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 VARIANCE OF GEOSTATISTICIANS


Evan J. Englund


Different individuals will take different approaches to the


analysis and interpretation of data. This study attempted to


quantify the effect of such individual differences on the quality


of geostatistical spatial estimates. Identical spatial data sets


were sent to twelve investigators, who independently analyzed the


data and produced spatial interpolations. The results varied


considerably. Differences in the interpolations could be


attributed to differences in choice of methodology, differences in


data interpretation, and in a few cases, errors in procedure. The


potential differences in economic and societal costs between


decisions based on "good" vs. "bad" interpolations warrant a


systematic approach to the identification and testing of


interpolation methods.
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INTRODUCTION


Many types of environmental problems involve the collection and


interpretation of spatial data. These may range from local site


assessments to regional, or even global investigations. A common


factor is spatial interpolation; that is, measurements are made at


a number of sample locations and used to estimate values at nearby


unsampled points.


While some spatial interpolations are used only for identifying


trends or patterns in the data, in many cases interpolated


estimates are used directly for making decisions. For example, a


contour line drawn at a lead concentration of 1000 ppm may define


the portion of a site to be remediated. In such cases, the


quality of decisions based on spatial interpolations or estimates


is directly related to the quality of the estimates. The quality


of the estimates, in turn, depends on the data and the


interpolation process.


A variety of spatial interpolation methods are available, ranging


from completely subjective manual contouring of data, to


completely automated “black box” interpolation by computer. Some


of the more commonly used interpolation methods include:




- Nearest neighbor (Polygon method)

- Inverse distance weighted averaging

- Splines

- Polynomial trend surfaces

- Kriging

Most of these are actually classes of methods, with a number of


variations available to the investigator.


The spatial interpolation process introduces sources of


variability which involve subjective judgement on the part of the


investigator. These include:


- Choice of interpolation method

- Deletion of outliers

- Data transforms

- Interpretation of spatial correlation structure

For many situations the U. S. Environmental Protection Agency


(EPA) provides extensive guidance aimed at assuring data quality,


particularly in the areas of equipment and procedures for


sampling, sample preparation, and chemical analysis. At present,
,


however, there is little guidance relating to the selection and


effective use of interpolation procedures. The development of


performance-based guidelines would require a costly and time­


3




consuming effort with carefully designed experiments. Before


embarking on such an effort, it makes sense to ask whether it is


necessary; that is the basic objective of this study. Will


estimation procedures performed by different individuals exhibit


significant differences in results? Will the economic


consequences of differences in decision quality warrant the


detailed testing and evaluation necessary to prepare appropriate


guidance?


Previous Studies of Spatial Interpolation Methods


Most studies of different interpolation methods have been done in


the mining industry. Before kriging became widely known in the


United States, Hewlett (1964) compared two interpolation methods


and a statistical approach to computing ore reserves for the


Silver Bell mine in Arizona. Knudsen, et. al. (1978), and Raymond


(1979,198?) compared kriging with the polygonal and inverse


distance methods. More recently (Verly and Sullivan, 1984) ,


investigators have begun comparing the various types of kriging.




Mining production records and detailed production sampling do not


provide truly exhaustive information for comparison studies. This


difficulty has lead investigators such as Brooker (1978) to


compute large simulated deposits for use in comparison studies.


Dahlberg (1972) explored variability in manual contouring by


having a twelve-point data set contoured by thirty geologists.


Dahlberg compared the manual results with a computer-drawn contour


map, and suggested that computer contouring provided an unbiased


view of the data which could measure the degree of subjective bias


in manual contours.


EXPERIMENTAL PROCEDURES


Approach


A sample data set was drawn from each of two large, “exhaustive”


spatial data sets. The same sets of data were sent to twelve
#


independent investigators, who were asked to provide


“geostatistical” estimates for specified sets of cells, or blocks,


covering the sampled areas. Objectives of the study were:
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etc.;”

To obtain qualitative information on the range of


methodology employed by the investigators.


