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Abstract 
 
In an effort to facilitate more realistic risk assessments that take into account unique childhood 
vulnerabilities to environmental toxicants, the U.S. EPA’s National Exposure Research 
Laboratory (NERL) developed a framework for systematically identifying and addressing the 
most important sources, routes, and pathways of children’s exposure to pesticides.  Four priority 
research areas were identified as representing critical data gaps in our understanding of 
environmental risks to children.  Several targeted studies were conducted under NERL’s 
children’s exposure research program to specifically address these priority research needs.  This 
document is a comprehensive summary report of data collected in these studies to address the 
priority research needs and is intended for an audience of exposure scientists, exposure modelers, 
and risk assessors.  The parameters measured and the measurement methods are described.  Data 
on representative organophosphate and pyrethroid pesticides are compared across studies and 
across compounds with the primary purpose of identifying or evaluating important factors 
influencing exposures along each relevant pathway.  Summary statistics, comparative analyses, 
and spatial and temporal patterns are presented to address previously identified data gaps.  
Results are compared across studies in order to identify trends that might provide a better 
understanding of the factors affecting children’s exposures.  While highlights of the results of 
individual studies are presented, the focus is on presenting insights gleaned from the analysis of 
the aggregated data from several studies.  By examining relationships among application 
patterns, exposures, and biomarkers for multiple compounds from different classes of pesticides, 
this report strives to help produce more reliable approaches for assessing cumulative exposure.  
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Executive Summary 
 
In an effort to facilitate more realistic risk assessments that take into account unique childhood 
vulnerabilities to environmental toxicants, the National Exposure Research Laboratory (NERL) 
in the U.S. Environmental Protection Agency’s (U.S. EPA) Office of Research and Development 
(ORD) developed a framework for systematically identifying and addressing the most important 
sources, routes, and pathways of children’s exposure to pesticides (Cohen Hubal et al., 2000a, 
2000b).  Using this framework, a screening-level assessment was performed to identify the 
exposure pathways with the greatest potential exposures.  The uncertainty associated with 
assessing exposure along each pathway was then evaluated through an exhaustive review of 
available data.  Four priority research areas were identified as representing critical data gaps in 
our understanding of environmental risks to children.  The absence of sufficient real-world data 
in all four of these areas produces an excessive reliance on default assumptions when assessing 
exposure.  These priority research areas are: 1) pesticide use patterns; 2) spatial and temporal 
distributions of residues in residential dwellings; 3) dermal absorption and indirect (non-dietary) 
ingestion; and 4) dietary ingestion. 
 
Several targeted studies were conducted or financially supported by NERL under the children’s 
exposure research program to specifically address these priority research needs.  These studies 
included:  

• Children’s Total Exposure to Persistent Pesticides and Other Persistent Organic 
Pollutants (“CTEPP”) 

• First National Environmental Health Survey of Child Care Centers (“CCC”) 
• Biological and Environmental Monitoring for Organophosphate and Pyrethroid Pesticide 

Exposures in Children Living in Jacksonville, Florida (“JAX”) 
• Center for the Health Assessment of Mothers and Children of Salinas Quantitative 

Exposure Assessment Study (“CHAMACOS”) 
• Children’s Pesticide Post-Application Exposure Study (“CPPAES”) 
• Distribution of Chlorpyrifos Following a Crack and Crevice Type Application in the US 

EPA Indoor Air Quality Test Research House (“Test House”) 
• Pilot Study Examining Translocation Pathways Following a Granular Application of 

Diazinon to Residential Lawns (“PET”)  
• Dietary Intake of Young Children (“DIYC”) 
• Characterizing Pesticide Residue Transfer Efficiencies (“Transfer”) 
• Food Transfer Studies (“Food”) 
• Feasibility of Macroactivity Approach to Assess Dermal Exposure (“Daycare”) 

