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TEE EFFECTS OF SAMPLING DESIGN PARAMETERS ON BLOCK SELECTION 

E. Englund, D. Weber, N. Leviant 

Cost-effective spatial sampling strategy requires balancing 

sampling costs with the expected benefits from improved 

information. A contaminated site model was used to test various 

sampling schemes, which were evaluated based on the quality of 

block selections from interpolated values. Different numbers of 

samples, different sampling patterns, and two levels of sampling 

error were used. The number of samples was the only one of these 

factors observed to be significant. Modest levels of bias (<20%) 

had minimal impact; the effects of higher levels of bias varied 

with the selection level concentration. 
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INTRODUCTION 

The problem of designing a spatial soil sampling plan at a 

contaminated site is of considerable economic interest. The 

specific question addressed in this paper is that of block 

selection, that is, the identification of sub-areas of a site which 

require remedial action. Although the economic factors differ, the 

problem is analogous to that of grade control in mining operations. 

The effects of three important parameters in sampling design 

have been investigated through a factorial experiment on a 



computerized site model. The parameters are sample size, sample 

pattern, and sample error. The model exhibits realistic 

characteristics such as high positive skewness, discontinuity, and 

a spatial correlation structure. The objective is to obtain 

information on the relative importance of the design parameters 

under realistic conditions, in order to prepare practical 

guidelines for cost-effective sampling programs. 

THE SITE MODEL 

To test the effects of different sampling parameters, we used 

a surrogate "site model" data set. We chose a subset of the 

larger Walker Lake data set (Isaaks and Srivastava, 1989) which was 

derived from a digital elevation data, with elevation variance used 

to simulate soil contamination. The subset of the Walker Lake data 

set used in this study contains 19,800 data in a 110x180 array 

(Figure 1), and has been described in detail elsewhere (Englund, 

1990). 

The site model was subdivided into 198 square blocks, each 

containing 100 data values (Figure 2). The blocks, for which 

average true values were computed, represent units of a size 

assumed to be practical for remediation. 

SAMPLING DESIGNS 

The experimental approach taken to evaluate the different 

sampling design parameters is a 3x3x2 factorial design, with three 



sample sizes, three sample patterns, and two levels of sample 

error. Combinations of these lead to 18 different sample designs, 

each of which was repeated three times for a total of 54 samplings. 

Sample size simply refers to the number of samples to be 

collected in a given sampling. Previous work with the site model 

suggested that sample sizes of 100, 200, and 300 would be 

reasonable for this study; the actual sizes of 104, 198, and 308 

reflect adjustments required to accommodate the regular grid 

pattern. 

The three sample patterns used were simple random, cellular 

stratified, and regular grid (Figure 3). Cellular stratified 

sampling involves selecting a randomly located sample within each 

grid cell. 

Sample error represents the cumulative total of all possible 

error components included in the collection, handling, preparation, 

and analysis of a sample. Two levels of sample error were 

considered - a base level at zero error, and a high level at a 

relative standard deviation (RSD) of 32 percent. RSD is given by 

number from minus to plus infinity randomly selected to assign the 

error. Errors, therefore, were assumed to be normally distributed, 

with a mean equal to zero. 

Bias was not included as a part of the factorial design. The 

effects of constant bias were evaluated later by adding the bias to 
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the kriged estimates and recalculating the decision quality 

measures. 

The sample value assigned to any selected sample location was 

the value of the nearest of the 19,800 values plus the randomly 

generated error term when required. 

BLOCK ESTIMATES 

Mean concentration values were estimated for each of the 198 

blocks by the method of ordinary kriging with Geo-EAS software 

(Englund and Sparks, 1988). The kriging neighborhood was defined 

as the 20 closest samples. Variogram model functions required for 

kriging were estimated subjectively from the sample data; to 

minimize this as a source of variability in the study, all 54 

models were estimated by one person according to a standardized 

procedure. 

