COMPUTATION OF AN UPPER CONFIDENCE LIMIT (UCL) OF THE UNKNOWN POPULATION MEAN

USING SOFTWARE ProUCL, VERSION 3.0 PART I

Anita Singh

Lockheed Martin Environmental Services

Disclaimer

- The United States Environmental Protection Agency (EPA) through its Office of Research and Development funded and managed the research described here. Mention of trade names or commercial products does not constitute endorsement or recommendation by the EPA for use.
- ProUCL software was developed by Lockheed Martin under a contract with the EPA and is made available through the EPA Technical Support Center in Las Vegas, Nevada.
- Use of any portion of ProUCL that does not comply with the ProUCL User Guide is not recommended.
- ProUCL contains embedded licensed software. Any modification of the ProUCL source code may violate the embedded licensed software agreements and is expressly forbidden.
- ProUCL software provided by the EPA was scanned with McAfee VirusScan v4.5.1 SP1 and is certified free of viruses.
- With respect to ProUCL distributed software and documentation, neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed. Furthermore, software and documentation are supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

Acknowledgements

The development of software ProUCL, Version 3.0 has been supported by the Office of Superfund Remediation and Technical Information, USEPA, Washington, D.C.

ProUCL is managed by the Technical Support Center of USEPA in Las Vegas, NV.

Workshop Objectives - ProUCL The main objective is to provide working knowledge about ProUCL using real Superfund examples.

Demonstrate why the default use of a lognormal distribution should be avoided to compute upper confidence limits (UCLs) of mean.

Demonstrate why other skewed distribution such as a gamma distribution is better suited to compute UCLs.

Discuss the availability of distribution - free UCL methods (e.g., bootstrap, Chebyshev inequality) in ProUCL, V 3.0. Workshop Objectives - ProUCL
 Demonstrate the undue influence of outliers on the computation of UCLs, EPC terms.

Discussion about the treatments of outliers.

Discuss how to interpret the various output results produced by ProUCL.

Discuss and show how to select the most appropriate UCL in ProUCL to estimate the EPC.

Discuss how to use/interpret recommendations made by ProUCL.

Workshop Outline

- □ Introduction: What are UCLs and assumptions needed.
- Distributions and goodness-of-fit tests in ProUCL.
- Parametric UCL methods based upon:
 - Normal
 - Lognormal, and
 - Gamma
- Non-parametric (distribution-free) UCL methods:
 - Large sample UCLs, skewness adjusted UCLs
 - Chebyshev UCLs
 - Bootstrap UCLs

Workshop Outline

Illustrations of parametric and non-parametric UCLs using real Superfund data sets.

Outliers and their influence on UCLs.
 – Illustrations using real data sets.

Summary of a recommended procedure to compute an appropriate UCL of the mean.

Why Do We Need to Compute a UCL?

In Superfund exposure and risk assessment studies - a 95% UCL of unknown mean, µ₁, of a contaminant of potential concern (COPC) is used to estimate the Exposure Point Concentration (EPC) Term.

A UCL is computed using sampled data and a discernible (e.g., normal, lognormal, gamma) probability distribution (if any), or a nonparametric (distribution free) method.

Tools and Guidance to Compute UCLs / EPC Terms

EPA, December 2002: Calculating UCLs Guidance Document for Hazardous Waste Sites - OSWER 9285.670

EPA, April 2004: ProUCL, Version 3.0 Available at: http://www.epa.gov/nerlesd1/tsc/software.htm

What is a UCL?

■ A(1- α) 100% UCL of mean, μ_1 is a random value (based upon sampled data) given by the probability statement:

$P(\mu_1 \le UCL) = 1 - \alpha$

A UCL should represent a realistic value of practical merit providing approximately (1-α) 100% coverage to mean, μ₁.

– This requires use of:

- Appropriate probability distributions, and
- UCL computation methods

Fundamental Assumptions Needed for all UCL Computation Methods

Make sure that there are no outliers and/or multiple populations (e.g, mixture of site and background data):

– UCL is computed for the unknown mean of a single population.