 
Two studies performed prior to the identification of priority research areas also provided useful 
data.  These were: 
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• National Human Exposure Assessment Survey in Arizona (NHEXAS-AZ) 
• Minnesota Children’s Pesticide Exposure Study (“MNCPES”) 

 
All studies involving children were observational research studies, as defined in 40 CFR Part 
26.402.  All study protocols and procedures to obtain the assent of the children and informed 
consent of their parents or guardians were reviewed and approved by an independent institutional 
review board (IRB) and complied with all applicable requirements of the Common Rule 
regarding additional protections for children.  Further, all protocols regarding recruitment and 
treatment of participants were reviewed by the EPA Human Subjects Research Review Official 
(HSRRO) to assure compliance with the Federal Policy for the Protection of Human Subjects.   
 
The studies took place in EPA research laboratories, in the EPA Indoor Air Quality Research 
Test House, in private residences, and in child care centers.  The studies have been grouped as 
a) large observational field studies (NHEXAS-AZ, MNCPES, CTEPP, and CCC), b) small pilot-
scale observational studies (JAX, CPPAES, DIYC, CHAMACOS, and Daycare), and 
c) laboratory studies (Test House, Transfer, and Food).  The large observational field studies had 
either a regional (NHEXAS-AZ, MNCPES, CTEPP) or national (CCC) focus.  A broad suite of 
chemical contaminants, including organophosphate and pyrethroid pesticides and their metab-
olites, were typically measured in multiple environmental media and in urine.  Some of the small 
pilot-scale studies included measurements of multiple chemicals in multiple media in locations 
either with year-round residential pesticide use (JAX) or in close proximity to agricultural fields 
(CHAMACOS).  Other pilot-scale studies focused on a single compound (CPPAES, DIYC, PET, 
Daycare).  The laboratory studies (Transfer, Food, Test House) evaluated factors affecting 
transfer from surfaces or investigated post-application spatial and temporal variability.  One of 
the primary objectives for all of these studies was to determine and quantify the key factors that 
influence exposure along the pathways relevant to the four priority research areas. 
 
This document is a comprehensive summary report of data collected under the NERL children's 
exposure research program and is intended for an audience of exposure scientists, exposure 
modelers, and risk assessors.  The parameters measured and the measurement methods are 
described.  Data on representative organophosphate and pyrethroid pesticides are compared 
across studies and across compounds with the primary purpose of identifying or evaluating 
important factors influencing exposures along each relevant pathway.  Summary statistics, 
comparative analyses, and spatial and temporal patterns are presented to address previously 
identified data gaps.  Results are compared across studies in order to identify trends that might 
provide a better understanding of the factors affecting children’s exposures.  While highlights of 
the results of individual studies are presented, the focus is on presenting insights gleaned from 
the analysis of the aggregated data from several studies. By examining relationships among 
application patterns, exposures, and biomarkers for multiple compounds from different classes of 
pesticides, this report strives to help produce more reliable approaches for assessing cumulative 
exposure. 
 
With limited data available to EPA researchers on the types, locations, and frequency of 
pesticide usage in residential and other non-occupational environments, pesticide use patterns 
were identified as a priority research area.  Accordingly, pesticide use information was collected 
by inventory and questionnaire in each of the field studies.  Questionnaire items and inventory 
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forms differed, geographic regions represented were limited, and the total number of study 
participants was relatively small.  Furthermore, during the period of four years covered (1997 to 
2001), pesticide manufacturers were increasingly replacing organophosphates with pyrethroids in 
their formulations, and restrictions on residential applications of the most commonly used 
organophosphates were approaching.  Nevertheless, important usage information was produced 
by the studies.  Pyrethrins and their synthetic analogs (pyrethroids), specifically permethrin, 
cypermethrin, and allethrin, are clearly the most frequently used insecticides for indoor appli-
cations in homes and child care centers based on inventories and records.  Organophosphates 
appear to persist in indoor environments, as chlorpyrifos and diazinon were more frequently 
detected in screening wipes (at frequencies comparable to permethrin) than in inventories.  
Among the carbamates, only propoxur and carbaryl were inventoried or reportedly used.   
 
