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The U.S. Environmental Protection Agency through its Office of Research and Develop-
ment partially funded and collaborated in the research described here under Cooperative
Agreement No. CR-821906 to Rice University.  It has been subjected to the Agency's peer
and administrative review and has been approved for publication as an EPA document.
Mention of trade names or commercial products does not constitute endorsement or recom-
mendation for use.

All research projects making conclusions or recommendations based on environmen-
tally related measurements and funded by the Environmental Protection Agency are required
to participate in the Agency Quality Assurance Program.  This project was conducted under
an approved Quality Assurance Project Plan.  The procedures specified in this plan were
used without exception.  Information on the plan and documentation of the quality assur-
ance activities and results are available from the Principal Investigator.
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ForewordForewordForewordForewordForeword

The U.S. Environmental Protection Agency is charged by Congress with protecting the
Nation’s land, air, and water resources.  Under a mandate of national environmental laws, the
Agency strives to formulate and implement actions leading to a compatible balance between
human activities and the ability of natural systems to support and nurture life.  To meet these
mandates, EPA’s research program is providing data and technical support for solving
environmental problems today and building a science knowledge base necessary to manage
our ecological resources wisely, understand how pollutants affect our health, and prevent or
reduce environmental risks in the future.

The National Risk Management Research Laboratory is the Agency’s center for inves-
tigation of technological and management approaches for reducing risks from threats to
human health and the environment.  The focus of the Laboratory’s research program is on
methods for the prevention and control of pollution to air, land, water, and subsurface
resources; protection of water quality in public water systems; remediation of contaminated
sites and ground water; and prevention and control of indoor air pollution.  The goal of this
research effort is to catalyze the development and implementation of innovative, cost-
effective environmental technologies; develop scientific and engineering information needed
by EPA to support regulatory and policy decisions; and provide technical support and
information transfer to ensure effective implementation of environmental regulations and
strategies.

This work presents methods of visualizing and animating statistical estimates of ground
water and/or soil contamination over a region from observations of the contaminant for that
region.  The primary statistical methods used to produce the regional estimates are non-
parametric regression and geostatistical modeling (kriging).  Nonparametric regression can
be used as a more "rough and ready" method to produce surface estimates with little outside
intervention, whereas geostatistical modeling produces prediction errors.  Finally, a method
is proposed for estimating the total amount of contaminant present in a region. This report is
published and made available by EPA's Office of Research and Development to assist the
user community.

Clinton W. Hall, Director
Subsurface Protection and Remediation Division
National Risk Management Research Laboratory
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AbstractAbstractAbstractAbstractAbstract

This work presents methods of visualizing and animating statistical estimates of ground
water and/or soil contamination over a region from observations of the contaminant for that
region. The primary statistical methods used to produce the regional estimates are non-
parametric regression and geostatistical modeling (kriging). Nonparametric regression can
be used as a more “rough and ready” method to produce surface estimates with little outside
intervention, whereas geostatistical modeling produces prediction errors.

 Animation of changes in the estimated level of contaminant or chemical as observa-
tions are removed illustrate the effect of each individual measurement on the overall estimate
and the error or variance of this estimate. Such methods are applied to the Eglin Air Force
Base (AFB) Florida site. The benefit of animating surface estimates in data which is taken
over time is clearly seen by an example from a site near Phoenix, AZ, where aberrations in the
data for one or several years were readily apparent by viewing a smoothed animation.

 Finally, a method is proposed for estimating the total amount of contaminant present in
a region. The proposed method models the data as a realization of a lognormal stochastic
process and then capitalizes on conditional simulation to generate realizations of the
modeled process from which the distribution of the total contaminant (or integral of the
process) is estimated.

This report was submitted in fulfillment of cooperative agreement No. CR-821906 by
Rice University under the sponsorship of the United States Environmental Protection
Agency.  This report covers a period from 10/01/93 to 03/31/97, and work was completed as
of 11/03/98.
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Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

Understanding the plume of any contaminant is a multi-faceted problem. Often data is limited and modeling exercises are
tedious. To aid the environmental researcher, we present several techniques for capitalizing on the measurements of the level
of contaminant in soil samples from a region. Our techniques rely on visual displays of statistical estimates of the contaminant
plume. We explore two- and three-dimensional estimation and visualization techniques and ways to examine related
contaminants. Furthermore, we propose a method for quantification of the total amount of contaminant within a region. Both
of these methods are investigated in the context of a site specific example, but the tools generalize to other similar problems.

As a simple method for displaying surface estimates from field data, exploratory visualization of the Eglin AFB in Section 4.1
was performed using nonparametric regression to produce the surface estimates. This methodology requires estimation of only
one parameter, the bandwidth, as opposed to the several parameters required by the more complicated art of variogram fitting
used in geostatistical modeling. Surface estimates were obtained for both two- and three-dimensional data for the Eglin AFB
site, using the program Geomview on a Silicon Graphics machine to facilitate display and animation. Geomview allows the
viewer to rotate images in real time, which aids greatly in examining the surface (i.e., looking for peaks and valleys, etc.). For
data in two dimensions, the third dimension (i.e., the z direction) may be used to plot the surface estimate as a perspective plot.
Color contours on the surface can be set to levels of interest to highlight areas where the contamination is above a fixed level.
This tool can be useful in cases where environmental regulations require contamination to be below some specific level, to
identify regions of high contaminant concentration, and to follow the movement of a contaminant over time.  In an analogous
fashion, for three-dimensional visualization, shell contours are plotted at certain levels to illustrate regions of higher
concentrations.

Estimates of prediction errors in both the two-dimensional and three-dimensional setting provide an understanding of the
differing levels of uncertainty of the estimate of the level of the contaminant over the region. In the case of Eglin AFB ground
water, we also use visual tools in conjunction with cross-validation to ascertain the effect each of the data values has on the
estimate of the level of contaminant for the region. An animation of estimates produced excluding individual data points,
alternated with the overall surface estimate, lends insight to the question of where to obtain new samples. This sort of display
also helps us to determine the level of error in our estimates of the contaminant plume.

A second site providing a different type of complexity was examined from a statistical estimation and visualization perspective.
This second site, in Arizona, yields observations of several contaminants collected over a period of several years. Animations
of estimates capitalizing on the temporal component clearly illustrate major trends and aberrations in the data, which can then
be investigated more closely. Also, there were several different contaminant substances measured at the Arizona site, such as

TCE, DCE, and SO 4
2−  . The behavior of these contaminants is expected to be interrelated. We present suggestions on how to

best visualize simultaneously two or more related substances in order to highlight possible relationships among the series. The
Arizona site also includes a common problem in that the region where measurements were taken increases over time. This
problem is addressed here, along with some possible solutions.

Another primary focus of this research is to answer the question of how much total contamination is present at a site and how
to best estimate this quantity given soil core samples from the site. It is important when producing such estimates to also
understand the level of uncertainty in the estimate, in other words to obtain the standard error of the estimate. A byproduct of
carefully implemented geostatistical methods such as kriging is standard errors for the estimated mean level over the region.
Estimation of total contaminant involves estimation of the integral of the modeled process over a region. We pursue estimation
of the total contaminant for Eglin AFB. The level of ground water BTEX was modeled as a realization of a lognormal
stochastic process, and estimates of the distribution of the integral were produced by Monte-Carlo simulation of the process
conditional on the observed data.

The data used in this research, from Eglin AFB and a site near Phoenix, AZ, are presented in Chapter 2. Chapter 3 contains
discussion of the statistical methods used, including estimation by nonparametric regression and kriging. Chapter 4 contains
results for Eglin AFB, including both exploratory data analysis and estimation of total contaminant. Chapter 6 contains
discussion of the visualization and animation for the Arizona site, including discussions of temporal data and visualization of
two related substances. Finally, Chapter 7 contains conclusions and suggestions for future research.
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Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2

Sites and DataSites and DataSites and DataSites and DataSites and Data
2.1 Eglin AFB2.1 Eglin AFB2.1 Eglin AFB2.1 Eglin AFB2.1 Eglin AFB

In Chapters 4 and 5, we consider data from Eglin AFB, an example of a shallow aquifer in sandy soil. A leak of 30,000 -
40,000 gallons of JP-4 jet fuel was detected at Eglin AFB in Florida by Air Force personnel in 1984 (Boeckenhauer,
et.al.,1995). The contamination measured here is from BTEX, including benzene, toluene, ethylbenzene, and m-, o-, and
p-xylene, which are typically contained in petroleum fuels and are hazardous substances regulated by the U.S. Environmental
Protection Agency (Sweed, et al.,1996).

Two data sets are available for this site, namely: (1) Ground-water BTEX concentrations in two dimensions, measured in µg/L
and (2) Soil BTEX concentrations in three dimensions, measured in mg/kg. Also, for the exploratory analysis, we used the soil
data which are approximately 7.0 and 7.6 ft below the water table as two different two-dimensional data sets. The 22 ground-
water data points were collected by researchers from Rice University in March 1993 using a cone penetrometer. These data
range from 0.001 to over 9mg/L. A plot of the ground-water data is shown in Figure 2.1.

Anaerobic soil cores were collected in March and July, 1993, and March, 1994. The soil data set contains 336 points at 20
different locations, with values ranging from 0 to approximately 750mg/kg. A plot of the three-dimensional soil data points is
shown in Figure 2.2. The actual vertical range of the region is 21.6 ft, whereas the longitude encompasses 230.3 ft and latitude
286.4 ft The Xs connected by the dotted line indicate the location of the source of contaminant. The larger blocks denote
observations of measured concentration exceeding 25mg/kg, whereas the smaller blocks depict observations with measure-
ments between 0 and 25mg/kg. Also, the location of the water table is shown with stripes. It is observed from this figure that
very few of the data points actually have values greater than 25mg/kg (only 16 of the 336), and all of these lie below the water
table.

