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Summary

Scientists, especially environmental scientists often encounter trace level concentrations that are
typically reported as less than a certain limit of detection, L. Typel, left-censored data arise when certain
low values lying below L are ignored or unknown as they cannot be measured accurately. In many
environmental quality assurance and quality control (QA/QC), and groundwater monitoring applications
of the United States Environmental Protection Agency (U.S. EPA), values smaller than L are not required
to be reported. However, practitioners still need to obtain reliable estimates of the population mean, i,
and the standard deviation (sd), o. The problem gets complex when a small number of high
concentrations are observed with a substantial number of concentrations below the detection limit. The
high outlying val ues contaminate the underlying censored sample, leading to distorted estimates of p and
0. The U.S. EPA, through the National Exposure Research Laboratory-Las Vegas (NERL-LV), under
the Office of Research and Development (ORD), has research interests in developing statistically rigorous
robust estimation procedures for contaminated left-censored data sets. Robust estimation procedures
based upon a proposed (PROP) influence function are shown to result in reliable estimates of population
parameters of mean and sd using contaminated left-censored samples. It is aso observed that the robust
estimates thus obtained with or without the outliers are in close agreement with the corresponding
classical estimates after the removal of outliers. Several classical and robust methods for the estimation
of p and o using left-censored (truncated) data sets with potential outliers have been reviewed and
evaluated.

Key Words: Typel censoring, Type Il censoring, left-censored (truncated) data, detection limit, robust
statistics, Monte Carlo simulation, mean square error (M SE), PROP influence function,
unbiased maximum likelihood estimation (UMLE), Cohen’s maximum likelihood
estimation, Persson and Rootzen’ s restricted maximum likelihood estimation (RMLE),
expectation-maximization (EM) algorithm, regression methods.
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Section 1

Introduction

The processing of the analytical results of environmental samples containing potentially hazardous
chemicalsis often complicated by the fact that some of these pollutants are present at trace levels, which
cannot be measured reliably and therefore are reported as results lying numerically below a certain limit
of detection, L. Thisresultsin left-censored data sets. In many environmental monitoring applications,
values smaller than L are not even required to be reported. However, since the presence of some of these
toxic pollutants (e.g., dioxin) in the various environmental media can pose athreat to human health and
the environment even at trace level concentrations, these non-detects cannot be ignored or deleted (often
donein practice) from subsequent analyses. For site characterization purposes such as to establish mean
contamination levels at various parts of a polluted site, it is desirable to obtain reliable estimates of p and
o using the left-censored data sets. The problem gets complicated when some outliers are also present in
conjunction with the non-detects. Also, sometimesin environmental applications, non-detects (e.g., due
to matrix effects) exceed the observed values adding to the complexity of the estimation procedures.
Improperly obtained estimates of these parameters can result in inaccurate estimates of cleanup standards,
which in turn can lead to incorrect remediation decisions at a polluted site. In this article, emphasisis
given to obtain robust estimates of population mean and sd using left-censored data sets with potential
outliersin theright tail of adataset. In thisstudy, it isassumed that al non-detects are smaller than the
observed values.

In general, censoring means that observations at one or both extremes (tails) are not available. In
Type | censoring, the point of censoring (e.g., the detection limit, L) is "fixed" a priori for all observations
and the number, k(>0), of the censored observations varies. In Type Il censoring, the number of censored
observations, k, isfixed apriori, and the point(s) of censoring vary. For example, Type Il right-censoring
(large values are not available) typically occursin life testing and reliability applications. In alife testing
application, nitems (e.g., electronic items) are subjected to a life testing experiment which terminates as
soon as (n-k) of the n data values have been observed (failed). The lifetimes of the remaining k living
objects are unavailable or being censored.

The estimation of the parameters of normal and lognormal populations from censored samples has
been studied by several researchers, including Cohen [1950, 1959], Persson and Rootzen [1977], Gleit
[1985], Schneider [1986], Gilliom and Helsel [1986]. A myriad of estimation procedures for Type | left-
censored data exist in the literature, including simple substitution methods and several rigorous
procedures such as Cohen's maximum likelihood estimation (MLE) procedure, Persson and Rootzen's
restricted MLE (RMLE) method, and regression methods (Gilliom and Helsel [1986], Newman, Dixon,
and Pinder [1989]). The commonly used substitution methods are: replacement of below detection limit
data by zero, or by half of the detection limit, L/2, or by the detection limit, L itself.



Using Monte Carlo simulation experiments, several researchers, including Gleit [1985], Gilliom and
Helsel [1986], and Haas and Scheff [1990], concluded that the data substitution methods resulted in a
biased estimate of the population mean. In practice, probably due to computational ease, these data
substitution methods are commonly used in many environmental applications. Depending upon the
sample size, n, and the censoring intensity, k, substitution of the censored values by L/2 is one of the
recommended methods in some U.S. EPA guidance documents, such as the Guidance for Data Quality
Assessment, 96. None of the simulation studies conducted so far included the unbiased maximum
likelihood estimation (UMLE) method. Also, the results and conclusions of the above-mentioned studies
are not directly comparable due to reasons discussed in the following paragraphs.

Gleit [1985] performed simulation experiments for a"fixed" detection limit, L, for various censoring
intensities. Based upon Dempster, Laird, and Rubin's [1977] expectation-maximization (EM) agorithm,
Gleit used the conditional expected values of order statistics of the Gaussian distribution for censored
observations. Based on the low mean sgquare error (M SE) criterion, he recommended the use of the EM
method which replaces all of the non-detects by the conditional expected value of the order statistics as
given by equation (11) below. Gleit's simulation experiments did not include Persson and Rootzen's
RMLE method or any of the regression methods.