- If there are multiple populations, separate them before proceeding with UCL computations – seek statistician's help, use graphical displays such as quantile-quantile (Q-Q) plots.
- Outliers when present distort all statistics, UCLs, etc.
- If justified, remove all outliers before computing UCLs. 11

Distributions in ProUCL, Version 3.0
Normal distribution (symmetric):

- But environmental data are often positively skewed.

Lognormal distribution (positively skewed):

- Historically often used as a default model.
- Lognormal model accommodates: outliers, impractically large mean values, and also multiple populations.
- Its use often results in unstable, impractical, unreliable UCL values leading to:
 - Further investigation recommendation.
 - Use of the maximum value as an estimate of exposure point concentration (EPC) term.

Distributions in ProUCL, Version 3.0

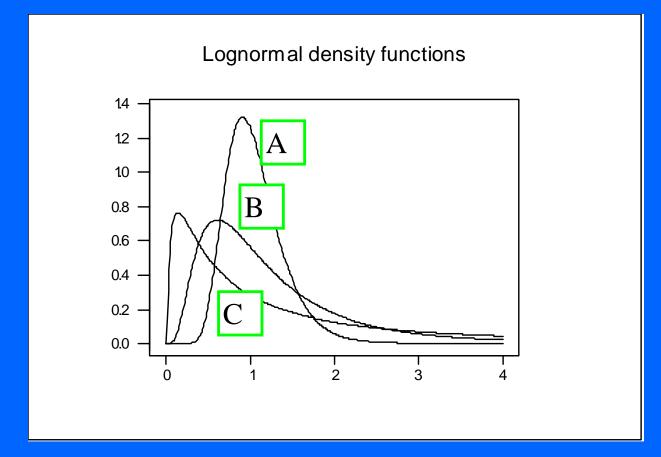
Conclusion: Several recent studies suggested that Lognormal model is not appropriate to compute a UCL, especially for small sample size, n.

Gamma distribution (positively skewed):

 It seems to work well on environmental data sets (EPA Issue Paper, 2002: Singh, Singh, and Iaci).

Non-parametric (distribution free) UCL computation methods - several in ProUCL.

Lognormal Distribution


- X is lognormal, $LN(\mu, \sigma)$ if Y=ln(X) is normal with mean, μ and sd, σ
 - This is probably why it became so popular.
 - Its use however leads to unstable and impractical results.
 - Not a practical model to compute a UCL of the mean.

■ Lognormal mean,
$$\mu_1 = \exp(\mu + \frac{\sigma^2}{2})$$

– Can be unduly large.

■ Coefficient of Variation (CV) = $\sqrt{\exp(\sigma^2) - 1}$

Skewness = $(CV)^3 + 3(CV)$, depends upon σ only, and often results in unrealistically large values.

Lognormal Distribution

A=LN(0, $\sigma = 0.316$), B=LN(0,0.707), C=LN(0,1.414)

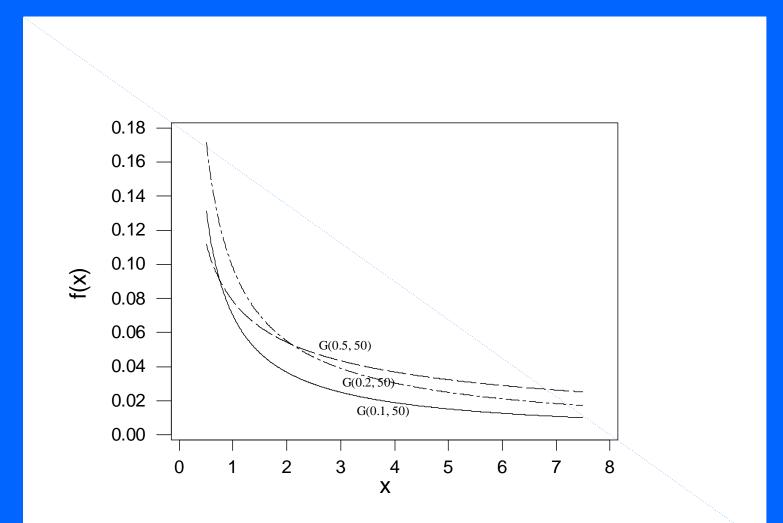
Skewness as a function of σ Sd of Log-transformed Data