MEASURES OF QUALITY 

Each kriging estimation from a sampling produced 198 block 

estimates which were compared to the corresponding true block 

values. To compare one set of estimates with another, it was 

necessary to reduce the set of 198 block estimation errors to a 

single quality statistic. A variety of such measures were 

described by Englund (1989, 1990). They include statistical 

measures such as mean and standard deviation of the errors, 

decision quality measures such as the numbers of false positives 

and negatives, and loss functions which quantify the economic 
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consequences of selection decisions. The most appropriate quality 

measure depends on the nature of the decision to be made. In this 

paper, two measures of quality, a linear loss score and the mean 

square error were used. 

Linear Loss Score: In this study, the primary evaluation statistic 

is the linear loss score which is calculated from a linear loss 

function. A linear loss function was used because it is simple and 

economically based. The underlying assumption is that society pays 

a cost for all contaminated areas, either as a remediation cost for 

each block cleaned, or as a less easily defined group of costs 

(health effects, ecological damage, etc.) for each block which 

remains contaminated. In the absence of good models for the latter 

costs, we assumed their sum to be a linear function of 

concentration, while the remediation cost was assumed to be 

constant. 

To balance these costs, we define an action level (a decision 

variable) for remediation as society's best estimate of the 

breakeven point, i.e., where the cost of cleaning a block is 

exactly equal to the cost of not cleaning it. We define loss in 

units of "block remediation cost" and normalize the linear loss 

function to the value "one" at the action level. The linear loss 

function is divided into four categories as shown in Table 1. When 

a block's estimated concentration is greater than the action level, 

it is assigned the loss 1.0; when less than the action level, it is 

assigned the loss "true value/action level". Note that the 
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decision is made based on the estimated concentration, but the loss 

in the latter case is determined by the true concentration of the 

block. One can see from Table 1 that any incorrect decision will 

result in a greater cost to society than the true cost. 

For a block of any concentration, the loss associated with a 

correct remediation decision is found from lines 1 and 2: the cost 

of an incorrect decision is found from lines three and four. For 

a given action level and data set, the sum of the 198 block costs, 

excluding sampling costs, would be the total cost for the site. 

The optimal sampling design would be the one which minimizes total 

c o s t  , including the sampling costs. 

Table 1.

Linear Loss Function


True Assigned True 
Line Decision Estimate Value Linear Loss Linear Loss 

1 Correct > AL > AL 1 1 
2 Correct < AL < AL TV/AL (<1) TV/AL (<l) 
3 Incorrect > AL < AL 1 TV/AL (<l) 
4 Incorrect < AL > AL TV/AL (>l) 1 

AL and TV represent Action Level and True Value, respectively. 

In order to minimize the effect of the choice of action level 

on the total loss score, we have computed the total cost (excluding 

sampling costs) for each set of estimates at nine action levels. 

The action levels correspond to the decile class bounds on the true 

block values. In effect, the lowest action level treats the site 

model as if it were relatively highly contaminated; that is, 90% of 

the blocks are actually above the action level. Conversely, with 
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the highest action level, only 10% of the blocks should be selected 

for remediation. The final linear loss score (LLS) was obtained by 

averaging total loss over the nine action levels, then further 

averaging over the 54 data sets as follows. 

Linear Loss Score 

This LLS was compared with the ideal case where the score was 

calculated by using the true block values. 

To illustrate this evaluation, figure 4 presents a scatter 

plot of one set of estimates for data subset #l in which the 198 

true and estimated block values are plotted on the x and y axes, 

respectively, and the action level is 300 units. 

Correct Decisions: The blocks falling in the upper right 

(Table 1, line 1) and lower left (Table 1, line 2) quadrants 

represent correct decisions, i.e., the decision (and hence, 

the cost) would be the same based on either the estimate or 

the true values. All blocks in the upper right quadrant 

receive scores of "1" and those in the lower left quadrant 

receive scores equal to their true values divided by 300 (<l). 

Incorrect Decisions: The upper left quadrant represents the 

false positives (Table 1, line 3) where the estimates are 

greater than the action level, but the true values are less 

than the action level. These blocks receive scores of "l", 

which are greater than those obtained in the ideal case (<l). 