“Crack-and-crevice” type applications were used more often than either broadcast or total release 
aerosol (“fogger”) applications.  Applications were more likely to be performed by the resident 
than by a professional service in JAX, and also as reported in NHANES.  In JAX, the modes of 
application included hand pump sprayer (37%), aerosol can (24%), fogger (3%), and baits (3%), 
but the pertinence of these results to other locations is unknown.  Apart from these results, 
information on application type and method was not collected. 
 
Pesticide products were found in at least 86% of JAX and MNCPES screening households, with 
a mean of three products per household.  There is evidence in support of a pattern of higher 
application frequencies in warmer climates, with the percentage of participants reporting use in a 
given time period highest in Florida, lower in North Carolina and Ohio, and lowest in Minnesota.  
The percentage in Jacksonville, FL is substantially higher, and the percentage in Minnesota is 
substantially lower, than the national average reported in NHANES.  In childcare centers, 
monthly interior pesticide applications were performed in about a third of the CCC facilities 
nationwide and were anecdotally found to be standard practice among daycares contacted in 
North Carolina.  
 
There were no statistically significant differences in the total number of products found or 
reportedly used in MNCPES based on either population density (urban vs. non-urban 
households) or other socio-demographic factors including race, ethnicity, home type, income, 
and level of education.  Similarly, analysis of CTEPP data found no association between 
application frequency and either population density or income class. 
 
A second primary research area is spatial and temporal distributions of pesticides in residential 
dwellings.  Spatial and temporal heterogeneity may affect exposure estimates along all exposure 
routes.  Absorption via the inhalation route relies on the measured airborne concentration.  
Absorption via the dermal and indirect ingestion routes relies on the measured surface loading.  
Even estimates of dietary ingestion for children may depend on surface concentrations due to 
pesticide transfer during food preparation and handling.  Examination of distribution patterns of 
airborne and surface residues has yielded important insights. 
 
The organophosphate insecticides chlorpyrifos and diazinon were most frequently detected in 
both indoor air and outdoor air in these field studies, but the detection frequencies in outdoor air 
were lower and more variable across studies.   Chlorpyrifos was frequently detected even after its 
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indoor residential use was restricted, perhaps due to emissions from indoor sinks (e.g., carpets) 
and from continued use of existing home inventories.  Indoor air concentrations were typically 
an order of magnitude higher than outdoor air concentrations, with notable exceptions of outdoor 
diazinon and permethrin levels which were nearly as high as indoor levels in JAX, and outdoor 
diazinon levels that exceeded indoor levels in the agricultural community monitored in 
CHAMACOS.  The low pesticide concentrations routinely measured outdoors (notwithstanding 
the exceptions noted) together with the relatively short time spent outdoors suggests that 
inhalation of outdoor air is not typically an important contributor to aggregate pesticide 
exposure.  The similarity across large observational field studies in the variability of the 
observed indoor air chlorpyrifos concentrations, despite sample collection periods ranging from 
1 to 7 days, suggests that air concentrations are reasonably consistent from day-to-day in the 
absence of a recent application.   
 
The median indoor air concentrations of the organophosphates are higher than that of the 
pyrethroids.  While these studies were conducted at a time when organophosphates arguably 
dominated the marketplace, a comparison of the mean levels of various organochlorine, 
organophosphate, and pyrethroid pesticides measured in CTEPP finds that the concentrations 
measured in the absence of recent applications appear to be strongly influenced by vapor 
pressure, with the more volatile pesticides, such as chlorpyrifos, found at the highest levels.  
Consequently, the importance of inhalation as a route of exposure for pesticides is likely to 
decrease as less volatile pesticides, such as the pyrethroids, are introduced into the market.   
 
