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ABSTRACT 

GIS Systems excel at manipulating spatial information, but may not always adequately reflect 
the level of uncertainty associated with that information. Spatial simulations, conditioned to 
honor existing data as well as a variogram model, can provide both qualitative and quantitative 
evaluations of spatial uncertainty in interpolated data. Display of several alternate simulations 
can graphically illustrate the degree of uncertainty to the data interpreter. The use of alternate 
simulations as input to other models provides a mechanism for quantifying the sensitivity of 
complex systems to uncertainty or spatial variability. 

INTRODUCTION 

Spatial simulation is a geostatistical technique which has great potential as a tool for dealing with 
the various problems associated with spatial uncertainty. The method has seen only sporadic use 
since its practical implementation in the early 1970’s (Journel, 1974). It is noteworthy that the 
recent geostatistics text by Isaaks and Srivastava (1989) does not mention the technique. This 
lack of attention may have been due to the amount of computer time required - typically one or 
two orders of magnitude greater than that for kriging and contouring the same area. Fortunately, 
improved algorithms and fast desktop computers have combined to make the method feasible 
(each simulation shown below would require about 2 minutes on a 486-25 PC). 

In this paper, two spatial data layers are created by contouring irregularly spaced sample data 
sets. The layers are then combined in a typical GIS logical operation, and spatial simulation is 
used to evaluate the resulting combined uncertainty. The two sample sets are drawn from much 
larger “exhaustive” sets which are examined to assess the validity of the simulation results. 

KRIGING, SPATIAL SIMULATION, AND CONDITIONAL SIMULATION 

Kriging is a spatial regression interpolation method which provides least squares estimates at 
unsampled locations. While kriged sulfates, like other regressions, may be good estimators, they 
are also unrealistically smooth and continuous. 

Spatial simulations, conversely, fill in realistic-looking detail, but are poor estimators. Both 
kriging and simulation are controlled by variograrn models, which quantify the spatial variability 
of data. Spatial simulation refers to the generation of spatial data through the use of a random 
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number generator, constrained to honor a specified variogram model. Conditional simulation 
forces the simulated data to also honor a pre-existing set of sample data. 

A series of conditional simulations generated with different random seeds from the same initial 
data and variogram model, can be thought of as equally likely possibilities which might explain 
the available observed data. A kriged map, providing the “best” estimates at each location, is 
essentially equivalent to the average of a very large number of simulations. Conditional 
simulations can be used in a number of ways, from simple displays of the uncertainty of data, 
to much more complex sensitivity analyses where simulations are used to provide variable input 
to deterministic models. 

AN EXAMPLE


The Intersection of Two Kriged Maps


Consider two variables, V 1 and V2, which have been measured in separate sampling campaigns 
over the same area. Each has an irregular network of sample locations, as shown in Figure 1. 
From each data set, variograms were computed and modeled (Figure 2). Kriged estimates of 
each variable were then made on a regular grid of nearly 20,000 points (Figure 3). The kriging 
process has taken the original sparse measured data and generated complete area] coverage of 
estimated values. Now imagine a hypothetical decision-maker who has determined that V 1 and 
V2 have a negative synergism; though neither variable is of interest by itself, when both have 
high values there is cause for concern. With both kriged maps as data layers in a GIS 
environment, it would be a simple matter to combine them and generate a new classification map 
showing where both V1 and V2 exceed specified limits (Figure 4). 

How good is this classification map? Is it likely to be nearly perfect, mediocre, or totally wrong? 
How can the uncertainty be conveyed to the decision maker in an understandable and useful 
form? 

One way to look at spatial uncertainty is with kriging errors. Although Isaaks and Srivastava 
(1989) rightly caution against the use of the kriging standard deviation for estimating confidence 
intervals, it is nevertheless often the only measure of spatial error available. A simple example 
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of an error zone for false negatives, based on kriging standard deviations is shown in Figure 5. 
Expected error rates within this zone range from 50% near the classification boundary to 16% 
or less at the outer boundary. A similar zone could be created for false positives. 

F i g u r e  2 -- Variograms for variables VI (left) anti V2 (right). 
Observed values are shown as points; fitted models as lines. 

Figure 3 -- Maps of kriged estimates of variables VI (left) and V2

(right) . Darker shades indicate higher estimated values.


A major difficulty with this type of display is that it does not account for spatial autocorrelation 
of errors, and thus does not provide the decision-maker with a realistic picture. If, say, 20% of 
the points in the error zone were actually 
misclassified, there is no way to tell whether they 
are scattered randomly through the zone, or 
whether they are strongly clustered to form 
occasional bulges in the boundary. 

Intersections of Simulated Maps 

Figure 6 shows three conditional simulations of 
V 1 which honor both the original data in Figure 
1, and the variogram model in Figure 2. The 
only different parameter was the seed for the 
random number generator. Figure 7 shows three b a s e d  o n  t w o  k r i g e d  m a p s .  D a r  k 

a r e a  i n d i c a t e s  w h e r e  b o t h  V  I 
comparable simulations of V2.	 a n d  V 2 a r  e e s t i m a t e  d to be 

h i g h  . 
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While the kriged maps of the two variables appear to be generally similar in terms of the 
smoothness and complexity of the estimation sulfates, the simulations present a markedly 
different picture. The V2 simulations retain much of the appearance of the kriged map. The 
simulated surfaces are rougher, but still fairly continuous, and the shaded bands of the kriged 
map are generally present in the same places. By contrast, the VI simulations bear little 

Figure 5 -- Zone with hignest 
probability of false positives


resemblance to the kriged map. The simulations 
are very discontinuous, and many areas which are 
high on one simulation are low on another (e.g., 
compare the lower right-hand corners of the maps 
in Figure 6). 

