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ABSTRACT


Spatial autocorrelation is a normal result of

the physical and chemical processes which operate

in the environment. All measurable environmental

parameters will exhibit spatial autocorrelation

at some scale. This not only causes technical

problems In sampling and estimation, but leads to

more fundamental problems In communication. Terms

such as  “chemical concentration”, "representative

sample”, and  “frequency distribution” which are

commonly used and well understood in laboratory

situations,  can become essentially meaningless

when applied to environmental measurements with­

out an explicit statement of the spatial scale

(support) being considered.


A simulated spatially autocorrelated distrlbu­

tion is used to illustrate the changes in concen­

tration, frequency distribution, and sample qual­

ity associated with changes in support. Vario­

grams computed from the simulated data illustrate

the relationship between spatial variability and

standard QA/QC. Practical suggestions are made

for sampling and estimation of spatially autocor­

related sites.


INTRODUCTION


The purpose of environmental sampling programs,

like other samplings, is to use the information

obtained from the sample to make inferences about

the larger population from which the sample is

drawn. For example,  an industrial waste lagoon

may be sampled to determine whether its mean con­

centration exceeds an allowable maximum value for

a particular chemical. In other cases, sampling

may be done to determine whether the level of pol­

lution has increased or decreased from previous

levels at a site, or to identify the locations of

polluted areas. A typical sequence of events in

an environmental investigation might include the

design of a sampling plan, collection of samples,

laboratory chemical analysis, Interpretation of

data, and finally,  a decision based on the inter­

pretation.


Decisions made by various federal, state, and

local agencies may require remedial, preventative,

or punitive measures which may have substantial

consequences in terms of human health as well as

economics. It is obviously important that envi­

ronmental investigations be conducted in such a

manner as to ensure that decisions are based on

the best possible information. It should be

emphasized here that the information on which

decisions are made is not the sample data itself,

but the interpretation of the data; that is, the

estimates of the characteristics of the larger

population which are made from the data.


Unfortunately, the interpretation of field

data is made difficult by the nature of the

environment itself, which is not always amenable

to the methods of sampling and data analysis

designed for use under more controlled conditions

such as laboratory experiments. Although the

same sampling and data analysis terminology is

used in both the laboratory and the field, the

precise meanings of many terms are significantly

different. The resulting ambiguities can lead to


problems in both the design of sampling programs,

and the interpretation of the results. This

paper will explore the causes of these problems,

attempt to clarify the terminology, and offer

some practical suggestions for sampling design

and data interpretation.


SPATIAL AUTOCORRELATION


Spatial autocorrelation is the basic cause of

the problems to be discussed. All measureable

environmental parameters exhibit spatial (and

temporal) autocorrelation at some scale. This

means that over some range of distances, measure­

ments will tend to be more similar to measurements

taken nearby than to measurements taken farther

away. For practical purposes, stating that a

phenomenon is spatially autocorrelated is equiva­

lent to stating that it is not uniformly distrib­

uted, but autocorrelation is more easily quanti-

fled In statistical terms. The term spatial

correlation is often used interchangeably with

spatial autocorrelation, but the former implies

that the measured values are correlated with

their locations, as temperature, for example, is

correlated with distance from the equator.


The physical and chemical processes that con­

trol the fate and transport of chemicals In the

environment do not operate at random, although

most events include what may be considered random

processes,  In the sense that they are too complex

to be predicted in detail. Random and determin­

istic processes may operate simultaneously at

several scales to produce the phenomenon being

measured. The measurement of precipitation (with

or without acid), provides a good illustration.

Regional weather patterns produce the conditions

necessary for rainfall over a large area. Within

the area, individual clouds or clusters of clouds

form, apparently at random locations, due to

local fluctuations in temperature and humidity.

If one collected pairs of rain-gauge measurements

taken at various spacings, one would expect to

observe strongly correlated readings at separa­

tions much smaller than the size of the average

cloud,  weaker correlation at regional-scale

separations,  and essentially zero correlation for

separations larger than the size of the region.

Although contiguous rain gauges would be expected

to show the greatest correlation, it would not be

perfect, due to the fact that the two guages may

not receive identical amounts of rain (spatial

variability), and even if they did, the readings

may not be identical (measurement error).


