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TEE EFFECTS OF SAMPLING DESI GN PARAMETERS ON BLOCK SELECTI ON

E. Englund, D. Weber, N Leviant

Cost-effective spatial sanpling strategy requires balancing
sanpling costs wth the expected benefits from inproved
information. A contaminated site nodel was used to test various
sanpl i ng schenmes, which were evaluated based on the quality of
bl ock selections from interpolated values. Different nunbers of
sanples, different sanpling patterns, and two |evels of sanpling
error were used. The number of sanples was the only one of these
factors observed to be significant. Modest |evels of bias (<20%
had mi nimal inpact; the effects of higher levels of bias varied

wth the selection |evel concentration.
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INTRODUCTION

The problem of designing a spatial soil sanpling plan at a
contanminated site is of considerable economic interest. The
specific question addressed in this paper is that of block
selection, that is, the identification of sub-areas of a site which
require renmedial action. A though the economic factors differ, the
problem is analogous to that of grade control in mning operations.

The effects of three inportant paraneters in sanpling design

have been investigated through a factorial experinment on a



conputerized site nodel. The parameters are sanple size, sanple
pattern, and sanple error. The nodel exhibits realistic
characteristics such as high positive skewness, discontinuity, and
a spatial correlation structure. The objective is to obtain
information on the relative inportance of the design paraneters
under realistic <conditions, in order to prepare practica

gui delines for cost-effective sanpling prograns.

THE SI TE MODEL

To test the effects of different sanpling paraneters, we used
a surrogate "site nodel" data set. W chose a subset of the
| arger Wl ker Lake data set (Isaaks and Srivastava, 1989) which was
derived froma digital elevation data, with elevation variance used
to sinulate soil contanination. The subset of the Wl ker Lake data
set used in this study contains 19,800 data in a 110x180 array
(Figure 1), and has been described in detail elsewhere (Englund,
1990) .

The site nodel was subdivided into 198 square bl ocks, each
containing 100 data values (Figure 2). The bl ocks, for which
average true values were conputed, represent units of a size

assuned to be practical for renediation.

SAMPLI NG DESI GNS
The experinental approach taken to evaluate the different

sanpling design paranmeters is a 3x3x2 factorial design, with three



sanpl e sizes, three sanple patterns, and two |evels of sanple
error. Conbinations of these lead to 18 different sanple designs,
each of which was repeated three tines for a total of 54 sanplings.

Sanple size sinply refers to the nunber of sanples to be
collected in a given sanpling. Previous work with the site nodel
suggested that sanple sizes of 100, 200, and 300 would be
reasonable for this study; the actual sizes of 104, 198, and 308
reflect adjustnments required to accommodate the regular grid
pattern.

The three sanple patterns used were sinple random cellular
stratified, and regular grid (Figure 3). Cellular stratified
sanpling involves selecting a randonmly |ocated sanple within each
grid cell

Sanple error represents the cunmulative total of all possible
error conponents included in the collection, handling, preparation
and analysis of a sanple. Two | evels of sanple error were
considered - a base level at zero error, and a high level at a

rel ative standard deviation (RSD) of 32 percent. RSD is given by

o 5]
error(x;p,0?) = ——el 27
V2n

where p is the mean of the sample set, o is 0.32u, and x is the
nunmber frommnus to plus infinity randomMy selected to assign the
error. FErrors, therefore, were assuned to be nornmally distributed,
wth a mean equal to zero.
Bi as was not included as a part of the factorial design. The
effects of constant bias were evaluated |ater by adding the bias to
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the kriged estimates and recal culating the decision quality
measur es.

The sanpl e val ue assigned to any sel ected sanple |ocation was
the value of the nearest of the 19,800 values plus the randomy

generated error term when required.

BLOCK ESTI MATES

Mean concentration values were estinmated for each of the 198
bl ocks by the nmethod of ordinary kriging with Geo-EAS software
(Engl und and Sparks, 1988). The kriging nei ghborhood was defined
as the 20 closest sanples. Variogram nodel functions required for
kriging were estinmated subjectively fromthe sanple data; to
mnimze this as a source of variability in the study, all 54
nodel s were estimated by one person according to a standardi zed

procedure.

