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ABSTRACT
Spatial autocorrelation is a normal result of
the physical and chenical processes which operate

measur abl e environnent al
spatial autocorrelation

in the environment. Al
paraneters will exhibit
at sonme scale. This not only causes technical
problens In sanpling and estimation, but leads to
more fundamental problens In comunication. Terns
such as “chemical concentration”, "representative
sanple”, and “frequency distribution” which are
commonly used and well understood in |aboratory
situations, can beconme essentially meaningless
when applied to environnmental measurements with-
out an explicit statement of the spatial scale
(support) being considered.

A simulated spatially autocorrelated distrlbu-
tion is used to illustrate the changes in concen-
tration, frequency distribution, and sanple qual-
ity associated with changes in support. Vario-
grans conputed from the sinulated data illustrate
the relationship between spatial variability and
standard QA QC. Practical suggestions are made
for sanpling and estimation of spatially autocor-
related sites.

| NTRODUCT! ON

The purpose of environmental sanpling prograrns,
like other sanplings, is to use the information
obtained from the sanple to meke inferences about
the larger population from which the sanple is
drawn. For exanple, an industrial waste |agoon
may be sanpled to determine whether its nean con-
centration exceeds an allowable maxi num value for
a particular chemical. In other cases, sanpling
may be done to determine whether the level of pol-
lution has increased or decreased from previous
levels at a site, or to identify the locations of
pol luted areas. A typical sequence of events in
an environmental investigation mght include the
design of a sanpling plan, collection of sanples,
| aboratory chemical analysis, Interpretation of
data, and finally, a decision based on the inter-
pretation.

Decisions made by various federal, state, and
local agencies may require remedial, preventative,
or punitive measures which may have substantial
consequences in terms of human health as well as
economics. It is obviously inportant that envi-
ronmental investigations be conducted in such a
manner as to ensure that decisions are based on
the best possible information. It should be
enphasi zed here that the information on which
decisions are made is not the sanple data itself,

but the interpretation of the data; that is, the

estimates of the characteristics of the |arger

popul ation which are made from the data.
Unfortunately, the interpretation of field

data is made difficult by the nature of the
environment itself, which is not always anenable
to the nethods of sanpling and data analysis
designed for use under nore controlled conditions
such as laboratory experinents. Although the
sane sanpling and data analysis ternminology is
used in both the laboratory and the field, the
precise meanings of many terms are significantly
different. The resulting anbiguities can lead to
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problenms in both the design of sanpling prograns,
and the interpretation of the results. This
paper will explore the causes of these problens,
attenpt to clarify the termnology, and offer
sone practical suggestions for sampling design
and data interpretation.

SPATI AL AUTOCORRELATI ON

Spatial autocorrelation is the basic cause of
the problens to be discussed. Al nmeasureable
environmental paraneters exhibit spatial (and
tenporal) autocorrelation at some scale. This
means that over some range of distances, neasure-
ments will tend to be nore simlar to measurenments
taken nearby than to measurements taken farther
away. For practical purposes, stating that a
phenonenon is spatially autocorrelated is equiva-
lent to stating that it is not uniformy distrib-
uted, but autocorrelation is nore easily quanti-
fled In statistical terms. The term spatial
correlation is often used interchangeably with
spatial autocorrelation, but the former inplies
that the measured values are correlated with
their locations, as tenperature, for exanple, is
correlated with distance from the equator.

The physical and chemical processes that con-
trol the fate and transport of chemcals In the
environment do not operate at random although
most events include what may be considered random
processes, In the sense that they are too conplex
to be predicted in detail. Random and determ n-
istic processes may operate sinultaneously at
several scales to produce the phenomenon being
measured. The neasurenment of precipitation (wth
or without acid), provides a good illustration.
Regi onal weather patterns produce the conditions
necessary for rainfall over a large area. Wthin
the area, individual clouds or clusters of clouds
form apparently at random locations, due to
local fluctuations in tenmperature and humdity.
If one collected pairs of rain-gauge measurenents
taken at various spacings, one would expect to
observe strongly correlated readings at separa-
tions nuch smaller than the size of the average
cloud, weaker correlation at regional-scale
separations, and essentially zero correlation for
separations larger than the size of the region.
Al though contiguous rain gauges would be expected
to show the greatest correlation, it would not be
perfect, due to the fact that the two guages may
not receive identical amounts of rain (spatial