Gilliom and Helsel [1986] performed simulation experiments for various distributions and several
levels of censoring intensities. Their simulation experiments used the "computed” detection limit based
on the distribution used. For example, for anormal distribution with mean, 5, and sd, 2, ~ N(5,2), and for
censoring intensities of 30% L and 60% L, will be 5+2x*z, ;,~ 5-2%0.525=3.95, and
5+2x%z, ,~5+2%0.255=5.51, respectively, where z_ representsavalue of the standard
normal deviate such that areatotheleftof z  is o. Thus, thelimit, L, changes with the censoring
intensity. They concluded that the extrapolation regression approach on the log-transformed data results
in an estimate of the population mean with the smallest root mean square error (RMSE). Their simulation

study did not include the RMLE method and the EM a gorithm.

Haas and Scheff [1990] and Lechner [1991] compared the performance of classical estimation
methods for left-censored samplesin terms of biasand MSE. They also used the "computed" detection
limit based on the distribution used in their simulation experiments. They concluded that the bias-
corrected RMLE procedure results in as good estimates as the Cohen's MLE method, and also the RMLE
method possesses lower bias and M SE than the regression and substitution methods. They also suggested
that the RMLE is less sensitive to the deviations from normality. Their study did not include the EM
method.

The objective of the present article is to develop robust procedures which yield reliable estimates of
population parameters from left-censored data sets in the presence of outliers, and also to compare the
performances of the various estimation procedures. The authors of this article performed Monte Carlo
simulation experiments for both the "fixed" and the "computed” detection limit cases to assess the
performances of the various classical and robust proceduresin terms of biasand MSE. Several methods,
including the EM algorithm, MLE, UMLE, RMLE, and the regression method, have been considered.
The results of a couple of simulation runs are presented here to demonstrate the differencesin the
performances of these methods for the two cases: 1) L stays fixed for al censoring levels, and 2) L is
computed based on the distribution used and, therefore, varies with the censoring intensity. In
environmental applications, the first case (1) of afixed detection limit occurs quite frequently.



The occurrence of non-detects in combination with potential outliersisinevitable in data sets
originating from environmental applications. The data set resulting from such a combination of non-
detects in the |eft tail of the distribution, and high concentrationsin the right tail of the distribution,
typically do not follow awell-known statistical distribution. The problem gets complex when multiple
detection limits (reporting limits) are present. In practice, such adata set may have been obtained from
two or more populations with significantly different mean concentrations such as the one coming from the
clean background part of the site and the other obtained from a contaminated part of the site.
Unfortunately, many times such a data set can be modeled incorrectly by alognormal distribution (which
could pass the lognormality test). Also, anormally distributed data set with afew extreme (high)
observations can be incorrectly modeled by alognormal distribution with the lognormal assumption
hiding the outliers [Singh, Sngh, and Engelhardt (1997, 2000)]. An example is discussed next to
elaborate on this paint.

Example 1. A simulated data set with 15 observations has been obtained from a mixture of two normal
populations. Ten observations (representing background) were generated from a normal
distribution with amean of 100 and a sd of 50, and five observations (representing
contamination) were generated from a normal distribution with a mean of 1000 and a sd of
100. The mean of this mixture distribution is 400. The generated data are: 180.51, 2.33,
48.67, 187.07, 120.21, 87.96, 136.75, 24.47, 82.23, 128.38, 850.91, 1041.73, 901.92,
1027.18, and 1229.94. The data set failed the normality test based on severa goodness-of-
fit tests, such as the Shapiro-Wilk test, the W-test (W=0.7572), and the
Kolmogorov-Smirnov (K-S = 0.35) test. However, when these tests were carried out on the
log-transformed data, the test statistics are insignificant at the & = 0.05 level of significance
with W=0.8957 and K-S = 0.168, suggesting that alognormal distribution provides a
reasonable fit to the data. Based upon those tests, one might conclude that the observed
data come from a single background lognormal population, a situation which occurs
frequently in practice. Itis, therefore, warranted to make sure that the data come from a
single population before one would try to use alognormal distribution on a data set.

Like full uncensored samples, the classical procedures used on |eft-censored data sets with potential
high outliersresult in distorted estimates of location and scale. A brief description of some of the above-
mentioned proceduresis given in Section 2 and some real and simulated data sets are discussed in
Section 3. Results of afew simulation runs for the various classical methods are given in Section 4, and
the conclusions are summarized in Section 5. The simulation results based on robust procedures arein
agreement with the classical procedures without outliers. However, due to the length of the present article,
results of the complete Monte Carlo study (using data sets with outliers) to assess the performances of the
various classical and robust procedures are not included in this article, and will be submitted for
publication at alater date.



Section 2

Mathematical Formulation

In the following, it has been implicitly assumed that the data set under consideration has been
obtained from a"single" normal population, perhaps after a suitable Box-Cox [1964] type transformation
(including the log-transformation) with unknown mean, p, and sd, . Cohen [1950, 1959] derived the
maximum likelihood (ML) equations for censored samples and prepared tables of the constants needed to
obtain the MLEs of p and 0. The ML equations are solved iteratively using a suitable numerical method
such as the Newton-Raphson method. Some computer programs (e.g., UNCENSOR by Newman et al.
[1989)]) are available to compute the MLEs and the RMLEs from left-censored samples obtained from
normal and lognormal populations. Some of these classical and robust methods have been incorporated
into a computer program, CENSOR (see Scout: A Data Analysis Program), for estimation of p and o
from left-censored data sets with potential outliers.

Let x,,x,,...,x_  bearandom samplefromanormal, N(i,0), population with k of the non-
detects, X gXyyooor X, lying numerically below the detection limit, L. Let ¢ and ® bethe
probability density function (pdf) and cumulative distribution function (cdf) of the standard normal
distribution (snd). The logarithm of the likelihood function is given as follows:

n
InL(x, 1, 0) =k1n®(Z) -n,lno-Y, (x,-u)?/2c?+constant, (1)
k+1

where n,= (n-k) and Z=(L-u) /o ,with ®(Z) representing the probability that an
observation islessthan L. The mean ,)?O, and variance ,sf , using the (n-k) observed data values
are:

x,= Y x,/(n-k), and si=) (x,-%)?/(n-k). @)

i
i=k+1 i=k+1

A brief description of some of the robust proceduresto estimate population parameters from
contaminated | eft-censored samplesis given as follows.