After a major rainfall, for example, we might

be asked to estimate the average precipitation

over a watershed from a given set of rain gauge

readings, in order to estimate the watershed’s

contribution to a flood crest. Alternately, we

might want to know how many gauges we would need

in order to predict flooding with a specified

degree of accuracy. The methodology commonly

known as geostatistics (Matheron, 1963; Journel

and Huijbregts, 1978) was developed in the mining

industry to deal with questions of local ore

grade estimation,  and has since been shown to be
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generally applicable to most situations where

spatial autocorrelation is present.


A basic assumption in geostatistical analysis

is that the spatial autocorrelation exhibited in

a set of measurements can be represented by an

underlying autocorrelation function which is

valid over the region of interest. For many

environmental phenomena, this assumption can be

intuitively related to the controlling processes.


The variogram is one commonly used method for

quantifying spatial autocorrelation (Fig.l).

Experimental variograms are computed from sample

data by examining all possible data pairs, group­

ing them by distance classes, and computing a

variance for each distance class using the stand­

ard paired-sample formula. A theoretical model is

then fitted to the experimental data. A variogram

contains exactly the same information as a plot

of correlation coefficients for the same distance

classes (one can be transformed into the other by

inverting the plot and resealing the y-axis).


. 

Fig. 1. Typical variogram plot and fitted model.

Variances are computed from paired sample differ­

ences for pairs in successive distance classes

and plotted against distance. The fitted model

exhibits commonly observed features: a random

component or “nugget”  at the y-axis intercept,

and an increase in variance with distance up to

a maximum “range”  of autocorrelation.

SAMPLE SUPPORT


When spatial autocorrelation is present, the

physical dimensions of the sample become important

considerations. The term 'support', defined as

the “size, shape, and orientation of the physical

sample taken at a sample point” (Starks ,1986), is

used to avoid confusion with the statistical size

(number of observations) of a sample. The support

of a soil core, for example, would be its diam­

eter and length. In the case of a rain gauge

measurement,  the support would include the diam­

eter of the orifice, and the time of accumulation.


When the sample support changes, the statis­

tical properties of the sample set such as the

variance of samples and the sampling variance

also change. These changes make sample support a

critical element In the design of a sampling

program. The concept of support applies equally

to the stage of data interpretation. The support

on which decisions will be made is rarely the


same as that of the samples. The choice of

decision support can significantly affect the

outcome of an analysis,  and should be considered

before a sampling program is undertaken. The

idea of support and its ramifications will be

developed further in the following sections.


CHEMICAL CONCENTRATION


The term ‘chemical concentration’ is meaning­

less in the absence of a specified support.

Atoms and molecules represent the smallest scale

at which elements and compounds can be said to

exist. If samples are taken at this scale, the

true concentration of any substance within the

sample will be a discrete binary phenomenon - the

concentration will be either 100% or 0%. Any

larger sample is made up of a mixture of discrete

components, and its true concentration will be

the sum of the weight or volume of the analyte

divided by the total weight or volume of the

sample; i.e.,  the average over the sample sup­

port. Usually the entire volume of a sample is

not measured directly, but the measured concen­

tration of a subsample is used to estimate the

the mean concentration of the original sample.

Great care is taken during the preparation of a

sample to ensure uniform mixing, and if necessary,

to reduce the particle size of the material so

that any subsample used for analysis will have a

true mean concentration very close to the true

mean of the entire sample. If the mixing is

effective, neither the size of a subsample nor

its location should have a significant effect on

the outcome of the analysis...for practical

purposes, one subsample is as good as any other.


In the field, where the area being investi­

gated cannot be uniformly mixed, the situation is

quite different. Layers, crystals, clumps, or

other high concentrations of a substance of ten

occur such that if a given sample had been taken

at a slightly different location (sometimes only

a fraction of the sample size away), a signif­

icantly different true sample concentration

would be found. The classic example of this was

observed in placer gold deposits, where the

presence or absence of a single, miniscule gold

nugget in a sample would make the difference

between an assay indicating high-grade ore, and

one indicating waste. This led to the interest­

ing term ‘nugget effect’ often being applied to

the y-axis discontinuity in variogram models.


Like changes in location, changes in support

also result in changes In concentration. The

true value of a point sample is 0 or 100%; the

true value of any larger volume centered on the

point is the mean concentration over the volume.