7




The lower right quadrant represents the false negatives (Table 

1, line 4) where the estimates are less than the action level, 

but the true values are greater. These blocks receive scores 

equal to their true values divided by 300, but since they are 

greater than 300, their scores are greater than "l". Since 

the loss based on the true values is never greater than "l", 

these linear loss scores also will be greater than in the 

ideal case. 

Therefore, for both false negatives and false positives, the 

losses are greater than those based on the true values. The 

desired objective for an estimator is to achieve a score equal to 

that obtained in the ideal case. 

Mean Square Error: The second quality measure is the mean squared 

error (MSE), averaged over all 198 blocks and all 54 sample sets, 

which is 

MSE- ` 

where Zij and Ti are the estimates and true values for the blocks, 

and i and j represent the blocks and data sets, respectively. MSE 

is a purer statistic than the LLS because it does not depend on the 

action level (the decision variable). Furthermore, the correlation 

between the estimator and the two statistics might not be the same 

because the linear loss function assigns the same value to all 

blocks that are selected for removal, i.e., those for which the 
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block estimate is greater than the action level. 

RESULTS 

Effects of Sample Size, Pattern, and Error 

Figure 5 and table II show the results of the factorial design 

study according to the linear loss score. Each of the three 

groups, i.e., sample size, pattern, and error, contains all 54 

results. Both presentations give the means and standard error of 

the means for each group. Figure 5 shows the means and the range 

representing plus and minus two standard errors. We make the 

following interesting observations: 

By examining the mean values of the LLS and MSE, one sees that 

the number of samples is clearly the most important of the sampling 

design factors. The decreases in LLS as sample size increases are 

significant compared to the standard error in all cases. 

Sample pattern did not have a significant effect on the 

quality of selection decisions. Geostatistical theory (Olea, 1984; 

Yfantis et. al., 1987) predicts that regular grids should provide 

better estimates than random samples, and that the "randomized 

grid" used in the cellular stratified sampling should be 

intermediate. The observed results are consistent with this 

theory, but the decreases in the means from random to regular grids 

are not statistically significant. 
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Table II 
Average Values of Variable Groups 

DESIGN LINEAR LOSS SCORE MEAN SQUARE ERROR 
FACTORS Mean sd(Mean) Mean sd(Mean) 

Sample Size
104 
198 
308 

159.6 
149.5 
143.9 

1.26 
0.97 
0.77 

12,839
9,389
7,264 

636 
623 
334 

Pattern
Random 
Cell. Strat. 
Regular 

151.9 
150.8 
150.3 

1.63 
1.81 
2.02 

10,661
9,718
9,113 

799 
748 
719 

Error 
No error 
33% RSD 

150.8 
151.2 

1.31 
1.66 

9,654
10,007 

607 
649 

---------------__-------------------------------------------
sd(Mean) is the standard error (standard deviation of the mean) 

Somewhat surprisingly, the results show no statistically 

significant difference between samples with no error and those with 

an error of 32% RSD. A possible explanation lies in the fact that 

even with the high relative errors, the variance of the 

distribution of absolute errors is less than 10% of the total 

population variance. This is consistent with common rules-of-thumb 

for good sampling. In addition, the variogram of the exhaustive 

site model (by using all 19,800 samples) indicates that 

approximately one-half the total population variance is already 

present at the scale of adjacent data points. This "spatial noise" 

is only increased about 20% by the additional sampling error. 

It is also interesting and perhaps somewhat sobering to note 

that there is overlap in the results obtained with 104 and 308 

samples. This results from variance unexplained by the sampling 
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design parameters. The probable source is simply luck-of-the-draw 

in the sampling process. This illustrates the point that using an 

optimal sampling design will not guarantee the best (or even a 

good) result in any specific case. 

Figure 6 illustrates that observations similar to those made 

from Figure 5 can also be made when quality is measured by the more 

traditional mean square errors. 

Figures 7-9 provide an alternate view of the results. Here we 

see the mean loss for each factor plotted against the decile action 

levels. For reference, we also plot the losses obtained by 

selecting all of the blocks, none of the blocks, and for perfect 

selection. Note that for action levels near the tails of the 

distribution, block selection does not appear to have an advantage 

over the all-or-nothing approach, and in some cases, may be worse. 

