Commercial Boiler GHG Emission Offset Opportunities

Background

- Boilers burn fuel to generate steam and/or hot water
- The steam/hot water is a secondary energy carrier serving different end-uses in the commercial sector, (e.g., space heating, washing)
- The major GHG emissions source in a boiler system is carbon dioxide (CO₂) from the combustion of fossil fuels.
- Substantial cost-effective opportunities for greenhouse gas emission reduction exist in boiler and steam distribution systems.

Background

- Project definition: types of commercial boiler projects
 - Replacement or retrofit/upgrade of an existing boiler
 - Fuel change of an existing boiler
 - Upgrade of distribution system (including condensate return)
 - Replacement by a cogeneration system
- Project benefits
 - Reduce GHG emissions
 - Replacement of older boilers can reduce particulates,
 and can result in local reductions in SO_x and NO_x
 - Reduce fuel, operation and maintenance costs

- Step 1: Identify project type
 - e.g., Replacement or retrofit of an existing boiler
- Step 2: Determine eligibility
 - Where Federal, State and/or Local law mandates that boilers comply with certain standards, projects are eligible if they achieve reductions greater than what would have been achieved by technologies used to reach compliance.

• Step 3: Define project boundary

- Boundary may include just the boiler or include both the boiler and the steam/hot water distribution system.
- All project-related emission sources should be identified:
 - CO₂ from fuel combusted in the boiler
 - CO₂ from the fuel used to generate electricity for feedwater treatment, pumps and boiler fans
 - Emissions that are likely insignificant and thus do not need to be accounted for include, CH₄ leakage and N₂O from stationary combustion, and CO₂ and CH₄ from the production and transport of fuels

- Step 3: Define project boundary
 - Boundary may include just the boiler or include both the boiler and the steam/hot water distribution system.
 - All project-related emission sources should be identified:
 - CO₂ from fuel combusted in the boiler
 - CO₂ from the fuel used to generate electricity for feedwater treatment, pumps and boiler fans
 - Emissions that are likely insignificant and thus do not need to be accounted for include, $\mathrm{CH_4}$ leakage and $\mathrm{N_2O}$ from stationary combustion,

and CO₂ and CH₄ from the production and transport of fuels

• Step 3: Define project boundary

- Boundary may include just the boiler or include both the boiler and the steam/hot water distribution system.
- All project-related emission sources should be identified:
 - CO₂ from fuel combusted in the boiler
 - CO₂ from the fuel used to generate electricity for feedwater treatment, pumps and boiler fans
 - Emissions that are likely insignificant and thus do not need to be accounted for include, CH₄ leakage and N₂O from stationary combustion, and CO₂ and CH₄ from the production and transport of fuels

• Step 4: Establish baseline

- An emissions based performance standard should be developed considering typical boiler lifetime and/or performance for similar projects in the region.
- For example, if the typical lifetime of a boiler is 40 years; a project that replaces a 10 year old boiler would have a project lifetime of 30 years.
- In order to estimate baseline boiler emissions, data on fuel use, operating hours, load, boiler efficiency and a carbon emissions factor need to be obtained.
- Where electricity use is displaced the carbon intensity of the displaced electricity should be determined.

• Step 5: Pre-installation estimation of project emissions and savings

- Emissions resulting from implementation of the proposed project should be estimated from all sources included in the baseline established in Step 4.
- Estimated project emissions should be subtracted from baseline emissions in order to estimate total emissions reductions due to the project.

Calculating Offset GHG Savings

- Step 6. Monitoring
 - Fuel use may be determined by metering, or alternatively, through the use of accurate fuel records.
 - Where electricity use is displaced the carbon intensity of the displaced electricity should be determined.
- Step 7: Post-installation calculation of project GHG savings
 - Emissions reductions are determined by subtracting actual project emissions from baseline emissions (determined above).
 - Leakage for this project type is assumed to be minimal, therefore, does not need to be considered.

Example Project: Replacing a 2 MW Coal-Fired Boiler (1)

- Project description
 - A 25 year old 2 MW coal-fired boiler is replaced by a new gas-fired boiler
 - Boiler is operated 8760 hours/year
 - Project lifetime is estimated at 15 years
- Old boiler emissions: 6987 t CO₂/year
- Baseline for the calculation of emission reduction is estimated on the basis of recently installed boilers in the region

Example Project : Replacing a 2 MW Coal-Fired Boiler (2)

- Estimated baseline based on:
 - Current boiler emissions: 6987 t CO₂/year
 - Average of recent boilers: 6735 t CO₂/year
 - Best 10% of recent boilers: 6654 t CO₂/year
- New boiler emissions are 3968 t CO₂/year
- Project results depend on appropriate baseline
 - Current: 3019 t CO₂/year, or 45,285 t CO₂ for project lifetime of 15 years
 - Average: 2767 t CO₂/year, or 41,505 t CO₂ for project lifetime of 15 years
 - Best 10%: 2686 t CO₂/year, or 40,290 t CO₂ for project lifetime