If the dimensions of a sample are increased or

decreased; If the shape of the sample is changed,

say from a sphere to a cube; or if the orienta­

tion of a non-spherical shape is changed: the

sample will contain a different set of molecules,

and probably a different true concentration. For

any point in space which represents a potential

sample 'location',  an infinite number of possible

sample supports exist centered on the point, and

an infinite number of possible true concentra­

tions which can be said to be the concentration

at that location. Obviously,  we must conclude

that any reported measurement of chemical concen­

tration in the environment is essentially meaning­
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 less unless the support is also reported. Like­

wise, a statement such as “remedial action will

be taken if the concentration of cadmium in soil

exceeds 500 ppm” is also meaningless unless the

support is specified.


A SIMULATED EXAMPLE


An example based on a simple computer simula­

tion serves to illustrate the support problem. A

blank computer screen is 'polluted' with a

'realistic-looking' pattern of pixels (Fig. 2).

The algorithm which was used to generate the pat­

tern first selected 25 points at random in the

central part of the screen. Each of these points

was used as the center of a cluster of up to 2000

points scattered around the center at random

angles and approximately normally distributed

distances (sum of three uniformly distributed

random values). Blank pixels were initialized


  with a value of zero,  and incremented by one each

time they were hit by the point generator. A

color terminal can be used for a more effective

display than Fig. 2, because pixel values greater

than one can be represented by various color

codes. The details of the algorithm are not cru­

cial. Any algorithm which conditions the outcome

of a random process on a prior outcome of the

same or another random process, can be used to

generate spatially autocorrelated patterns.

Variations on the drunkard’s walk (e.g., two

steps forward,  three steps back) are effective.


Fig. 2. A simulated, spatially autocorrelated

distribution of “pollutant”.

When the pattern has been generated, we have


an area subdivided into pixel-sized units, for

each of which we know the exact pollution concen­

tration. The pixel scale of support is considered

to be smaller than any support site we would be

interested in, but since we have exact knowledge

at that scale,  we can now combine pixels into any

larger support areas we choose, and compute the

exact average pollution concentrations over these


Figs. 3-7 illustrate the results of this kind

of change In support. In Fig. 3, the screen area

was divided into support blocks of 5x5 pixels,

and the mean pixel value was computed for each

block. The block means were grouped into class


intervals and represented as shaded patterns on

the map. The histogram scaled by area, and uni­

variate statistics,  are also shown for the set of

non-zero value blocks. Figs. 4-7 repeat this

process at supports of 10x10, 20x20, 40x40, and

80x80 pixels, respectively.


Fig. 3. Map and histogram of true “concentrations”  of simulated pollutant averaged over

5x5 pixel blocks. Darker shades on map represent higher values: Blank (<0.4 units per

pixel); Light shade (0.4 to 0.8); Medium shade (0.8 to 1.2); Dark shade 01.2).
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Fig. 4. Map and histogram of true “concentrations”  of simulated pollutant averaged over

10x10 pixel blocks. Shades represent the same values as in Fig. 3.


Fig. 5. Map and histogram of true “concentrations" of simulated pollutant averaged over

20x20 pixel blocks. Shades represent the same values as in Fig. 3.


Fig. 6. Map and histogram of true “concentrations”  of simulated pollutant averaged over

40x40 pixel blocks. Shades represent the same values as in Fig. 3.
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Fig.  7. Map and histogram  of true  “concentrations” of simulated pollutant averaged  over

80x8  pixel blocks. Shades  represent the same values as in Fig. 3.


The most significant thing to remember when

examining these results is that these are not

estimates of the underlying distribution. Each

of these is the true distribution for the speci­

fled support and location. Additional, equally

true distributions can be generated by shifting

the grid origin, by filling in the missing block

sizes (6x6, 7x7  ,...), by changing the shape (4x6,

8x12,...), etc. Continuing our analogy between

the simulation and a polluted site, we must ask

ourselves, as site investigators, which truth do

we want to know? Or perhaps more realistically,

which truth do we need to know, and what do we

have to do to know it with sufficient accuracy?


If we want to take some remedial action, say,

by cleaning up those areas in excess of an action

level of 1.2, we must first specify the remedia­

tion support. If we specify 5x5 pixel blocks as

in Fig. 3, our goal would be to identify as

polluted, and clean up,  all of the darkest blocks.