variability), and even if they did, the readings
may not be identical (measurenment error).
After a major rainfall, for exanple, we mght

be asked to estimate the average precipitation
over a watershed from a given set of rain gauge
readings, in order to estimate the watershed s
contribution to a flood crest. Aternately, we
mght want to know how many gauges we woul d need
in order to predict flooding with a specified
degree of accuracy. The methodol ogy commonly
known as geostatistics (Mtheron, 1963; Journel
and Huijbregts, 1978) was devel oped in the nining
industry to deal with questions of local ore
grade estimtion, and has since been shown to be



generally applicable to nost situations where
spatial autocorrelation is present.

A basic assunption in geostatistical analysis
is that the spatial autocorrelation exhibited in
a set of measurements can be represented by an
underlying autocorrelation function which is
valid over the region of interest. For many
environmental phenonena, this assunption can be
intuitively related to the controlling processes.

The variogram is one comonly used nethod for
quantifying spatial autocorrelation (Fig.l).
Experinental variograns are computed from sanple
data by examining all possible data pairs, group-
ing them by distance classes, and conputing a
variance for each distance class using the stand-
ard paired-sanple formula. A theoretical nodel is
then fitted to the experinental data. A variogram
contains exactly the same information as a plot
of correlation coefficients for the same distance
classes (one can be transformed into the other by
inverting the plot and resealing the y-axis).

Variegram Plot
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Fig. 1. Typical variogram plot and fitted nodel.

Variances are conputed from paired sanple differ-
ences for pairs in successive distance classes
and plotted against distance. The fitted nodel
exhibits comonly observed features: a random
conponent or “nugget” at the y-axis intercept,
and an increase in variance with distance up to
a mxi mum “range” of autocorrelation.

SAMPLE  SUPPORT
Wien spatial autocorrelation is present, the
physi cal dinensions of the sanple beconme inportant

considerations. The term 'support', defined as
the “size, shape, and orientation of the physical
sanple taken at a sanple point” (Starks ,1986), is
used to avoid confusion with the statistical size
(nunber of observations) of a sanple. The support
of a soil core, for exanple, would be its diam
eter and length. In the case of a rain gauge
measurenent, the support would include the diam
eter of the orifice, and the time of accunulation.

Wien the sanple support changes, the statis-
tical properties of the sanple set such as the
variance of sanples and the sanpling variance
also change. These changes make sanple support a
critical elenment In the design of a sanpling
program  The concept of support applies equally
to the stage of data interpretation. The support
on which decisions will be made is rarely the
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same as that of the sanples. The choice of
decision support can significantly affect the
outcone of an analysis, and should be considered
before a sanpling programis undertaken. The
idea of support and its ramfications wll be
devel oped further in the follow ng sections.

CHEM CAL  CONCENTRATI ON

The term ‘chemical concentration’ is meaning-
less in the absence of a specified support.
Atoms and nol ecul es represent the smallest scale
at which elements and conpounds can be said to
exist. |If sanples are taken at this scale, the
true concentration of any substance within the
sanple will be a discrete binary phenonenon - the
concentration will be either 100% or 0% Any
larger sanple is made up of a mxture of discrete
conponents, and its true concentration wll be

the sum of the weight or volune of the analyte
divided by the total weight or volume of the
sanple; i.e., the average over the sample sup-
port. Usually the entire volume of a sanple is
not neasured directly, but the measured concen-
tration of a subsanple is used to estimate the
the mean concentration of the original sanple.
Geat care is taken during the preparation of a
sanple to ensure uniform mixing, and if necessary,
to reduce the particle size of the material so
that any subsanple used for analysis will have a
true mean concentration very close to the true
mean of the entire sample. If the mixing is
effective, neither the size of a subsanmple nor
its location should have a significant effect on
the outcome of the analysis...for practical
purposes, one subsanple is as good as any other.