Figure 2.1Figure 2.1Figure 2.1Figure 2.1Figure 2.1 Eglin AFB ground-water data points. Coordinates: depth-axis: 4400 to 5100; width-axis: 4900 to 5600 and vertical-axis: 0
mg/kg to 9.1 mg/kg.
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2.2 Arizona2.2 Arizona2.2 Arizona2.2 Arizona2.2 Arizona

In Chapter 6, we consider data from a contaminated site near Phoenix, AZ. Contaminants measured include trichloroethylene

(TCE), dichloroethylene (DCE), and sulfate (SO 4
2 − ), all measured in µg/L. Other measured contaminants contained somewhat

sparse data and were not used at this time. The DCE “measurements” are actually sums of measured values of 1,1-DCE and
1,2-DCE, so the measurement locations here are only used if measurements of both of these are available. These data were
gathered from 1985 to 1993.

Figure 2.2Figure 2.2Figure 2.2Figure 2.2Figure 2.2 Eglin AFB soil data points.
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Chapter 3Chapter 3Chapter 3Chapter 3Chapter 3

Statistical MethodsStatistical MethodsStatistical MethodsStatistical MethodsStatistical Methods
3.1 Nonparametric Regression3.1 Nonparametric Regression3.1 Nonparametric Regression3.1 Nonparametric Regression3.1 Nonparametric Regression

For the exploratory analysis of Eglin AFB in Section 4.1, we used nonparametric regression to produce a surface estimate of

the plume. The model used for the contaminant plume is u x f x xb g b g b g= +ε  where:

xxxxx = a point in the region of interest,

u(xxxxx) = the observed level of contaminant at x,

f(xxxxx) = the true level of contaminant at x, and

ε(xxxxx) = random noise in the measurement process.

The model assumes:

• The observation locations xxxxx1
,...,xxxxxn

 are randomly chosen.

• The unknown function f(·····) is twice continuously differentiable. Note that f(·····) is not a random process.

• The random noise ε(xxxxx1
 ),...,ε(xxxxxn

 ) is independent, but not necessarily identically distributed.

An estimate of f(xxxxx) over the region of interest can be obtained via nonparametric regression methods (Scott, 1992) and is given
by:

$f x u wi h
i

n

ia f b g=
=
∑

1

x,x (3.1)

where the weights are defined as:

w
K x x

K x x
h i

h i

h jj

nx,xb g b g
d i

=
−

−=∑ 1
(3.2)

and u
i
≡u(x

i
 ). The function K

h
 (•) is referred to as the scaled kernel function with bandwidth, or smoothing parameter, h. Note

that the bandwidth determines the smoothness of the surface estimate; a larger bandwidth yields a smoother estimate. For some
standardized (or unscaled) kernel function K(•), we define K

h
(•) as K

h
(t) = K(t/h)/h, so as h increases, the value of t/h = (x - x

i
)/h

decreases.

3.2 Kriging and Variograms3.2 Kriging and Variograms3.2 Kriging and Variograms3.2 Kriging and Variograms3.2 Kriging and Variograms

Another method which we will use to estimate contaminant levels over the region is the geostatistical spatial prediction method
known as kriging. A complete and thorough exposition of geostatistical methods is given in (Cressie, 1993). A very brief
overview is provided here for purposes of introduction and definition of notation. The general idea of kriging is to first use the
observed levels of a contaminant to produce a model of the spatial covariance structure of the process. This spatial covariance
model is then used to obtain the “optimal” predictor p(ZZZZZ; s

0
 ) of Z(s

0
 ), the value of the random process at s

0
 . This predictor is

E[Z(s
0
 )|ZZZZZ], which is precisely the same as pO (ZZZZZ; s

0
 ) in (5.2) in the case where g(•) is simply g(Z) = Z.

Assume that the data zzzzz = (z(s
1
 ), ...,z(s

n
 )) are a sample from a realization of the stochastic process {Z(s) : s ∈  A}. In order to do

inference from the data, we need to make some assumptions. A common practice is to assume second-order stationarity. That
is, assume that

E Z s Aa f = ∀ ∈µ s (3.3)

or that F
s
(z) ≡ Pr(Z(s)≤z) does not depend on sssss and

cov Z s Z s C s s s s Ai j i j i jb g d ie j d i, , ,= − ∀ ∈ (3.4)

i.e., cov(Z(s
i
), Z(s

j
)) depends only on the vector s

i
 - s

j
. Furthermore, if

cov Z s Z s C s s s s Ai j i j i jb g d ie j e j, , ,= − ∀ ∈ (3.5)

i.e., cov(Z(s
i
),Z(s

j
)) depends only on the distance |s

i
 - s

j
|, then the process is said to be isotropic.
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If second-order stationarity holds, a convenient way to model the covariance structure of the process is through use of a
variogram function

var Z s Z s s s s s Ai j i j i jb g d ie j d i− = − ∀ ∈2γ , , (3.6)

The function γ(s
i
 - s

j
) is referred to as the semivariogram. Note that it is easy to show that γ(h) = γ(-h) and γ(00000) = 0. If we have:

h
h c

→
= >

0
0 0lim γ a f (3.7)

then c
0
 is what is known as a nugget effect. This may be due either to some microscale variation or to measurement error. The

term nugget effect comes from spatial prediction’s origins in mining, and refers to a variation caused by small nuggets of ore.
Regardless, in all real data, there is some measurement error and so we would be remiss to model our process without a nugget
effect. On the other end, as |hhhhh|→∞, the semivariogram converges to the process variance. This follows easily by noting that we
assume that the covariance between two values of the process diminishes to zero as the distance between them increases.

In the case that the process is isotropic; i.e., the spatial covariance between values of the process depends only on the distance
between the observations, there are a number of standard variogram models available (Cressie, 1993). However, if the process
is anisotropic, it is sometimes possible to transform the locations so that an isotropic variogram model remains appropriate.
Specifically, such a transformation is possible in cases of geometric anisotropy; i.e., where rotating and scaling the locations
produces an isotropic process. For example, it is typically the case with ground-water data that the correlation is higher for
points a distance hhhhh apart if they lie in the direction of ground-water flow rather than perpendicular to it. In this case, the
variogram is of the form:

2 2 0γ γh B h ha f b g= ∈ ⊂ ℜA d (3.8)

where BBBBB is a d xd matrix and γ
0
 is an isotropic variogram. We will be using this type of transformation on the Eglin AFB

ground-water contamination data where d = 2. In the case d = 2, the matrix B is given by:

B =
+ ∗ − ∗ ∗

− ∗ ∗ + ∗
F
HG

I
KJ

cos sin sin cos

sin cos sin cos

2 2

2 2

1

1

θ θ θ θ
θ θ θ θ

a f a f a f a f a f
a f a f a f a f a f

r r

r r (3.9)

meaning that θ is the angle clockwise from North at which the scale is multiplied by r. The other axis is then the one which is
perpendicular to this, and the scale in this direction is not altered. For example, then, if we were working with ground-water
data where the flow was along the northwest-southeast direction, we might use θ≅ 135 deg and some r >1.

Assuming the modeled spatial covariance structure of the random process, we can now obtain optimal predictions. If our
optimization criteria is minimization of the squared-error loss then the optimal predictor of the random process at any point sssss0
is given by the expectation of the random process conditional on the observed values of the process; in other words, the best
predictor of Z(s

0
 ) is p

0
(Z,s

0
 ) = E(Z(s

0
 )|Z), where Z denotes the vector of data as in (Boeckenhauer, 1996). In the case that Z(•)

is a Gaussian process, this predictor is linear. Here we will be using the form of spatial prediction known as ordinary kriging
(Cressie, 1993) which requires the two assumptions:

1. There is a constant mean, i.e.

Z s sa f a f= +µ δ (3.10)

for sssss∈ A and µ∈ℜ  unknown.

2. The predictor is linear in the observations, i.e.

p Z s Zi i
i

n

; 0
1

b g b g=
=
∑ λ t (3.11)

where the observations are at locations t t t t t11111
, ...,tttttnnnnn

 and λ ii

n

=∑ =1 1 . (Recall that this predictor is an estimate of E[Z(s
0
)|Z(t

1
),...,Z(t

n
)].)

Requiring λ ii

n

=∑ =1 1 guarantees uniform unbiasedness, i.e. E(p(Z;s
0
)) = µ = E(Z(s

0
)). For further information on optimal

prediction using the kriging equations, see (Cressie, 1993).

3.33.33.33.33.3 Estimating an Integral via Sample-Mean Monte CarloEstimating an Integral via Sample-Mean Monte CarloEstimating an Integral via Sample-Mean Monte CarloEstimating an Integral via Sample-Mean Monte CarloEstimating an Integral via Sample-Mean Monte Carlo

The question of the total amount of contaminant within a given region is equivalent to estimating the integral over the region
of the estimated spatial process for this contaminant. Monte Carlo methods provide an estimate of the integral (see also
(Rubinstein,1981) and (Hammersley and Handscomb, 1964)) by viewing the integral as an expectation and simulating the
sample mean as an estimate of this expectation. For example, suppose we wish to estimate the integral over a region AAAAA of some
function q(s):
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Φ = z q ds
A

sa f (3.12)

The basis of this method is to represent the integral Φ as the expected value of a random variable. For example, suppose that
SSSSS is a random variable which has density f

S
(s) on AAAAA. We may then rewrite the integral Φ in (3.12) as:

Φ = = =
L
NM

O
QPz zq ds

q

f
f s ds E

q

fA A
s

s

s

S

SS
S

S

a f a f
a f a f a f

a f (3.13)

provided that f
S
(sssss) > 0 when q(s) ≠ 0.

In particular, suppose SSSSS is uniform on AAAAA. That is, SSSSS has density
f IS s sa f a f= 1

A A (3.14)

where

I
A

A sb g =
RST

1

0

if

otherwise

s ε (3.15)

is the indicator function on AAAAA and |AAAAA| is the norm of AAAAA (e.g., the area or volume of AAAAA if AAAAA is two- or three-dimensional,
respectively). We may then simplify the integral in (3.13)

Φ = =
L
NM

O
QP

=
L
NM

O
QP

=z q s ds E
q

f
E

q

A
A E q

A
S

b g b g
b g

b g b gs

s

s
S

1 (3.16)

To use this method to estimate Φ, then, we will

1. Generate a “large” (say p) number of locations, s
1
,...,s

p
 uniformly over the region AAAAA.