MEASURES OF QUALITY

Each kriging estimation from a sanpling produced 198 bl ock
estimates which were conpared to the corresponding true bl ock
val ues. To conpare one set of estimates with another, it was
necessary to reduce the set of 198 block estimation errors to a
single quality statistic. A variety of such neasures were
described by Englund (1989, 1990). They include statistica
measures such as nmean and standard deviation of the errors,
decision quality neasures such as the nunbers of false positives

and negatives, and loss functions which quantify the economc



consequences of selection decisions. The nost appropriate quality
measure depends on the nature of the decision to be made. In this
paper, two measures of quality, a linear |oss score and the nmean

square error were used.

Li near Loss Score: In this study, the primary evaluation statistic
is the linear |oss score which is calculated froma linear |oss
function. A linear loss function was used because it is sinple and
econom cal |y based. The underlying assunption is that society pays
a cost for all contam nated areas, either as a renediation cost for
each block cleaned, or as a less easily defined group of costs
(health effects, ecological danage, etc.) for each bl ock which
remains contam nated. In the absence of good nodels for the latter
costs, we assuned their sum to be a Ilinear function of
concentration, while the renediation cost was assuned to be
const ant.

To bal ance these costs, we define an action |evel (a decision
variable) for renediation as society's best estinmate of the
breakeven point, i.e., where the cost of cleaning a block is
exactly equal to the cost of not cleaning it. W define loss in
units of "block renmediation cost”" and normalize the Ilinear |oss

function to the value "one" at the action level. The linear |oss
function is divided into four categories as shown in Table 1. Wen
a block's estimated concentration is greater than the action |evel,
it is assigned the loss 1.0; when less than the action level, it is

assigned the loss "true value/action |evel". Note that the



decision is made based on the estimated concentration, but the |oss
in the latter case is determned by the true concentration of the
block. One can see from Table 1 that any incorrect decision wll
result in a greater cost to society than the true cost.

For a Dblock of any concentration, the |oss associated with a
correct remediation decision is found fromlines 1 and 2: the cost
of an incorrect decision is found fromlines three and four. For
a given action |level and data set, the sum of the 198 block costs,
excluding sanpling costs, would be the total cost for the site.
The optimal sanpling design would be the one which mnimzes total

cost, Including the sanpling costs.

Tabl e 1.
Li near Loss Function
True Assi gned True

Line Decision Estimate Value L[???f_}??? _____ %[???[_PP??____
1 Correct > AL > AL 1 1

2 Correct < AL < AL TVIAL (<1) TVIAL (<I)

3 Incorrect > AL < AL 1 TVIAL (<I)

4 Incorrect < AL > AL TVIAL (>]) 1

AL and TV represent Action Level and True Val ue, respectively.

In order to mnimze the effect of the choice of action |evel
on the total |oss score, we have conputed the total cost (excluding
sanmpling costs) for each set of estinmates at nine action |evels.
The action levels correspond to the decile class bounds on the true
bl ock values. In effect, the |lowest action |level treats the site
model as if it were relatively highly contam nated; that is, 90% of
the blocks are actually above the action level. Conversely, with
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the highest action level, only 10% of the blocks should be selected
for remediation. The final linear loss score (LLS) was obtained by
averaging total |oss over the nine action |levels, then further

averagi ng over the 54 data sets as foll ows.

54 9 198

. 1 1

Linear Loss Score - {-Q—E (E Lossijk)
i-1}" JF=1\k-1

This LLS was conpared with the ideal case where the score was
calcul ated by using the true block val ues.

To illustrate this evaluation, figure 4 presents a scatter
pl ot of one set of estimates for data subset # in which the 198
true and estimated bl ock values are plotted on the x and y axes,

respectively, and the action level is 300 units.

Correct Decisions: The blocks falling in the upper right
(Table 1, line 1) and lower left (Table 1, line 2) quadrants
represent correct decisions, i.e., the decision (and hence,
the cost) would be the sane based on either the estinmate or
the true val ues. Al'l blocks in the upper right quadrant
recei ve scores of "1" and those in the lower |eft quadrant

receive scores equal to their true values divided by 300 (<I).