- To quantify the variability of the estimates.

- To quantify the variability of certain measures of the

quality of selection decisions made from the estimates.


The study was exploratory in scope and essentially uncontrolled.


Investigators were not given information about the nature of the


areas being estimated, other than sample locations and values.


They were requested to provide "geostatistical" estimates, and


were required to have prior geostatistical experience. However,


kriging was not specifically required, leaving room for


investigators to use alternative methods. Within the general


category of geostatistical estimation, the investigators were free


to apply any combination of techniques for eliminating outliers,


transforming data, stratifying data, evaluating spatial structure,


and computing the interpolated estimates.


The investigators were informed that they were participating in a


comparison study based on an exhaustively known data set; that a


variety of quality measures would be used to evaluate the results,


including “mean and variance of the error distribution, false


positives at various action levels, and that results would
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be published, identified only by code number with participants


acknowledged alphabetically. Investigators were unaware of the


true values for the blocks.


The Walker Lake Data Set


The data sets used in this study are based on the “Walker Lake”


data set, described in detail by Srivastava (1988). The Walker


Lake set contains 78,000 values in a 260 x 300 array (Figure 1).


The data are highly positively skewed, discontinuous, and exhibit


a spatial correlation structure.


Area A


Two rectangular subsets of the Walker Lake data set were prepared


as site surrogates. Area A, in the northeast portion of Walker


Lake, includes 110 rows and 180 columns, for a total of 19,800


values (Figure 2) . Scaling, multiplication and inversion served to


disguise the data set; an investigator with prior knowledge of the


Walker Lake set would not easily identify Area A from a relatively


small set of samples. The histogram in Figure 3, of 3000 values


drawn at random from the Area A data set, illustrates the highly


skewed nature of the data distribution.




Four directional variogram and the average omnidirectional


variogram in Figure 4 illustrate the spatial correlation structure


of Area A. The variogram are computed from all the possible pairs


of values from the Area A data set. They show a small but distinct


anisotropy consistent with the observed pattern in Figure 2.


Area A has been subdivided into 198 square blocks, each containing


100 data values. The true average block values were computed from


the 100 contained data values, and will be compared with


corresponding block estimates.


Area B


The Area B data set (Figure 5) in the southeast portion of the


Walker Lake area, contains 26,600 values in 190 rows and 140


columns. The values were derived by taking the square root of the


Walker Lake values. The histogram (Figure 6) illustrates the


resulting less-skewed distribution.


Exhaustive variogram for Area B are shown in Figure 7. Like the


variogram for Area A, they show a distinct spatial structure.


Area B data have been composite into 266 square blocks.


Representativeness of the Surrogate Site Data Sets
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If results from surrogate data sets are to be extrapolated to


real-world situations, the surrogate data sets must exhibit


realistic characteristics. Of greatest importance for spatial


interpolation are skewness and spatial correlation structure.


Computed skewness values for several actual environmental data


sets are listed below:


3.8 (Lead - Texas) 

5.2 (Lead - Texas) 

2.7 (Lead - Texas) 

2.5 (Cadmium - Pennsylvania) 

2.7 (Dioxin - New Jersey) 

1.0 (Cs137 - Nevada) 

3.6 (Ra227 - New Mexico) 

The skewnesses of 3.3 and 1.2 for Area A and Area B indicate that


these data sets are representative of the frequency distributions


found in environmental sampling.


Deciding whether spatial correlation structure is representative


is more difficult. Variogram of lead concentration in three


Dallas Texas sites (Figure 8; after Brown, et. al., 1985) have


shapes similar to those from Areas A and B.




The Sample Data Sets


The sample data set from Area A contains 126 samples. Thirty are


at random locations in the southwest portion of the area, while


the other 96 are on a regular rectangular grid (Figure 9). Each


sample location falls within one of the 19,800 cells in the Area


A data file. The sample values are the exact values of their


corresponding cells; no simulated sampling or analytical errors


were added. Figure 10 shows the sample histogram.