Robust Procedures

When dealing with data sets originated from environmental applications, oneis faced with the dual
problem of the occurrence of below detection limit concentrations (non-detects) in the left tail and
possibly some extreme concentrations in the right tail of the distribution of the contaminant (e.g., lead)
under consideration. The presence of outliers leads to distorted estimates of the population mean, u, and
thesd, o. Itis, therefore, important that these unusual observationsin both tails of the distribution be
treated adequately. For full uncensored data sets, simple robust estimates such as the trimmed mean or
Winsorized mean (Hoaglin, Mosteller, and Tukey [1983]) are sometimes used to estimate the population
mean in the presence of outliers. For example, a 100p% trimmed mean is obtained by using only the
middle n(1-2p) data values and the np values are omitted from each of the two (left and right) tails of the
dataset. Gilbert [1987] suggested the use of the Winsorized and trimmed means for the estimation of .
and o for left-censored data sets. Depending upon the censoring intensity, the use of the trimmed and
Winsorized mean has also been recommended in some guidance documents, such as Guidance for Data
Quality Assessment, 1996. Helsel [1990] discussed the use of non-parametric, distribution-free
procedures, and of asimple robust pair, (median, MAD/0.6745), to estimate . and o, where MAD
represents the median absolute deviation. Gilliom and Helsel [1986] suggested the use of the least-
squares regression on the log-transformed data to obtain robust estimates of p and o from left-censored
data sets.

In this article, we use robust M-estimation procedures based on the notion of the influence function
(Hampel [1974]), which assigns reduced weights to the outlying observations. For full uncensored data
sets, several robust procedures exist in the literature for the estimation of the population mean and the
variance (Huber [1981], Rousseeuw and Leroy [1984], Staudte and Sheather [1990], Singh and Nocerino
[1995]). For left-censored data sets, in order to identify and subsequently assign reduced weights to the
outliers that may be present in the right tail of a data set, the robust sample mean, .s?o* , and the robust
s, s o* , using the (n-k) observed values, need to be obtained first. These values are then used in the
various estimation methods, such as MLE, UMLE, RMLE, and the EM method to obtain robust estimates
of the population mean and sd. Singh and Nocerino [1995] showed that for full data sets, the PROP
influence function works very well for 1) the identification of multiple multivariate outliers, and 2) the
robust estimation of the population mean vector and the dispersion matrix. Inthisarticle, those
techniques are extended to obtain the robust estimates of the population mean and the variance using | eft-
censored data sets with outliers.

The PROP influence function (Singh [1993]) and the corresponding iteratively obtained sample mean
and sd based on the (n-k) detected observations are given as follows.

¥(d,) = d, ;d, < d
= d exp[—(d.—d)] ; d. > d €)
(o] 1 [e] 1 (o]
— _ .2 ~ —
X, = Y w(d)x, /Y w(d) ;i so = Y, w,(d,) (x; - x5)%/v. (4)
(k+1) (k+1)
Here, d? = (xi—)?;)z/so*z; i=k+1,k+2,...,n, and d’ isthea*100% critical value from

the scaled beta distribution, (n-k-1)2 B(1/2, (n-k-2)/2)/(n-k), ofthe
distances, diz.



Theweightsaregivenby w, (d,) =w, =¥ (d,) /d,, and w,(d,) =w; =wi (d,) , withthe

degrees-of-freedom, v =wsum2-1, and wsuml=Y, w,(d,), wsum2=Y, w,(d,) .

Since the number of outliers present in adata set is usually unknown, more than one value of «
should be tried on the same data set. The commonly used values of thelevel « are 0.01, 0.05. In the
presence of multiple outliers, higher values of « (e.g., 0.1) may be needed (Singh and Nocerino [1995]) to
unmask outliers. Thisis especially true when the sample sizeis small (e.g., 20 or less). It needsto be
pointed out that the outlier identification procedures based on influence functions typically identify
extreme observationsin both tails of the underlying distribution. When dealing with left-censored data
sets, one is concerned with the identification of outlying observations that might be present in the right
tail of the distribution; therefore, reduced weights are to be assigned to those extreme observations found
in theright tail only. Each of the observed detected values in the left-tail is assigned a unit weight.

Cohen's Method

Cohen's MLEs for the mean and the variance are obtained by solving the following equations:

X, - (X,-LYA(g, h), and By p=sZ+ (X, -L)2A(g,h), (5)

el —_—
uMLE

where g= sj / (x,-L) 2 and h=k/n. Theestimatesof p and o given by equation (5) are biased.
For aType Il censored data set from normal population, Saw [1961] tabulated the first-order bias
correction terms, which were simplified by Schneider [1986] and are given as follows.

Biasﬁ=—exp [2.692-5.439(n-k)/ (n+1) 1, and (6)

Bias,=-[0.312+0.859 (n-k) / (n+1) 17, ()

In practice, the bias corrections given by equations (6) and (7) are also used for Type | censored data.
The bias-corrected MLE, denoted by UMLE, is given as follows.

a 8 _ 0MLEB1asﬁ 45 5 _ O'MLEB_'LaSﬁ ®
- ’ a-ll - - e
UMLE MLE ( n+ 1 ) UMLE MLE n +1

The corresponding robust ML and UML estimates of p and o are obtained by using the robust
estimates, x, and s, ,inplaceof x_, and s_ inequations(5) and (8), respectively.