In Figure 7, the sample number curves show that the incremental 

loss reduction due to increased sampling is significantly greater 

for action levels near the median. 

Effects of Sampling Bias 

If we were to multiply a variable in a data set by a constant 

k, and then compute variograms and kriged estimates from the 

modified variable, all of the kriged estimates would be multiplied 

by k. We can, therefore, evaluate the effect of a constant 

multiplicative bias by multiplying the kriged estimates by the 

constant and recomputing the quality measures. We used a 

computationally simpler equivalent: biasing the selection level 
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relative to the nominal action level. For example, given an action 

level of 100, selecting all blocks greater than 90.91 gives the 

same loss function score as multiplying all of the kriged estimates 

by 1.1 (+lO% bias). 

Figure 10 shows linear loss as a function of bias expressed in 

percent. Each point is the mean loss for all 54 cases averaged 

over the 9 decile selection levels, where each selection level was 

multiplied by the bias factor. Note that the minimum of this curve 

occurs at zero bias, and that it is relatively flat near the 

minimum. 

The bias relationship is much more complex when we examine the 

curves for individual action levels, as illustrated in Figure 11. 

The average curve is only representative of the mid-range action 

level curves. Action levels near the tails become highly 

asymmetrical; at the extremes, the minimum loss may occur at 

significant levels of bias. 

DISCUSSION 

These results should be interpreted with caution, as they can 

be generalized to only one class of sampling problem, namely highly 

skewed (approximately log-normal) populations with well defined 

spatial correlation and a high degree of random variability over 

short distances. The model represents only sites which have been 

almost entirely contaminated to some degree, as opposed to sites 

which have discrete, localized "hot spots" surrounded by clean 

areas. Nevertheless, there are significant practical implications 
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for sampling and decision-making in this type of situation. 

The relative insensitivity to moderate amounts of bias and 

sampling error strongly supports the use of field screening and 

portable analytical methods, if they are significantly less 

expensive than conventional sample collection and laboratory 

analysis. In addition, the relatively broad zone of acceptable 

data quality provides considerable flexibility in combining data 

from different sources of varying quality. 

It is current practice at some sites to compute confidence 

limits around block concentration estimates, and to select for 

remediation all blocks whose upper 95% bound exceeds the action 

level. This is equivalent to positively biased sampling, and is 

not optimal except when the action level is near the low tail of 

the distribution. At the other extreme, this bias would be 

strongly counterproductive. 

The potential benefit from sampling and block selection, as 

opposed to making an all-or-nothing decision about the entire site, 

is greatest when the action level is near the mean of the 

distribution. As the action level approaches either end of the 

distribution, the benefit approaches zero. 

The relatively small effect of sample pattern on the results 

suggests that for practical purposes, the particular sample pattern 

selected should be a matter of convenience. Usually, it is easier 

to sample on a regular grid; fortunately this provides results at 

least as good as the other patterns. 

In a previous study (Englund, 1990) a single data set of 126 
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samples drawn from the site model was interpolated by 12 different 

investigators, 10 of whom used some form of kriging. Linear loss 

scores for the 10, computed as in the current study, showed a 12

point range, from 144 to 156. This is the same order of magnitude 

as the difference between the means of the 104-sample and 308

sample cases, suggesting that optimization of sampling and 

optimization of interpolation are economic problems of comparable 

importance. 
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Figure 1. Shaded map of the site model showing 19,800 points. 

Figure 2. Shaded map of site model, showing 198 true block 

means. 





Figure 5. Effects of sample size, pattern, and error as measured
by the Linear Loss Score. The horizontal and vertical bars 
represent the means and ranges including plus and minus two 
standard errors, respectively. 



Figure 8. Mean loss for three sample patterns, plotted vs. action
level. 



Figure 10. Effects of sample bias on block selection quality;
linear loss score (averaged over all action levels). 



Figure 11. Effects of sample bias on block selection quality; 
linear loss for each action level. Percents less than 100 
simulate positive bias and percents more than 100 simulate 
negative bias. 
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