208E-05              | 5.000E-03              |
| 2112         | 1.977E+05              | 2.100E-05              | 4.756E-03              |
| 2113         | 1.977E+05              | 1.998E-05              | 4.524E-03              |
| 2114<br>2115 | 1.977E+05<br>1.977E+05 | 1.900E-05<br>1.808E-05 | 4.303E-03<br>4.094E-03 |
| 2116         | 1.977E+05              | 1.720E-05              | 3.894E-03              |
| 2117         | 1.977E+05              | 1.636E-05              | 3.704E-03              |
| 2118         | 1.977E+05              | 1.556E-05              | 3.523E-03              |
| 2119         | 1.977E+05              | 1.480E-05              | 3.352E-03              |
| 2120         | 1.977E+05              | 1.408E-05              | 3.188E-03              |
| 2121         | 1.977E+05              | 1.339E-05              | 3.033E-03              |
| 2122         | 1.977E+05              | 1.274E-05              | 2.885E-03              |
| 2123         | 1.977E+05              | 1.212E-05              | 2.744E-03              |
| 2124         | 1.977E+05              | 1.153E-05              | 2.610E-03              |
| 2125         | 1.977E+05              | 1.096E-05              | 2.483E-03              |
| 2126         | 1.977E+05              | 1.043E-05              | 2.362E-03              |
| 2127         | 1.977E+05              | 9.921E-06              | 2.247E-03              |
| 2128         | 1.977E+05              | 9.437E-06              | 2.137E-03              |
| 2129         | 1.977E+05              | 8.977E-06              | 2.033E-03              |
| 2130         | 1.977E+05<br>1.977E+05 | 8.539E-06              | 1.934E-03<br>1.839E-03 |
| 2131<br>2132 | 1.977E+05              | 8.122E-06<br>7.726E-06 | 1.750E-03              |
| 2133         | 1.977E+05              | 7.726E-06              | 1.664E-03              |
| 2134         | 1.977E+05              | 6.991E-06              | 1.583E-03              |
| 2135         | 1.977E+05              | 6.650E-06              | 1.506E-03              |
| 2136         | 1.977E+05              | 6.326E-06              | 1.432E-03              |
| 2137         | 1.977E+05              | 6.017E-06              | 1.363E-03              |
| 2138         | 1.977E+05              | 5.724E-06              | 1.296E-03              |
| 2139         | 1.977E+05              | 5.445E-06              | 1.233E-03              |
| 2140         | 1.977E+05              | 5.179E-06              | 1.173E-03              |
| 2141         | 1.977E+05              | 4.927E-06              | 1.116E-03              |
| 2142         | 1.977E+05              | 4.686E-06              | 1.061E-03              |
| 2143         | 1.977E+05              | 4.458E-06              | 1.009E-03              |
| 2144         | 1.977E+05              | 4.240E-06              | 9.602E-04              |
| 2145         | 1.977E+05              | 4.033E-06              | 9.134E-04              |
| 2146         | 1.977E+05              | 3.837E-06              | 8.689E-04              |
| 2147         | 1.977E+05              | 3.650E-06              | 8.265E-04              |
| 2148<br>2149 | 1.977E+05<br>1.977E+05 | 3.472E-06<br>3.302E-06 | 7.862E-04<br>7.478E-04 |
| 2149         | 1.977E+05              | 3.141E-06              | 7.114E-04              |
| 2151         | 1.977E+05              | 2.988E-06              | 6.767E-04              |
| 2152         | 1.977E+05              | 2.842E-06              | 6.437E-04              |
| 2153         | 1.977E+05              | 2.704E-06              | 6.123E-04              |
| 2154         | 1.977E+05              | 2.572E-06              | 5.824E-04              |
|              |                        |                        |                        |

Table D-23. Southern Parcel o-Xylene Emisson Rate from Year 1968 to 2203 (concluded).