In the field, where the area being investi-
gated cannot be uniformy mixed, the situation is
quite different. Layers, crystals, clunps, or
other high concentrations of a substance of ten
occur such that if a given sanple had been taken
at a slightly different |ocation (sometinmes only
a fraction of the sanple size away), a signif-
icantly different true sanple concentration
woul d be found. The classic exanple of this was
observed in placer gold deposits, where the
presence or absence of a single, mniscule gold
nugget in a sanple would nmake the difference
between an assay indicating high-grade ore, and
one indicating waste. This led to the interest-
ing term ‘nugget effect’ often being applied to
the y-axis discontinuity in variogram models.

Li ke changes in location, changes in support
also result in changes In concentration. The
true value of a point sample is O or 100% the
true value of any larger volume centered on the
point is the mean concentration over the volune.
If the dimensions of a sanple are increased or
decreased; If the shape of the sanple is changed,
say from a sphere to a cube; or if the orienta-
tion of a non-spherical shape is changed: the
sanple will contain a different set of nolecules,
and probably a different true concentration. For
any point in space which represents a potential
sanple 'location', an infinite nunber of possible
sanpl e supports exist centered on the point, and
an infinite nunber of possible true concentra-
tions which can be said to be the concentration
at that location. CGoviously, we nust conclude
that any reported neasurenent of chenmical concen-
tration in the environment is essentially meaning-



| ess unless the support is also reported. Like-
wise, a statement such as “renedial action wll
be taken if the concentration of cadmum in soil

exceeds 500 ppnf is also neaningless unless the
support is specified.

A SI MULATED EXAMPLE

An exanple based on a sinple conputer sinula-
tion serves to illustrate the support problem A
blank computer screen is 'polluted wth a
‘realistic-looking' pattern of pixels (Fig. 2).
The al gorithm which was used to generate the pat-
tern first selected 25 points at randomin the
central part of the screen. Each of these points
was used as the center of a cluster of up to 2000
points scattered around the center at random
angles and approximately normally distributed
distances (sum of three uniformy distributed
random values). Blank pixels were initialized
with a value of zero, and incremented by one each
time they were hit by the point generator. A
color termnal can be used for a nore effective
display than Fig. 2, because pixel values greater
than one can be represented by various color
codes. The details of the algorithm are not cru-
cial. Any algorithm which conditions the outcone
of a random process on a prior outcome of the
sane or another random process, can be used to
generate spatially autocorrelated patterns.
Variations on the drunkard's walk (e.g., two
steps forward, three steps back) are effective.

Fig. 2. A simulated, spatially autocorrelated

distribution of “pollutant”.

Wien the pattern has been generated, we have
an area subdivided into pixel-sized units, for
each of which we know the exact pollution concen-
tration. The pixel scale of support is considered
to be smaller than any support site we would be
interested in, but since we have exact know edge
at that scale, we can now conbine pixels into any
| arger support areas we choose, and conpute the
exact average pollution concentrations over these
areas.

Figs. 3-7 illustrate the results of this kind
of change In support. In Fig. 3, the screen area
was divided into support blocks of 5x5 pixels,
and the nean pixel value was conputed for each
block. The block neans were grouped into class

Fig. 3. Mp and histogram of
5x5 pixel blocks. Darker shades on map represent
pi xel); Light shade (0.4 to 0.8);

true “concentrations” of simulated pollutant

Medi um shade (0.8 to 1.2);
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intervals and represented as shaded patterns on
the map. The histogram scaled by area, and uni-
variate statistics, are also shown for the set of
non-zero value blocks. Figs. 4-7 repeat this
process at supports of 10x10, 20x20, 40x40, and

80x80 pixels, respectively.
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averaged over

The nost significant thing to renenber when
examning these results is that these are not
estimates of the wunderlying distribution. Each
of these is the true distribution for the speci-
fled support and location. Additional, equally
true distributions can be generated by shifting
the grid origin, by filling in the mssing block
sizes (6x6, 7x7,...), by changing the shape (4x®6,
8x12,...), etc. Continuing our analogy between
the similation and a polluted site, we nust ask
ourselves, as site investigators, which truth do
we want to know? Or perhaps nore realistically,
which truth do we need to know, and what do we
have to do to know it wth sufficient accuracy?