If, on the other hand, we specify the 80x80 pixel


blocks, we would find that there is nothing to

clean up at all. If a support is not specified

along with an action level in the applicable

regulations, the site investigator is faced with

the problem of establishing one, either explic­

itly or implicitly. Along with the flexibility

comes the cost of ambiguity: long meetings spent

arguing over semantics; or perhaps extensive lit­

igation.


FREQUENCY DISTRIBUTIONS


As is evident from the maps and histograms in

Figs. 3-7 when the support changes, the frequency

distribution also changes. Within the domain

defined by the screen boundaries, as the support

dimension increases,  the variance of the distri­

bution decreases. This is particularly important

in the context of regulation and remediation,

because, as was suggested above, increasing the

support dimension can often reduce (or eliminate)

the amount of material above an action level. It

is interesting to note that support is frequently

specified in the time dimension for air quality
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monitoring and regulation; it is common to refer

to 1-hour averages, 24-hour averages, etc.,

recognizing that these would give quite different

results if compared against a single concentra­

tion limit.


From a practical standpoint, as mentioned

above,  specifying the support associated with an

action level will reduce ambiguity in site assess­

ment and enforcement. At a more fundamental

level, support is a significant factor in the

establishment of action levels. Environmental

actions are ultimately decisions about risk

abatement, and the risks associated with chemical

substances are in turn functions of toxicity and

exposure,  both of which involve questions of

support. If two one-hectare lots each have mean

concentrations of 1000 ppm lead in the upper ten

centimeters of soil, are the risks associated

with them significantly different if the distri­

bution of one-square-meter supports for one lot

is normal with a standard deviation of 10, while

the other is log-normal with a standard deviation

of 800? If remedial action were practical only

at the hectare support, should the action deci­

sion be based on the mean concentration over the

hectare, on the frequency distribution of some

smaller support within the hectare, or on some

combination?


An observation worth noting about the fre­

quency distributions In Figs. 3-7 is that although

the variance of the distributions decreases as

the size of support increases, the shape of the

histogram seems to remain relatively constant.

If the spatial distribution were random rather

than autocorrelated,  the variance would be ex­

pected to decrease faster as the support in­

creased, and the shape of the histogram would be

expected to converge more rapidly toward the

normal. The persistence of histogram shape in

spatially autocorrelated fields suggests that

affine correction of variance (Journel and

Huijbregts, 1978, p. 471) may be a useful tool

for estimating the frequency distribution of one

support, given the frequency distribution of

another.




REPRESENTATIVE SAMPLES


‘Representative’ is one of the most misused

terms in environmental sampling (Splitstone,

1987). In this case, the effects of spatial

autocorrelation in the field combine with incon­

sistency In the use of the term ‘sample’ itself,

resulting in a great deal of confusion. A sta­

tistical sample of n observations is sometimes

said to be representative if the mean, and or

other parameters of its frequency distribution

are ‘similar’  to the population from which it was

drawn. In a somewhat more abstract sense, the

distribution might be called representative if it

was properly drawn (that is, if each member of

the population had an equal chance of being in­

cluded in the sample), even though it is not

similar to the population.


An environmental sample such as a soil core,

collected In the field and sent to a lab for

analysis, is not a ‘sample’ in the commonly used

statistical sense. It might be more appropri­

ately called a member of a population which has

been included in a sample of that population. A

set of n such environmental samples, or observa­

tions, make up a statistical sample which can be

representative of the population of possible

observations of the same support within the sam­

pled domain. It can not, however, be directly

representative of any other support population,

except for the population mean, which is constant

within the domain regardless of support. In the

context of ordinary random statistics, it is

therefore difficult to ascribe any representative­

ness to an individual environmental sample other

than being a member of a representative set at

that support.


In the case of environmental field investiga­

tions, however,  the whole point of a sampling

plan is often to obtain samples (observations)

that are representative In a different sense,

namely,  representative of their local areas.

This spatial kind of representativeness is also

hard to define. Intuitively, what we are really

after is a measurement at a location that is

close to the local mean concentration, but as we

have seen,  the local mean is a function of the

support. Thus, until we define the support which

we want our observation to represent, we can’t

say anything about how good the observation is.