| Year         | Refuse In Place (Mg) | (Mg/yr)                | (Cubic m/yr)           |
|--------------|----------------------|------------------------|------------------------|
| 2155         | 1.977E+05            | 2.446E-06              | 5.540E-04              |
| 2156         | 1.977E+05            | 2.327E-06              | 5.270E-04              |
| 2157         | 1.977E+05            | 2.214E-06              | 5.013E-04              |
| 2158         | 1.977E+05            | 2.106E-06              | 4.768E-04              |
| 2159         | 1.977E+05            | 2.100E-06              | 4.536E-04              |
| 2160         | 1.977E+05            | 1.905E-06              | 4.315E-04              |
| 2161         | 1.977E+05            | 1.812E-06              | 4.104E-04              |
| 2162         | 1.977E+05            | 1.724E-06              | 3.904E-04              |
| 2163         | 1.977E+05            | 1.640E-06              | 3.714E-04              |
| 2164         | 1.977E+05            | 1.560E-06              | 3.532E-04              |
| 2165         | 1.977E+05            | 1.484E-06              | 3.360E-04              |
| 2166         | 1.977E+05            | 1.411E-06              | 3.196E-04              |
| 2167         | 1.977E+05            | 1.343E-06              | 3.040E-04              |
| 2168         | 1.977E+05            | 1.277E-06              | 2.892E-04              |
| 2169         | 1.977E+05            | 1.215E-06              | 2.751E-04              |
| 2170         | 1.977E+05            | 1.156E-06              | 2.731E-04<br>2.617E-04 |
| 2171         | 1.977E+05            | 1.099E-06              | 2.489E-04              |
| 2172         | 1.977E+05            | 1.046E-06              | 2.368E-04              |
| 2173         | 1.977E+05            | 9.946E-07              | 2.368E-04<br>2.252E-04 |
| 2174         | 1.977E+05            | 9.461E-07              | 2.143E-04              |
| 2175         | 1.977E+05            | 9.461E-07<br>9.000E-07 | 2.038E-04              |
| 2176         | 1.977E+05            | 8.561E-07              | 1.939E-04              |
| 2177         | 1.977E+05            | 8.143E-07              | 1.844E-04              |
|              | 1.977E+05            |                        | 1.754E-04              |
| 2178<br>2179 | 1.977E+05            | 7.746E-07<br>7.369E-07 | 1.669E-04              |
| 21/9         | 1.977E+05            | 7.369E-07              | 1.587E-04              |
|              |                      |                        |                        |
| 2181         | 1.977E+05            | 6.667E-07              | 1.510E-04              |
| 2182         | 1.977E+05            | 6.342E-07              | 1.436E-04              |
| 2183         | 1.977E+05            | 6.033E-07              | 1.366E-04              |
| 2184         | 1.977E+05            | 5.739E-07              | 1.300E-04              |
| 2185         | 1.977E+05            | 5.459E-07              | 1.236E-04              |
| 2186         | 1.977E+05            | 5.192E-07              | 1.176E-04              |
| 2187         | 1.977E+05            | 4.939E-07              | 1.119E-04              |
| 2188         | 1.977E+05            | 4.698E-07              | 1.064E-04              |
| 2189         | 1.977E+05            | 4.469E-07              | 1.012E-04              |
| 2190         | 1.977E+05            | 4.251E-07              | 9.627E-05              |
| 2191         | 1.977E+05            | 4.044E-07              | 9.158E-05              |
| 2192         | 1.977E+05            | 3.847E-07              | 8.711E-05              |
| 2193         | 1.977E+05            | 3.659E-07              | 8.286E-05              |
| 2194         | 1.977E+05            | 3.481E-07              | 7.882E-05              |
| 2195         | 1.977E+05            | 3.311E-07              | 7.498E-05              |
| 2196         | 1.977E+05            | 3.149E-07              | 7.132E-05              |
| 2197         | 1.977E+05            | 2.996E-07              | 6.784E-05              |
| 2198         | 1.977E+05            | 2.850E-07              | 6.453E-05              |
| 2199         | 1.977E+05            | 2.711E-07              | 6.139E-05              |
| 2200         | 1.977E+05            | 2.579E-07              | 5.839E-05              |
| 2201         | 1.977E+05            | 2.453E-07              | 5.554E-05              |
|              |                      |                        |                        |

# Appendix E SCREEN3 Model Runs

02/20/03 09:27:30

```
*** SCREEN3 MODEL RUN ***

*** VERSION DATED 96043 ***
```

# Rose Hill Northern Portion

# SIMPLE TERRAIN INPUTS:

SOURCE TYPE AREA EMISSION RATE  $(G/(S-M^{**}2)) =$ 0.158730E-04 SOURCE HEIGHT (M) 0.0000 = LENGTH OF LARGER SIDE (M) 300.0000 = LENGTH OF SMALLER SIDE (M) =210.0000 RECEPTOR HEIGHT (M) =0.0000 URBAN/RURAL OPTION = RURAL

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED.
THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

# MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = 0.000 M\*\*4/S\*\*3; MOM. FLUX = 0.000 M\*\*4/S\*\*2.

\*\*\* FULL METEOROLOGY \*\*\*

\*\*\*\*\*\*\*\*\*\*

\*\*\* TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES \*\*\*

| DIST<br>(M) | CONC<br>(UG/M**3) | STAB |     |     | MIX HT (M) | PLUME<br>HT (M) | MAX DIR<br>(DEG) |
|-------------|-------------------|------|-----|-----|------------|-----------------|------------------|
| 1.          | 2024.             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 34.              |
| 100.        | 2303.             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 33.              |
| 200.        | 1624.             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 35.              |
| 300.        | 878.5             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 34.              |
| 400.        | 653.7             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 33.              |
| 500.        | 529.2             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 33.              |
| 600.        | 447.4             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 32.              |
| 700.        | 389.7             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 31.              |
| 800.        | 347.0             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 30.              |
| 900.        | 314.5             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 29.              |
| 1000.       | 288.2             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 28.              |
| 1100.       | 266.6             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 26.              |
| 1200.       | 248.3             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 25.              |
| 1300.       | 232.4             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 23.              |
| 1400.       | 218.3             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 22.              |
| 1500.       | 205.8             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 18.              |
| 1600.       | 194.5             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 17.              |
| 1700.       | 184.3             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 13.              |
| 1800.       | 174.9             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 6.               |
| 1900.       | 166.4             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 1.               |
| 2000.       | 158.6             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 2.               |
| 2100.       | 151.6             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 0.               |
| 2200.       | 145.1             | 6    | 1.0 | 1.0 | 10000.0    | 0.00            | 0.               |

| 2300.   | 139.0       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
|---------|-------------|---------|-------|--------|---------|------|----|
| 2400.   | 133.3       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 2. |
| 2500.   | 127.9       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| 2600.   | 122.9       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 2. |
| 2700.   | 118.0       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| 2800.   | 113.5       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 1. |
| 2900.   | 109.2       | 6       | 1.0   |        | 10000.0 |      | 1. |
| 3000.   | 105.3       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 |    |
| 3500.   | 89.11       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 |    |
| 4000.   | 76.59       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| 4500.   | 66.70       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| 5000.   | 58.73       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| 5500.   | 52.23       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 1. |
| 6000.   | 46.88       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| 6500.   | 42.36       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 1. |
| 7000.   | 38.55       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 1. |
| 7500.   | 35.42       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| 8000.   | 32.68       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 1. |
| 8500.   | 30.29       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 1. |
| 9000.   | 28.21       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 1. |
| 9500.   | 26.37       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| 10000.  | 24.71       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 1. |
| 15000.  | 14.74       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 1. |
| 20000.  | 10.46       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| 25000.  | 8.005       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| 30000.  | 6.432       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| 40000.  | 4.628       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| 50000.  | 3.589       | 6       | 1.0   | 1.0    | 10000.0 | 0.00 | 0. |
| MAXIMUM | 1-HR CONCEN | TRATION | AT OR | BEYOND | 1. M:   |      |    |
| 100     | 0400        | _       | 1 0   | 1 0    | 10000   | 0 00 | 25 |

183. 2483. 6 1.0 1.0 10000.0 0.00

35.

| CALCULATION    | MAX CONC  | DIST TO | TERRAIN |
|----------------|-----------|---------|---------|
| PROCEDURE      | (UG/M**3) | MAX (M) | HT (M)  |
|                |           |         |         |
| SIMPLE TERRAIN | 2483.     | 183.    | 0.      |

02/20/03 09:28:31

```
*** SCREEN3 MODEL RUN ***

*** VERSION DATED 96043 ***
```

# Rose Hill Southern Portion

# SIMPLE TERRAIN INPUTS:

SOURCE TYPE AREA EMISSION RATE  $(G/(S-M^{**}2)) =$ 0.138890E-04 SOURCE HEIGHT (M) 0.0000 = LENGTH OF LARGER SIDE (M) 300.0000 = LENGTH OF SMALLER SIDE (M) =240.0000 RECEPTOR HEIGHT (M) =0.0000 URBAN/RURAL OPTION = RURAL

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED.
THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

# MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = 0.000 M\*\*4/S\*\*3; MOM. FLUX = 0.000 M\*\*4/S\*\*2.

\*\*\* FULL METEOROLOGY \*\*\*

CONC

DIST

\*\*\*\*\*\*\*\*\*\*

\*\*\* TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES \*\*\*

HITOM HSTK MIX HT PLUME MAX DIR

| (M)   | (UG/M**3) | STAB | (M/S) |     | (M)     | HT (M) | (DEG) |
|-------|-----------|------|-------|-----|---------|--------|-------|
| 1.    | 1796.     | 6    | 1.0   | 1.0 | 10000.0 | 0.00   | 38.   |
| 100.  | 2033.     | 6    | 1.0   |     | 10000.0 | 0.00   | 38.   |
| 200.  | 1644.     | 6    | 1.0   | 1.0 | 10000.0 | 0.00   | 39.   |
| 300.  | 819.5     | 6    | 1.0   | 1.0 | 10000.0 | 0.00   | 38.   |
| 400.  | 605.2     | 6    | 1.0   | 1.0 | 10000.0 | 0.00   | 38.   |
| 500.  | 488.9     | 6    | 1.0   | 1.0 | 10000.0 | 0.00   | 37.   |
| 600.  | 412.9     | 6    | 1.0   | 1.0 | 10000.0 | 0.00   | 37.   |
| 700.  | 359.5     | 6    | 1.0   | 1.0 | 10000.0 | 0.00   | 36.   |
| 800.  | 320.0     | 6    | 1.0   | 1.0 | 10000.0 | 0.00   | 36.   |
| 900.  | 289.9     | 6    | 1.0   |     | 10000.0 | 0.00   | 35.   |
| 1000. | 265.7     | 6    | 1.0   | 1.0 | 10000.0 | 0.00   | 35.   |
| 1100. | 245.7     | 6    | 1.0   |     | 10000.0 |        | 34.   |
| 1200. | 228.8     | 6    | 1.0   | 1.0 | 10000.0 | 0.00   |       |
| 1300. | 214.2     | 6    | 1.0   |     | 10000.0 |        |       |
| 1400. | 201.2     | 6    | 1.0   |     | 10000.0 | 0.00   |       |
| 1500. | 189.7     | 6    | 1.0   |     | 10000.0 | 0.00   | 31.   |
| 1600. | 179.3     | 6    | 1.0   |     | 10000.0 |        | 30.   |
| 1700. | 169.9     | 6    | 1.0   |     | 10000.0 | 0.00   | 29.   |
| 1800. | 161.3     | 6    | 1.0   |     | 10000.0 |        | 27.   |
| 1900. | 153.5     | 6    | 1.0   |     | 10000.0 | 0.00   | 26.   |
| 2000. | 146.4     | 6    | 1.0   |     | 10000.0 |        |       |
| 2100. |           | 6    | 1.0   |     | 10000.0 |        | 22.   |
| 2200. | 134.4     | 6    | 1.0   | 1.0 | 10000.0 | 0.00   | 21.   |
|       |           |      |       |     |         |        |       |

| 2300.   | 129.1      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 19. |
|---------|------------|------------|-------|--------|---------|------|-----|
| 2400.   | 124.1      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 18. |
| 2500.   | 119.4      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 14. |
| 2600.   | 115.0      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 12. |
| 2700.   | 110.8      | 6          | 1.0   |        | 10000.0 | 0.00 | 11. |
| 2800.   | 106.9      | 6          | 1.0   |        | 10000.0 | 0.00 | 2.  |
| 2900.   | 103.2      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 3000.   | 99.72      | 6          | 1.0   |        | 10000.0 | 0.00 | 0.  |
| 3500.   | 85.33      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 4000.   | 73.95      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 4500.   | 64.79      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 5000.   | 57.31      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 5500.   | 51.14      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 6000.   | 46.04      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 6500.   | 41.68      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 7000.   | 38.04      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 7500.   | 34.97      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 8000.   | 32.31      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 8500.   | 30.01      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 9000.   | 27.96      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 9500.   | 26.13      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 10000.  | 24.51      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 15000.  | 14.69      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 20000.  | 10.43      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 25000.  | 8.001      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 30000.  | 6.428      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 40000.  | 4.625      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| 50000.  | 3.587      | 6          | 1.0   | 1.0    | 10000.0 | 0.00 | 0.  |
| MIMTYAM | 1-HR CONCE | MULTER RUN | дт ∩р | BEYOND | 1. M•   |      |     |
|         |            |            |       |        |         |      |     |

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 1. M: 191. 2191. 6 1.0 1.0 10000.0 0.00 38.

| CALCULATION    | MAX CONC  | DIST TO | TERRAIN |
|----------------|-----------|---------|---------|
| PROCEDURE      | (UG/M**3) | MAX (M) | HT (M)  |
|                |           |         |         |
| SIMPLE TERRAIN | 2191.     | 191.    | 0.      |