If we want to take some renedial action, say,
by cleaning up those areas in excess of an action
level of 1.2, we nust first specify the renedia-
tion support. If we specify 5x5 pixel blocks as
in Fig. 3, our goal would be to identify as
pol luted, and clean up, all of the darkest blocks.
If, on the other hand, we specify the 80x80 npixel

bl ocks, we would find that there is nothing to
clean up at all. If a support is not specified
along with an action level in the applicable
regul ations, the site investigator is faced wth
the problem of establishing one, either explic-
itly or inplicitly. Aong wth the flexibility
comes the cost of anbiguity: long neetings spent
arguing over semantics; or perhaps extensive lit-
i gation.

FREQUENCY DI STRI BUTI ONS

As is evident fromthe maps and histograns in
Figs. 3-7 when the support changes, the frequency
distribution also changes. Wthin the domain
defined by the screen boundaries, as the support
di mension increases, the variance of the distri-
bution decreases. This is particularly inportant
in the context of regulation and renediation,
because, as was suggested above, increasing the
support dinension can often reduce (or elimnate)
the amount of material above an action level. It
is interesting to note that support is frequently
specified in the time dinension for air quality
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REPRESENTATI VE = SAMPLES

‘Representative’ is one of the most nisused
terms in environnental sanpling (Splitstone,
1987). In this case, the effects of spatial
autocorrelation in the field conmbine with incon-
sistency In the use of the term ‘sanple’ itself,
resulting in a great deal of confusion. A sta-
tistical sample of n observations is sonetimes
said to be representative if the mean, and or
other paraneters of its frequency distribution
are ‘simlar’ to the population from which it was
drawn. In a somewhat nore abstract sense, the
distribution mght be called representative if it
was properly drawn (that is, if each nenber of
the popul ation had an equal chance of being in-
cluded in the sanple), even though it is not
simlar to the popul ation.

An environnental sanple such as a soil core,
collected In the field and sent to a lab for
analysis, is not a ‘sanple’ in the comonly used
statistical sense. It night be more appropri-
ately called a menber of a population which has
been included in a sanple of that population. A
set of n such environnental sanples, or observa-
tions, make up a statistical sanple which can be
representative of the population of possible
observations of the same support within the sam
pled domain. It can not, however, be directly
representative of any other support population,
except for the population nean, which is constant
within the domain regardless of support. In the
context of ordinary random statistics, it is
therefore difficult to ascribe any representative-
ness to an individual environmental sanple other
than being a menber of a representative set at
that support.

In the case of environnental field investiga-
tions, however, the whole point of a sanpling
plan is often to obtain sanples (observations)
that are representative In a different sense,
nanely, representative of their local areas.
This spatial kind of representativeness is also
hard to define. Intuitively, what we are really
after is a neasurement at a location that is
close to the local mean concentration, but as we
have seen, the local nean is a function of the
support.  Thus, until we define the support which
we want our observation to represent, we can't
say anything about how good the observation is.

Gven a set of n observations within a domin,
a geometric support neighborhood can be defined
around each observation as the set of all points
closer to it than to any other observation (i.e.,
a Voroni polygon). Voroni polygons are an approx-
imtion of the neighborhoods with which the
observations are nmost correlated, and give an
idea of the spatial resolution of the set of
observati ons.

APPLI CATI ONS

In most of the above discussion, we have dealt
with the uncertainties and anbiguities involved
in taking and neasuring sanples of the physical
environnent, and the inherent limtations of re-
lating nmeasured values back to some ‘real’ char-
acteristic of the environment. In spite of these
probl ens, nost of which have not been adequately
dealt with theoretically, the world marches on.
Site Investigators are still faced with the neces-
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sity of collecting sanples in the field, and
using them to meke interpretations and decisions.
The remainder of this paper will focus on prac-
tical approaches to sanpling and data analysis
which will help reduce ambiguity, and inprove
data quality and useful ness. W will continue to
use the simulation as an illustrative exanple.