Expectation Maximization (EM) Algorithm

Dempster, Laird, and Rubin [1977] developed the EM algorithm to maximize the likelihood function
based upon censored and missing data. The iterative EM agorithm works on the observed values
assuming that no observations were censored. At theinitial iteration, using the observed (n-k) data
values, one could start with some convenient estimates for u and o, such as the sample mean and sd, or a
simple one-step robust pair represented by the median and MAD/0.6745. The iterations are defined as
successively maximizing the expectation of the conditional likelihood function of the complete data,
given the type of censoring. Gleit [1985] used this procedure for left-censored samples and found it to
possess alower M SE than the various other substitution and likelihood procedures. For the single
detection limit case, the estimates of p and o at the (j+1)" iteration are given as follows (Shumway, Azari,
and Johnson [1989]).

n k
f,,=0 ) x;+Y E(X;1X;<L)]/n, (9)
i=k+1 i=1
" n k
63m=1 Y (x;-0,)%+Y E,((X;-1u,)% X;<L) 1/ (n-1), where (10)
i=k+1 i=1

ES[X;1X,;<L] =0,-8,[¢(2) /®(2)], with Z=(L-Q,) /6

b (11)

j’

B[ (X,—1,) 21 X,<L) =85 (1-Z[ (2) /®(2) 1) . (12)

Thus the EM method is an iterative substitution method in which at each iteration all of the non-detects
are replaced by the same conditional expected value as given by equation (11). In the presence of
outliers, the conditional expected value given by equation (11) gets distorted (e.g., becomes negative),
and results in inadequate estimates given by equations (9) and (10). Typically, contaminant
concentrations are non-negative and substituting a negative value for non-detects will be inappropriate.
In these cases, the non-detects have to be replaced by zero, or half of the detection limit, L/2 (see
Example 4). Inthisarticle, whenever the conditional expected value became negative, it was replaced by
L/2. Asshown in the examplesto follow, the robust EM estimation procedure takes care of this problem
by assigning reduced weights to the outlying observations. The robust EM estimates at the (j+1)"
iteration are given as follows:

n k
f,,=0) wyx;+Y E,(X;1X,;<L)]1/ (wsuml+k), and (13)
i=k+1 i=1
2 _ 2 .
65a=1 Y, wi (x;-0)%+Y E;((X;-n,) % X;<L) 1/ (wsum2+k-1) . (14)
i=k+1 i=1



Restricted Maximum Likelihood (RMLE) Method

Persson and Rootzen [1977] obtained the restricted likelihood estimates by simplifying the ML
eguations. The likelihood function can be written as follows:

n

L(x,u,0) =[0(2) 1% (200 " %exp-1 ¥ (y,+20)%/25%1, (15)
i=(k+1)

wherey,;=x;-L; i:=k+1, k+2,..., n. Therandom variable, (n-k), representing the number of observed values
above L, can be expressed as a binomial random variable with the pdf given below.

P(No. of observationslyingabovelL =r)= [n!/r! (n-r)!] (1-®(Z) ) d" 7 (2) (16)

wherer=0,1,2,...,n. Anestimateof & (Z), the probablllty that an observatlon liesbelow L, isk/n.
Thus, for O<k<n, an estimate, )\k/n, of Z isgiven by Z= Ne/n =0 (k/n) .

Substituting A, n for Z in equation (15) and then maximizing the resulting restricted likelihood
function yields the following closed form estimates of p and o.

Z 2

6RML=% [C+(C2+

where c= Ak/nz v,/ (n-k) . Theestimates given by equation (17) are biased, which can be
corrected asfollows For left-censored samples, E [ x ,J=n+oa, and E [ s, ] =0?[1+(aZ-o?) 1,

where a=¢(2)/(1-®(Z)), andthe bias-corrected RMLES are given as follows:

~ = _aa A a2 A _A2y A2 q1/2
Qprur, =X~ @Oppyy, @ OBRML_[SO (G Q%) Opur ] ! (18)

where &=¢ (x,, )/ (1-k/n).

The robust RMLEs are obtained by assigning reduced weights to each of the outlying observation
present in the right tail of the dataset. The bias corrected robust RMLESs are given by:

" R = Zk:l w.x./wsuml) -&&g,,,, and (29
o ” 2 2 ~ ~
8" s = [ ( ';1 w; x; /wsum2) - ( 'gl wixi/wsuml)z— (O(Ak/n—az) RML]l/2 (20)



Regression Method

The ordinary least squares (OLS) regression lineis obtained by fitting a model to the observed data
(perhaps after a suitabl e transformation) and the hypothetical normal quantiles. In other words, itis
assumed that the k censored observations, Kig Xyp oo or Xy follow the zero-to-detection limit
portion of anormal (transformed) distribution. A least squares regression lineis abtained using the (n-k)
pairs, (g r X)) i=k+1, k+2,...,n, where X ae the observed values arranged in ascending
order. Then quantiles, g 4r e obtained using an appropriate normal probability statement, such
as P[zsq(i)] =(1i-3/8)/ (n+1/4); 1i:=1,2,...,n (Johnsonand Wichern[1988]). The
fitted OLSregression lineis given by:

X =a+bq(i),i:=k+1,k+2,...,n. (22)

i)

The mean, u, and sd, o, can be estimated in two ways:. 1) by using the intercept and slope of the fit
given by equation (21), and 2) by the extrapolation of the non-detects obtained using the model given by
equation (21). The extrapolation regression approach (labeled as the Regress method) estimates the
population mean and sd using the (n-k) observed data values and the k extrapolated non-detects. For full
data sets, Barnett [1975] used the intercept and the slope of the regression line to estimate the population
mean and sd. Newman et al. [1989] followed a similar approach, and used the intercept and the slope of
the OLS line given by eguation (21) to estimate u and o from left-censored data sets.