These maps give us an intuitive grasp of the 
uncertainty of the estimates. If reality were to 
turn out to be like any of these simulations, it is 
obvious that the V2 kriged map would be a much 
better estimator than the V1 kriged map. 

Note that the three V 1 simulations, while they 
differ considerably in detail, they share a common 
distinctive appearance which we could call 
“texture”. The same is true for the V2 
simulations. This is basically a graphical 
illustration of the information contained in the 
variogram models, which describe the variability Figure 6 –- Three conditions 

at all spatial scales, and control the simulation simulations of VI . 

process. 
interestingly, geostatistical simulation is a method which contains fractal simulation as a subset, 
but is more flexible. According to Burroughs (1983), the slope of a variogram model plotted on 
log-log axes can be translated directly into fractal (Hausdoff-Besicovitch) dimension. A linear 
variogram model on log-log axes would therefore indicate constant fractal dimension, and lead 
to simulations with similar textures at all scales. Neither variogram model used in this example 
is linear on the log-log plot, resulting in different textures at different scales. 



I

5 

The simulations by themselves give us an idea of the spatial uncertainty of each variable. By 
combining pairs of simulations in the same way we combined the kriged maps, we can look at 
the uncertainty in our original classification. Figure 8 shows the resulting three simulated 

I 

I 

Fifure 8 - Three simulatedF i g u r e  7  - - Three conditions 
simulations of V2 . classification maps . Each is


based on a pair of conditional

Dark areas
classification maps. The decision-maker looking simulations . 

indicate where both VI and V2
at a series of such maps and realizing that reality were simulated to be high.
might be like any one of them, will have a much 
better idea whether or not the current information 
is adequate for the decision. 

Figure 9 shows the true distributions of V 1 and V2, and the true classification map based on their 
intersection. Note that the simulated maps do not perfectly represent all of the features observed 
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in the actual maps; for example, the simulations of V2 appear to be more variable than the real 
thing. In Figure 2, the type of model which was fitted to the experimental V2 variogram is one 
which implies that the data represent a continuous but relatively rough surface. The experimental 

variogram, however, is so noisy that many 
alternate models could be considered equally 
valid. An investigator with prior knowledge that 
the measured phenomenon has a continuous but 
relatively smooth surface could have used a more 
appropriate model and produced more realistic 
simulations. 

QUANTIFYING THE CONSEQUENCES OF 
UNCERTAINTY 

When visualization of uncertainty alone is not 
sufficient for the decision-maker, the simulations 
may be used to make quantitative estimates of 
errors and their consequences. In the example 
above, a sensitivity analysis could be conducted 
by assuming that decisions were to be made from 
the existing kriged classification map. Then, for 
any one of the simulations, the number of false 
positives and false negatives which would occur 
if that simulation were reality, can be computed. 
Repeating this process on say, 100 simulations 
will give both the expected numbers of errors, as 
well as best case and worst case numbers. 

If it is possible to estimate the costs associated 
with incorrect decisions, simulations can be used 
in a more elaborate procedure to determine the 
optimal amount of additional data required. A 
number of additional samples can be drawn from 
a simulated model and added to the conditioning 

F i g u r e  9  - - Actual maps of V1 data; a new kriged estimate made; and the 

(top), V2 ( cen t e r )  , a n  d benefits due to better decisions can be compared 
Classification (bottom) . to the costs of obtaining the additional data. The 

# process can be repeated with different sampling 
schemes until the most cost-effective one is found. While such an approach is computer 
intensive, it is possible on any desk-top computer system capable of serious GIS applications. 

DISCUSSION 

Both kriging and conditional simulation require the same input - sample measurements with 
spatial coordinates, and a variogram model. Kriging is becoming more frequently used in GIS 
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applications, and some standard GIS packages already have, or are adding kriging options. Thus, 
there is no inherent reason why conditional simulation should not be used as routinely for 
uncertainty analysis as kriging is used for interpolation. It is unlikely, however, that this will 
occur in the GIS environment until a substantial demand has been established. As happened in 
the case of kriging, this is likely to require the gradual accumulation of case studies in the 
literature, as well as wider availability of textbooks, training, and user-friendly software. 

REFERENCES 

Isaaks, E. H., and Srivastava, R. M., 1989, Applied Geostatistics, Oxford Univ. Press, 561 p. 

Journel, A.G, 1974, Geostatistics for conditional simulation of ore bodies. Econ. Geol. 69:5:673-
687. 

Palmer, M.W., 1988, Fractal geometry: a tool for describing spatial patterns of plant 
communities, Vegetatio 75:91-102. 

NOTICE


Although the research described in this article has been supported by the United States

Environmental Protect ion Agency, It has not been subjected to Agency review and therefore  does
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