SAVPLI NG  DESI G\NS

One of the common problens facing a site
investigator is the layout of a sanpling pattern.
Assume for the nonent that you have a predefined
domain that must be sanpled and that the nunber
of sanples you can take has been fixed by budget
constraints.  \Were should you take the sanples?
Mbst avail abl e guidance documents such as SW846
reconmend random sanpling as the general solution.
However, it has been shown (Oea, 1984, Yfantis,
et al., 1987) that In the presence of spatial
autocorrel ation, sanpling on a systematic grid
will produce a nore efficient sanpling. If
spatial autocorrelation is not present, the
regular grid will be no better or worse than a
random sanple. Because the regular grid is a
periodic sanpling in space, it is obviously con-
traindicated when the presence of a spatial
periodicity in the phenonenon is suspected at a
scale near that of the proposed grid. Fortun-
ately, this situation is not common, and the
regular grid, because of its sinplicity and
effectiveness, can be used in nost spatial
pling prograns.

The efficiency of the regular grid is a result
of the nminimzation of spatially clustered data
which are duplicating each other's information.
As a practical matter, small departures from
regularity do not have major effects, so that
field crews can make offsets fromthe grid to
avoi d obstacles without affecting the results of
a study. This is particularly true when the
autocorrelation function exhibits a large random
conponent (nugget effect) relative to the auto-
correlated conponent. The larger the relative
nugget effect, the greater the tolerance area
around the regular grid nodes.

sam

SAMPLE SUPPORT AND QA QC

To illustrate the potential inpact of sanple
support on the quality of an investigation, we
will sanple our sinulation at two different sup-
ports, and use the results for interpolation of
concentrations. The sanple |ocations are on the
regular grid shown in Fig. 8. The first sanpling
is done at the single pixel support. Each sanple
is assigned the true value of the pixel at that
|ocation; we are assuming no sanpling or analyt-
ical error. The second sanpling is done on the
same grid at a 2x2 pixel support. In this case
the true nean value of the 4 pixels in the sanple
is used.



sanpl es taken from the sinu-
True values of single pixels
were taken at each point.

Fig. 8. Location of
lated distribution.
and 2x2 pixel blocks

Variograns conputed from the two sanple sets
are shown in Fig. 9. Note the dramatic decreases
in variance at all distances with the |arger
support.  \Men considering quality control, we
take particular note of the projected y-axis
Intercept or nugget, which has dropped from a
value of 0.5 to less than 0.1. The nugget value
provides an estimate of the total variance asso-
ciated with taking adjacent, or co-located sam
ples, and includes small-scale spatial variability
as well as sanpling, preparation, and analytical
errors. In the present exanple, we introduced no
measurement errors, so all of the nugget value is
the result of spatial variability, and the change
in support has a major effect. I[f, at the other

extrene, the nugget were entirely due to sanpling
and analytical errors, it would not be reduced at
all by changing support.
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Fig. 9. Variograms conputed from sinulated sam

ples on single pixel (upper curve) and 2x2 pixel
(lower curve) support. Points are experinmental
values; solid lines are subjectively fitted
nodel s.
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The approach one takes to inproving data qual -
ity, therefore, should ideally be dictated by a
variance conponents analysis of the variogram

nugget value. The largest variance conponent
should get the nost attention. If spatial var-
iance domnates, increase the support by taking

| arger sanples or perhaps by conpositing snall
clusters of sanples. If measurement error dom

inates, look for a nore accurate method. Wen
either spatial or neasurenment variance is very
dom nant and cannot practically be reduced
further, it may be possible to achieve a signif-
icant cost saving without seriously affecting
overall data quality by going to cheaper nethods

which noderately increase the |ower variance
conponent.  For exanple, if the maxinum feasible
support still results in a spatial variance com
ponent ten times greater than the neasurenent
variance, the neasurenment variance could be
allowed to increase by a factor of five with a
resultant increase in the total standard error of
only 17%

The question of quality assurance goes beyond
quality control of sanple data, to include the
adequacy of the program as a whole to achieve the
desired objectives. In the case of a site inves-
tigation, we are particularly interested in the
quality of the spatial estimate made from the
sanple data, and we nust therefore |ook at sanple

quantity and location, and the estimation or
interpolation procedures, as well as sanple data
quality. Al of these factors can contribute to
the quality of the end result, and as always, the
nmost cost effective use of resources is to work
at reducing the largest error component.

