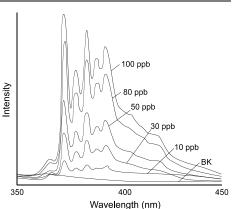
United States **Environmental Protection** Agency


Environmental Sciences Division P.O. Box 93478 Las Vegas, NV 89193-3478

March 1999

OFFICE OF RESEARCH AND DEVELOPMENT

TECHNOLOGY SUPPORT PROJECT

③EPA UV-Vis Luminescence in **Field Screening** and Monitoring

Introduction

Ultraviolet-visible photoluminescence techniques (including fluorescence and phosphorescence) are gaining recognition as useful methods for monitoring Superfund, RCRA, and other hazardous waste sites. The National Exposure Research Laboratory, Human Exposure Research Branch in Las Vegas (HERB-LV) is active in the research, development, and application of these methods. This document will focus on fluorescence spectroscopy. One applicaton of this method uses a fixed wavelength excitation and records the fluorescence

Another application, synchronous fluorescence spectroscopy scans both excitation and emission monochromators to produce a simplified spectrum, typically with one peak per compound. This allows polyaromatic hydrocarbons (PAHs) to be separated roughly into classes according to the number of fused rings. Both techniques hold great promise as field methods that are suitable to the screening, characterization, and monitoring of contaminants at hazardous waste sites. Although mostly used for PAHs, phenols, and

emission spectrum of the sample.

pesticides, luminescence techniques are also available for metal chelates and uranium.

With the emergence of fielddeployable, field-portable instruments, and fluorescence sensors, luminescence spectroscopy is joining the list of easy-to-use, inexpensive methods for evaluation of contamination at hazardous waste sites.

Instrumentation

Luminescence techniques are mostly used for the analysis of aqueous samples, though soil extracts may also be used. The most frequently used source is a pulsed or continuous xenon lamp which disperses light through a grating. Alternative light sources include mercury lamps and lasers with either fixed or tunable wavelengths. For scanning spectrofluorometers, the continuous spectrum of the light source is dispersed by an excitation monochromator, which can be scanned mechanically to select a bandpass. Then, the

emitted light at each wavelength is detected (usually at right angles to the exciting light) by an emission monochromator coupled to a detector. For quantification, the fluorescence intensity is compared to the response from standards at various levels on a calibration curve.

Identification, classification, and quantification can be performed by either fluorescence emission or synchronous fluorescence spectroscopy. The generated spectra are simplified cross-

Field Use

The applicability of luminescence methods to environmental work is increasing with greater availability of compact instruments. The HERB-LV has field-deployable fluorescence instruments. In addition, a prototype of a portable synchronous spectrofluorometer with a fiber optic probe is being developed for the HERB-LV through an interagency agreement with the DOE at Oak Ridge National Laboratory. Using these instruments, scientists are able to identify and quantify total PAHs and PCBs. These methods are particularly good for environmental samples requiring relatively simple sample preparation. Field use is simple for this non-destructive technique. A typical field instrument has two

sections of excitation-emission arrays.

Both emission and synchronous luminescence methods are useful for characterizing the source and concentration of various polyaromatic compounds. Current work on PCBs and PAHs demonstrates the usefulness and sensitivity of luminescence methods.

parts — the spectrofluorometer and the controlling computer. Each of these units is portable and suitcase-sized. The ease of use and lack of elaborate preparation steps make UV-vis luminescence an excellent choice for many hazardous waste sites.

dvantages and Limitations	UV-vis luminescence compares very favorably with many field techniques because it has high	step. The HERI to the careful ap existing technolo		uses in environmental monitoring.
	sensitivity, is non-destructive, and can analyze thermally labile samples or heavy compounds like tars and polar compounds like phenols. This technology has a proven track record with the U.S. Coast Guard where it is used for oil spill identification. Extending this application into various environmental areas is the next	Advantages		Limitations
		 Very sensitive for polyaromatic and 	e for aromatic and analytes	 Needs derivatives for most non- aromatic analytes
		Inexpensive	 Interpretation may require special training 	
		 Water is not an interferent 		
		 Non-aromatic ar not interfere 	• Fluorescence yields vary	
		 Little or no pretreatment required 		
		Simple microext	raction procedure	
Future	Current research should lead to UV-vis fluorescence instruments that are smaller, cheaper, and more sensitive to a wider range of analytes. The development of reasonably priced small lasers	may eventually lamp sources. I lasers in the UV investigated. So can be done wit fluorometer, sav	Rugged, tunable range are being ome monitoring h a filter	the scanning step. The most versatile applications remain in the area of emission and synchronous luminescence methods.
References	Gerlach, C. L. (1996). New instrument brings PAH analysis to the field. <i>Environ. Sci. Technol.</i> 30(6) 252A-254A.			
	Alarie, J. P., W. E. Watts, D. R. Mille Screening of Polycyclic Hydrocar Spectrofluorometer". Presented a Waste Site Remediation, Munich, G Conference.	bon Contaminational	on in Soil Using a l Conference on Envi	Portable Synchronous Scanning ronmental Monitors and Hazardous
For Further Information	Screening of Polycyclic Hydrocar Spectrofluorometer". Presented a Waste Site Remediation, Munich, G	bon Contaminational t the International ermany, June 19-2	on in Soil Using a I Conference on Envi 3, 1995, and publisi	Portable Synchronous Scanning ronmental Monitors and Hazardous ned in the Proceedings of the about the Technology Support
	Screening of Polycyclic Hydrocar Spectrofluorometer". Presented a Waste Site Remediation, Munich, G Conference. For further information about UV-vis	bon Contaminational t the International ermany, June 19-2 luminescence	For information Conference on Envi 3, 1995, and publist For information Center at ESD-I Mr. J. Gareth Pe Technology Sup U.S. Environme National Expose	Portable Synchronous Scanning ronmental Monitors and Hazardous hed in the Proceedings of the about the Technology Support V, contact: earson, Director port Center ntal Protection Agency ure Research Laboratory Sciences Division

The Technology Support Center fact sheet series is developed and written by Clare L. Gerlach, Lockheed Martin, Las Vegas.