2. Evaluate q(s) at each of these locations, yielding q(s
1
),...,q(s

p
 ).

3. Compute the sample mean of these evaluations to yield an estimate of E[q(SSSSS)], i.e. 
1

1p
q sj

p
j=∑ d i .

4. Use the sample mean in (3.) to estimate the integral Φ, or

$Φ =
=
∑A

p
q

j

p

s jd i
1

(3.17)

The error inherent in this method relates to the randomness of the sampled sites and the number of sites which we sample.
Specifically, the variance of the integral estimate for the function q is given by:

Var Var
A

p
q

A

p
Var q

j
j

p

j
j

p

Φa f d i

d i

=
F
HG

I
KJ

=
F
HG

I
KJ

=

=

∑

∑

s

s

1

2

2
1

(3.18)

This variance may be estimated by:

$ $Var
A

p
ps

A s

p

Φe j =

=

2

2
2

2 2

(3.19)

where s2 is the sample variance of q(s
1
),...,q(s

p
 ).

In order to estimate the total level of contaminant say for the Eglin AFB, we model the spatial process of interest. Using our
model as the truth, we can generate a p-dimensional Multivariate Normal random vector with the appropriate mean structure
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and spatial covariance structure as given by our estimated model (see, for example, Johnson, 1987; Stewart, 1973). This
simulated random vector is then used in the above algorithm to ascertain the total amount of contaminant present, and the
standard error of this estimate.
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Chapter 4Chapter 4Chapter 4Chapter 4Chapter 4

Eglin Eglin Eglin Eglin Eglin AFB: AFB: AFB: AFB: AFB: VVVVVisualization and Exploratorisualization and Exploratorisualization and Exploratorisualization and Exploratorisualization and Exploratory y y y y AnalysisAnalysisAnalysisAnalysisAnalysis
Our exploratory analysis of the observations of BTEX from Eglin AFB provides an understanding of the location and shape of
the contaminant plume. For the two-dimensional data, perspective plots of the surface estimate with color contours visually
display both the level of contamination and the rate of change over the region. The color contours can be set to specific
concentrations of interest, such as regulatory levels. In the three-dimensional case, nested contour visualization is used to
provide immediate characterization of the plume. Again, the contours could be keyed to concentrations of interest. Such
exploratory analyses are greatly enhanced by on-line manipulations of the visual tools provided. For example, it is possible to
rotate the surfaces to search for high levels of contamination which may be visible only from certain vantage points.
Furthermore, color facilitates identification of trouble spots. However, even the gray-scale static versions of the plots presented
here are useful for providing visual understanding of the plume.

The surface estimates for the exploratory visualization were produced using nonparametric regression, as discussed in
Section 3.1. In order to obtain an accurate surface estimate of the plume, it is necessary to choose appropriate bandwidths to
produce the nonparametric regression estimate. (Recall that the larger the bandwidth, the smoother the final surface estimate
will be.) Appendix A contains the details of bandwidth selection, via cross-validation, for both the two-dimensional and
three-dimensional Eglin AFB data.

Properties of spatial estimates and/or nonparametric regression estimates rely on asymptotic theory which, due to the small
number of observations available, is certainly not the situation with the data at hand. Therefore, we explore the robustness of
our estimate by examining the change in the estimate as sample points are removed from the estimation process. The uses of
this examination are two-fold: (1) a better understanding of the the magnitude of the error of our estimates is obtained, and (2)
areas where additional observations are needed are highlighted. In other words, intuitively, we would take additional
observations in the region where the estimated level of contamination changed the most as data was removed. If removing an
observation has little effect on the estimate resulting in a small error, additional data would not be needed in that region. This
result was visualized in two ways:

1. by viewing an animation of the estimated surface alternated with surfaces estimated by the removal of one of the
sample points, and

2. by visualizations of the absolute differences (errors) between the surface estimated without point i and the
measured value at point i.

The animation in case (1) is very useful when viewed on the SGI, but does not appear here. Case (2) appears in Section 4.2.

By viewing a smoothed version of the absolute error of our plume estimate, both in the two-dimensional and three-dimensional
cases, it is clear where additional observations are needed. One suggestion for future sampling sites would be to sample in the
region where both the estimated level of contamination and the error associated with the estimate are high. Of course, any
measure of error or the amount of information contained in the data could be displayed in a similar fashion.

4.1 Visualization of Estimated Plumes4.1 Visualization of Estimated Plumes4.1 Visualization of Estimated Plumes4.1 Visualization of Estimated Plumes4.1 Visualization of Estimated Plumes

The program Geomview for an SGI was used to display plume estimates of the BTEX concentration. Geomview was written at
the NSF Geometry Center, University of Minnesota, and is available through anonymous ftp from ftp.geom.umn.edu. The
program ashreg, a modification of ashn (Scott, 1992), was used to produce plume estimates from the three-dimensional data.
A biweight kernel was used in all cases.

4.1.1 Two-Dimensional Data4.1.1 Two-Dimensional Data4.1.1 Two-Dimensional Data4.1.1 Two-Dimensional Data4.1.1 Two-Dimensional Data

Figure 4.2 contains a plot of the estimated plume for the Eglin AFB ground-water data. Figure 4.1 shows the legends for these
contour levels and those for the later figures, signifying estimated concentrations of:
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Figure 4.1Figure 4.1Figure 4.1Figure 4.1Figure 4.1 Legends for two-dimensional perspective plot contours.
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where all of the concentrations are in µg/L. The level labeled No data includes areas where there is no estimate as we are too
far from any of the measured points for the given bandwidth. (Note that, for the black and white figures, some of the lower
levels are shown in the same shade, but we are primarily interested in areas where there are high concentrations, and these are
distinctly different.) The same legend applies to the plot of the estimated plume for the Eglin AFB soil data at a depth of
approximately 7.0 ft given in Figure 4.3, except that here the concentrations are:
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with all measurements in mg/kg. (Note that at this particular depth, the estimated concentration does not exceed 50mg/kg.)

For both of the two-dimensional plots, the actual data locations are marked on the grid at the top of the plot. The large point
which is connected to the perspective plot by a vertical line is the mode of the estimate. An arrow pointing north indicates the
orientation of the plot.

4.1.2 Three-Dimensional Data4.1.2 Three-Dimensional Data4.1.2 Three-Dimensional Data4.1.2 Three-Dimensional Data4.1.2 Three-Dimensional Data

Figure 4.4 contains a plot of the estimated plume for the Eglin AFB soil data. Two different levels of contamination are
represented, with the lower (outer) shell being sliced so that we can see the higher (inner) one. The outer and inner shells
represent concentration levels of approximately 0.73 and 7.33mg/kg, respectively. Also, the location of the water table and the
source are clearly marked.
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In an on-line version of the 3-D visualization of the plume, nested contours can be displayed using the transparency feature of
the SGI and Geomview. This allows the use of solid color nested contours, where the inner shells can be seen through the outer
ones. The use of transparency and the ability to rotate the graph greatly enhance the informative 7.0 ft below the Water Table
value of the plot to the user.

4.2 Error Visualization4.2 Error Visualization4.2 Error Visualization4.2 Error Visualization4.2 Error Visualization

We simultaneously display a perspective plot of the two-dimensional ground-water BTEX plume estimate and the absolute
errors of this estimate in Figure 4.5. Note that the heights of these two plots are on the same scale. The contours for the errors,
using the legend in Figure 4.1, are the same as given in 4.1 except for levels (a) and (b):
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3000 5000

2000 3000
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with errors in absolute µg/L. In Figure 4.6, we show a perspective plot of the ground-water data where the contours are
determined by the smoothed absolute errors. By combining the plume estimate and the absolute errors into a single plot, we
more readily identify regions of high concentration and regions with a large amount of uncertainty in the estimated value.

To visualize the errors for the three-dimensional soil data, we simply took the absolute errors as calculated for cross-validation
in A.2 (i.e. |u1— û|, . . . , |un —ûn||) and plotted a smoothed contour shells (see Figure 4.7). Here the outer and inner shells
represent contaminant concentrations of approximately 0.48 and 4.76mg/kg, respectively.

Figure 4.2Figure 4.2Figure 4.2Figure 4.2Figure 4.2 Estimate of contaminant plume for Eglin AFB ground-water data.
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Figure 4.3Figure 4.3Figure 4.3Figure 4.3Figure 4.3      Estimate of soil contamination 7.0 ft below the water table.

Figure 4.4Figure 4.4Figure 4.4Figure 4.4Figure 4.4  Estimate of soil contamination (BTEX) at Eglin AFB.
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Figure 4.5:Figure 4.5:Figure 4.5:Figure 4.5:Figure 4.5: Estimates of ground-water contamination and absolute errors.

Figure 4.6Figure 4.6Figure 4.6Figure 4.6Figure 4.6 Estimate of ground-water contamination: contours represent magnitude of error.
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Figure 4.7Figure 4.7Figure 4.7Figure 4.7Figure 4.7      Smoothed absolute error estimate for Eglin AFB soil data.
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Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5

Estimation of Non-Linear Functionals ofEstimation of Non-Linear Functionals ofEstimation of Non-Linear Functionals ofEstimation of Non-Linear Functionals ofEstimation of Non-Linear Functionals of

Random PrRandom PrRandom PrRandom PrRandom Processes forocesses forocesses forocesses forocesses for Envir Envir Envir Envir Environmental Pronmental Pronmental Pronmental Pronmental Problemsoblemsoblemsoblemsoblems
In analyzing environmental sampling data, it is often of interest to estimate some function of the data. For example, one may
be interested in the maximum concentration attained within some region, the location of this maximum, the region for which
the concentration exceeds some set value, or the total amount of contaminant present in a region. For example, government
regulations on levels of ambient ozone typically involve exceedence of some threshhold deemed unsafe for human beings at any
location within a region (Cox, et al.,1995). In this case, one would wish to estimate the maximum concentration attained in the
region of interest. In the case where one is attempting to clean up ground water or soil contamination, it is of interest to know the
total amount of contaminant present in a region. The estimation of total contaminant involves estimating an integral over a
region and is what will be addressed in this section.