Differences in sampling methods, year of the study, and time of year when samples were 
collected make it difficult to distinguish any regional differences in pesticide concentrations.  In 
general, median indoor air concentrations were somewhat higher in southern states (NHEXAS-
AZ and CTEPP-NC) than in northern states (MNCPES and CTEPP-OH).  However, the 
distributions exhibit considerable overlap across geographical locations.  When daycare 
measurements are included, a geographical difference is less obvious, perhaps due to regular, 
calendar-based pesticide treatments at many daycare facilities.  
 
Irrespective of region, differences in indoor air levels between homes and daycares were not 
found to be statistically significant.  Similar mean indoor air levels observed in homes and 
daycares demonstrate the potential for continued exposure as a child spends time in other indoor 
locations. Additional concentration measurements in other locations would be useful to examine 
exposure potential from different settings such as schools, restaurants, and other public and 
private locations where pesticides are also applied. 
 
Differences in indoor air concentrations associated with population density and income level 
were observed in the field studies.  Differences between urban and rural air concentrations were 
observed in both MNCPES and CTEPP.  In fact, urban chlorpyrifos levels were about 25% 
higher than rural levels across studies. A reasonable explanation may be that urban areas require 
more intensive use of pesticide products to control a range of pests over a wider seasonal span.  
Concentrations of chlorpyrifos and diazinon were higher in low-income homes than in 
medium/high income homes in CTEPP, but the difference was statistically significant only for 
diazinon, and only in NC. 
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Within-home spatial and temporal patterns were investigated following a crack and crevice 
application of chlorpyrifos in the kitchen of the Test House.  The pesticide was detected even in 
the farthest bedroom from the application, with a concentration gradient observed from the 
kitchen to the den (proximal area) to the master bedroom (distal area).  Temporally, airborne 
concentrations peaked on day 1, then decreased by approximately 80%, but were still 
measurable, at 21 days after application.  In contrast, airborne diazinon concentrations among 
homes in the DIYC study were most pronounced 4-5 days after application.  Between-home 
spatial variability following a pesticide application was investigated in the CPPAES study.  
Indoor air chlorpyrifos concentrations spanned more than an order of magnitude among the 
homes one day after application.   

Significant progress has also been made in understanding spatial and temporal distributions of 
organophosphate residues on surfaces.  In a published analysis of the MNCPES surface wipe 
data, Lioy and colleagues (2000) reported substantial variability in surface chlorpyrifos levels 
among different rooms.  Substantial variability among and within rooms is also evident in the 
Daycare data.  Furthermore, data from the Test House also show that surface loadings cannot be 
assumed to be homogenous even within a room.  These observations suggest that multiple 
locations should be sampled to more accurately represent surface loadings.  Exposure modelers 
using probabilistic methods have already begun to account for differences in surface loadings 
based on proximity to application sites in order to reduce possible exposure misclassification in 
their exposure estimates. 

A number of observations suggest that there is substantial translocation of pesticides from 
application surfaces to adjacent surfaces, but levels remain higher at the application location.  In 
CPPAES, the post-application chlorpyrifos loadings were higher than the pre-application values 
even on surfaces that did not receive a direct application.  In DIYC, the transferable residues on 
the counters were nearly as high as those on the floors immediately after application.  In JAX, 
the application area surface residue loadings were generally higher than the play area surface 
residue concentrations.  In the CCC, the floor residue loadings were generally higher than the 
desk top loadings.  High loadings of diazinon in indoor house dust following the lawn treatment 
in the PET study suggest that transfer into the house may also occur. 

Examination of chlorpyrifos and diazinon loadings following applications indicates that total 
available residue loadings decay at a slower rate than airborne concentrations.  Total available 
residue loadings (obtained by methods intended to measure the total amount of contaminant on a 
surface) also appear to decline at a slower rate than transferable residue loadings (intended to 
represent the amount that is transferred as a result of contact with the contaminated surface).  In 
fact, using a total available residue method, chlorpyrifos was measured in 62% of the MNCPES 
samples, even in the absence of a recent pesticide application.  

