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The performance of several variations on ordinary kriginq and inverse

distance estimators is evaluated. Mean squared errors (MSE) were

calculated for estimates made on multiple resamplings from five

exhaustive data bases representing two distinctly different types of

estimation problem. Ordinary kriging, when performed with variogram

estimated from the sample data, was more robust than inverse-distance

methods to the type of estimation problem, and to the choice of

estimation parameters such as number of neighbors.

Keywords: kriging, geostatistics, spatial estimation, inverse-distance

estimation


INTRODUCTION


Spatial interpolation is important in many environmental studies.

The U.S. EPA Environmental Monitoring Systems Laboratory -Las Vegas has

been investigating the performance of various interpolators, especially

as they apply to sampling, estimation, and remediation of contaminated

soils and sediments. Previous studies by the authors have investigated

the effects of various estimation parameters on the quality of spatial

estimates. Englund (1990) showed that the variability was high among

estimates (obtained primarily by kriging) by 12 different statisticians

working with two common sets of data. Englund, et al., (1992)

investigated the effects of sample size, grid type, and sampling error on

estimation accuracy, by using 54 sample data sets drawn from a single

large exhaustive data base. The most important parameter proved to be

sample size, where the estimation accuracy improved with increasing

sample number.


Weber and Englund (1992) evaluated the relative accuracy of 15

different spatial estimators by using the same 54 sample data sets,

showing that inverse-distance and inverse-distance-squared interpolators

performed slightly better than ordinary and simple kriging. The authors

concluded that these results, while provocative, did not mean that

inverse-distance methods are necessarily superior to kriging estimators




in all cases; reasonable variations of that experiment could be imagined

wherein kriging would be expected to have a distinct advantage over the

particular inverse-distance algorithms used. The nature of the data base

may have fortuitously favored inverse-distance. Both the kriging methods

and variogram modeling were relatively simplistic: changing either might

have significantly altered the results. Finally, strong anisotropy and

clustering of samples, which favors kriging, were not present in the

data.


In this paper, we begin to address these issues with a more

extensive comparison of several inverse-distance and kriging

interpolators. We evaluate their relative performance on five exhaustive

data bases that represent distinctly different types of physical

phenomena.


DATA BASE DESCRIPTIONS


The five data bases, like the Walker Lake data base used in the

earlier studies, were taken from digital elevation models obtained from

the National Cartographic Information Center. The goal was to select

several data bases representing surfaces that have different

characteristics. Three of the data bases use the original elevation

data, and two of them are transformations obtained by calculating the

variance of the original elevation data. All of the data bases contain

21,600 data on a common grid of 120 rows by 180 columns. Corresponding

20 by 30 arrays of block averages were generated from the arithmetic

means of 6 by 6 arrays of points in each of the data bases. Statistical

parameters are given below in table I. Figures la-le show three-

dimensional perspective views of the five data bases, and Figures 2a-2e

show the corresponding histograms. The elevation data bases are

relatively unskewed, with fairly smooth, continuous surfaces. We believe

that they can fairly represent other phenomena sharing these

characteristics: geological structural surfaces: thickness of lithologic

units, hydraulic head, surface water temperature, barometric pressure,

etc. The variance data bases are highly skewed, and present

discontinuous, noisy surfaces. These distributions are similar to those

of contaminants or trace elements in soils, sediments, and rocks; and to

phenomena such as porosity and hydraulic conductivity.


1. Bend Elevation and Variance-of-Elevation: The original data base

contained 240 rows by 360 columns of elevation data. Two final data

bases (120 by 180) were obtained by calculating the mean or variance of

each 2 by 2 array of the original data. The most prominent features of

the elevation base (Fig. la) are the mountains on the east side. The

terrain slopes down toward the west side where canyons are found. The

most prominent features of the variance base (Fig. lb) are produced by

the valleys on the west side and the mountains on the east side.