I ncorrect Decisions: The upper left quadrant represents the
fal se positives (Table 1, line 3) where the estimates are
greater than the action level, but the true values are |ess
than the action level. These blocks receive scores of "I",
whi ch are greater than those obtained in the ideal case (<I).
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The lower right quadrant represents the false negatives (Table
1, line 4) where the estimates are less than the action |evel,
but the true values are greater. These bl ocks receive scores
equal to their true values divided by 300, but since they are
greater than 300, their scores are greater than "I". Since
the | oss based on the true values is never greater than "I",
these linear |oss scores also will be greater than in the

i deal case.

Therefore, for both false negatives and fal se positives, the
| osses are greater than those based on the true val ues. The
desired objective for an estimator is to achieve a score equal to

that obtained in the ideal case.

Mean Square Error: The second quality neasure is the nean squared
error (MSE), averaged over all 198 bl ocks and all 54 sanple sets,
which is

54

198
1 1 _m2
MSE- Hj_l{mz(zﬁ T))

i=1

where Z; and T; are the estimates and true values for the bl ocks,
and i and j represent the blocks and data sets, respectively. MSE
IS a purer statistic than the LLS because it does not depend on the
action level (the decision variable). Furthernore, the correlation
between the estimator and the two statistics mght not be the same
because the linear |oss function assigns the sane value to al

bl ocks that are selected for renoval, i.e., those for which the
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bl ock estimate is greater than the action |evel.

RESULTS
Effects of Sanple Size, Pattern, and Error

Figure 5 and table Il show the results of the factorial design
study according to the linear |oss score. Each of the three
groups, i.e., sanple size, pattern, and error, contains all 54

results. Both presentations give the nmeans and standard error of
the neans for each group. Figure 5 shows the means and the range
representing plus and m nus two standard errors. Ve nmake the
follow ng interesting observations:

By exam ning the nean values of the LLS and MSE, one sees that
the nunber of sanples is clearly the nost inportant of the sanpling
design factors. The decreases in LLS as sanple size increases are
significant conpared to the standard error in all cases.

Sampl e pattern did not have a significant effect on the
quality of selection decisions. GCeostatistical theory (O ea, 1984,
Yfantis et. al., 1987) predicts that regular grids should provide
better estimates than random sanples, and that the "random zed
grid" wused in the cellular stratified sanpling should be
I nt er medi at e. The observed results are consistent with this
theory, but the decreases in the nmeans from randomto regular grids

are not statistically significant.



Table Il
Average Val ues of Variable G oups

DESI GN LI NEAR LOSS SCORE MEAN SQUARE ERROR
FACTORS Mean sd( Mean) Mean sd( Mean)
Sanple Size

104 159. 6 1.26 12, 839 636

198 149.5 0.97 9, 389 623

308 143.9 0.77 7,264 334
Pattern

Random 151.9 1.63 10, 661 799

Cell. Strat. 150. 8 1.81 9,718 748

Regul ar 150. 3 2.02 9,113 719
Error

No error 150. 8 1.31 9, 654 607

33% RSD 151.2 1.66 10, 007 649

sd(Mean) is the standard error (standard deviation of the mnean)

Sonmewhat surprisingly, the results show no statistically
significant difference between samples with no error and those wth
an error of 32% RSD. A possible explanation lies in the fact that
even with the high relative errors, the variance of the
distribution of absolute errors is less than 10% of the total
popul ation variance. This is consistent with comon rul es-of-thunb
for good sanpling. In addition, the variogram of the exhaustive
site nodel (by using all 19,800 sanples) indicates that
approxi mately one-half the total population variance is already
present at the scale of adjacent data points. This "spatial noise"
is only increased about 20% by the additional sanpling error.

It is also interesting and perhaps somewhat sobering to note
that there is overlap in the results obtained with 104 and 308

sanpl es. This results fromvariance unexpl ai ned by the sanpling
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design paraneters. The probable source is sinply |uck-of-the-draw
in the sanpling process. This illustrates the point that using an
optimal sanpling design wll not guarantee the best (or even a
good) result in any specific case.

Figure 6 illustrates that observations simlar to those nade
fromFigure 5 can also be made when quality is measured by the nore
tradi tional nmean square errors.