In this chapter, we will model the Eglin AFB ground-water BTEX observations as a realization of a stochastic process using the
methods described in §3.2. The goal, then, will be to estimate the distribution of the integral of the process over some set region.
Now in the case where this process is Gaussian, estimation of this distribution is a solved problem. However, it is commonly the
case that environmental data are lognormal or well approximated by a lognormal distribution. Such is the case for the Eglin AFB
BTEX observations.

The approach taken here is to estimate the integral of the lognormal process by Monte Carlo simulation of the process
conditional on the data. The “conditional simulation” referred to here is similar to that discussed by Englund and Heravi
(Englund, et al., 1995) in reference to Deutsch and Journel (Deutsch, et al., 1993). That is, one fits a semivariogram model
(Cressie, 1993) to the data, then simulates from this model at some locations of interest. The actual measurements are honored
at measured locations, possibly with some error variation. Englund and Heravi discuss the simulation as being along a regular
grid; here we will be discussing simulation at random locations.

5.1 Description of the Problem5.1 Description of the Problem5.1 Description of the Problem5.1 Description of the Problem5.1 Description of the Problem

As previously stated, estimation of the total amount of contaminant present in some region is equivalent to estimation of the

stochastic integral Y X ds
A

= z sa f  where X sa f  is some random process, based on some (possibly noisy) observations

x(s1),...,x(sn ) where x s X si i ib g b g= + ε  and ε σεi

i i d
N~ ,

. . .
0 2c h. The definition of a stochastic integral is given in (Boeckenhauer,

1996). In particular, we are interested in a point estimate of Y and an interval estimate (i.e., prediction interval). For the point
estimate of a general function of the process g(X), assume initially squared error loss:

L g X p g X g X p g Xa f a fb gc h a f a fb gc h, ; ;x x= −
2

(5.1)

where x is the vector of data and g(•) is some function of 〈X〉 . Then the optimal predictor (i.e., the predictor p(•) which
minimizes E [L(•)|x]) is:

p g X E g XO x x; a fb g a f= (5.2)

(Cressie, 1993). In particular, then, assuming squared error loss, the optimal predictor of the integral Y is

p g X E Y E X s dsO

A
x x x; a fb g a f= = z (5.3)

Now if Z(s) = X(s) is a Gaussian process, then it is shown in (Boeckenhauer, 1996) that the conditional distribution of Y given
ZZZZZ is normal, and formulas for the mean and variance are given. While these formulas for the conditional mean and variance
involve the nontrivial task of calculating integrals of the mean and covariance functions, it is nonetheless in theory a solved
problem.

However, suppose that instead 〈X(s)〉  is a lognormal process. That is, X(s) = eZZZZZ(s) ∀ ∈s A , where 〈Z(s)〉  is a Gaussian process.
(Note, here we will actually be using base 10 logs, so we will instead define X(s) = 10Z(s) , but this does not affect the argument.)
Now we can estimate E[ƒ

A
 Z(s)ds |z] as above for the logged process. However, since exp(•) is a convex function, we have by

Jensen’s Inequality (Lehmann,1983),

E X ds E Z ds

Z ds
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A A

A

A
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provided var(Z(s)| x) > 0, so we cannot simply use the conditional mean of the 〈Z〉  process to obtain the conditional mean of
the 〈X〉 process. Furthermore, the distribution of the integral in this case will definitely not be normal, so some other method
must be used to produce prediction intervals.

5.2 Using Monte Carlo to Estimate the Distribution of a Stochastic Integral5.2 Using Monte Carlo to Estimate the Distribution of a Stochastic Integral5.2 Using Monte Carlo to Estimate the Distribution of a Stochastic Integral5.2 Using Monte Carlo to Estimate the Distribution of a Stochastic Integral5.2 Using Monte Carlo to Estimate the Distribution of a Stochastic Integral

The integral which we estimate here is not merely the integral of a function, but rather the integral of a random process over a
region, and thus is itself a random variable. We will still be able to use the method discussed in Section 3.3, but instead of
evaluating the function at each location, we will simulate the value of the process at each location by generating from the
model. We will actually simulate several realizations of the process, which will then give us an estimate of the conditional
distribution of the integral, given the data.

The first step is to use our transformed observations (base 10 log) to produce a model for the process using the geostatistical
methods in Section 3.2 and (Cressie,1993). Secondly, we will generate uniform locations over the region of interest, AAAAA, as
discussed in Section 3.3. Variation is introduced here, as discussed in Section 3.3, because we are using observations of the
process at only certain locations in AAAAA to estimate the integral over the entire region AAAAA. We must then calculate the covariance
matrix and mean vector from the geostatistical model for these particular locations.

To simulate a realization of the random process, we first generate a multivariate normal process based on the mean and
covariance obtained from our geostatistical modeling, then we exponentiate the simulated observations. From this realization,
we may find the average as discussed in Section 3.3 to produce an estimate of the integral of that realization. That is, if we
generated p locations sssss1,11,11,11,11,1 ,...,s ,...,s ,...,s ,...,s ,...,s

1,p1,p1,p1,p1,p
 uniformly in AAAAA, then simulated values z

1
(sssss1,11,11,11,11,1     ), ...,z

1
(sssss1,p1,p1,p1,p1,p

 ) at these locations from the
Geostatistical model, we are estimating the integral

Φ1 10 1= z z

A
dsSa f (5.5)

where 10z1(s)(s)(s)(s)(s) , sssss ∈  AAAAA denotes this realization. We then estimate the integral of the realization in the manner discussed in §3.3:

$Φ1
1

10 1=
=
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j

p s1, je j
(5.6)

The variance of the integral estimate for the realization, conditional on the data and the realization, may be estimated by
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 as in (3.19). To estimate the variance of the integral of the process, notice that

Var Var E X x x E Var X x x

Var x E Var X x

$ $ , $ ,

$

Φ Φ Φ

Φ Φ

x = ⋅ + ⋅

= + ⋅

a f a f

a f (5.8)

(Recall that xxxxx is the vector of data.) An unbiased estimate of E Var X data$Φ •a f  is obtained from the sample mean of the

variances of the $Φ1
, i = 1,..., m. Also, Var $Φ x  may be estimated by the sample variance of the integral estimates from the

realizations. Sampling from a distribution which is not uniform may decrease the variance of the estimate in some cases,
however, it is the large variation between the integral estimates from different realizations which should be a cause of concern.
This latter error can only be reduced by either (1) improving the model, or (2) gathering additional data.

The above steps are repeated to obtain a large number of realizations thereby reducing error introduced by Monte Carlo
estimation. For each simulation i, i = 1,..., m, we:

1. Generate p locations sssssiiiii,1,1,1,1,1
,...,sssssi,pi,pi,pi,pi,p

 uniformly in AAAAA.

2. For these locations, calculate the covariance matrix and mean vector, conditional on the data, using the
geostatistical model.
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3. Generate multivariate normal data z
1
(sssssi,1i,1i,1i,1i,1

 ),...,z
1
(sssssi,pi,pi,pi,pi,p

) using this mean vector and covariance matrix, and exponentiate
them (using the same base as for the logs we took of the data to produce the model).

4. Produce an estimate of the integral

Φi A

zi ds= z10
sb g

(5.9)

using the sample-mean Monte Carlo method, i.e.

$Φi
j

pA

p

zi=
=
∑10

1

si,je j
(5.10)

We may then get an estimate of the mean of the integral of the process

E E dsZ

A
Φ x xs= z 10 a f (5.11)

where x again denotes the vector of data, by, for example, taking the mean

$ $E
m i

i

m

Φ Φx =
=
∑1

1
(5.12)

More importantly, we are able to estimate the conditional distribution of the integral and get prediction intervals using the

quantiles of the $Φi
 . We may also estimate the variance of the integral
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as discussed above.

5.3 Application5.3 Application5.3 Application5.3 Application5.3 Application

5.3.1 Discussion of Data5.3.1 Discussion of Data5.3.1 Discussion of Data5.3.1 Discussion of Data5.3.1 Discussion of Data

A QQ-plot of the log of the ground-water BTEX data from Eglin AFB, Figure 5.1, indicates that lognormality is a reasonable
assumption in this instance. For further reference, we also plot the log of the data at the sampled spatial locations (Figure 5.2).

We now discuss the covariance modeling and integral estimation for the Eglin AFB site using the ground-water data introduced
in Section 2.1. Recall that these data appear to be lognormal. In Section 5.3.1, we will estimate a variogram from the log 10 data
to model the covariance structure, as discussed in Section 3.2. Section 5.3.1 contains details regarding integral estimation for
this data, and thus estimation of the total amount of contaminant.

Variogram Variogram Variogram Variogram Variogram EstimationEstimationEstimationEstimationEstimation

Before performing spatial estimation on any data, we must first model the covariance structure of the data. The empirical
semivariogram for the logged Eglin AFB ground-water data is shown in Figure 5.3. While this semivariogram does, in general,
seem to increase with distance as expected, it nonetheless is rather undesirable. In particular, there is high variability, which (a)
will make it difficult to estimate well with a vaiogram model and (b) will cause any estimates made from such a model to have
large error variance.

It should be noted that the above variogram was done assuming that the data was isotropic, that is, that the covariance of the
process at two locations depends only on the distance between these locations and not the direction. In fact, this does not really
appear to be the case here, as Figure 5.2 seems to indicate that the plume extends along the northwest-southeast direction, due
to the fact that the “large” observations seem to fall about this line. So it is possible here that we can get a better variogram, and
thus a better fit, by first transforming the coordinate axes through a rotation and then scaling one of the axes. This allows us to
take (this particular type of) anisotropic data and model it using a standard one-dimensional, isotropic variogram model. Using
the Splus spatial module function anisotropy.plot, we are able to try various rotations and scalings of the coordinate axes in an
attempt to produce a more appropriate variogram. Examples of these empirical variograms, along with loess smooth lines, are
shown in Figures 5.4 and 5.5. Note that a number of these are obviously bad choices, as they do not even have γ increase with
distance.   We are looking for something with the points “well-clustered” about an increasing line. We concluded the best
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Figure 5.1Figure 5.1Figure 5.1Figure 5.1Figure 5.1 QQ-plot of logs of Eglin AFB ground-water data.