Hashimoto and Trussell [1983], Gilliom and Helsel [1986], and Helsel [1990] used the OLS
regression on the log-transformed data and extrapolated the non-detects using the regression model thus
obtained. Their studies suggested that this method is fairly robust for the estimation of | and o using left-
censored data sets with potential outliers. Let Org stand for the original units and Ln stand for the log-
transformed data. Using equation (21) on the log-transformed data, the non-detects in transformed units
are obtained by extrapolation corresponding to the first k normal quantiles. These non-detects can be
back-transformed in the origina units, and sample mean and sd then can be computed using the n data
pointsin the original units. Alternatively, themean, (i, , andsd, 6, , arecomputed usingthe
observed log-transformed data and the extrapolated non-detects (log-transformed). Assuming
lognormality, EL-Shaarawi [1989] estimated 1 and o by back-transformation using the following
equations. Note that these estimates suffer from transformation bias and neither are unbiased nor have the
minimum variance [Gilbert, 1987].

~ A A2 A2 A2 A2
forg=exp (O, +61,/2), and 8prg=10rs (exp (8L,) -1) . (22)

From the examples discussed below in Section 3, it is observed that the OL S regression approaches
do not perform well in al cases. The OLS regression model on original or log-transformed data does get
distorted by the outliers. Thisresultsin distorted estimates of intercept (population mean) and slope (sd),
which give rise to infeasible extrapol ated non-detects. For example, the estimated non-detects can
become negative, larger than L, and even larger than some of the observed values (e.g., X)), Which results
in biased estimates of mean and sd (see Example 4). In these situations, typically subjective checks are
provided: negative estimates can be replaced by L/2, and the estimated non-detects greater than L can be
replaced by L itself. The mean and variance are then computed using the replacement values.



It iswell known that the OL S estimates of intercept and slope (Rousseeuw and Leroy [1984]), and,
hence, the mean and sd and the extrapol ated non-detects, get distorted even by the presence of asingle
outlier. In the presence of outliers, the use of the log-transformation alone will not result in robust
estimates of intercept and slope. Robust regression methods as given by Rousseeuw and Leroy [1984],
and by Sngh and Nocerino [1995], may be used to obtain robust estimates of slope and intercept. Some
examples are considered next to illustrate the procedures described here. The discussion and use of the
robust regression for censored data sets are beyond the scope of the present article. All computations are
performed using the CENSOR program. In the following, all replacement values (when applicable) for
non-detects are listed in parentheses. Since the substitution methods do result in biased estimates of
and o, their computations are omitted from most of the examples and simulation results discussed in the
following sections.
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Section 3

More Examples

Example2. A simulated data set of size 15 was obtained from a normal population with mean, u = 1.33,
and sd, 0 = 0.2, N(1.33, 0.2), with L=1.0, and k=2. The left-censored data are: <1.0, <1.0,
1.2883, 1.1612, 1.1560, 1.3251, 1.1568, 1.5638, 1.2914, 1.3253, 1.2884, 1.4688, 1.4581,
1.3641, 1.1342. The sample mean and sd obtained using the 13 observed data values were
1.306 and 0.134, respectively. Classical and robust procedures produced similar results and
aregiven asfollowsin Table 1. For this simulated data set, observe that all of the methods,
except the first two substitution methods, resulted in similar results.

Table 1. Classical/Robust results for N(1.33, 0.2) with n=15, k=2, and L=1.0.

Method | Zero L/2 L MLE UMLE RMLE Regress* EM**

Mean 1.13 1.20 | 1.27 1.25 1.26 1.26 1.27 1.25

sd 0.48 0.31 | 0.16 0.18 0.19 0.17 0.16 0.19
*(0.979, 1.061) | **(0.91)

Note: Substitution values for non-detects are given in parentheses, identified by one (1)
asterisk (*) for the Regress method and by two (2) asterisks (**) for the EM method.

Example 3. Next, the data set of Example 2 was contaminated with two outliers, 3.8561 and 6.2513,
from anormal, N(5,2) population. Outliers distorted the classical estimates of the mean and
the sd for all of the methods, and also distorted the intercept and slope of the OLS
regression. The sample mean and sd for the 15 observed data points were 1.806 and 1.4,
respectively. Theresultsare givenin Table 2. Notice that for the EM algorithm, the outliers
distorted the conditional replacement value of 0.91 to 0.025. Therobust MLE, RMLE, and
the EM methods, on the other hand, resulted in fairly accurate estimates, and the robust
results of Table 2 with the outliers, and the classical results of Table 1, without the outliers,
arein close agreement.
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Table 2. Results for N(1.33, 0.2), with outliers from
N(5,2), n=17, k=2, and L=1.0.

Classical Robust
Method | Mean sd Mean sd
L 1.71 1.34 1.27 0.16
MLE 1.60 1.41 1.26 0.17
UMLE 1.61 1.49 1.26 0.18
RMLE 1.55 1.50 1.26 0.17
EM* 1.60 | 1.46%(0.025) | 1.25 | 0.18*(0.91)

Note: Substitution values for non-detects are given in
parentheses, identified by one asterisk (*) for the
EM method.

Example 4. Thisleft-censored data set istaken from the U.S. EPA RCRA guidance document [1992].

The detection limit is 1450. The data with 3 non-detects and 21 observed values are: <1450,
<1450, <1450, 1850, 1760, 1710, 1575, 1475, 1780, 1790, 1780, 1790, 1800, 1800, 1840,
1820, 1860, 1780, 1760, 1800, 1900, 1770, 1790, 1780. The sample mean and sd obtained
using 21 observed dataare 1771.91 and 92.702, respectively. The classical and robust
estimates are summarized in Table 3. Note that the substitution by L/2 method resulted in a
biased estimate of mean with the highest variability, which is one of the most frequently
used methods in environmental applications. All of the likelihood methods and the EM
method resulted in fairly similar estimates. The regression method resulted in estimated
non-detects larger than L. Figure 1 displaysthe classical fit obtained using the observed
data, (q;r X 5 ), 1=4,5, .., 21. Thismodel isthen used to estimate the non-detects by
extrapolation. The graph with extrapolated non-detectsis given in Figure 2. As can be seen
in thisfigure, the three estimated non-detects (circled) are larger than the detection limit,
L=1450, and even larger than the smallest observed value of 1475. The use of those
extrapolated non-detects (higher than the reporting value), of course, will reduce the spread
in data, but will aso result in ahighly biased estimate of the mean. Thisresulted in
sd=103.21 and a high-biased estimate of the mean=1751.36. Using the slope and the
intercept of the regression line, we have an estimate of sd=92.15, and an estimate of the
mean=1751.36. This example aone suggests that the OL S regression approaches are not
suitable for the estimation of the mean and the sd from censored samples.

