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EVALUATION AND COMPARISON OF SPATIAL INTERPOLATORS


Dennis Weber and Evan Englund


Abstract


This study evaluates fifteen different estimators to determine


their relative merits in estimating block concentrations at


contaminant waste sites. The evaluation was based on 54 subsets of


data drawn from an exhaustive set of 19,800 data. For each subset,


The
198 block estimates were made with each estimator.


measurements of estimation quality were a linear loss function and


a more standard statistic, the mean square error. The linear loss


function showed that seven of the estimators produced scores close


enough to be within the same statistical population. Results based


on the mean square error were similar. The surprising results of


this study were that inverse distance and inverse distance squared


both produced better scores than kriging.
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INTRODUCTION


Previous studies have been made to determine the effects of


various estimation parameters on the quality of estimates of


spatially correlated data. A study by Englund (1990) showed that


the variance of estimates was high among 12 different statisticians




who primarily used Kriging to obtain estimates on two common sets


of data. That study, however, was preliminary because it used


only two data sets for two different areas. A second study by


Englund, et al., ( 1991) investigated the effects of different


sampling design parameters on estimation accuracy. The second


study used a 3x3x2 factorial design of 54 sample subsets drawn from


an exhaustive data base of 19,800 original samples where the


parameters were sample size, grid type, and noise level. That


study showed that the only statistically significant parameter was


the sample size where the estimation accuracy improved with


increasing sample number. The present study evaluates the relative


accuracy of 15 different spatial estimators by using the same 54


sample subsets.


EXPERIMENTAL PROCEDURE


Fifteen spatial estimation methods were used in this study.


The only requirements were that all methods produce estimates for


the same 198 blocks and have no missing values. The 198 block


estimates for each of the 54 sample sets and for each estimator


were processed in a program that compared them with the "true"


values as calculated from the original 19,800 data. For each data


set, the program produced evaluation statistics that included a


cost to society and the mean square error (MSE) . These values,


averaged over the 54 sample sets, were used to compare the relative


merit of each estimator.


2




Walker Lake Data Base


For the evaluation, a surrogate “site model” data set was


used. The site, a subset of a larger Walker Lake data set, was


derived from digital elevation data. The variance of these


elevation data was used as a surrogate for measured soil


contamination data. The subset used in this study contains 19,800


data in a 11OX18O array (figure 1). The details have been


described elsewhere (Englund, 1990, Isaacs, 1989). The site model


has been subdivided into 198 square blocks, each containing 100


data values. The blocks, for which average "true Values" were


computed, represent units of a size assumed to be practical for


remediation.


Figure 1. Walker Lake Data Set
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Sampling Design


The 3x3x2 factorial design, with 3 sample sizes, 3 sample


patterns, and 2 levels of sample error produced 18 different sample


designs, each combination of which was repeated 3 times for a total


of 54 sample sets. This design was used by Englund (1990) to


evaluate the effects of different sampling design parameters on the


final estimates. The sample sizes were 104, 198, and 308 data.


The 3 sample patterns were simple random, cellular stratified, and


regular grid. Sample error represents the cumulative total of all


possible error components included in the collection, handling,


preparation, and analysis of a sample. The 2 levels of sample


error were a base level of zero error, and a high level at a


relative standard deviation of 32 percent. Errors were assumed to


be normally distributed, with a mean equal to zero.


Evaluation Statistics


Linear Loss Score: The primary measure, the linear loss score


(LLS), is calculated from a simple and economically based


asymmetric linear loss function. The underlying assumption is that


society pays a cost for all contaminated areas, either as a


remediation cost for each block cleaned, or as a less easily


defined group of costs (health effects, ecological damage, etc.)


for each block which remains contaminated. In the absence of good


models for the latter costs, we assumed their sum to be a linear


function of concentration, while the remediation cost was assumed


to be constant.




------ ------------------ ------- ------- ------------ -----------------
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We make the additional assumption that when an “action level” 

for remediation is specified, it is society’s best estimate of the 

breakeven point, i.e., the contamination level at which the cost of 

cleaning a block is exactly equal to the cost of not cleaning it. 

We define loss in units of “block remediation cost," which we 

normalize to “one” at the “action level”. The loss assigned to a 

block can fall in one of the four categories shown in table I 

below. 

Table I


Linear Loss Function


True Assigned True

Decision Estimate Value Linear Loss Linear Loss


1 Correct > AL > AL 1 1 
2 
3 

Correct < AL 
Incorrect > AL 

< AL 
< AL 

TV/AL (<1) 
1 

TV/AL (<1) 
TV/AL (<1) 

4 Incorrect < AL > AL TV/AL (>1) 1 

AL and TV represent Action Level and True Value, respectively.


For a block of any concentration, the cost associated with a


correct remediation decision is found from lines 1 and 2; the loss


of an incorrect decision is found from lines three and four. The


sum of the 198 block scores is the total loss for the site,


excluding sampling costs. The optimal sampling design, of course,


would be the one which minimizes total loss, including the sampling

,


costs .