The sample set for Area B contains 190 samples on a stratified


random grid (Figure 11) . Sample values were assigned in the same


manner as for Area A. Figure 12 shows the sample histogram.


When taking relatively small sample sets from areas of high


variability, there is always a chance of obtaining a very


unrepresentative sample. Because the current study is intended to


examine the variability of the investigators’ responses to


“ordinary” data, an attempt was made to insure a reasonably


representative sample. Four different sample data sets fitting


the descriptions above were drawn for each of the two areas. The


sets were ranked in order of their proximity to the true mean,


median, and standard deviation, and the sample set with the best
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combined ranking was selected.


Selection of Investigators


Investigators were selected through bids. Sixteen qualifying low


bids were accepted; four subsequently withdrew. The minimum


requirements for an investigator to participate in the study were


a B.S. degree in a scientific or technical field, and some prior


training or experience in geostatistics. The 12 investigators are


listed below in alphabetical order:


Randal Barnes, Univ. of Minnesota, Ph.D. - Mining


Engineering


Istvan Bogardi, Univ. of Nebraska, Ph.D. - Civil Engineering


(with Andras Bardossy, Ph.D. - Mathematics)


David Bowles, Utah State Univ., Ph.D. - Water Resources &


Hydrology


James Carr, Univ. of Nevada-Reno, Ph.D. - Geological


Engineering


Robert Enwall, Lockheed Engineering and Sciences Co., M.S. ­


Geology


Marshall Hardy, Applied Research Associates, M.S. ­
,


Probability & Statistics


William Harper, Resource International, Ph.D. - Industrial &


Systems Engineering
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Jonathon Istok, Oregon State Univ., Ph.D. - Civil Engineering


(with George Weaver, M.S. - Statistics)


Gerald Jalkanen, Univ. of Arizona, M.S. - Mining Engineering


Y. C. Kim, Univ. of Arizona, Ph.D. - Operations Research &


Statistics


Stan Miller, Univ. of Idaho, Ph.D. - Geology


A. W. Warrick, University of Arizona, Ph.D. - Soil Physics

DATA ANALYSIS PROCEDURES


Each investigator provided a set of 198 local block estimates for


Area A and 266 for Area B. Each block estimate was compared to


the true mean value of the block, and various measures of


estimation quality were computed:


Population Measures of Estimation Quality


The population measures are the classical statistical measures of


the quality of a set of estimated values. Mean error measures


bias of the set of estimates; error variance measures lack of


precision of the set of estimates; and "Pearson's r" measures


correlation between the true and estimated values.
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Conditional Measures of Estimation Quality


Conditional measures evaluate the quality of the set of decisions


made when blocks are selected for remediation if their estimated


values exceed a specified concentration threshold or action level.


The measures will be computed at several different action levels.


Number of False Positives (or False Negatives) - A count of


the blocks which are estimated to be above (below) the action


level, but which are actually below (above).


False Positive (or False Negative) Deviations - A “false


positive (negative) deviation” is the difference between the


true value and the action level for a misclassified block.


This reflects an assumption that estimation error - the


difference between the estimated and true values - is


irrelevant once a block has been misclassified. Deviations


are summed over all false positive (negative) blocks.


Selection Efficiency - This measure is the ratio (in percent)


of the total contaminant in the set of n blocks selected for


remediation with the total contaminant in the n highest


blocks . It essentially compares what was actually cleaned up


with the most that could have been cleaned for the same cost.
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Estimation Efficiency - This measure is the ratio (in


percent) of the total quantity of contaminant in the n


selected blocks to the total quantity estimated to be in


those n blocks.