Given a set of n observations within a domain,

a geometric support neighborhood can be defined

around each observation as the set of all points

closer to it than to any other observation (i.e.,

a Voroni polygon). Voroni polygons are an approx­

imation of the neighborhoods with which the

observations are most correlated, and give an

idea of the spatial resolution of the set of

observations. 


APPLICATIONS


In most of the above discussion, we have dealt

with the uncertainties and ambiguities involved

in taking and measuring samples of the physical

environment, and the inherent limitations of re­

lating measured values back to some ‘real’ char­

acteristic of the environment. In spite of these

problems, most of which have not been adequately

dealt with theoretically, the world marches on.

Site Investigators are still faced with the neces­


sity of collecting samples in the field, and

using them to make interpretations and decisions.

The remainder of this paper will focus on prac­

tical approaches to sampling and data analysis

which will help reduce ambiguity, and improve

data quality and usefulness. We will continue to

use the simulation as an illustrative example.


SAMPLING DESIGNS


One of the common problems facing a site

investigator is the layout of a sampling pattern.

Assume for the moment that you have a predefined

domain that must be sampled and that the number

of samples you can take has been fixed by budget

constraints. Where should you take the samples?

Most available guidance documents such as SW-846

recommend random sampling as the general solution.

However, it has been shown (Olea, 1984, Yfantis,

et al.,  1987) that In the presence of spatial

autocorrelation, sampling on a systematic grid

will produce a more efficient sampling. If

spatial autocorrelation is not present, the

regular grid will be no better or worse than a

random sample. Because the regular grid is a

periodic sampling in space, it is obviously con­

traindicated when the presence of a spatial

periodicity in the phenomenon is suspected at a

scale near that of the proposed grid. Fortun­

ately, this situation is not common, and the

regular grid, because of its simplicity and

effectiveness, can be used in most spatial sam­

pling programs.


The efficiency of the regular grid is a result

of the minimization of spatially clustered data

which are duplicating each other’s information.

As a practical matter, small departures from

regularity do not have major effects, so that

field crews can make offsets from the grid to

avoid obstacles without affecting the results of

a study. This is particularly true when the

autocorrelation function exhibits a large random

component (nugget effect) relative to the auto-

correlated component. The larger the relative

nugget effect,  the greater the tolerance area

around the regular grid nodes.


SAMPLE SUPPORT AND QA/QC


To illustrate the potential impact of sample

support on the quality of an investigation, we

will sample our simulation at two different sup­

ports, and use the results for interpolation of

concentrations. The sample locations are on the

regular grid shown in Fig. 8. The first sampling

is done at the single pixel support. Each sample

is assigned the true value of the pixel at that

location; we are assuming no sampling or analyt­

ical error. The second sampling is done on the

same grid at a 2x2 pixel support. In this case

the true mean value of the 4 pixels in the sample

is used.
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Fig. 8. Location of samples taken from the simu­

lated distribution. True values of single pixels

and 2x2 pixel blocks were taken at each point.


Variograms computed from the two sample sets

are shown in Fig. 9. Note the dramatic decreases

in variance at all distances with the larger

support. When considering quality control, we

take particular note of the projected y-axis

Intercept or nugget,  which has dropped from a

value of 0.5 to less than 0.1. The nugget value

provides an estimate of the total variance asso­

ciated with taking adjacent, or co-located sam­

ples, and includes small-scale spatial variability

as well as sampling, preparation, and analytical

errors. In the present example, we introduced no

measurement errors,  so all of the nugget value is

the result of spatial variability, and the change

in support has a major effect. If, at the other

extreme,  the nugget were entirely due to sampling

and analytical errors, it would not be reduced at

all by changing support.


Fig. 9. Variograms computed from simulated sam­

ples on single pixel (upper curve) and 2x2 pixel

(lower curve) support. Points are experimental

values;  solid lines are subjectively fitted

models.
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The approach one takes to improving data qual­

ity, therefore,  should ideally be dictated by a

variance components analysis of the variogram

nugget value. The largest variance component

should get the most attention. If spatial var­

iance dominates, increase the support by taking

larger samples or perhaps by compositing small

clusters of samples. If measurement error dom­

inates, look for a more accurate method. When

either spatial or measurement variance is very

dominant and cannot practically be reduced

further, it may be possible to achieve a signif­

icant cost saving without seriously affecting

overall data quality by going to cheaper methods

which moderately increase the lower variance

component. For example, if the maximum feasible

support still results in a spatial variance com­

ponent ten times greater than the measurement

variance, the measurement variance could be

allowed to increase by a factor of five with a

resultant increase in the total standard error of

only 17%.