Wth our sinmulated exanple, we can conpare the
effects of the sanple quality on the overall
quality of the data interpretation by interpolat-
ing concentrations over the screen area from each
of the two sanple sets. Using the variogram
model s from Fig. 9, kriged estimates were com
puted for 10x10 pixel blocks. The results are
shown in Fig. 10, with the blocks shaded accord-
ing to the same classification used in Fig. 2.
Conparison with the true values shown in Fig. 3
illustrates the overall superiority of the 2x2
sanpl e support in defining the general pattern of
bl ock concentrations.

Plots of the true vs. estimated concentrations
for the two interpolations are shown in Fig. 11,
and histograms of the estimation errors in Fig.
12. Note that even though the 2x2 pixel sanples
provide better estimates, there is still rela-
tively high error which my lead to a large
number of false positives and false negatives at
nost concentration action levels. Further reduc-
tion of estimation error would require nore
sanples, larger support, or both.
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Fig. 10. Maps of kriged estimates for 10x10 pixel blocks using single pixel (left) and
2x2 (right) samples. Compare with map of true block values in Fig. 4.
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| SOPLETH MAPS

I'sopleth, or contour, maps are a commonly used
and effective nmethod for displaying the spatial
distribution of chemical concentration. The use
of isopleths, however re-introduces some of the
anbi guity discussed above regarding support. If
we examne the kriged maps in Fig. 10, we can
easily visualize the process of generating a con-
tour line by smoothing the stepw se boundary
between two shading patterns. This is essen-
tially the same result we would get if we assigned
the estimated block average values to the block
m dpoints and ran the resulting grid through a
typical contouring algorithm It is also conpar-
able to the linit we would approach (very expen-
sively) with kriging as the grid dinension ap-
proaches zero. The problem arises because a
contour represents the intersections of a plane
parallel to the x-y axis and a continuous surface.
The exi stence of one contour line inplies the
exi stence of all possible contour lines, and
demonstrates that we have in effect estimted
individual concentration values at every point.
But we showed earlier that point concentrations
are binary and discontinuous, and that mneaningful
statenents about concentration require specifying
a support. Which support?

Intuitively, we night like to think of the
isopleth surface as representing the result of a
movi ng average based on a specified support win-
dow. Wile this rounds good, it doesn't work in
practice. \Wen we specified a 10x10 block grid,
it was easy to conpute the true block means and
conpare them to the estimated block neans.
However, when we try to conpute a true moving
average isopleth based on a 10x10 support w ndow,
we find peaks, holes, and irregularities in the
isopleth lines occurring at nuch smaller scales
than the 10x10 support. Such a situation is
self-contradictory, and it is not obvious how to
define a true isopleth, conpare it with an esti-
mated one, and deternine the goodness of the
estimate.

In spite of the difficulty of defining a ‘real’
isopleth, a case can be made for using isopleths
drawn fromkriged bl ock estimtes as renediation
boundaries. Gven that kriging is in sone sense
an optimal estimator, and the goal is to renmediate
all of the area above an action level, the best
approach should be to krige every point in the
sanpled domein, and renmediate all of the points
estimted to be above the action level. Contour-
ing kriged block values provide6 a good approxi-
mation which is conputationally feasable. The
point to renember when doing this is that the
nice, smooth contour6 may be primarily a regres-
sion effect, and that the underlying reality may
in fact be very erratic. If we were to clean up
an area inside an isopleth boundary, and then
take check sanples immediately around the bound-
ary , we would expect to see a large nunber
(approxi mately 30 to 50% depending on the dis-
tribution) of sanples exceed the action |evel,
even if the boundary is well estimated. A nore
practical approach would be to do the check
sanpling along the boundary before the clean-up,
and use the additional data to better define the
boundary.
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CONCLUSI ONS

Chemi cal conpounds in the environnment can be
spatially autocorrelated at scales ranging from
the nolecular to global. Autocorrelation is prac-
tically significant when it occurs at scales
relevant to the problem that is, between the
dinmensions of a sanple and the dinensions of the
domai n being investigated. Under such conditions

the support, or physical size, shape, and orienta-
tion of a sanple, becomes a critical factor in
the quality of an investigation. The use of

QY QC data for a variance conponents analysis of
the nugget conponent of a variogram nodel can be

very useful in selecting the most cost-effective
approach to additional sanpling.