Cost (or loss) functions assign a net economic cost to the set of


block remediation decisions. The basic assumption is that society


pays a constant unit remediation cost for each block cleaned, and


also pays a less easily defined cost (health effects, ecological


damage, etc.) for each contaminated block left uncleaned. The


total cost of a set of remediation decisions is thus block


remediation costs plus the cost to society from unremediated


blocks . Three societal cost functions are used, which define cost


as proportional to concentration, to concentration squared, or to


the log of concentration.


These cost functions assume that the specified action level is


society’s best estimate of the breakeven point, where the cost of


cleaning a block is exactly equal to the cost of not cleaning it.


From this viewpoint, a “safety margin” built into an action level


allows for the estimated cost of psychological effects on the


populace.
#


The total cost (L) is expressed in units of constant “block
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remediation cost”. The concentrations (C) are expressed in units 

of “action level” by dividing the concentration by the action 

level. Thus, all cost function curves must pass through the point 

(1,1) as shown in Figure 13. The equations for the functions are: 

Linear


Squared


Log


The cost for a set of 198 or 266 block decisions is computed by 

applying the constant remediation cost (1.0) to all blocks 

estimated to be above the action level, and one of the three 

‘societal’ cost functions to all blocks estimated to be below the


action level. To convert the cost to dollars, multiply by the


block remediation cost in dollars. Note that this does not


include the cost of sampling programs. The goal of any sampling


and remediation program would obviously be to minimize the total


cost , including the sampling cost. Thus the improvement in


decision quality obtained from more samples may or may not be


warranted, depending on the sampling cost.


 RESULTS AND DISCUSSION 
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Investigators have been assigned numbers from 1 to 12 in random


order, and results from investigator number 1 will be referred to


as Al and B1 for areas A and B, respectively.


Variability in Methodology


Because the data sets used by each investigator were identical,


variability in the estimated values is due to variability in


methodology. Potential sources of variability include the


computer hardware (10 of 12 investigators used IBM-compatible


-
Pc’s; 2 used VAX’s) and software (two investigators used pre


release copies of Geo-EAS (Englund and Sparks, 1988) ; the others


all used unique software systems) , plus the various choices and


interpretations discussed below.


Interpolation Methods and Data Transforms


Of the twelve investigators who submitted interpolated results,


eleven used some combination of variogram analysis (or equivalent)


and kriging. Several varieties of kriging (Journel and


Huijbregts, 1978) were used, including ordinary kriging, log


kriging, disjunctive kriging, and indicator kriging. One


investigator used a trend surface method, fitting a fifth order


polynomial surface to the sample values.
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One of the "ordinary kriging” results for Area A is also a


“classical statistical” estimate. Investigator number 4


interpreted the spatial structure of the data as random noise,


i.e., as a “nugget only” model. With such a model, the kriged


estimate for any point is the mean of the samples used; the


investigator simply assigned sample mean to each block.


In the data tables, results have been grouped by estimation


method. The sample mean estimator is listed as a separate method.


Spatial Structure Analysis


Table 1 lists the variogram models used by the investigators.


Because the variogram model controls the computation of kriging


weights, differences in interpretation of the variogram can lead


to major differences in results. The pure “nugget” model (A4) is


an extreme example. All of the other investigators found clear


spatial structures in Area A; most used the “spherical model”


function with a random or nugget component of 10 - 20% of the


total sill, and a range on the order of 250 - 500 units. TWO


investigators used models with no nugget component, representing


the other extreme of the variogram model spectrum.


#


The magnitude of the nugget component relative to the maximum


variogram model value is a major factor affecting the amount of


smoothing which occurs during kriging. In general, the lower the
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nugget component, the less smoothing, and the more the resulting


block estimates will honor the nearest sample values. Two


investigators used model functions other than the spherical, and


three investigators interpreted the data as being anisotropic,


that is, showing greater correlation in one direction than


another.


The Area B variogram models show less variability than Area,


probably because the data are less skewed and there are more


samples.


