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Solution: Computational 
Toxicology will help improve: 

• Risk  Assessment: 

- Delineate mode-of-action 

- Strengthen linkages between exposure, dose, effect 

• Exposure Assessments: 

- Identify biomarkers of exposure and effect 

- Characterize susceptible sub-populations 

• Computational Bio-Physics 
… theory applies computational fluid dynamics (CFD) and mass 
transport methodologies to reduce uncertainties in inhalation dosimetry 
of aerosols and vapors. 
the linkage between exposure and localized/systemic absorption of 
pollutants. 

• Computational Chemistry 
… will be used to develop reduce uncertainties in dose-modeling by 
reducing bias and increasing precision in parameter estimation (i.e., 
equilibrium binding constant, metabolic rate constants, enzyme 
inhibition constants). 

• Computational Biology 
… will involve the assessment of health effects as alterations in 
metabolic, protein and genomic profiles. 
standard toxicological endpoints will provide us with the information 
that we need to utilize ‘omics technologies in modeling efforts for 
predictive toxicology. 
differential organismal state even in the absence of other quantifiable 
health effects of exposure. 
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Issues: 
• Extrapolation (e.g., high to low dose, animal to human, 

route to route) is a problem frequently confronted by the 
EPA during the risk assessment process. 

• Data and information we use in risk assessments has 
inherent uncertainty and variability. 

• These problems are compounded by the large number of 
chemicals that the EPA must consider under different 
regulations, particularly those that require the Agency to 
conduct multi-chemical (“cumulative”) risk assessments. 

These computational approaches will strengthen 

Concurrent evaluation of 

The goal is to provide an unbiased estimate of the 

Role of Biophysical Modeling in 
Risk Assessments: 

CFDCFD--MTMT 
CFDCFD--PBPKPBPK 

Denotes initial 
conditions for next 
sequential step 

CFDCFD--MTMT 
CFDCFD--PBPKPBPK 

Denotes initial 
conditions for next 
sequential step 

Exposure 
Conditions 
- Person 

oriented 
modeling 
(CHAD or 
SHEDS) 

CFDCFD--MTMT 

Respiratory Airway 
Dynamics 

CFDCFD--PBPKPBPK 

Toxic Component 
Accumulation in 
Critical Organs 
- Lungs 
- Kidneys 
- Liver,  etc. 

Particle 
Transport 

Mass 
Transport 

Local deposition and 
deposition efficiency 

Upper 
airway 

Tracheo
bronchial 

airway 

Alveolar 
region 

Biophysical 
Absorption 

Tissue 
mass 

transfer 

Mucus 
layer 

transport 

Denotes initial 
conditions for next 
sequential step 

Role of Computational Chemistry: 
PBPK development 
• We are applying computational methods to model P450- and 

carboxyesterase-dependent enzymatic reactions and 
determine rate constants for application in PBPK models. 

• We plan to extend these applications to cumulative 
assessments, considering the joint action of mixtures of 
chemicals. These approaches will have direct application in 
current Food Quality Protection Act (FQPA)-driven 
assessments (e.g., carbamates, pyrethroids). 

• We are also applying property-based quantitive structure-
activity relationships to estimate physiochemical properties of 
equilibrium partitioning and dermal absorption. 

Role of Computational Chemistry: 
PBPK Development 
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Computational Biology: 
Systems Biology Approach 

Integration of knowledge to represent and analyze the intact 
biological system. 

Biological systems investigated at many levels: 

Gene regulatory networks 

Cells 
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Computational biology aims 
to mathematically define the 
relationships among multiple 
system level responses. 

Integration of New Technologies (‘omics) could provide: 

• Indicators of early (subclinical) health effects 

• Holistic view of biochemical status of organisms 

• More sensitive endpoints for toxicological evaluation 

• Non-invasive evaluation of exposure 

• Improved understanding of mechanisms of action 

• Unifying responses across species can be identified 

‘Omics Technologies: 

Metabonomics – provides the entire complement of all the small molecular weight 
metabolites inside a sample of interest determined using nuclear magnetic resonance 
(NMR) 

Proteomics – characterizes the dynamics of protein function on a global scale using 
two-dimensional gel electrophoresis of proteins followed by spot identification with 
mass spectrometry 

Genomics – the expression of thousands of genes can be simultaneously evaluated 
for correlation with chemical exposure 

Computational Biology: 
Identification of Markers 
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Computational Biology: More 
Sensitive Endpoints of Evaluation 
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Conclusion: 
Through application of these CompTox 
disciplines we will: 

• Delineate mode-of-action 
• Strengthen linkages between exposure, dose, effect 
• Identify biomarkers of exposure and effect 
• Characterize susceptible sub-populations 

Science and Innovation to Protect Health and the Environment 
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Models of normal and asthmatic 
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• Computational biophysical simulations will be used to 
develop a whole-lung dosimetry model for PM and air 
toxics 

• The resulting microdosimetry model will be used to 
strengthen linkages in the risk assessment source-to-
outcome continuum by providing initial conditions to local 
dose response and systemic pharmacokinetic models 

Micro/Macro Dosimetry 

• Biophysical Simulations 
Local deposition functions 

• Whole-Lung Dosimetry 
Models 
o Assessment of focal 

deposition and absorption 
o Assessment of inter-

subject variance 

• Localized BBDR Modeling 
o Assessment of local tissue 

response 
Improved local quantitative 
assessment of risk 

Pharmacokinetics and Response 

Improved 
Linkages 

• Individual and Population PBPK 
o Toxicant metabolism and 

transport to other organs 
Improved systemic 
assessment of risk 