The question of quality assurance goes beyond

quality control of sample data, to include the

adequacy of the program as a whole to achieve the

desired objectives. In the case of a site inves­

tigation, we are particularly interested in the

quality of the spatial estimate made from the

sample data,  and we must therefore look at sample

quantity and location, and the estimation or

interpolation procedures, as well as sample data

quality. All of these factors can contribute to

the quality of the end result, and as always, the

most cost effective use of resources is to work

at reducing the largest error component.


With our simulated example, we can compare the

effects of the sample quality on the overall

quality of the data interpretation by interpolat­

ing concentrations over the screen area from each

of the two sample sets. Using the variogram

models from Fig. 9, kriged estimates were com­

puted for 10x10 pixel blocks. The results are

shown in Fig. 10, with the blocks shaded accord­

ing to the same classification used in Fig. 2.

Comparison with the true values shown in Fig. 3

illustrates the overall superiority of the 2x2

sample support in defining the general pattern of

block concentrations.


Plots of the true VS. estimated concentrations

for the two interpolations are shown in Fig. 11,

and histograms of the estimation errors in Fig.

12. Note that even though the 2x2 pixel samples

provide better estimates, there is still rela­

tively high error which may lead to a large

number of false positives and false negatives at

most concentration action levels. Further reduc­

tion of estimation error would require more

samples, larger support, or both.




Fig. 11. Plots of estimated VS. true block values and associated regression statistics

for the two kriged estimates in Fig. 10. The left plot is from the single pixel case,

the right, from the 2x2 pixel case.


Fig. 12. Histograms of estimation errors (estimated - true) for the single pixel case

(left), and the 2x2 pixel case (right).
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ISOPLETH MAPS


Isopleth, or contour, maps are a commonly used

and effective method for displaying the spatial

distribution of chemical concentration. The use

of isopleths, however re-introduces some of the

ambiguity discussed above regarding support. If

we examine the kriged maps in Fig. 10, we can

easily visualize the process of generating a con­

tour line by smoothing the stepwise boundary

between two shading patterns. This is essen­

tially the same result we would get if we assigned

the estimated block average values to the block

midpoints and ran the resulting grid through a

typical contouring algorithm. It is also compar­

able to the limit we would approach (very expen­

sively) with kriging as the grid dimension ap­

proaches zero. The problem arises because a

contour represents the intersections of a plane

parallel to the x-y axis and a continuous surface.

The existence of one contour line implies the

existence of all possible contour lines, and

demonstrates that we have in effect estimated

individual concentration values at every point.

But we showed earlier that point concentrations

are binary and discontinuous, and that meaningful

statements about concentration require specifying

a support. Which support?


Intuitively, we might like to think of the

isopleth surface as representing the result of a

moving average based on a specified support win­

dow. While this rounds good, it doesn’t work in

practice. When we specified a 10x10 block grid,

it was easy to compute the true block means and

compare them to the estimated block means.

However,  when we try to compute a true moving

average isopleth based on a 10x10 support window,

we find peaks, holes, and irregularities in the

isopleth lines occurring at much smaller scales

than the 10x10 support. Such a situation is

self-contradictory, and it is not obvious how to

define a true isopleth, compare it with an esti­

mated one, and determine the goodness of the

estimate.


In spite of the difficulty of defining a ‘real’

isopleth, a case can be made for using isopleths

drawn from kriged block estimates as remediation

boundaries. Given that kriging is in some sense

an optimal estimator,  and the goal is to remediate

all of the area above an action level, the best

approach should be to krige every point in the

sampled domain,  and remediate all of the points

estimated to be above the action level. Contour­

ing kriged block values provide6 a good approxi­

mation which is computationally feasable. The

point to remember when doing this is that the

nice, smooth contour6 may be primarily a regres­

sion effect, and that the underlying reality may

in fact be very erratic. If we were to clean up

an area inside an isopleth boundary, and then

take check samples immediately around the bound­

ary , we would expect to see a large number

(approximately 30 to 50%, depending on the dis­

tribution) of samples exceed the action level,

even if the boundary is well estimated. A more

practical approach would be to do the check

sampling along the boundary before the clean-up,

and use the additional data to better define the

boundary.