Examples of omnidirectional variogram of the untransformed sample


data from Areas A and B (Figures 14 and 15) illustrate the


interpretation problem. The variogram computed from sample sets


are a rather poor reflection of the exhaustive variogram shown in


Figures 4 and 7.


Investigator 4 had to disregard the first (lowest) value in the


Area A variogram in order to conclude that no structure existed.


This is not as unreasonable as it may appear, because the points


on a variogram are not of equal weight. Closely spaced samples


are rare. Only a relatively small number of sample pairs are


represented in the first point, and those only from the area where


the random samples were taken. This is a common problem in


variogram modeling - the most crucial portion of the variogram is


defined by the least data.
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Search Parameters


Kriging and other interpolation methods often use some form of


moving window procedure to select a subset of samples in the


immediate neighborhood of the estimated point. This is done for


practical considerations of computer time and precision rather


than on theoretical grounds. The choice of which samples to


include in making an estimate can have a major impact on the


resulting value. Most search algorithms for selecting the sample


subset include some form of circular or elliptical neighborhood,


plus a minimum and maximum number of samples to use within that


neighborhood.


Table 2 lists the search parameters used by the investigators,


again showing considerable variability. Investigator number 7,


for example, always uses the closest 15 samples regardless of


distance for Area A; investigator number 12 only uses samples


within a radius of 225 from the block center, and of those, only


the closest 10; and investigator number 3 uses up to 24 samples


within a 300 x 600 ellipse. Comparing the parameters for areas A


and B indicates that the investigators tend to maintain similar
#


search strategies from area to area. This may be due in part to


the particular algorithms employed in the various kriging


programs.
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Variability of Block Estimates


Variability in Spatial Patterns


Shaded maps (Figures 16,17,18,and 19) provide a means of comparing


the spatial patterns of true and estimated block values. The four


shades correspond to the four quartiles of the true block values.


Area A maps show nine estimates with similar patterns, and three


which stand out as distinctly different. The most obvious


“outlier” pattern is the A4 sample mean estimate; followed by A5,


the trend surface estimate. The third “outlier” is A3, one of the


log krigings. It has a pattern similar to the other krigings, but


biased toward high values. Bias is sometimes introduced in the


process of back-transforming estimates after log kriging; this may


have happened in this case.


Area A maps also reveal an interesting difference between the


ordinary kriging patterns (A2, A8, and A9) and the unbiased log


kriging patterns (Al, A6, A7, and A12) . High estimates from log


kriging seem to form stronger NE-SW trends, while ordinary


krigings present a more “patchy” appearance. Because Area A data


is nearly log-normal, one might expect the log krigings to be
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clearly superior to ordinary kriging, but this is not obvious from


the map patterns. Interestingly, both the disjunctive (A1O) and


indicator (All) krigings, which use highly transformed data, have


patterns which resemble ordinary kriging.


Area B patterns also show three “outliers.” The trend surface


estimate B5 is again clearly different, and the log kriging B3 is


once again biased. One of the ordinary krigings, B6, is more


smoothed than the other krigings, suggestive of a relatively high


nugget term in the variogram model. However, the variogram models


and search parameters provided by the investigator do not confirm


this. Perhaps an error in the input parameters for the kriging


program is responsible.


The nine other krigings all show quite similar patterns, and


unlike Area A, there is no obvious difference between the log (B7


and B12), ordinary (Bl, B2, B4, B8, B9, Bll), and disjunctive


(B1O) krigings.


Individual Block Estimates


Table 3 lists values for 15 blocks selected at random from each


area to illustrate the variability of individual block estimates.


Means and standard deviations are listed, both before and after


excluding obvious outlier values. Even after excluding outliers,
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standard deviations are relatively high, particularly in Area A


where standard deviations for many blocks exceed 50% of the mean.


Variability in Area B is lower, with standard deviations ranging


from about 5 - 20% of the mean after excluding outliers.


