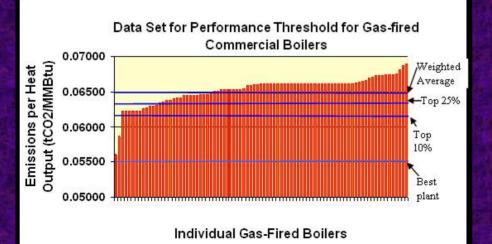

Offsets Methodology for an Example Boiler Project Proposed by SC Johnson

Lisa Hanle (EPA) and Frank Ericson (SC Johnson) Climate Leaders Partners' Meeting Marina Del Rey, CA January 18, 2006

Potential Boiler Offsets

- May occur in the industrial or commercial sectors
- Four major project types:
 - Replacement of an existing boiler
 - Retrofit of an existing boiler
 - Fuel (or mix) change of an existing boiler (may need retrofit of burners)
 - Upgrade of distribution system (including condensate return)



Developing the Performance Threshold for Commercial and Industrial Boilers

Commercial Boilers

Performance threshold is rate-based

- Wider range of performance of new commercial boilers
- Boilers are usually purchased offthe-shelf

Industrial Boilers

- Performance threshold is technology-based
 - Relatively narrow range of design efficiencies
 - Site-specific permitting requirements
- Performance threshold equal to performance of boiler meeting engineers specifications of the site <u>with</u> a non-condensing economizer.
 - To be additional, proposed project must include additional "options" to reduce GHG emissions.

SC Johnson Project Background

Project Description: Replace ten-year old gas-fired industrial boiler (60MMBtu/hr steam) at a local industrial facility in Racine, WI with a new, state of the art, gas-fired boiler with the same capacity.

- Current boiler, and its replacement, operate 5000 hrs/yr.
- The current boiler does not have specific GHG emission reduction features installed.
- New boiler will have condensing economizer, combustion air pre-heaters, blowdown heat recovery and advanced burner and controls.

•Key Services Provided by the Project: Used for space heating and process needs, will provide some absorptive chilling.

Technology/Practice Introduced: Gas-fired condensing economizer, combustion air pre-heaters, blowdown heat recovery, and advanced burner and controls

Project Size/Output: 60MMBtu/yr that makes steam at 150psi and 350F

Location/Spatial Area: Racine, WI

Determine Regulatory Eligibility

- Any new industrial boiler is subject to the following Federal Clean Air Act Requirements
 - National Ambient Air Quality Requirements
 - New Source Performance Standards
 - National Emission Standards for Hazardous Air Pollutants
 - Construction Permits
- There are no Federal, State or Local regulations that require the new boiler to install options to reduce GHG emissions.
- The proposed industrial boiler will meet all air permitting requirements. As the project is not being undertaken to <u>come into compliance with</u> these requirements it is considered "eligible" as an offset. Any GHG emissions impacts of meeting CAA requirements are factored into the baseline.

Project Boundary

 Physical Boundary: The boiler itself plus the optional components (which affect the boiler exhaust, the incoming combustion air, the feedwater, and the heat recovery system)

GHG Accounting Boundary: CO₂, N₂O and CH₄

 Temporal Boundary: Assess emission reductions over the course of a year to take into account any seasonal fluctuations in emissions from boiler operation

Leakage: The project is not expected to result in leakage (i.e., increases in emissions outside the project boundary).

Performance Threshold

- Performance threshold is based on technologies in use across the United States (i.e., a technology threshold).
- Industrial boilers typically not "off-the-shelf"- designed based on company needs and air quality permitting requirements.
 - Common practice in the U.S. is a boiler that (1) meets company requirements and (2) installs a non-condensing economizer.
- Performance threshold = the emissions performance of the boiler, as determined by the boiler manufacture, that will meet the company's requirements and has a noncondensing economizer installed.

Industrial Boiler and Optional Components	Efficiency Range and Incremental Improvement*	Manufacturer Specified Efficiency Value*	Resulting Overall Efficiency*	Performance Threshold for Project
Nominal New Boiler Efficiency	75% - 83%	80%	80%	
Non-Condensing Economizer	1% - 7%	5%	85%	Project includes
Advanced Burner and Controls	1% - 2%	1%	86%	options beyond non-
Condensing Economizer	1% - 2%	1%	87%	condensing
Combustion Pre-heater	1% - 2%	1%	88%	economizer, therefore
Blowdown Heat Recovery	1%	1 %	89%	is additional!

* Thermal Efficiency

Estimate Baseline Emissions and Emission Reductions

Estimated Project and Baseline Emissions						
Baseline Boiler Attributes	Baseline	Project Case	Net GHG Emission Reductions			
Heat Output (Million Btu / hr)	60	60				
Heat Input (Million Btu / hr)	75	67.4				
Load Factor (%)	80%	80%				
Operating Hours (hrs/yr)	5,000	5,000				
Thermal Efficiency (%)	80%	89%				
Fuel Use (Billion Btu / yr)	300.0	269.7				
CO ₂ Emissions rate (t C02 /Billion Btu)	53.06	53.06				
CH ₄ Emissions rate (tCO2e/Billion Btu)	0.11	0.11				
N ₂ 0 Emissions rate (tCO2e/Billion Btu)	0.03	0.03				
CO ₂ e Emissions (t CO ₂ e) / yr	15,960	14,348	1,612			
Remaining life of boiler (years)	20	20	20			
Cumulative CO ₂ emissions over remaining life (t CO ₂)	319,200	286,960	32,239			

Implementation, Monitoring and Calculation

Monitoring options include:

- Direct fuel volume measurement
- Steam flow measurement
- Direct Stack CO₂ measurement
- Dealer certified fuel volume measurement
- Emission reductions would be calculated as the difference between the baseline emissions and the monitored project emissions