On a regional level, Jacksonville, Florida, an area known for year-round pest control issues and 
identified as having high pesticide usage during the NOPES study (Whitmore et al., 1994), had 
much higher surface concentrations than any of the other studies without recent applications.  
Within a given region, however, there appears to be little relationship between questionnaire 
information and measured surface values.  Previously published results from the MNCPES 
indicate that the residential pesticide use questions and overall screening approach used in the 
MNCPES were ineffective for identifying households with higher levels of individual target 
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pesticides (Sexton et al., 2003).  Results from the CPPAES study suggest that cleaning activities 
and ventilation influence surface concentrations; it appears that the surface chlorpyrifos loadings 
were lower in those homes in which the occupants reported additional cleaning activities and/or 
high ventilation rates. 

While significant progress has been made in understanding spatial distributions of organo-
phosphate and pyrethroid pesticides in the absence of a recent application and in understanding 
spatial and temporal distributions of organophosphate pesticides following an application, no 
data have been produced on the spatial and temporal distributions of pyrethroids following 
applications.  The movement of residentially applied insecticides follows a complex and poorly 
understood process of transformation and phase distribution and is influenced by several factors.  
Differences in physicochemical characteristics make it difficult to generalize the spatial and 
temporal distributions of organophosphate pesticides to pyrethroid pesticides, but with 
information on chemical properties and on human activities, distribution patterns can be 
modeled. 

The third primary research area was identified as dermal absorption and indirect ingestion.  
Intake via these exposure routes is often estimated using measurements of pesticide 
concentrations in dust and soil and pesticide loadings on surfaces.  Intake estimates also rely on 
numerous default exposure factor assumptions.  Pesticides in dust generally had high detection 
frequencies, consistent with dust being considered a repository of contaminants.  Detection 
frequencies for soil samples, on the other hand, were generally low (with the exception of 
measurements made immediately following lawn applications). 

Compounds found at relatively higher concentrations in dust tend to be found at relatively lower 
concentrations in air.  The less volatile pyrethroid pesticides tend to partition to the dust and may 
degrade more slowly allowing accumulation over time from repeated applications.  This 
underscores the importance of dust as a primary residential exposure medium for the less volatile 
pesticides.  In addition, the exposure factors that are important for other nonvolatile 
contaminants such as lead may also be important for the less volatile pesticides.  
 
Pyrethroids generally have low vapor pressures and Henry’s Law constants, thus they are poorly 
volatilized and exist almost entirely in the particulate phase at room temperature.  Furthermore, 
high octanol/water (Kow) and water/organic carbon (Koc) partition coefficients cause pyrethroids 
to partition into lipids and into organic matter.  With these characteristics, pyrethroids can be 
expected to bind readily to the particulate matter that comprises house dust.  Particles 
resuspended by human activity then act as the primary vector for pyrethroid transport and for 
human exposure.  Particle-bound movement and transfer of pyrethroids imply a decreased 
importance of the inhalation route and an increased importance of routes that involve dermal 
transfer, such as indirect ingestion and dermal absorption.  Exposure of young children, for 
whom indirect ingestion of residues from object- and hand-to-mouth activities is particularly 
important, may be most strongly affected.  In fact, algorithm-based estimates of distributions of 
intake of chlorpyrifos and permethrin from the four contributing routes among the CTEPP-OH 
children indicated that the contribution from the indirect route is much more important for 
permethrin than for chlorpyrifos. 
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Comparisons of pesticide surface loadings (ng/cm²) showed higher levels in the CTEPP daycare 
centers than in the homes.  This appears to be the result of higher amounts of dust in the daycare 
centers, as there is not as large of a difference in the pesticide concentrations (ng/g) in the dust.  
Studies with lead have suggested that loading may have a greater impact than concentration on 
actual intake, thus higher amounts of dust may be important even if the concentration within the 
dust is similar. 
 