Population Statistics


Table 4 contains univariate statistics for the sample data sets,


and true block and estimated block values. Differences between


the sample and true block means reflect the bias of the particular


sample set drawn. Differences in standard deviation, however, are


primarily due to the difference in support (physical size) between


the samples and blocks. A block value is the mean of 100 sample-


size points. The distribution of block means should have a lower


standard deviation, and be less skewed than the original data.


Because kriging is a regression technique, the standard deviations


of the kriged block estimates are lower than those of the samples.


Estimation Quality: Population Measures


Measures of the overall quality of the populations of block


estimates are provided in Table 5. Means and standard


deviations for estimation errors are listed, with rankings based


on proximity to the ideal target values (mean and standard
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deviation equal to zero). Observed values and their corresponding


rankings are separated by colons (:) .


Normalized error means and standard deviations are also shown in


Table 5. Normalized errors are computed by dividing the observed


estimation error by the kriging standard deviation. If all of the


underlying assumptions are satisfied and the spatial structure is


perfectly known, normalized kriging errors should exhibit a


perfect normal distribution. Many investigators did not provide


standard deviations, especially in Area A, arguing that the highly


skewed distributions made them unreliable. When provided,


however, they were reasonable approximations over the entire set


of kriged blocks. Because of the missing data, normalized errors


were not ranked.


The correlation coefficient between true and estimated values is


another measure of the quality of a population of estimates.


Correlations and their rankings are included in Table 5.


Estimation Quality: Conditional Measures


Conditional measures of estimation quality evaluate the ability of


the estimates to distinguish between blocks with true values above


or below some specified cutoff or action level. A good estimator


should be consistently good at all possible action levels:
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Conditional measures in this study have been evaluated at four


different cutoffs for each area, representing approximately the


25th, 50th, 75th, and 90th percentiles.


False Positives and Negatives


Tables 6 - 9 present false positive and negative measures for the


four cutoffs. The tables list the numbers of positives and


negatives, the numbers of false positives and negatives, the


percentages of positives and negatives that are false, and the


sums of the false positive and false negative deviations.


Rankings of the estimates are also provided.


If only false positives or false negatives are considered, the


three measures (number, percent, and sum of deviations) appear to


be redundant because their rankings are very similar.


A problem with false positive and false negative measures is that


they tend to vary inversely. A high bias, for example, will


result in few false negatives, but many false positives. Adding


the positive and negative measures is a possible solution, but


false positives and false negatives may not be equally bad.


Cost Functions and Other Measures
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Cost functions provide a combined measure of the cost to society


from remediating selected blocks plus the cost of failing to


remediate unselected blocks. They describe the variability in


total economic impact among the various spatial estimates. For a


perfect set of block estimates, the cost function scores


represent the minimum cost outcome for society. For a particular


sampling and specified action level, the best interpolation is the


one closest to this minimum.


Tables 10 - 13 present the cost function results and rankings


along with the selection and estimation efficiency measures


described earlier. Also shown are the scores which would be


obtained if selection were made on the true block values


(perfection); if all blocks were selected regardless of estimated


value (clean-everything) ; and if none of the blocks were selected


regardless of estimated value (do-nothing). A successful spatial


estimate should have a cost function score lower than either of


the latter two. Note that for very high and very low action


levels, many estimates fail this test.


The selection efficiency measure does not require any economic


model. It could also be called a recovery factor. Once the


decision, has been made to remediate n blocks, then the best


possible outcome is that the blocks selected are the n most


contaminated blocks. Selection efficiency is the percentage of


the contamination content of the n worst blocks actually contained
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in the n selected blocks. A strongly biased estimate with a high


correlation coefficient could still rank high in selection


efficiency.


Estimation efficiency defines how close the estimated mean of the


selected blocks is to the true mean of those blocks. Although


desirable, this is not important for most environmental decisions.


Discussion


For all measures of estimation quality, scores obtained by the


various estimation procedures vary considerably. Site assessors


clearly need to be concerned about the methods used to evaluate


data, in addition to methods for collecting and chemically


analyzing samples.