Figure 5.2Figure 5.2Figure 5.2Figure 5.2Figure 5.2 Logs of Eglin AFB ground-water data points.
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 Figure 5.4 Figure 5.4 Figure 5.4 Figure 5.4 Figure 5.4 Empirical semivariograms with rotation angles from 0° on the left to 180° on the right and ratios from 1:25 at the bottom to
2 at the top.

Figure 5.3Figure 5.3Figure 5.3Figure 5.3Figure 5.3 Empirical semivariogram of logged Eglin AFB ground-water data.
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Figure 5.5Figure 5.5Figure 5.5Figure 5.5Figure 5.5 Empirical semivariograms with rotation angles from 45° on the left to 135° on the right and ratios from 1:45 at the bottom
to 1:55 at the top.
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option was a rotation angle of 45° and an axis ratio of 1.45. That is, for the ith data point at location (x[i], y[i]), we multiply the
location by the matrix BBBBB where

B =
+ ∗ − ∗ ∗

− ∗ ∗ + ∗
F
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I
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−

−
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. .
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2 2

2 2

45 1 45 1 1 45 45
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a f a f a f a f a f
a f a f a f a f a f

(5.14)

as in (3.9). This empirical semivariogram, along with two different semivariogram models, is shown in Figure 5.6. The
spherical semivariogram, with the formula
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(Cressie, 1993) was produced with nugget c
0
 = 0, (partial) sill c

s
 = 1.51, and range a

s
 = 325. This model appears as the dashed

line in Figure 5.6. The rational quadratic semivariogram has formula
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(Cressie, 1993) and was calculated with nugget c
0
 = 0.19, c

r
 = 1/14580, and a

r
 = 24750. This variogram model appears as the

solid line in the figure. In both cases, h refers to the distance (in the transformed space) between the data points. The two
variogram models appear very similar for most distances in Figure 5.6, but are different in the tails. While either one would
likely work reasonably well, we chose to use the rational quadratic model as it produces a plausible variogram which has a
positive nugget effect (and a nugget effect of zero would assume that there was no measurement error, which is certainly an
unreasonable assumption). The kriged surface estimate produced using this variogram model is shown in Figure 5.7 and the
standard error surface is depicted in Figure 5.8. The kriging here was done using the spatial module of S-PLUS (MathSoft,
1995), which estimated the constant mean to be µ = 1.55344 on the log

10
 scale.

Details of the Integral EstimationDetails of the Integral EstimationDetails of the Integral EstimationDetails of the Integral EstimationDetails of the Integral Estimation

Programs to estimate the integral for the Eglin AFB ground-water data were written in the C programming language and appear
in (Boeckenhauer, 1996). The method is essentially that described in Section 5.2. That is, for each of M realizations of the
process, we simulate values at N locations within the region, where N and M are contained in the file constants.h. The main
program, contained in runsim.c, first uses the data locations to produce ∑

11
 , the covariance matrix for these locations. As

discussed above, the locations are first corrected for geometric anisotropy by multiplying each pair of locations tttttiiiii
 = (x,y) by the

matrix B in (5.14). Then the distance (in transformed space) between each pair of points is calculated, followed by the
covariance between the locations using the rational quadratic model selected above. Specifically, notice that since we are
assuming the data are of the form

z Z ii i it tb g b g= + =ε 1 22,..., (5.16)

where εi and εj are independent for i≠j and Z(tttttj) is independent of εi for every i and j, we have
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Figure 5.6Figure 5.6Figure 5.6Figure 5.6Figure 5.6 Semivariogram of logged Eglin AFB ground-water data with transformed locations.

Figure 5.7Figure 5.7Figure 5.7Figure 5.7Figure 5.7 Kriged surface estimate of logged Eglin AFB ground-water data using rational quadratic variogram details of the integral
estimation.
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Recall that we are using the rational quadratic model. So letting h i j= −t t' '  (i.e., h is the distance between locations i and j

after transforming locations), we have:

Cov Z Z C h c a
c h

h ai j r r
r

r

t tb g d ie j a f, = = − ∗
+

2

21 (5.18)

and

Var ciεb g = 0 (5.19)

(i.e., the nugget effect). Thus the i, jth element of ∑
11

 is given by:
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,t t

for

for (5.20)

Figure 5.8Figure 5.8Figure 5.8Figure 5.8Figure 5.8 Standard errors for kriged surface estimate of logged Eglin AFB ground-water data using a rational quadratic variogram.
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Recall that c
0
 = 0.19, c

r
 = 1/14580, and a

r
 = 24750 were the parameters used for our model in the previous section.

The function sim, contained in sim.c, is then called M times, each time producing a sample from a realization of the process
of size N. For each simulation, we first generate N locations uniformly over the region using the function loc in loc.c, first
generating all of the x values, then all of the ys. Then the function cov, contained in cov.c is used to calculate the conditional
mean vector and covariance matrix for these generated locations given the data. Using standard multivariate normal theory
(Mardia, et al., 1979), we first calculate the unconditional matrix for the generated locations using the rational quadratic model.
Letting s

1
 ,..., s

N
 be the simulated sampling locations, this yields the NxN matrix ∑

22
 where the i, jth element is given by
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(5.21)

where h is the distance between the locations after transformation; i.e., h i j i j= − = −s B s B s s Bd i . Similarly, we calculate

the Nxn cross-covariance matrix ∑
21

 with the i, jth element given by:
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(5.22)

with h in this case being h i j i j= − = −s B t B s t Bd i . We then can find the conditional covariance matrix

∑ ∑ ∑ ∑ ∑= − −
22 21 11

1
21
T (5.23)

and the conditional mean vector

µ µ µ= + −∑ ∑−1 1N Z21 11
1

nb g (5.24)

where 11111NNNNN
 (11111n

 ) is a vector of 1s of length N (n), and µ is the constant mean as estimated by the kriging (1.55344) and ZZZZZ is the

vector of log
10

 observations. Calculation of  
11

1
21

−∑ ∑T  was accomplished with the use of the LAPACK function dspsv

(Anderson, et al., 1992).
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Figure 5.10Figure 5.10Figure 5.10Figure 5.10Figure 5.10 Semivariogram calculated from a grid simulation.

Figure 5.9Figure 5.9Figure 5.9Figure 5.9Figure 5.9 Surface of a grid simulation.
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Figure 5.12Figure 5.12Figure 5.12Figure 5.12Figure 5.12 QQ-plot of integral estimates from 1000 samples of size 500: one realization.

Figure 5.11Figure 5.11Figure 5.11Figure 5.11Figure 5.11 Histogram of integral estimates from 1000 samples of size 500: one realization.
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Figure 5.14Figure 5.14Figure 5.14Figure 5.14Figure 5.14 Histogram of lower 97:5% integral estimates from 1000 samples of size 500: different realizations.

Figure 5.13Figure 5.13Figure 5.13Figure 5.13Figure 5.13 Histogram of integral estimates from 1000 samples of size 500: different realizations.
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The function sim then calls the function multnorm, located in multnorm.c, which uses µµµµµ and ∑∑∑∑∑ to generate multivariate
normal random variables from N

NNNNN
 (µµµµµ, ∑∑∑∑∑). We first generate an N-vector YYYYY of standard normal random variates, i.e. YYYYY~ N

p
(0

p
,I

p
)

where 00000p
 is a p-vector of zeroes and IIIIIp

 is the pxp identity matrix. This is done using the function gauss (Reilly, 1995) in
boxmul.c. The lower triangular Cholesky decomposition matrix LLLLL is calculated by using the LAPACK function dpptrf
(Anderson, et al.,1992). (Recall that LLLLL is the unique lower triangular matrix such that ∑ = LLLLLLLLLLTTTTT .). Finally, we calculate
X X X X X = LYLYLYLYLY+µµµµµ. Since dpptrf calculates LLLLL in packed format (Anderson, et al., 1992), it was necessary to write code to do the matrix
multiplication. This was done using as few operations as possible.

Now predictions of the process at the simulated locations are obtained by letting Z(sssssjjjjj
) = 10X(sssssjjjjj

) = 10XjXjXjXjXj . The integral of the
realization is then estimated by

$Φ =
=
∑k A

N
Z

j

N2

1

s jd i (5.25)

as discussed in §3.3. Note that in this case A is rectangular, so |A| is easy to calculate. The constant k = 3.048 refers to the number
of dm/ft, since the (x,y) locations are in ft and the concentration predictions ZZZZZ(sssssj

) are in µg/L. Since this region is only
2-dimensional, the integral estimate here is in µg/dm, and would need to be multiplied by a depth in dm to give an estimate of
the total amount of contaminant. Also, the variance of the integral estimate is calculated in the manner discussed in §3.3.

However, instead of calculating  v$ar $ v$arΦi
z

j

Nk A N ie j d i d i= F
H

I
K=∑4 2 2

110
si, j

, it is calculated as

v$ar $ v$ar ,Φi i j
j

N

N W N
ie j c h a f=

F
HG

I
KJ =

=
∑1 12

1

2sW (5.26)

where W k Ai j
zi

, = 2 10
si, jd i  and sW

2  is the sample variance of W
i,1

 , ... ,W
i,N

 . This amounts to the same thing but is easier to

program, as we can then use the integral estimate in calculating the sample variance.

This entire procedure is performed M times and the resulting integral estimates from the realizations are then used to estimate the
conditional distribution of the integral of the process, given the data. A point estimate of the integral may be found by, for
example, taking the mean of the integral estimates for the realizations. Approximate 100(1— α)% prediction intervals may be
found by using the α/2 and 1— α/2 quantiles of the simulated integral estimates.

Figure 5.15Figure 5.15Figure 5.15Figure 5.15Figure 5.15 Histogram of logged integral estimates from 1000 samples of size 500: different realizations.
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5.3.2 Results5.3.2 Results5.3.2 Results5.3.2 Results5.3.2 Results

As a quick assessment that our computer code is simulating  the desired process, we generate, from the assumed model, a single
realization over a 20x20 grid which encompasses the region, where the x-values range from 4900 to 5600 and the y-values
range from 4400 to 5100. A perspective plot of this single realization is given in Figure 5.9. The realization behaves as one
might expect given the conditional mean shown in Figure 5.7. Also, the empirical variogram of this realization compares well
to the rational quadratic variogram model used to generate the data (see Figure 5.10).