In order to minimize the effect of the choice of action level


on the final linear loss score, we have computed the scores


(excluding sampling costs) for each set of kriged estimates at nine
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action levels. The action levels correspond to the decile class


bounds on the true block values. In effect, the lowest action


level treats the site model as if it were relatively highly 

contaminated; that is, 90% of the blocks are actually above the 

action level. Conversely, with the highest action level, only 10% 

of the blocks should be selected for remediation.


Finally, the linear loss score (LLS) derived from the linear


loss function is expressed as


where the summations i,j, and k are over the 54 data sets, the 9


action levels, and the 198 blocks, respectively. An example and


additional detail regarding the calculation of the LLS is given in


Englund, et. al., 1991.


Mean Square Error: A second quality measure is the mean square


error (MSE), averaged over all 198 blocks and all 54 sample sets,


which is
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same correlation because the LLF assigns the same value to all


blocks that are selected for removal, i.e., those for which the


block estimate is greater than the action level.


ESTIMATORS


For each estimator, a regular grid of 198 block estimates at


specified spatial locations was produced for each of the 54 data


sets. In all cases, blocks were numerically approximated by a


discrete 2x2 array of point estimates. The following are brief


descriptions of the estimators used in the comparison study. All


of the kriging estimates were made by using the Geo-EAS


geostatistical software (Englund and Sparks, 1988).


Ordinary Kriging: All semivariograms were estimated by a single


investigator who fit the models visually with the aid of Geo-EAS


graphics according to a prescribed set of instructions. The


investigator was instructed to fit a spherical model to the data.


The kriging neighborhood was defined as the 20 closest samples.


Simple Kriging: Simple Kriging requires the data mean value to be


provided by the investigator. For each of the 54 data sets, the


mean value of the data samples was calculated and provided to the


Geo-EAS program. The same search parameters were used as in the


Ordinary Kriging above.


Log Kriging: The natural logarithms of the data sets were used to
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calculate the semivariograms for the 54 data sets. They were


calculated subjectively by one person according to the same


procedures used above in Ordinary Kriging. Then Ordinary Kriging


was performed also as above to obtain the estimates in Log space.


To recover the block estimates in units of concentration, the


following six methods of backtransform were used.




and j+l are the subscripts corresponding to their ranks below and


above the estimated rank, and the subscript o corresponds to the


Radian CPS/PC: The following four estimators use the CPS/PC


software package by Radian. Block estimation is approximated by


using four point estimations, whereby the four points lie on the
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since the LL function assigned a value of "one” to any block having


a concentration value above the action level. Therefore, a block


estimate that counts very high in the MSE calculation would still


be assigned only the value “one” for the LL score.


Table II shows the surprising result that both inverse


distance squared and inverse distance estimators scored better than


any other methods according to both quality measures. The next


best estimates were obtained from the log krigings and rank


kriging, all with bias corrections. The best log kriging was


obtained by using the back transform which included the log value


and its kriging variance. All three log kriging backtransforms


with bias correction outperformed ordinary kriging, although the


difference is not statistically significant.


The rank kriging procedure without bias correction did the


poorest with respect to both LL score and MSE; however, by applying


the bias correction, the LL score was better than ordinary kriging


and only slightly worse with respect to MSE.


Ordinary Kriging produced better estimates than simple kriging


because of the non-stationarity of the data. The original data set


had large areas where the values were low and large areas where the


values were high. Simple kriging requires the mean value of the


data set to be provided, whereas ordinary kriging calculates a mean


for each individual block, based on the samples included in


estimate. The local mean appears to be more meaningful in a


situation where the global mean is not constant, i.e. , where the


intrinsic hypothesis is not valid.
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where LK is Log Kriging and the LK designations correspond to the

definitions given under Log Kriging


The eight poorest performing estimators scored percentage


increases from 20.39 to 47.07 over the true values. These


increases are significantly greater than the seven better


performing estimators. They will, therefore, not be considered as


competing methods in further studies.


Because of the closeness of the LL scores of the best few


estimators, a study was made where the action levels were changed


slightly to determine how the choice of action level affects the LL


score. First, all nine action levels were changed by a constant


percent of their original values, then only one level was changed


to note the effect. The results for the Inverse Square Distance


estimator are shown in table III. They show a linear relationship
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between the percent change in action levels and the resulting


percent change in linear loss score when all nine action levels are


increased by the same percent. Where only one action level is


changed, a percent change of action level normalized by dividing by


9 causes a similar percent change of LL score. Because the LLF is


strongly correlated to the action levels, it is safe to assume that


the differences seen between estimators is not due to the choice of


action levels.


Table III

Inverse Square Distance Estimator


Change in all Action Levels


% change LL score % change of LL score


0.0 147.1259 
0.1 147.0926 -0.023 
0.2 147.0593 -0.045 
0.5 146.9600 -0.112 
1.0 146.8167 -0.210 
5.0 145.5389 -1.079 

10.0 143.9204 -2.179 

Change in single Action Level


% change LL score % change of LL score


.74 147.4370 0.21


.74 146.7852 -0.23
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