Table 3. Classical/Robust results (without outliers), n=24, k=3, and L=1450.

Method L/2 L MLE UMLE RMLE Regress* EM**
Mean 1641.04 | 1731.67 | 1724.0 | 1724.94 | 1725.55 1751.36 1723.66
sd 364.09 [ 138.92 | 153.65| 159.39 | 144.37 103.21 157.80

*(1571.91, 1613.25, 1637.46) |**(1385.97)

Note: Substitution values for non-detects are given in parentheses, identified by one (1) asterisk (*) for
the Regress method and by two (2) asterisks (**) for the EM method.
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Ordered Observed Data

Ordered Observed Data

1946.75

1895.33
1843.90
1792.47
1741.05
1689.62
1638.20 |
Least Squares
1586.78 |- .
Slope = 92.150
1535.35 - Y Intercept = 1751.359
Correlation = 0.800
1483.92 + o
1432.50 i f i f i f % f % f
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Theoretical Quantiles (Normal Distribution)
Figure 1. Classical Fit for Observed Data.
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Figure 2. Non-Detects Obtained Using the Classical Fit.
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In order to further illustrate how the presence of outliers distorts these estimates, three arbitrarily
chosen outliers, 7000, 8000, and 11000 are added to the data set of this example. The relevant classical
and robust statistics for the contaminated data set are summarized below in Table 4. Theclassical
observed sample mean and sd for the data with outliers (24 values) are 2633.75 and 2410.35. Using
equation (21), the intercept and slope of for the left-censored contaminated data set are 2216.51 and
2061.25. Use of this OL Sfit resulted in distorted negative values for the extrapol ated non-detects which
aregivenin Table 4.

Table 4. Results with 3 discordant values, n=27, k=3, and L=1450.

Robust

Classical (a=0.01, 0.05)
Method Mean sd Mean sd
MLE 2317.64 2437.60 1729.83 147.41
UMLE 2329.79 2516.74 1730.56 152.19
RMLE 2204.61 2609.06 1731.14 139.17
Regress* 2216.51 2574.10 *(-1899.83, -995.304, -469.177)
EM** 2312.80 | 2491.23 *(-254.79) 1723.66 | 157.80 **(1385.97)

Note: Substitution values for non-detects are given in parentheses, identified by one
asterisk (*) for the Regress method and by two asterisks (**) for the EM
method.

For the classical EM procedure, the estimated non-detects became negative. Notice that the robust
results for the MLE, the RMLE, and the EM-based algorithm are in close agreement with or without the
outliers as can be seen by comparing Tables 3 and 4. Also note that the robust replacement value of
1385.97 for the EM algorithm is in agreement with the corresponding classical value without the outliers.

Next, the log-transformation of the data set with the outliersis considered. The corresponding
estimates are given below in Table 5. The classical mean and sd for the observed log-transformed data
are 7.675 and 0.537. Inthefollowing, all back-transformation results are obtained using equation (22).
The outliers distorted the estimates of the mean and the sd for all of the methods, including the regression
method.

The OLSfit on the log-transformed datais given in Figure 3. Theintercept and slope are 7.577 and
0.481, respectively. Using thisfit, the estimated non-detects are 6.62, 6.83, and 6.95, which, when
converted back to the original units, are 749.95, 925.19, and 1043.15, respectively. The resulting
estimates (using all 27 data points) of the mean and the sd in the original units are 2441.79 and 2333.93,
which are obviously influenced by the three outliers. Thus, as mentioned above, the log-transformation
alone cannot produce robust regression estimates. The only advantage of using the log-transformed data
isthat the replacement values for the non-detects did not become negative for the regression and the EM
method.
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Ordered Observed Data

Table 5. Classical Estimates for Log-Transformed Data with Outliers,

n=27, and k=3.
Log Transform Back Transform

Method Mean sd Mean sd
MLE 7.59 0.56 2314.35 |1393.69
UMLE 7.59 0.57 2344.59 |1456.60
RMLE 7.58 0.58 2315.67 | 1476.96
Regress* | 7.58 0.58 2311.29 | 1461.96 *(6.62, 6.83, 6.95)
EM** 7.59 0.57 2327.96 | 1438.29 **(6.92)

Note: Substitution values for non-detects are given in parentheses,
identified by one asterisk (*) for the Regress method and by two
asterisks (**) for the EM method.
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1 [ ]
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8.30
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7.65 |
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7.32 o®
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Theoretical Quantiles (Normal Distribution)

Figure 3. OLS Fit with Outliers: Log-Transformed Data.
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The PROP estimates with «=0.05 on the log-transformed data are given in Table 6. The robust mean
and sd for the observed data are 7.48 and 0.0086, respectively. The results summarized in Table 6 arein
close agreement with the robust results (Table 4) obtained using the data in the original units and also
with the estimates (Table 3) obtained using the classical procedure without the outliers.

Table 6. Robust Estimates for Log-Transformed Data with

Qutliers, n=27, and k=3.

