Green Energy Co-generation with LFG at SC Johnson

tomorrow's legacy today sustainability

tomorrow's legacy today SUSTAINABILITY

A FAMILY COMPANY

SC Johnson

1600

Corporate Environmental Goals

For the top 5 Manufacturing Facilities from 2000 to 2005:

Eco-Efficiency

• Achieve a 15% reduction in overall combined emission as a ratio to production.

Sustainability

- Achieve a 10% decrease in fossil fuel usage
- Reduce greenhouse gases by 5% per year or 22.6% overall

Climate Leaders Goals

For all US Facilities owned or leased. from 2000 to 2005:

Intensity Goal

• Achieve a 23% reduction in overall combined GHG emissions as a ratio to production.

Absolute Goal

• Reduce greenhouse gases by 8% on an absolute basis

Develop a GHG Baseline

- do a GHG baseline for worldwide manufacturing facilities
- do a GHG baseline for all US facilities for Climate Leaders

GHG Protocol Initiative

Standards, Guidelines and Calculation Tools for Corporate GHG Accounting & Reporting

WBCSD/WRI

World Business Council for Sustainable Development

Use GHG baseline to target areas for GHG reductions

Use GHG baseline to target areas for GHG reductions

- Waxdale's GHG emissions are about 50% of the top 7 worldwide manufacturing facilities baseline
- Waxdale represents over 33% of the US GHG emissions baseline

RESULT The Waxdale facility is where GHG activities should be targeted.

Define/Evaluate Green Energy Projects

Define/Evaluate Green Energy Projects

One 3200kw Turbine - with HRSG - process steam generation

Four 800kw Internal Combustion (IC) engines - with exhaust heat recovery process steam gen

One 1500kW Wind Turbine - poor wind site 350kW actual vs 1500kW capacity

Fuel Cells - developmental @ 3,200kW

Define/Evaluate Green Energy Projects

Solar power 3,200kW - poor solar site - variable supply

Geothermal energy 3,200kw - need a large application of heating and cooling

CO2 Recovery from LFG - no Energy savings. Capital is 40% of turbine

Plant trees - CO2 uptake - 210 trees planted - high growth

Selection of Top two Alternatives

The top two alternatives use LFG to produce green energy:

- one 3,200kW turbine with HRSG = 3,200kW
- four 800kW IC engines with exhaust heat recovery = 3,200kW

Advantages of top two alternatives

- Both produce a consistent supply of energy
- Neither are affected by weather conditions
- Both can supply 3,200kW routinely with off the shelf equipment
- The technology for both is proven and currently in use

Advantages of top two alternatives

- Both replace electricity greatest GHG impact
- Both can replace significant amount of GHGs
- Both have heat recovery as an additional option
- Favorable capital costs for both compared to the other technologies

Analysis of top two alternatives

Technical Analysis

- Both are adaptable to fluctuations in LFG supply and methane content.
- Both have substantial O & M requirements.
- The IC engines have more operating flexibility 4 units
- Combustion efficiencies for GHG conversion to electricity are similar.
- Noise control needs are significant for both.

Continued - Analysis of top two alternatives

Technical Analysis - continued

- The turbine has a higher parasitic load
- The turbine has an efficiency dependent on ambient air temperatures
- Turbine virtually all waste heat is available for SC Johnson high pressure steam production.
- IC engines only approximately 25% of the waste heat is available for SC Johnson high pressure steam production

Continued - Analysis of top two alternatives

Energy/environment analysis

- Turbine saves the maximum energy and GHGs (32,000T/yr.) due to the largest usable waste heat recovery
- IC engines saves less energy and GHGs (24,500T/yr.) because of reduced recovery of waste heat.
- For both 3 air pollutant of concern are NOx, CO, & nmoc
- For Turbine classification as simple system vs a combined system

Continued - Analysis of top two alternatives

Energy/environment analysis - continued

- **Turbine must meet 25ppm Nox limit**
- operate with low BTU LFG (380-420 BTU/scf LHV) temporary
- Rule change for alternate fuels applicable Nox is 35ppm

Continued - Analysis of top two alternatives Financial analysis:

IC engines without waste heat recovery energy savings \$1,200,000/yr.

ROI 4%

IC engines with exhaust heat recovery energy savings \$1,500,000/yr.