Skewness as a Function of σ (or its MLE , s _y =ô)					
Standard Deviation	Skewness				
σ < 0.5	Symmetric to mild skewness				
0.5 ≤σ < 1.0	Mild Skewness to Moderate Skewness				
1.0 ≤σ < 1.5	Moderate Skewness to High Skewness				
1.5 ≤σ≤2.0	High skewness				
2.0 ≤σ < 3.0	Extremely high skewness				
σ≥3.0	Not well-behaved data sets - require further				
	investigation				

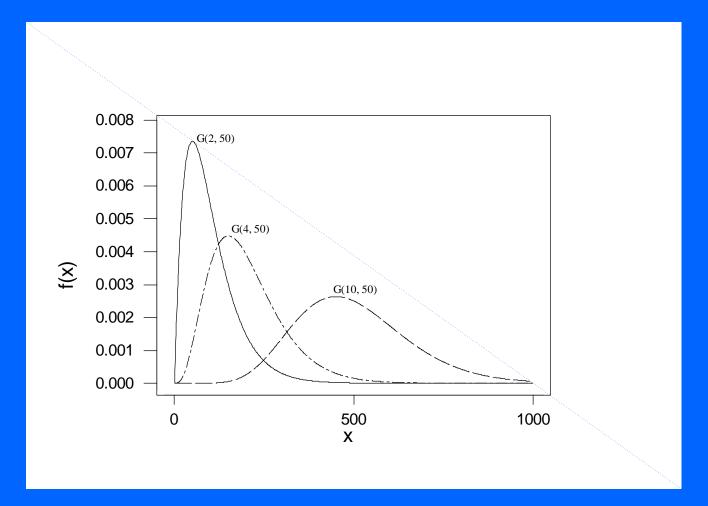
Gamma Probability Model in ProUCL, Version 3.0 A two-parameter Gamma Model,*G*(*k*,θ) is:

$$f(x;k,\theta) = \frac{1}{\theta^k \Gamma(k)} x^{(k-1)} e^{x/\theta}; x > 0$$

k = shape, and $\theta = \text{scale parameters}$


$$Mean = \mu_1 = k\theta$$

variance = $k\theta^2$


skewness = $2/\sqrt{k}$

As k exceeds 6, it starts becoming symmetrical, and an approx. normal model may be used.

Gamma Densities

Gamma Densities

Random Sample of Size n
 Let x¹, x⁵, ..., xⁿ be a random sample (data) on X (e.g., X = conc. of Pb, PCB) from a population (site, EA) with unknown mean, μ₁.
 Any potential outliers/multiple populations requiring separate treatment?

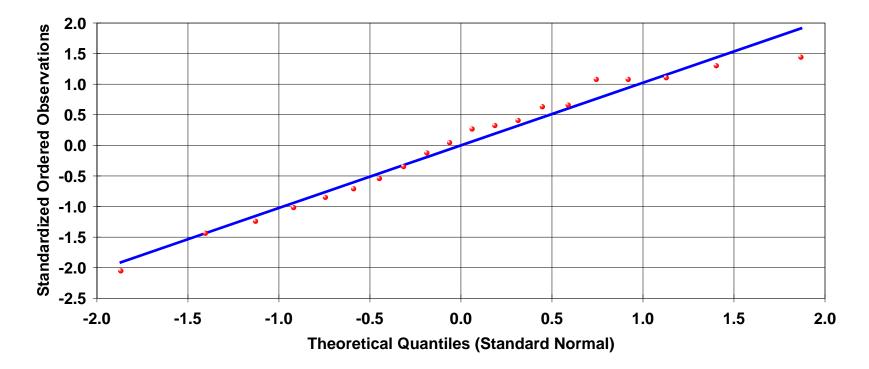
– Do data follow a discernible probability model?