Log Transform Back Transform
Method Mean sd Mean sd
MLE 7.45 0.09 1731.10 155.89
UMLE 7.45 0.09 1732.34 161.09
RMLE 7.45 0.08 1731.72 146.78
EM* 7.45 0.10 1725.57 166.57 (7.24)

Note: Substitution values for non-detects are given in
parentheses, identified by one asterisk (*) for the EM
method.
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Section 4

Simulation Experiments and Results

The performances of the various procedures are measured in terms of bias and MSE. Bias of an
estimate, 6, of aparameter, 6 ,isdefined asits departure, (é -8) , from the parameter. For a
smulatlon experiment with N iterations, these are given by bIaS—Z e -8) /N, and MSE
—E el. 8)2/N, where el. isanestimateof ©, obtained from the sample generated at the i™
iterlati on,i:=1,2, ..., N. Some results of the simulation experiments for left-censored samples without
outliers obtained from the normal population, N(5,2), with 5000 iterations each, are discussed as follows.
Severa classical estimation methods for various values of L, sample sizes, and censoring intensities are
considered. For the "fixed" detection limit case, L was set at 1.0, 2.0, 4.0, and 5.0 for each of the
censoring levels. For the "computed” detection limit case, for «100% censoring intensity, the detection
limit, L, isgiven by theequation, L=u+0* Z,r where Z, the critical value of the standard
normal distribution, isgivenby P(Z<z ) =o. Selected graphs of biasand MSE for some values of
L (e.g., 2 and 4), sample sizes (e.g., 5 - 25), and censoring intensities (e.g., 10% - 60%) are presented
here. Since the various substitution methods do not perform well, therefore, most of the results and
graphs discussed are for the MLE, UMLE, RMLE, EM, and the regression methods. From these graphs
(Figures 4-27), as

. 0.78 -
expected, it is observed — o
. +— + —+ \—F\J/"-
that the MSE and bias for
0.624
all of the methods
decrease with the sample
0.468 - ,
size. Also,itisnoticed o Cohen’s MLE
, _ 2] o RMLE
that the differencesin = + Unbias MLE
. 0.312 4
M SEs of the various * Regress
- © Expected
likelihood procedures
decrease as the sample 0.156
sizeincreases (€., 200 200 200 200 200 200 DetLimi
i - - 0 1 1 1 1 ‘ 1
Figures 4-6 and 9-11). 10% 20% 30% 40% 50% 60% Censoring

Figure 4. MSE: 5000 Simulation Runs For N(5,2), L =2.0 (n =5).
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Figure 5. MSE: 5000 Simulation Runs For N(5,2), L = 2.0 (n = 15).
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Figure 6. MSE: 5000 Simulation Runs For N(5,2), L = 2.0 (n = 25).
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Figure 7. Bias: 5000 Simulation Runs For N(5,2),L =2.0 (n =5).
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Figure 8. Bias: 5000 Simulation Runs For N(5,2), L =2.0 (n = 15).
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Figure 9. MSE: 5000 Simulation Runs For N(5,2), L =4.0 (n = 5).
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Figure 10. MSE: 5000 Simulation Runs For N(5,2), L = 4.0 (n = 15).
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Figure 14. Bias: 5000 Simulation Runs For N(5,2), L = 4.0 (n = 25).
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Figure 16. MSE: 5000 Simulation Runs For N(5,2), L =4.0 (n = 15).
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Figure 18. Bias: 5000 Simulation Runs For N(5,2), L = 4.0 (n = 15).

24



MSE

MSE

291

2.33 -
1.75
o hen's MLE
116 1 Cohen's
© RMLE
+ Unbias MLE
x Regress
0.582 < Expected
2.44 3.32 3.95 4.49 5.00 5.51 Det. Limit
0 % % % % % %
10% 20% 30% 40% 50% 60% Censoring

Figure 19. MSE: 5000 Simulation Runs For N(5,2), L Computed (n = 5).
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Figure 22. MSE: 5000 Simulation Runs For N(5,2), L Computed (n = 25).
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Figure 23. Bias: 5000 Simulation Runs For N(5,2), L Computed (n = 5).
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Figure 24. Bias: 5000 Simulation Runs For N(5,2), L Computed (n = 15).
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Figure 27. Bias: 5000 Simulation Runs For N(5,2), L = 2.0 (n = 25).

Fixed Detection Limit

Figures 4 through 6 have the M SEs and Figures 7 and 8 have the bias for various procedures when
L=2.0. Figures 9 through 11 show the M SEs and Figures 12-14 display the bias for various estimation
methods when L=4.0. It isobserved that, for samples of smaller (e.g., less than 10) sizes, the UMLE
method yields a higher bias than the MLE, RMLE, and the EM methods (Figures 7 and 12). However,
when L (eg., 1, 2) ismuch smaller than the mean, pu (e.g., 5), the UMLE method has the smallest MSE
and the EM method has the largest MSE for samples of all sizes. When L iscloser (e.g., 4 or 5) to mean,
M, for samples of smaller sizes (Figures 9 and 12), the MSE and bias for the UMLE become larger than
those of the EM, MLE, and the RMLE methods, with the EM method having the smallest M SE and bias.
This observation concurs with Gleit's (1985) findings for the EM method. But asthe sample size
increases (e.g., becomes 15 or larger), as expected, the situation reverses, and the UMLE method results
in the smallest MSE, while the EM and the regression methods yield larger MSEs (Figures 10 and 11).
Note that, to some extent, this behavior of the MSE and bias of the EM method is similar to the
substitution by L/2 or L methods, except that, as the sample size increases, the MSE and bias for the later
two substitution methods become much greater than those of the EM method, as can be seen in Figures
15-18 and 24. The EM method, after all, isjust a substitution method in which all of the non-detects are
replaced by an optimally obtained conditional expected value. From Figures 13 and 14, it is noticed that
the bias for the EM and the regression methods becomes fairly large as the sample size increases.

Also, it is observed that as the sample size increases, the bias of the MLE and RMLE methods starts
becoming smaller (in magnitude) than that of the UMLE method for all censoring intensities (Figures 13-
14). From all of these graphs, it is observed that the bias and M SEs obtained using the RMLE and
Cohen's MLE methods are stable, always stay very close to each other, and lie in the middle of the
respective bias and M SE of the other methods for all sample sizes and censoring levels. Actualy, in most
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cases, the RMLE method even results in a smaller bias and M SE than the MLE method as can be seen
from Figures 8, 10, 11, 13, 14, and 16-18. Also, note that the differencesin the MSE of the three MLE
methods (UMLE, Cohen's, and RMLE) decrease as the sample size increases.