ROI 9%

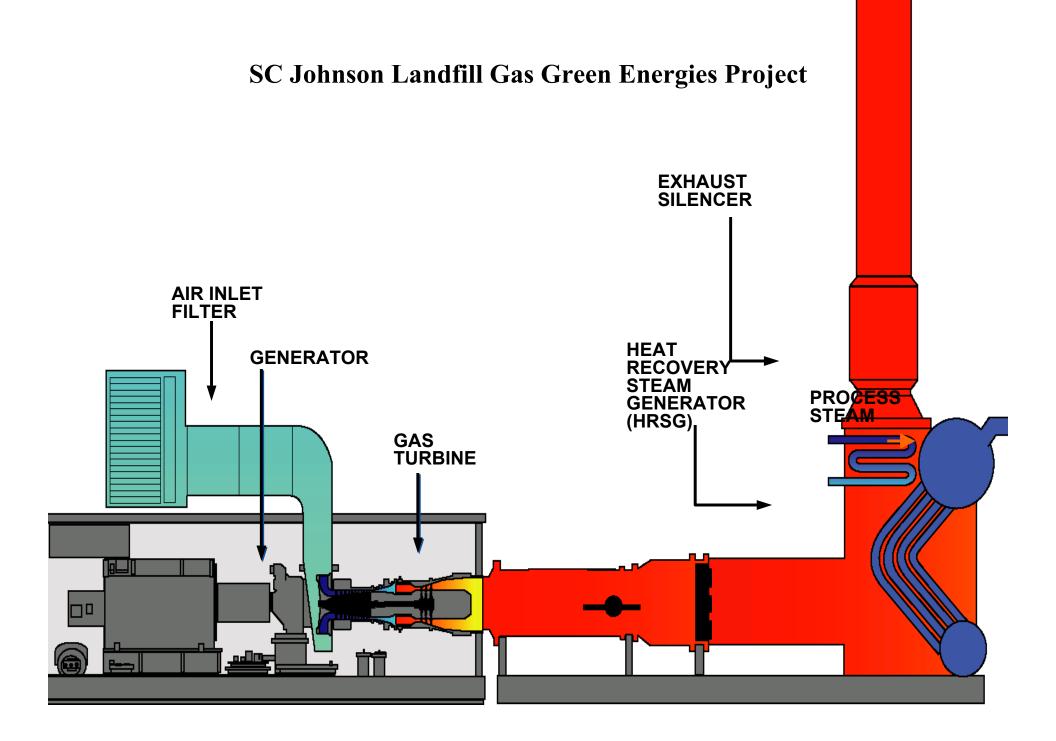
Turbine with HRSG energy savings \$2.66 million/yr.

ROI 20%

Co-Generation - Financial Results

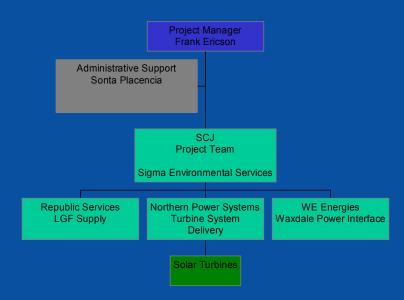
Item	I C System	Turbine System
Capital Investment	\$4,500,000	\$4,950,000
Reduced Cost of Natural Gas Purchased	630.000	1,540,344
Reduced Cost of Electricity Gas Purchased	1,121,000	1,121,000
Return On Investment	9.1%	19.6%

Make Renewable/Green Energy


Use landfill gas to make electricity and steam at Waxdale

- Install turbine to make 3,200 kW of electricity
- Recover waste heat from exhaust to make 17,000 lb/hr of plant steam at 150 psi

Reduce Waxdale's fossil fuel use by 50% Reduce Waxdale's GHG emissions by 47% Reduce SC Johnson - USA GHG emissions by 23%



Project Team LFG/Turbine Co-Generation Project

LFG/Turbine Co-Generation Project Schedule

TURBINE CO-GENERATION SYSTEM

ENVIRONMENTAL PERMITS -	Oct 15 – March 1
PRELIMINARY DESIGN - Place order for Turbine	Nov 1 – Feb 1 Dec 16
FINAL DESIGN & PLANNING -	Feb 1 – April 25
GROUNDBREAKING CEREMONY - Company officials, employees and Government dignitaries	April 25
PROJECT IMPLEMENTATION -	April 26 – Dec 1
Building Construction and Infrastructure Installation Turbine delivery System on line @ 3.2 MW	April June-July Dec 1, 2003
	Dec 1, 2003
ENERGY SUPPLY AND SALE	
REPUBLIC LFG SUPPLY Reestablish LFG Supply Confirm final supply system needs for turbine	Sept 02–Sept 03 Jan 15 April 15

Tue Jun 3 16:06:57 2003

Green Energy Co-generation with LFG at SC Johnson

tomorrow's legacy today sustainability

tomorrow's legacy today SUSTAINABILITY

A FAMILY COMPANY