Recall that the estimate of the integral for a realization, as discussed in §3.3, is given by

$Φ =
=
∑A

N
q

j

N

1

s jd i (5.27)

where the q(sssssjjjjj
), j = 1,..., N are the values of realization at locations s

1
,..., s

N
 . Noting that this is in fact a sample mean of the

|A|q(s
j
), j = 1,..., N , we have by the central limit theorem that, for a single realization, the estimate of the integral should have a

normal distribution as N → ∞. We would like to check the integral estimates produced from samples of a single realization to
see that this is in fact the case.

Ideally, we would like to be able to take a large number of samples from a single realization of size P , where the samples are
sufficiently sized for the asymptotics to “kick in” (say N = 500 or 1000). However, since we are simulating the realization, we
must simulate all of the values of the realization which we wish to sample together initially. If there are P such values of the
realization, this means that we must not only calculate a PxP covariance matrix, but must then calculate the Cholesky
decomposition of this matrix. As P gets large, near singularities (i.e., singularities within machine precision) in the conditional
covariance matrix ∑ cause the Cholesky decomposition routine to fail. The largest value of P for which the code could be
successfully run with any consistency was 2000, which does not allow for a great number of independent samples of size 500,
to say the least.

In lieu of independent samples we rely on dependent samples; i.e., samples which share some of the same realization values.
A single realization of size 2000 was simulated and subsamples of size 500 were obtained from the 2000. The subsampling was
performed with replacement. So each sample is then a sample from this realization taken at 500 independent uniform locations
over the region. From each of these samples, an integral estimate was calculated using the integral estimate (5.25). Figure 5.11
shows a histogram of the integral estimates taken from 1000 such samples. The histogram appears to be approximately normal.
Figure 5.12 contains a qq-plot of the 1,000 integral estimates. The qq-plot is very close to a straight line, although a bit off in the
tails. Again, this indicates that these integral estimates are approximately normally distributed. Also, the integral estimate
produced by the entire realization was approximately 7.548 × 109 , which is also very close to the center of the histogram and
the median of the integral estimates from the samples. Thus, the distribution of integral estimates for samples from a single
realization appears to be fairly normal, as it should be.

Finally, to actually estimate the distribution of the integral, we generated samples of 500 from each of 1000 different
realizations. Figure 5.13 shows a histogram of the 1000 different integral estimates. This histogram is obviously very skewed,
to the extent that we cannot see any of the detail in the lower part of the histogram, where most of the values reside. Figure 5.14
shows a histogram of the lower 97.5% of these estimates and Figure 5.15 shows a histogram of the log

10
 estimates. These allow

us to see more detail in the lower part of the histogram. Note that the units for the estimates are µg/dm, and they would have to
be multiplied by a measurement of depth in dm to provide an estimate of total contaminant for a three-dimensional region.
Tables 5.1 and 5.2 contain summary statistics about the integral estimates for the realizations. We can see the effect of the
skewness in these summary statistics. For example, the value of the sample mean is more than twice the value of the sample
median. Furthermore, the values of the α% trimmed means rapidly approach the value of the median as α increases.

Table 5.1Table 5.1Table 5.1Table 5.1Table 5.1  Statistics of Integral Estimates for 1000 Realizations

minimum 0.025 quantile median 0.975 quantile maximum

5.604 × 108 1.034 × 109 4.527 × 109 6.354 × 1010 1.252 × 1012

Table 5.2Table 5.2Table 5.2Table 5.2Table 5.2     Means of Integral Estimates for 1000 Realizations

mean 5% trimmed mean 10% trimmed mean 20% trimmed mean

1.204 × 1010 7.776 × 109 6.849 × 109 5.946 × 109

Recall that we said in Section 5.1 that the conditional mean (i.e., the mean calculated above) was an optimal estimate of the
integral under squared error loss. Now either the median or any of the means could be used as a point estimate of the integral
of the process. In particular, in the case of absolute error loss
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L g p g g p gX X X Xa f a fb gc h a f a fb g, ; ;x x= − (5.28)

the median is actually optimal. However, due to the high skewness and the large difference between the median and the mean,
we would do well to exercise caution in our choice. More investigation is necessary to determine which of these is more
representative of the truth, or if some other statistic would be better, or if what is “better” depends on the particular application.

It is important to reiterate here that even though the distribution of integral estimates from samples from one realization is quite
normal, the distribution of the integral of the process is not even close to normal. However, this is not surprising as these are two
entirely different distributions. The first is the distribution of estimates for a realization with variation coming only from the
“sampling error”, i.e. the error induced by estimating a value of the integral for a region with only a finite number of points. The
second involves this sampling error, along with the actual variation of the process.

As the distribution of the integral is not normal, we obviously cannot use typical normal prediction intervals. We may, however,
use quantiles of the distribution to get estimated prediction intervals for the integral of the process. For example, for a 95%
prediction interval, we may use the values in Table 5.1 to get an interval of (1.034 × 10 9 ; 6.354 × 1010 ). Note, however, that
this interval still involves the aforementioned sampling error.

The variances for the integral estimates for the realizations, $Φ i
 , were estimated as discussed in Section 5.2. The estimated

standard deviations ranged from 5.645 × 107 to 4.602 × 1011. However, for the lower 97.5% of the integral estimates, the largest
estimated standard deviation was 1.708 × 1010 , nearly 30 times smaller than the overall maximum. This would lead us to
suspect that the highest integral estimates for realizations come about due to one or two very high simulated values in that
realization, thus increasing the variance of the sample from the realization tremendously. Further investigation is necessary to
determine if this is in fact the case.

The variance of the integral is estimated here as discussed in Section 5.2. That is

Var Var E VarΦ Φ Φx x x= − ⋅$ $ Xa f (5.29)

where Var $Φ x  may be estimated by the sample variance of the integral estimates from the realizations and an unbiased

estimate of E Var $Φ X ⋅a f data  is obtained by taking the sample mean of the variances of the $Φi
 calculated from the 1000

realizations as discussed above. In this example, this yields

Var Φ x = × − × ≅ ×2 10 2 796 10 2 143 1021 20 21.423 . . (5.30)

So the estimated standard deviation of the integral is Var Φ x = ×4 629 1024. .   It is of concern here that this value is

actually larger than the estimated mean of the integral of 1.204 × 1010 . This is caused by the large variation between the integral
estimates for the different realizations, and the high skewness of the distribution.
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Chapter 6Chapter 6Chapter 6Chapter 6Chapter 6

Phoenix, Phoenix, Phoenix, Phoenix, Phoenix, AZ: AZ: AZ: AZ: AZ: VVVVVisualization with a isualization with a isualization with a isualization with a isualization with a TTTTTime Componentime Componentime Componentime Componentime Component
In this chapter, we use methods of kriging and related spatial estimation (Cressie,1993) to study various concentration plumes
at a site near Phoenix, Arizona. Since we have data from several years for this site, we are able to incorporate time into our
analysis. In all cases, the plots were intended to represent a yearly average, so all of the data from each year was used. In cases
where there was more than one measurement for a particular location in a year, the average of these values was used. In
Section 6.1, we do an exploratory visualization of contaminant levels, along with accuracy assessments in the form of prediction
standard errors. In Section 6.2, we present portions of animations of contaminants together, including a method for animation of
two possibly related contaminants.

6.1 Exploratory Visualization6.1 Exploratory Visualization6.1 Exploratory Visualization6.1 Exploratory Visualization6.1 Exploratory Visualization

Figures 6.1, 6.3, 6.5, and 6.7 show “prediction” surfaces for TCE and DCE concentrations for two selected years. The
predictions were done using the log of the data, so these surfaces are on a log scale. Figures 6.2, 6.4, 6.6, and 6.8 show the
corresponding standard error surfaces. The x and y coordinates are the same for all of the plots in this section and the next, with
the z coordinates varying slightly. The legends for the z coordinates are given in Figures 6.9 and 6.10 for the prediction surfaces
and error surfaces, respectively.

Figures 6.9 and 6.10 indicate the color codes for different levels of concentrations and standard errors. (Note that the legend for
the prediction surfaces in Figure 6.9 refers to the level of the original data, rather than the log of the data.) Predicted values tend
to be most accurate in the neighborhood of wells where the data were taken, which explains the downward spikes in the standard
error surfaces. (That is, each small downward spike represents an observation well location.)

One sees, when comparing TCE concentration maps (Figures 6.1 and 6.5 for the years 1991 and 1992, respectively) with the
corresponding DCE concentrations (Figures 6.3 and 6.7), that both substances are highest in the northeast portion of the region,
and the TCE plume drops off more quickly than the DCE plume. This suggests scavenging of TCE to create DCE over time as
the plume is transported from northeast to southwest. Thus, a map of the ratio of concentration of DCE to TCE should show a
large increase moving down the plume, but the sum of the two concentrations might be relatively constant, assuming the region
is relatively “closed.” Of course, conclusions drawn from such displays would have to be tempered by the accuracy of the
estimated quantities.

6.2 Animation6.2 Animation6.2 Animation6.2 Animation6.2 Animation

6.2.1 Trichloroethylene and Dichloroethylene (TCE and DCE)6.2.1 Trichloroethylene and Dichloroethylene (TCE and DCE)6.2.1 Trichloroethylene and Dichloroethylene (TCE and DCE)6.2.1 Trichloroethylene and Dichloroethylene (TCE and DCE)6.2.1 Trichloroethylene and Dichloroethylene (TCE and DCE)

Since it is suspected that the TCE and DCE plumes are somehow interrelated, it is desirable to plot the two together in such a
way as to make the relationship (if it exists) more visible. With this in mind, animation of the TCE and DCE data is
accomplished by combining the estimated concentration plots for each on the same plot. This allows the two substances to be
easily animated together in time, which in turn should facilitate our attempts to see relationships between the levels of the two
substances through space and time. The animation has been performed using the measured data from the years 1985 to 1993, as
discussed in Section 2.2.