Computed Detection Limit

Figures 19-22 are the graphs of the M SE and Figures 23-27 have the bias for various sample sizes and
censoring levels. From these graphs, as expected, it is observed that the MSE for al of the methods
increase with the detection limit, L, or the censoring intensity, for all sample sizes. It is observed that for
small sample sizes, the EM method (the optimal replacement by the conditional expected value method)
resultsin smaller MSE and bias (Figures 19 and 23), especially when the detection limit starts coming
closer to the mean value. The bias for the EM and L/2 methods becomes unacceptably high with
increased sample size, as can be seen in Figures 24 and 25. As observed earlier, note that, as the sample
size increases, the UMLE method resultsin the smallest MSE, and the substitution by L/2 method, the
EM method, and the regression method yield M SEs much larger than the three MLE methods. However,
the UMLE method results in a bias which islarger than those of the MLE and RMLE methods. This
increase in the bias of the UMLE becomes quite noticeable with increases in the sample size, the
detection limit, and the censoring intensity. Thisis especially true when the censoring level starts
exceeding 30%. Moreover, from all of these graphs, it is observed that both the bias and the MSEs
obtained using the RMLE and Cohen's MLE methods are stable and always stay close together for all of
the sample sizes and censoring levels. Also, as noticed earlier, the RMLE method does result in a smaller
bias and M SE than the MLE method (Figures 20-25) most of the time. These observations concur with
the conclusions derived by Haas and Scheff (1990).
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Section 5

Summary and Conclusions

In this article, two questions which arise when dealing with left-censored data sets have been
addressed. Those two questions are: 1) “Which method should be used for the estimation of the
population mean and sd from left-censored data sets?’ and 2) “What is an appropriate robust estimation
procedure in the presence of potential outliersin theright tail of the distribution?’

The various substitution methods are simple, but do not perform well in most cases as they yield
estimates with alarger bias and M SE than those obtained using the MLE methods. Also, it is observed
that for larger sample sizes (e.g., >=15), the EM method resultsin a bias and M SE larger than those of the
MLE methods. The examples presented here lead to the conclusion that the OL S regression-based
approaches cannot be recommended for routine use. The estimated non-detects obtained by extrapolating
the fitted model many times result in infeasible estimates, which become negative or even greater than the
detection limit, L. The examples and the simulation results presented in this article clearly establish that,
in most cases, the three MLE methods (Cohen's MLE, UMLE, and RMLE) perform better than the
various substitution and regression methods.

All of the classical estimation procedures, including the maximum likelihood and substitution
methods, result in distorted estimates in the presence of outliers. In the presence of outliers, the EM
method sometimes produces negative estimates of the non-detects, which in turn result in a biased
estimate of the population mean. The OL S regression models get distorted by the outlying observations;
therefore, regression estimates obtained using raw or log-transformed data are no longer reliable. Thus,
the OL S regression method based on the log-transformed data is not a“true robust” method. Itis
observed that the robust estimation procedure based on the PROP influence function results in stable and
reliable estimates of the population parameters. Moreover, the resulting robust estimates, with or without
the outliers, and the classical estimates, without the outliers, stay in close agreement.

The performance of the various estimation methods described here depend upon several things, such
as the sample size, the censoring intensity, and the value of the detection limit, L. The conclusions
derived from the simulation results and graphs presented in this article are summarized as follows.

* When the detection limit, L, is closer to the population mean, it is observed that for samples of smaller
sizes (e.g., 5-10), the EM method and the other substitution methods such as the L/2 method result in a
smaller bias and M SE than the three MLE (UMLE, Cohen's, and RMLE) procedures. However, asthe
sample size increases (e.g., 15 or larger), the EM method, along with the other substitution methods,
resultsin a higher bias and alarger M SE than the three likelihood procedures.
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e For values of L much smaller than the mean, the UMLE method results in the smallest M SE for
samples of al sizes.

» Thedifferencesin the M SE of the three MLE methods decrease as the sample size increases.

» The simulation results suggest that, although the UMLE method does result in the smallest M SE for
samples of size 15 or larger, the bias of the UMLE becomes larger (in magnitude) than the MLE and
the RMLE methods. Thisincreasein the bias of the UMLE method becomes quite noticeable as the
detection limit increases and the censoring intensity starts exceeding 30%. Thus, for higher censoring
intensities, the MLE or the RMLE method may be used to obtain estimates of the population mean and
sd from a left-censored data set.

» The RMLE method is simple and results in estimates which are in close agreement with the Cohen's
ML estimates. It isobserved that the bias and M SEs obtained using the RMLE and Cohen's MLE
methods are stable and always stay close together for all sample sizes and censoring intensities.
Actually, in most cases, the RMLE method resultsin a smaller bias and M SE than those obtained using
the Cohen's MLE method. Thisisespecialy true as the sample size increases.

Using the examples and results described here, the following recommendations can be made:

» For data sets with potential outliers, the robust estimation procedures based on influence functions,
such as the PROP influence function, should be used for the estimation of population parameters.

» For samples of small sizes (e.g., 10 observations or less), the EM method or the substitution by L/2 (or
L) method may be used, especially when L is closer to the mean.

» For samples of larger sizes (e.g., 15 observations or larger), the UMLE method may be used for
censoring levels of 30% or less.

» However, since the differencesin the MSE of the three MLE methods (UMLE, Cohen's, and RMLE)
decrease as the sample size increases, and in order to make things easier for atypical user, itis
recommended that for larger sample sizes, or for samples with censoring levels exceeding 30%, the
much simplified RMLE method may be used for the estimation of the population parameters.

» Theresults of our study clearly establish that one should stay away from the substitution methods,
especialy when the sample size is larger than 10 observations.
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