Figures 7-9 provide an alternate view of the results. Here we
see the nean loss for each factor plotted against the decile action
| evel s. For reference, we also plot the |osses obtained by
selecting all of the blocks, none of the blocks, and for perfect
sel ection. Note that for action |levels near the tails of the
distribution, block selection does not appear to have an advantage
over the all-or-nothing approach, and in some cases, may be worse.
In Figure 7, the sanple number curves show that the incrementa
| oss reduction due to increased sanpling is significantly greater

for action |evels near the median.

Effects of Sanpling Bias
If we were to nultiply a variable in a data set by a constant
k, and then conpute variograms and kriged estimates from the
nodified variable, all of the kriged estimtes would be nultiplied
by k. We can, therefore, evaluate the effect of a constant
multiplicative bias by multiplying the kriged estimtes by the
constant and reconputing the quality neasures. W used a

conputationally sinpler equivalent: biasing the selection |evel
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relative to the nominal action level. For exanple, given an action
| evel of 100, selecting all blocks greater than 90.91 gives the
same |oss function score as multiplying all of the kriged estinates
by 1.1 (+l O% bi as).

Figure 10 shows |inear |oss as a function of bias expressed in
percent. Each point is the nean loss for all 54 cases averaged
over the 9 decile selection levels, where each selection |evel was
multiplied by the bias factor. Note that the mninum of this curve
occurs at zero bias, and that it is relatively flat near the
m ni mum

The bias relationship is nuch nore conplex when we exam ne the
curves for individual action levels, as illustrated in Figure 11.
The average curve is only representative of the md-range action
| evel curves. Action levels near the tails becone highly
asymetrical; at the extrenes, the mninmum]l|oss nmay occur at

significant |levels of bias.

DI SCUSSI ON

These results should be interpreted with caution, as they can
be generalized to only one class of sanpling problem nanely highly
skewed (approxinmately log-normal) populations with well defined
spatial correlation and a high degree of randomvariability over
short distances. The nodel represents only sites which have been
alnost entirely contam nated to sone degree, as opposed to sites
whi ch have discrete, localized "hot spots" surrounded by clean

areas. Nevertheless, there are significant practical inplications
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for sanpling and decision-nmaking in this type of situation.

The relative insensitivity to noderate anounts of bias and
sanpling error strongly supports the use of field screening and
portabl e analytical nethods, if they are significantly Iess
expensi ve than conventional sanple collection and | aboratory
anal ysi s. In addition, the relatively broad zone of acceptable
data quality provides considerable flexibility in conbining data
fromdifferent sources of varying quality.

It is current practice at sonme sites to conpute confidence
limts around bl ock concentration estinmates, and to select for
remedi ation all blocks whose upper 95% bound exceeds the action
| evel . This is equivalent to positively biased sanpling, and is
not optinmal except when the action level is near the low tail of
the distribution. At the other extrenme, this bias would be
strongly counterproductive.

The potential benefit from sanpling and bl ock sel ection, as
opposed to making an all-or-nothing decision about the entire site,
is greatest when the action level is near the nmean of the
di stribution. As the action level approaches either end of the
distribution, the benefit approaches zero.

The relatively small effect of sanple pattern on the results
suggests that for practical purposes, the particular sanple pattern
sel ected should be a matter of convenience. Usually, it is easier
to sanple on a regular grid; fortunately this provides results at
| east as good as the other patterns.

In a previous study (Englund, 1990) a single data set of 126
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sanples drawn fromthe site nodel was interpolated by 12 different
investigators, 10 of whom used some form of kriging. Linear |oss
scores for the 10, conputed as in the current study, showed a 12-
point range, from 144 to 156. This is the same order of nagnitude
as the difference between the neans of the 104-sanple and 308-
sanpl e cases, suggesting that optimzation of sanpling and
optim zation of interpolation are econom c problenms of conparable

| nport ance.
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Figure 1. Shaded map of the site nmodel show ng 19,800 points.

Figure 2. Shaded map of site nodel, showing 198 true bl ock

means.
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and regular grid (right) sample patterns.
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Figure 5. Effects of sanple size, pattern, and error as neasured
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standard errors, respectively.
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Figure 9. Linear loss for two error levels plotted vs. action
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Figure 11 Effects of samle bias On blgck selection quality,
linear loss for each action level. 2" 020" 100 simul ate
sinul ate positive bias and percents
negative bias.
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