Spatial estimation, via kriging, was then performed on the logs (base 10) of the yearly data. (See Appendix B for a brief
discussion of the spatial modeling and an explanation of the problems there encountered.) For the animation, interpolations were
done in between the years (5 time slices between each pair of years), allowing a smoother progression which aids greatly in
seeing general trends in the data.

Examples of the plots used in the animation are shown in Figures 6.11, 6.12, 6.13, and 6.14, representing the years 1986, 1988,
1991, and 1993, respectively. The TCE surface is the upper one in all of the plots and the DCE the lower. The size of the region
is approximately 18000 ft in the E-W direction and 8300 ft in the N-S direction. All plots are shown on the log

10
 scale; e.g., the

purple regions which are labeled as 1 to 2 on the scale are regions where the estimated contaminant level is between 10 and
100 µg/L.

These plots all confirm our assumption that the values of the contaminants are generally highest in the Northeast region, where
the source is located. These plots help to point out some general features in the data, as well as introducing some new questions.
In particular, Figure 6.13 would seem to indicate that there is a ridge of high values of contaminant along a line from
East-Northeast to West-Southwest, along with some low values next to this region of high values. Investigation into the site
properties yielded the information that the ground-water flow is generally from E-NE to W-SW, so it would appear that the
contaminant levels are highest along a direct line from the source in the direction of ground-water flow, perhaps indicating very
slow dispersion of the contaminants through other means. The 1986 plot, Figure 6.11, is representative of the earlier years in that
data were only taken in an area relatively close to the source. In later years, gradually points were added farther to the west of
the source. (There were none added to the east, presumably since it was unexpected that the contaminant would spread greatly
in a direction counter to the direction of ground-water flow.) By 1993, both contaminants appear to have dissipated greatly, and
many of the mild variations seen are likely due to measurement error. Figure 6.12, from 1988, shows lower values of
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Figure 6.2Figure 6.2Figure 6.2Figure 6.2Figure 6.2 TCE standard errors of prediction for 1991.

Figure 6.1Figure 6.1Figure 6.1Figure 6.1Figure 6.1 TCE prediction surface for 1991. Orientation: depth-axis: 892,600 to 896,800; width-axis: 478,000 to 484,000;
vertical-axis: 0 to 2.25.
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Figure 6.3Figure 6.3Figure 6.3Figure 6.3Figure 6.3 DCE prediction surface for 1991.

Figure 6.4Figure 6.4Figure 6.4Figure 6.4Figure 6.4 DCE standard errors of prediction for 1991.
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Figure 6.5Figure 6.5Figure 6.5Figure 6.5Figure 6.5 TCE prediction surface for 1992.

Figure 6.6Figure 6.6Figure 6.6Figure 6.6Figure 6.6 TCE standard errors of prediction for 1992.



35

Figure 6.8Figure 6.8Figure 6.8Figure 6.8Figure 6.8 DCE standard errors of prediction for 1992.

Figure 6.7Figure 6.7Figure 6.7Figure 6.7Figure 6.7 DCE prediction surface for 1992.
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Figure 6.9Figure 6.9Figure 6.9Figure 6.9Figure 6.9 Legend for prediction surfaces (measurements in mg/L).

Figure 6.10Figure 6.10Figure 6.10Figure 6.10Figure 6.10 Legend for standard errors.
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Figure 6.12Figure 6.12Figure 6.12Figure 6.12Figure 6.12 TCE and DCE surfaces for 1988.

Figure 6.11Figure 6.11Figure 6.11Figure 6.11Figure 6.11 TCE and DCE surfaces for 1986.
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Figure 6.13Figure 6.13Figure 6.13Figure 6.13Figure 6.13 TCE and DCE surfaces for 1991.

this occurred. It has been supposed that perhaps an excessive amount of rainfall in this year would have diluted the
concentrations of contaminant in the ground water, but it should be noted that this is definitely only suspicion and further
investigation is necessary. In any event, however, animation of the spatial estimates through time allowed us to easily pick up on
this seeming aberration.

6.2.2 Sulfate Ions6.2.2 Sulfate Ions6.2.2 Sulfate Ions6.2.2 Sulfate Ions6.2.2 Sulfate Ions

Measurements of sulfate ions (SO4
2− ) are of interest due to a supposed connection between levels of SO4

2− , TCE, and DCE.

That is, anaerobic bacteria which consume SO4
2− also consume TCE, converting it into DCE. It is believed that regions of low

sulfate, dubbed “sulfate holes,” indicate the presence of such bacteria. If this is true, we also would expect to see TCE drop in
these regions. There are much fewer sulfate data than there are TCE and DCE data, to the extent that there are insufficient data

in several of the years to do a reasonable surface estimate. For this reason, SO4
2− surfaces were produced only for the years 1985

through 1989, inclusive, and 1991. As there was some concern that the large flat sections of the surfaces in the portions of the

region with no data might be somewhat misleading, a new visualization technique was tried with the SO4
2− data. For each year,

the surface was only plotted in the area where there were data, with a bounding box to indicate the region and keep all years on
the same scale. The success of this approach is perhaps mixed. It does indeed make it very clear in what regions we do not have
any good estimates due to lack of data. However, it also makes it nearly impossible to interpolate between years to produce a
smooth animation, and in fact increases the “jumpy” effect seen when viewing the surfaces in chronological order. (This is not
such a problem with the sulfate data, as the time gap makes them not entirely suitable for animation, anyway.) Again, the plots
are all on a log

10
 scale with the same color contours as for TCE and DCE.

Figures 6.15, 6.16, and 6.17 contain examples of these SO4
2− surfaces. These surfaces have several interesting features. In all

three, we see a small peak in sulfate levels near the source of TCE and DCE contamination. Also, in all three, we see one or more
“sulfate holes” near to this peak. This indicates that perhaps TCE is being converted to DCE near to the source, which would
lead to TCE values dropping off more rapidly than DCE as distance from the source increases. Efforts to see if such a
relationship exists will be discussed further in Section 6.3. Figure 6.16 reveals another interesting and somewhat odd feature of
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Figure 6.14Figure 6.14Figure 6.14Figure 6.14Figure 6.14 TCE and DCE surfaces for 1993.

Figure 6.15Figure 6.15Figure 6.15Figure 6.15Figure 6.15 SO4
2−      surface for 1986.
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Figure 6.17Figure 6.17Figure 6.17Figure 6.17Figure 6.17 SO4
2−surface for 1991.

Figure 6.16Figure 6.16Figure 6.16Figure 6.16Figure 6.16 SO4
2−  surface for 1988.
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the sulfate data. The overall sulfate levels for the years 1987, 1988, and 1989 over the region are significantly higher than for
the other years studied. We have not yet been able to identify a reason for this, but it certainly seems to warrant further
investigation.

6.3 Further Analytical Efforts6.3 Further Analytical Efforts6.3 Further Analytical Efforts6.3 Further Analytical Efforts6.3 Further Analytical Efforts

As mentioned previously, the region for which there were data available increased as time progressed. Specifically, in the
earlier years (e.g., 1985), there were data points only relatively close to the source. Later, more data points were added to the
south and especially to the west. This can create some problems with analysis, so it was decided following a conversation with
Dr. Joe Hughes that we should try to do local analyses using some smaller region around the source. It is hoped that this will
help us to better understand the chemical and transport processes at work. We expect that

• TCE should decrease in regions of high sulfate due to the likely presence of sulfate- consuming bacteria in these regions,
and that

• TCE and SO4
2− should decrease quicker with distance from the source than DCE.

Two different types of local analyses were attempted. The first involves simply using only a small rectangular region around
the source; e.g., the Northeast corner of the total region. The other involves using a relatively narrow region from the source
and extending in the direction of flow. For this second method, we then want to do spatial estimates of contaminant (i.e., log

10
of TCE, DCE, and SO4

2− ) vs. the following:

1. distance from the source,

2. time since Jan. 1, 1985 and distance from the source, and

3. time since Jan. 1, 1985 and distance from the source at time 0.

As the region chosen in this case is narrow, the distance from the source is approximately equal to the distance from the source
along the line of flow. This method seems reasonable because the primary method of transport of contaminant in this system is
ground-water flow, with dispersion being decidedly less. So if the speed of ground-water flow is sssss ft/day, then the contaminant
present a distance st from the source in the direction of flow on day t should have been at the source on day 0. This is precisely
the motivation for the third case listed above, for which we calculate d' = d - st, the estimated distance from the source at time 0.

Unfortunately, there is one problem with this latter method which has not yet been resolved: it is not entirely clear where the
source of contaminant is. The general vicinity is certainly known, but to pinpoint an “exact” location allowing us to place a
narrow strip about the source has proved to be a difficult problem. It is possible that the source is in fact a large area and would
not be well approximated by a point source. From recent investigations, what appears likely is that there are at least 2 point
sources approximately 500 - 1000 ft apart. (We have hypothesized this after noticing that in the general vicinity of the source,
there are two clusters of measurement locations which both contain very high levels of TCE. As it is common to place large
numbers of wells near a known source, the presence of two sources known to previous investigators seems a logical hypothesis.)
This presents some unforeseen problems and is what has led us to consider the first method mentioned; i.e., doing more
standard estimation on a small region about the source.
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Chapter 7Chapter 7Chapter 7Chapter 7Chapter 7

Summary and ConclusionsSummary and ConclusionsSummary and ConclusionsSummary and ConclusionsSummary and Conclusions
Site characterization and estimation of contaminant plumes is a complex problem which requires the compilation by the
environmental researcher of many sources of information. Observations on the contaminant level over the region are expensive
and sometimes difficult to obtain. In this research effort, we suggested several methods of examining such valuable data to
further the researcher's understanding of the environmental problem under study.

Based on observational data, we explored analytical methods for estimating the level and extent of the contaminant plume.
Nonparametric regression methods proved useful for quick summaries of the contaminant plume, whereas the more difficult to
implement geostatistical methods were required for quantitative measures of the contaminant plume, such as the total amount of
contaminant present.