2. Black Butte Elevation and Variance-of-Elevation: Elevation and
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variance data base were calculated as for Bend. The elevation base (Fig.

lc) includes Black Butte in the far northeast corner and several

prominent mountains in the southwest corner. The area surrounding Black

Butte is very flat, as opposed to the landscape around the mountains in

the Bend elevation area. The prominent features in the original

elevation model produce corresponding prominent variance features (Fig.

1d) .


3. Steamboat Falls Elevation: An original data base of 180 columns by

120 rows was used as the final data base. The mutual confluence of two

creeks with the North Umpqua river produces an interesting surface

divided into four sections (Fig. le).


Table 1

Statistics for Data Bases and Block Averages


Data Base Statistics 

Data Base Bend Bend Butte Butte Steam 
Data Type Elevation Variance Elevation Variance Elevation 
Mean 1,682 142 1,347 48 704 
St. Dev. 411 255 253 112 209 
Skewness .16 4.24 .28 5.43 .45 
Kurtosis 2.89 35.97 2.22 46.19 2.67 
CV .24 1,80 .18 2.34 .30 

Block Average Statistics 
Data Base Bend Bend 
Data Type Elevation Variance 
Mean 1,682 142 
Std. Dev. 408 158 

Butte Butte Steam 
Elevation Variance Elevation 
1,347 48 705 

252 78 204


SAMPLE SETS


Sixty sample sets were drawn by random sampling from each data base,

including 20 sets each of 25, 100, and 400 samples. The total number of

sample sets was 300. Figure 3 shows typical sample configurations.


ESTIMATORS


For each of the 300 sample sets, a 20 by 30 grid of block estimates

was produced by each estimator. In all cases, blocks were numerically

approximated by a discrete 2x2 array of point estimates. Estimators


3




included four variations on ordinary kriging, four variations on inverse-

distance, and one spline, as described below. For two of the estimators,

inverse-distance squared and ordinary kriging with traditional variogram

estimation, the estimates were rerun with different numbers of

neighboring samples included.


Geo–EAS - Ordinary Kriging: Ordinary kriging was performed by using

Geo-EAS software (Englund and Sparks, 1991). The ordinary kriging

equations have been described elsewhere (e.g. , Journel and Huijbregts,

1978; Isaaks and Srivastava 1989). A circular, single sector search was

used, with a large enough search radius to ensure the maximum desired

number of neighboring sample locations. The four variations on ordinary

kriging differ only in the choice of variogram model used. In one case,

a “black box” approach was used - a zero-nugget linear model was

assigned regardless of the experimental variogram. The other three

ordinary kriging estimators used variogram models fitted to three

alternate estimators of the experimental variogram, namely, the

traditional variogram, the general, or lag-wise, relative variogram

(David, 1977), and Cressie’s (1985) robust variogram. These are

described in detail below. In these three cases, isotropic double-nested

exponential models were fitted by minimizing the squared residual

function (SR) given by


N 

The maximum distance over which the experimental variogram were computed

and fitted was determined by finding, in each case, the greatest distance

needed to include the selected number of nearest neighbors. This distance


4




2yNc(fi) iAE5i C’ressiefs
.4;7+0 497/N~)

—

‘1x I) + ~i~~2a [l_e-1.732R2Silll” l“732R

_@

Gauss Silll. Z] CJi112. [~. e z]

Silll” [~- ~ Si112* [~- *

“ (Journel Huijbregts,

cPs/Pc5 CPS/PC
as:

20

i.1

w~ Z(x~)

(wI~)

.?=. J.33

$( ’$:’)2

r~ the’distance i~h
r= weiqhtinq

weights

CPS/PC k COEmIerCial ftWare

 = ( Robust)

(O . 


was divided into n equal-length lag intervals. The numbers of pairs in

each lag were used to weight the least squares. The three variogram

models are: -.


Gexponential 1 = Nugget + (l-e 

_ X2 

G = Nugget + [1-e  + 

( ) 

3 

( ) 

3 

G = Nugget + ] + 1
spherical 

1 1 2 2 

where R is the “practical  range and 1978) . 