Chemical concentration in the inhomogeneous
environnent must refer to a specific support to

be meaningful. Specifying the support associated
with an action level for enforcement or renedia-
tion renmoves a source of anbiguity and potential
m sunder st andi ng.

Spatial estimates of concentration such as
kriged blocks, and the contour maps derived from
them are smoothed representations of reality,
and represent a support nore like the sanpling
grid size than the dinensions of the sanple.

Site investigators should understand, and be able
to explain to the public, why many of the values
at the sanple support, taken outside an isopleth
boundary, are expected to exceed the isopleth

val ue.

NOTI CE

The information in this document has been
funded wholly by the U'S. Environmental
Protection Agency. It has been subjected to
Agency review and approved for publication.
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Di scussi on
John Warren
Protecti on Agency

US Envi ronnent al

Spatial prediction, as illustrated
by these two papers, holds great promse
in extracting |arge anounts of infornma-

tion from situations where extensive
data collection is not feasible.

Evan Englund's paper on using
kriging in conjunction with the concept
of sanple support is nost interesting
and his discussion illustrates clearly
the problem of defining "sanple"” wth
respect to the physical dinensions of
a sanple site. The use of "sanple
support” to avoid confusion with the
common statistical understanding of
"sample" is to be comended and his
definition: "The support on which
decisions will be made is rarely the
same as that of the sanples. The
choi ce of decision support can sig-
nificantly affect the outcome of an
anal ysis, and should be considered
before a sanpling program is under-
taken." should be included in every
Data Quality Objectives (DQD Program

The illustration of "sanple
support” by simulation is particularly
useful in denonstrating how the defi-
nition of contamination is a function
of the particular support chosen. Thi s
simul ated exanple should be nade part of
the Agency's DQO training program as it
clearly denmpbnstrates to nanagers and
deci si on-nakers the inportance of allo-
cating resources proportional to the
rati o between decision-area and sanple
support area.

Evan's di scussion on the choice of
nmost efficient or nost practicable sam
pling design for sanpling in a spatial
domain is very useful for there does not
seem to be a general solution applicable
to all sites. Each site nust have a
uni que sanpling plan and although the
Agency's gui dance docunent, SW 846,
endorses sinple random sanpling, the
docunent does recomend a tail ored-to-
the-site approach. The revised edition
O SW846 (4th edition with an expected
publication date of md-1990) wll pro-
vi de guidance on nost sanpling schenes
likely to be encountered in spatial
Statistics, and also gives guidance on
the construction of optimal grid sizes
for the effective use of kriging.

Noel
summari zati on of
introduces sone of
tions essential for discussion of
kri gi ng. H s conparison of trend sur-
face nodel with the random field nodel
is very useful and clearly illustrates
the differences between the two nodels.

Cressie's paper is a nice
spatial statistics and
the scientific nota-
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The strength of the paper lies in
t he excellent discussion of spatial
desi gn of networks, Section 3. The

problem of adding a nonitoring site to
an existing network cannot be sol ved
easily and only by making key assum
ptions on the intent and use of the
monitoring data can any solution be
attenpt ed. The concept of "average"
prediction error (equation 3.4) has
much nerit as many of the Agency's
monitoring networks are intended to
measure mean increases/decreases in
pollution |evels. It seens clear that
this notion of optiml network design
can be applied to Agency networks where
non-statistical considerations in
determining actual sites are relatively
uni nmportant.

There is nuch that needs to be done
in order to effectively bring spatial
statistics to the practical |evel at
EPA, and these two papers are an inpor-
tant start. There 1s definitely an
interest in spatial statistics as evi-
dented by the nunber of people present
at the spatial statistics sessions at
t he annual EPA Conference on
Statistics: these two papers should
further stinulate this interest.
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