Data from our studies show that the collection methods utilized may have sizeable effects on 
estimates of dermal exposure and indirect ingestion.  Total residue methods, which use both 
solvent and mechanical action to remove residues that may have penetrated into the surface, 
produce the highest values, followed by dust methods, and then by transferable residue methods.  
These methods are intended to measures different types of transfer, and efficiencies for various 
methods have been previously published.  Use of total residue methods allows the assessor to use 
appropriate transfer factors to represent a transfer efficiency applicable to a given scenario.  
Questions remain, however, on exactly how much of what is measured by total residue methods 
is truly available for transfer and how much would otherwise be trapped in the pores and/or body 
material of the surfaces if not for the mechanical and solvent action of the methods. 
 
Even the amount of solvent used with wipe samples affects the results.  The low pesticide 
surface loadings obtained with 2 mL isopropyl alcohol wipes in both the NC and OH CTEPP 
studies (loadings similar to those obtained with the polyurethane foam [PUF] roller) suggest that 
the amount of IPA applied to the wipe may affect the amount of pesticide residue recovered.  
Surface type has also been shown to affect the collection efficiency of wipes.  Recently 
published NERL data (Rohrer et al., 2003) found that with respect to pesticide transfer, wiping 
from hard surfaces greatly exceeded carpet, and wiping from tile generally exceeded hardwood.  
Clearly, some standardization of surface sampling methods is needed. 
 
Although successfully used in laboratory studies, the Modified C18 Surface Press Sampler was 
rarely able to measure pesticide residues in field studies.  The original press sampler was 
designed to measure transfer of dust-bound pesticides to the skin from a single hand press onto a 
carpeted surface.  The uses for the modified C18 surface press sampler have expanded to include 
hard surfaces and longer contact times, effectively using the press sampler in a manner for which 
it was not intended.  Our data suggest that the sensitivity of the modified C18 surface press 
sampler may be too low to measure residential pesticide residues (which may transfer by both 
equilibrium mass transfer and mechanical transfer).   
 
Laboratory studies using fluorescent tracers (as surrogates for pesticide residues) indicated that 
tracer type, surface type, contact motion, and skin condition were all significant factors.  
Transfer was greater with laminate (over carpet), smudge (over press), and sticky skin (over 
moist or dry).  Contact duration and pressure (force) were not found to be important factors.  
The effect of surface type appeared to diminish with repeated contact, while the effect of skin 
condition (moist vs. dry) appeared to increase with repeated contact.  Additional studies are still 
needed to gain a better understanding of the key factors that influence the dermal transfer and 
indirect ingestion of pesticides. 
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The frequencies of hand- and object-to-mouth contacts were quantified for preschool children in 
the CTEPP and CPPEAS studies using the Virtual Timing Device (VTD) software (Zartarian et 
al.. 1997).  The CPPAES results support the use of the commonly assumed median count of 9.5 
hand-to-mouth contacts per hour; however CTEPP data suggest a much higher value for younger 
children.  The CTEPP methodology also accounts for combination hand- and object-to-mouth 
contacts during both eating and non-eating events.   
 
The fourth primary research area was identified as dietary ingestion.  Diet can be an important 
pathway of exposure.  Foods may contain residues of pesticides and other environmental 
chemicals because of intentional applications or may become contaminated during processing, 
distribution, storage, and consumption.  For certain chemicals, diet is potentially the predominant 
pathway of exposure.  Children’s dietary exposure to pesticides is not limited to the residues in 
or on foods when they are brought into the home.  Children’s unique handling of foods prior to 
consumption requires special attention, but it is rarely considered in study designs. 
 