- Inverse-distance Squared: This estimator, from the 
software package, is defined 

represents the estimated value, 
 are weights, 
 are sample

values at locations xi, and the summation is over the n samples included

in the estimate. The weights for inverse-distance squared


where 


are

defined as


‘ 

where 
 is between estimate and the
  sample location, and

is the search radius. Note that these 


“simple” inverse-distance schemes because sampie
 equations are not

 are forced to

equal zero at the search radius.

An octant search with a maximum of 16 points was used.


5
 a SO  product Of Radian Corporation, Austin, Texas. 
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BIHASH - Spline: Spline estimates were performed by using a program

developed by Foley (1987). This multi-stage method has many options

controlled by an integer array of six elements that enable it to yield

several different functions that either interpolate or approximate the

given scattered data. As applied in this study, the first stage

generated gridded estimates on a default uniform grid by using a

polynomial least-squares approximation of degree two on eight neighboring

sample values. For the variance sample sets, these estimates were

constrained by the minimum and maximum sample values used. This was not

done for elevation data. The second stage computes a piecewise bicubic

Hermite interpolant with partial derivatives calculated from first stage

grid. This interpolant does not necessarily pass through the sample

values. The third stage adds a correction term to force the estimate to

honor the data. Foley does not recommend this option for rapidly varying

data; therefore, it was used elevation data, but not for variance data.




respectively. The quantity used here is the average MSE taken over the

20 sample data sets of one size from one data base. Each estimator thus

receives 15 average MSE scores.
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DISCUSSION 

Inverse-distance estimators are very sensitive to the type of data

base, to the number of neighbors used in the estimate, and to the power

of distance used in weighting. For the elevation data bases, estimation

quality generally increases as the number of neighbors decreases and as

the power of distance increases. For variance data bases, the opposite

occurs. . . there are dramatic increases in quality with increasing numbers

of neighbors and decreasing powers of distance. The modified weighting

scheme in the CPS/PC algorithm appears to have an effect roughly

equivalent to a slight increase in the power.


By contrast, ordinary kriging using fitted variogram models is

relatively robust to the type of data base and the method of estimating

the experimental variogram. The kriging estimates consistently improve

with increasing number of neighbors, regardless of data type. Four

nearest neighbors appear to be generally inadequate for kriging,

especially for the variance data bases; however, the results appear to

stabilize with 12 or more neighbors. The results from ordinary kriging

with the linear variogram model illustrate that it is not robust to an

arbitrary choice of variogram model. This choice of linear model with

zero nugget worked very well for elevation data bases, but extremely
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poorly for variance.


The relative performance of the estimators, with the exception of

the spline, does not appear to be greatly affected by sample density.


From these results, it is apparent that the superior performance of

inverse-distance over kriging reported earlier (Weber and Englund, 1992)

was mostly due to a fortuitous (or judicious) selection of options with

respect to the data base being used.


With experience, good judgement, and knowledge of the type of

phenomenon being estimated, it is possible to obtain good estimates with

inverse-distance methods. With the same experience, judgement and

knowledge, however, it is also possible to select a good ordinary kriging

approach with lower sensitivity to errors in judgement.


Although ordinary kriging is relatively robust, there are

nevertheless significant differences in performance among the approaches

used here. For example, the traditional variogram appears superior for

elevation data bases, while the general relative variogram is better for

the variance cases. Cressie’s robust variogram does in fact perform

robustly, but not more so than the traditional variogram. The

geostatistician is still faced with the problem of selecting the best

tool for the job at hand. It is worth asking whether, in the absence of

a priori knowledge, it is possible to use some characteristic of the

sample data set itself to assist in this choice. In the examples

presented here, skewness and kurtosis might provide an effective

classifier.


The different approaches to variogram estimation presented here only

begin to address the problem of variography. We have compared

alternative variogram estimators, models, and fitting techniques in

considerable detail (Englund and Weber, in preparation) .


Finally, we would like to emphasize that while MSE provides a simple

and useful basis for comparison, minimization of MSE is not necessarily

always what is needed. We have shown (Weber and Englund, 1992) that the

relative ranking of estimator with respect to decision quality as

measured by a loss function can be quite different from the ranking with

respect to MSE.
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