CONCLUSIONS


Chemical compounds in the environment can be

spatially autocorrelated at scales ranging from

the molecular to global. Autocorrelation is prac­

tically significant when it occurs at scales

relevant to the problem, that is, between the

dimensions of a sample and the dimensions of the

domain being investigated. Under such conditions

the support,  or physical size,  shape, and orienta­

tion of a sample,  becomes a critical factor in

the quality of an investigation. The use of

QA/QC data for a variance components analysis of

the nugget component of a variogram model can be

very useful in selecting the most cost-effective

approach to additional sampling.


Chemical concentration in the inhomogeneous

environment must refer to a specific support to

be meaningful. Specifying the support associated

with an action level for enforcement or remedia­

tion removes a source of ambiguity and potential

misunderstanding.


Spatial estimates of concentration such as

kriged blocks,  and the contour maps derived from

them, are smoothed representations of reality,

and represent a support more like the sampling

grid size than the dimensions of the sample.

Site investigators should understand, and be able

to explain to the public, why many of the values

at the sample support,  taken outside an isopleth

boundary, are expected to exceed the isopleth

value.


NOTICE


The information in this document has been

funded wholly by the U.S. Environmental

Protection Agency. It has been subjected to

Agency review and approved for publication.
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Discussion

John Warren


US Environmental Protection Agency


Spatial prediction, as illustrated The strength of the paper lies in

by these two papers, holds great promise the excellent discussion of spatial

in extracting large amounts of informa- design of networks, Section 3. The

tion from situations where extensive problem of adding a monitoring site to

data collection is not feasible. an existing network cannot be solved


easily and only by making key assum-

Evan Englund's paper on using ptions on the intent and use of the


kriging in conjunction with the concept monitoring data can any solution be

of sample support is most interesting attempted. The concept of "average"

and his discussion illustrates clearly prediction error (equation 3.4) has

the problem of defining "sample" with much merit as many of the Agency's

respect to the physical dimensions of monitoring networks are intended to

a sample site. The use of "sample measure mean increases/decreases in

support" to avoid confusion with the pollution levels. It seems clear that

common statistical understanding of this notion of optimal network design

"sample" is to be commended and his can be applied to Agency networks where

definition: "The support on which non-statistical considerations in

decisions will be made is rarely the determining actual sites are relatively

same as that of the samples. The unimportant.

choice of decision support can sig­

nificantly affect the outcome of an There is much that needs to be done

analysis, and should be considered in order to effectively bring spatial

before a sampling program is under- statistics to the practical level at

taken."  should be included in every EPA, and these two papers are an impor-

Data Quality Objectives (DQO) Program. tant start. There is definitely an


interest in spatial statistics as evi-

The illustration of "sample dented by the number of people present


support" by simulation is particularly at the spatial statistics sessions at

useful in demonstrating how the defi- the annual EPA Conference on

nition of contamination is a function Statistics: these two papers should

of the particular support chosen. This further stimulate this interest.

simulated example should be made part of

the Agency's DQO training program as it

clearly demonstrates to managers and

decision-makers the importance of allo­

cating resources proportional to the

ratio between decision-area and sample

support area.


Evan's discussion on the choice of

most efficient or most practicable sam­

pling design for sampling in a spatial

domain is very useful for there does not

seem to be a general solution applicable

to all sites. Each site must have a

unique sampling plan and although the

Agency's guidance document, SW-846,

endorses simple random sampling, the

document does recommend a tailored-to-

the-site approach. The revised edition

Of SW-846 (4th edition with an expected

publication date of mid-1990) will pro­

vide guidance on most sampling schemes

likely to be encountered in spatial

Statistics, and also gives guidance on

the construction of optimal grid sizes

for the effective use of kriging.


Noel Cressie's paper is a nice

summarization of spatial statistics and

introduces some of the scientific nota­

tions essential for discussion of

kriging. His comparison of trend sur­

face model with the random field model

is very useful and clearly illustrates

the differences between the two models.
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