In addition to exploring the analytical issues associated with estimation of the contaminant plume and functionals of this plume,
we investigated how best to display this information through visualization methods. Two and three-dimensional perspective
plots with color contours proved useful in our investigation. To associate the error in the estimated plume with the estimated
level of the plume, we suggest associating the height of the perspective plot with the estimated level of contaminant and the color
contours with the estimated amount of observed error in the estimate.

Our investigations also found that animation of the estimated level of contaminants or estimated errors was a useful exploratory
tool. For the Eglin data, surface estimates produced with all but one point are animated alternately with the surface estimate
using all the data points. This allows us to readily see the effect each data point has on the surface estimate. For points whose
absence produces a large change in the surface estimate, it may be desirable to take additional samples near this point to help
stabilize the estimate in this area; estimates of the prediction errors at these points are also useful for this reason. Animations
through time, with smoothing, were used for the Arizona data allowing quick identification of atypical behavior in time. Also for
the Arizona site, we investigated methods of simultaneously animating two related substances. Simultaneous animations of TCE
and DCE helped identify the relationship between these two substances. Furthermore, we examined the issue of a growing
region or plume. Both of these issue are the focus of further research.

We proposed in Section 5 a method for estimating the integral of a random process in the case where the process is lognormal
by modeling the process through geostatistical methods and simulating the process conditional on the data. This is useful for
estimating the total amount of contaminant present in a region. When implemented on the Eglin ground water observations for
BTEX, this method produced reasonable point estimates but large confidence intervals. Large confidence intervals are to be
expected from such a small number of observations, however we are hopeful that further research into improved statistical
methods can yield tighter confidence intervals for small sample sizes.

Future ResearchFuture ResearchFuture ResearchFuture ResearchFuture Research

This work has surfaced a number of topics which would be appropriate for future research. It is still an open question how to best
view two possibly related substances to see how they are related. For the TCE and DCE data from Arizona, it was thought that
examining the ratio of the two substances might be useful, but this did not seem to reveal very much. An examination of
functions of two such substances so they may be viewed as a single surface seems like a promising idea, however.

For the sulfate data from Arizona, we attempted to deal with the issue of an increasing design region over time, due to more
information, and interest, on the part of those taking observations. Attempts to plot various portions of the estimated surface,
dependent on the region, seem to be of dubious value. The idea of estimating a small region near the source, or perhaps
estimating along the line of ground-water flow from the source, as discussed in Section 6.3, is a promising idea. The lack of a
well-defined source in this instance made such an examination difficult, but such a method could certainly still be examined for
this and other data.

The method for estimating the integral discussed in Section 5 is promising, but reductions of variance and better prediction
intervals are areas which need to be addressed. Specifically, if one looks at the values obtained for the integral estimates and
their standard deviations, one notices that in fact the standard deviations are extremely high. In particular, recall that if we use
the mean of the integral estimates for the realizations as a point estimate for the integral of the process , we get an estimate of
total contaminant of  1.204 × 1010 . However, the estimated variance of this value is then the mean of the variances for the
realizations, giving a variance of 2.796 × 1020 , and a standard deviation of 1.672 × 1010 . That is, the estimated standard
deviation of total concentration is actually higher than the estimated concentration. It is possible that by sampling locations
using some distribution other than a uniform, i.e. importance sampling (Rubinstein, 1981), may yield integral estimates with a
smaller variance. For example, we may wish to sample from a smaller, possibly non-rectangular region where the data are more
dense. Or we may wish to sample with higher probability along the direction of geometric anisotropy than in the perpendicular
direction. At any rate, it is desirable to investigate ways of reducing the variance of the integral estimates, and this is a topic of
current research for some of the authors of this report.

For the prediction intervals, we used what are referred to as equal tail intervals. That is, the interval is a two-tailed interval with
equal probability in either of the tails. This is not always the best type of interval to use, and particularly may not be in the case
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of such an asymmetric distribution. It would be worthwhile to investigate other types of intervals, particularly those known as
highest posterior density (HPD) regions (Casella and Berger, 1990). In this case, the 1- α interval is chosen so as to be as short

as possible. Specifically, if the posterior density is denoted by π, the 1- α HPD region is given by  x x c: πa fl q≥  where c is such

that 1− =
≥zα π

π
x dx

x x c
a fa fl q: . Also, the prediction intervals discussed here are actually too large, as they contain additional

variation due to Monte Carlo sampling error. To get better prediction intervals, this factor needs to be corrected for.

Finally, it was mentioned at the beginning of Section 5 that there are actually several nonlinear functionals of random processes
which are of interest to estimate. The integral of the process is the only one of these which we have investigated in detail to this
point. Other functions which are of interest are:

• the maximum concentration attained within a region,

• the location where this maximum concentration occurs, and

• the region for which the concentration exceeds some set value.

These other three are quantities which are of interest for various types of environmental contamination and these warrant further
investigation. Further, in ozone modeling, it is common to use a square root transform rather than a log transform as in Carroll
et al.,1997. Thus it is also of interest to estimate the total contaminant in the case where the process is transformed by a square
root rather than a log.
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Appendix Appendix Appendix Appendix Appendix AAAAA

CrCrCrCrCross-Voss-Voss-Voss-Voss-Validationalidationalidationalidationalidation
In all cases, it is assumed that bandwidths in the x and y directions should be the same, i.e. h = (h

1
,h

2
) where h

1
 is the bandwidth

in the longitude and latitude directions and h
2
 is the bandwidth in the vertical direction. We will use h to denote either h

1
 or (h

1
,

h
2
 ) depending on whether the estimate is in 2-D or 3-D, respectively. The bandwidths were chosen by minimizing over h

SSE h u ui i h
i

n

a f c h= −
=
∑ $ ,

2

1

where n is the number of data points, u
i
 is the ith observation, and $ ,ui h  is the nonparametric regression estimate, based on

bandwidth h, of the value at the ith data point obtained when this point is removed. (Note: $ $
,u f xi h i= e j  from 4.1.)

A.1 Two-dimensional DataA.1 Two-dimensional DataA.1 Two-dimensional DataA.1 Two-dimensional DataA.1 Two-dimensional Data

For the ground-water data, a single cross-validation was performed on bandwidths varying from 100 to 250ft in increments of
ten. As seen in Figure A.1, the bandwidth selected here is 120ft. See 4.1 for a plot of the estimated plume.

Similarly, a cross-validation was performed for two-dimensional soil data from Eglin at approximate depths of 7.0 and 7.6ft
below the water table. In both of these cases, the minimization of SSE(h) was performed by a grid search from 100 to 250ft in
increments of ten. The bandwidth chosen for the depth of 7.0ft is 170ft, while 230ft was chosen for the depth of 7.6ft. See 4.1
for a plot of the estimated plume at a depth of 7.0ft.

In addition to an estimate of the contaminant plume, we also visualize a smoothed estimate of the absolute error of this estimate
as each data point is removed. A cross-validation of the absolute errors for the ground-water data resulted in a bandwidth of
130ft, which is close to the 120ft found for the plume estimate. The plots for visualizing the error are given in Section 4.1.

A.2 Three-dimensional DataA.2 Three-dimensional DataA.2 Three-dimensional DataA.2 Three-dimensional DataA.2 Three-dimensional Data

For the three-dimensional soil data, we needed to perform cross-validation in both the x and y directions and the z direction.
(Here the x direction is longitude, the y direction is latitude, and the z direction is distance above or below the water table.) First
we performed cross-validation in the x and y directions, allowing the bandwidth in the z direction to vary along with the
bandwidth in the x and y directions. This yielded an x and y bandwidth of 24ft.  Then we examined the SSE(h) using x and y
bandwidths varying from 20 to 40ft (which includes the minimum of 24ft), and six different z bandwidths ranging from
approximately 1.5 to approximately 3. This caused us to choose an xy bandwidth of approximately 24ft and a z bandwidth of
approximately 1.8ft.

Figure A.1Figure A.1Figure A.1Figure A.1Figure A.1 Bandwidth selection for ground-water data.
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Figure B.1Figure B.1Figure B.1Figure B.1Figure B.1 Classical empirical variogram for 1990 TCE.

Appendix BAppendix BAppendix BAppendix BAppendix B

Discussion of Spatial Estimation forDiscussion of Spatial Estimation forDiscussion of Spatial Estimation forDiscussion of Spatial Estimation forDiscussion of Spatial Estimation for     ArizonaArizonaArizonaArizonaArizona

There were a number of difficulties encountered when doing the spatial estimates of TCE, DCE, and SO4
2− for the Arizona site.

The biggest problem was finding suitable variogram models. It was decided that it would be most reasonable to find only one
variogram model for each substance, which would be used for all years of data. Many of the classical empirical variograms
with standard default binwidths, etc., produced totally unreasonable variograms (e.g., variograms which were flat or indicated
stronger correlation between points which were a long ways apart than for points which were close together). For example,
consider the classical empirical variogram for 1990 TCE, shown in Figure B.1. This plot is highly variable and shows a general
decreasing trend, whereas a variogram should be generally increasing. Cressie’s robust variogram estimator did not usually
solve these problems. It was conjectured that the high variability could largely be due to low numbers of pairs of data points at
many of the higher distances. To combat this, we binned the data point pairs into groups with equal numbers of pairs, rather than
equal width bins as in the classical estimator. We tried taking both means and medians within these groups, analogous to the
classical and robust estimators. A plot of the mean case for the 1990 TCE data is shown in Figure B.2. Apart from the last bin,
where the data point pairs used are so far apart in distance as to be suspicious anyway, this empirical variogram estimator looks
much better than the classical one. Specifically, it is much less variable and has a decidedly increasing trend. Using this type of
empirical variogram estimator, then, spherical variogram models were fit first for each year (and each substance). Then, from
these, a variogram model for each substance was chosen which would be “best” in most years, and hopefully reasonable in all.
This is intended to allow us to get satisfactory variogram estimates even for those years which do not contain much data and to
provide a more unified approach.
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Figure B.2Figure B.2Figure B.2Figure B.2Figure B.2 Mean γ values for 1990 TCE.
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