Based on route-specific intake estimates, dietary ingestion represented the dominant route of 
exposure for chlorpyrifos, diazinon, and permethrin in the CTEPP study.  Unfortunately, the 
route that represented the dominant route of exposure was also the route with the lowest 
detection frequencies (approximately 2/3 of the values for permethrin in CTEPP were 
nondetects), which increases the uncertainty in the estimates.  Substituting a fraction of the 
detection limit for values below the limit of detection may have a disproportionate impact on 
assessing the importance of the dietary route. 
 
The most common measure of dietary exposure was by composited duplicate diet analyses.   
However, great care must be taken to ensure that the duplicate diet accurately reflects what is 
actually consumed instead of what is served because significant quantities of food may remain 
uneaten by children.  Duplicate diets fail to capture those pesticide residues transferred to foods 
as a result of the child’s handling of food prior to and during consumption.  In DIYC, estimates 
of dietary intake that included excess contamination due to handling were as much as double the 
estimates of intake based on duplicate diet alone.  These results suggest that dietary estimates 
based on duplicate diet may not be as reliable for young children as they are for adults. 
 
Progress has been made in many areas and we are beginning to understand the environment that 
children live in, their activities, and the resulting exposures.  However, research is still needed to 
adequately characterize the magnitude, routes and pathways of exposure.  We still need to 
understand the key factors that influence the dermal transfer and indirect ingestion of pesticides. 
We need to be able to more accurately assess dietary exposure.  In order to evaluate exposure 
models, we must be able to quantify the relationships between and among environmental 
concentrations of pesticides in various media, children’s activities, and the results of biomarkers 
of exposures as measured in urine and/or blood.  Exposure models outputs that include the 
timing and route of exposure need to be linked to PBPK models in order to develop accurate 
assessment of target tissue dose.  Research, especially model development, needs to extend 
beyond single chemical aggregate exposures and dose to include exposures and risks that 
accumulate across chemicals and over time. 
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NC Home    CTEPP Study, North Carolina homes only 
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NC     North Carolina 
NERL     National Exposure Research Laboratory 
NHANES National Health and Nutrition Examination Survey Study 
NHEXAS-AZ    National Human Exposure Assessment Survey in Arizona  
NOPES    Non-Occupational Pesticide Exposure Study  
NRMRL    National Risk Management Research Laboratory 
OCHP     Office of Children's Health Protection 
OH Daycare    CTEPP Study, Ohio daycares only 
OH DC    CTEPP Study, Ohio daycares only 
OH HM     CTEPP Study, Ohio homes only 
OH Home     CTEPP Study, Ohio homes only 
OH     CTEPP Study, Ohio 
OP      Organophosphate 
OPP     Office of Pesticide Programs 
OPPT     Office of Pollution Prevention and Toxics 
ORD     Office of Research and Development 
P25     25th percentile 
P50     Median / 50th percentile 
P75      75th percentile 
P95      95th percentile 
PBPK     Physiologically-Based Pharmacokinetic Model 
PET  A Pilot Study Examining Translocation Pathways 

Following a Granular Application of Diazinon to 
Residential Lawns  Study 

PUF     Polyurethane foam  
PYR     Pyrethroid 
REJV     Residential Exposure Joint Venture  
RTI     Research Triangle Institute 
SD     Standard deviation of the arithmetic mean 
SHEDS    Stochastic Human Exposure and Dose Simulation Model 
STAR     Science to Achieve Results 
TCPY / TCP / TCPy   3,5,6-Trichloro-2-pyridinol 
TE     Transfer Efficiency 
TEST / TESTHOUSE / Test House The Distribution of Chlorpyrifos Following a Crack and 

Crevice Type Application in the US EPA Indoor Air 
Quality (IAQ) Research House Study 

TESTHOUSE Pre Test House Study, pre-application day only 
t-Permethrin    trans-Permethrin 
t-Perm     trans-Permethrin 
trans-P     trans-Permethrin 
Transfer Characterizing Pesticide Residue Transfer Efficiencies 
US CPSC    US Consumer Product Safety Commission 
US EPA    U.S. Environmental Protection Agency 
VTD     Virtual Timing Device  
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