Variability of the estimates in this study is due in part to


insufficient sampling. If enough more samples were taken, the


estimates would converge. However, sampling costs and time


constraints are limiting factors in real-world sampling, and when


a decision must be made based on the currently available data, it


makes sense to use data analysis methods which make the best


possible use of the data. Surrogate contaminant data sets, and


measures of estimation and decision quality provide a useful tool


for studying the effectiveness of interpolation methods, as well
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as other significant factors such as sampling designs and data


quality.


Although the nature of this study makes it impossible to draw


definitive conclusions about the various methods, as each is a


unique combination of options, some tentative judgments about


overall performance may be suggested.


Trend surface is a poor spatial estimator compared to


kriging, although it is possible that a higher-order surface


might have produced better results.


The sample mean is a poor spatial estimator compared to


kriging.


Ordinary kriging is a relatively consistent, good estimator,


even for highly skewed distributions.


Log kriging can be a good estimator for highly skewed


distributions, perhaps better than ordinary kriging, but the


quality seems to be more variable - the back transform


details may be critical.


Disjunctive kriging, based on only two examples, appears to


be a good estimator. The results did not differ


significantly from ordinary kriging.
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Indicator kriging, though used only once, produced very good


results.


CONCLUSIONS


Variability in spatial estimation methodology has a significant


effect on the quality of the estimates, and on the quality of


decisions based on the estimates.


When estimated values are compared to true values, different


estimation methods produce markedly different results. In Area A,


for example, correlation coefficients between true and estimated


values ranged from .00 to .78, while in Area B they ranged from


.36 to .75.


When cost functions quantify the combined economic cost of


decisions to remediate and not remediate, the relative differences


between the highest and lowest costs, measured at several


different action levels, ranged from 4 - 75 % (with one extreme of


980%) in Area A, and from 4 - 29% in Area B. There are probably


thousands, of contaminated sites in the United States alone for


which spatial interpolation from sample data will be required.


Total remediation costs for such sites could easily reach billions


of dollars. Failure to use appropriate interpolation techniques
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will result in significantly increased costs.


No single spatial estimate was consistently best or worst for all


quality measures. The rank order of the spatial estimates changes


significantly when different measures are used. Deciding which


measure of estimation quality is most relevant to the particular


circumstances of a site investigation is crucial to selecting the


“best” interpolation method.


NOTICE


Although the research described in this article has been supported


by the United States Environmental Protection Agency, it has not


been subjected to Agency review and no official endorsement should


be inferred.
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FIGURES


Number


1 Shaded map of the Walker Lake data set.


2 Shaded map of the Area A data set.


3 Histogram of a 3000 samples drawn from the Area A data set.


4 Exhaustive variogram from the Area A data set.


5 Shaded map of the Area B data set.


6 Histogram of a 3000 samples drawn from the Area B data set.


7 Exhaustive variogram from the Area B data set.


8 Variogram computed for lead in soil samples from three

sites in Dallas Texas.


Map of locations of 126 samples from Area A.


Histogram of 126 samples from Area A.


11 Map of locations of 190 samples from Area B.


12 Histogram of 190 samples from Area B.


13 Plot of cost function curves.


14 Variogram computed from 126 samples from Area A.


15 Variogram computed from 190 samples from Area B.


16 Shaded maps of true block values for Area A and estimated

block values from estimates Al through A6.


17 Shaded maps of true block values for Area A and estimated

block values from estimates A7 through A12.


18 Shaded maps of true block values for Area B and estimated

block values from estimates B1 through B6.


19 Shaded maps of true block values for Area B and estimated

block values from estimates B7 through B12.




Figure 1. Shaded map of the Walker Lake data set




Figure 2. Shaded map of the Area A data set.


Figure 3. Histogram of 3000 sample values drawn from the

Area A data set.








FIGURE 6
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