Raw sample mean and standard deviation (sd):

$$\overline{x} = \sum_{i=1}^{n} x_i / n$$

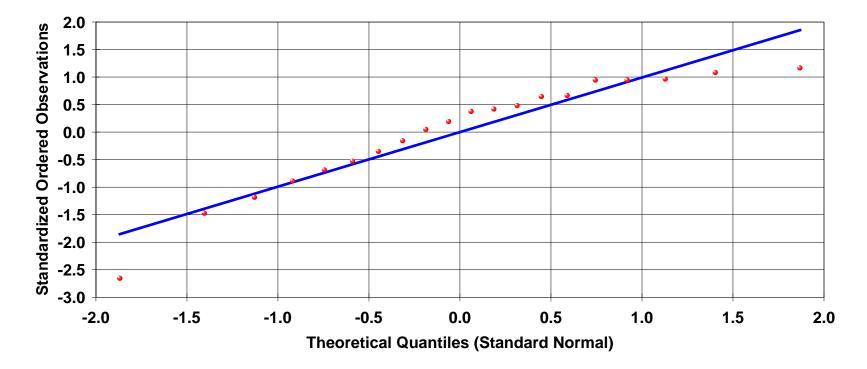
$$s_x = \sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 / (n - 1)}$$

Normal/Lognormal Distributions


Tests for normality and lognormality of data:

- Graphical Q-Q plot and Histogram
- Shapiro Wilk test (sample size, n<=50)
- Lilliefors test (n>50) a generalization of K-S test
- Computes various statistics:
 - summary statistics
 - maximum likelihood estimates (MLEs) and minimum variance unbiased estimates (MVUEs) of mean, sd, quantiles, CV, skewness, SE of mean

Example 1. Consider a well-behaved data set (Grice.dat) of size n=20 from the literature.


152, 152, 115, 109,137, 88, 94, 77, 160, 165, 125, 40, 128, 123, 136, 101, 62, 153, 83, and 69.

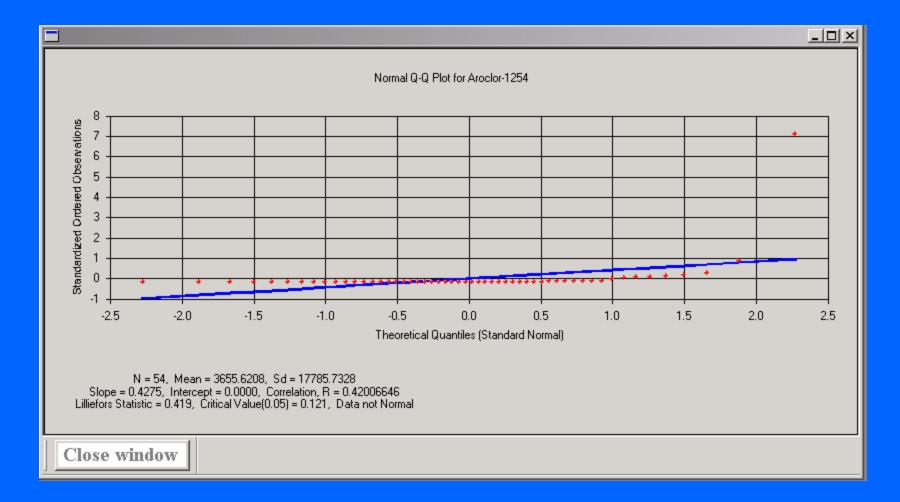
- Data are both normal and lognormal see ProUCL output
- For this data, any of the two UCLs can be used:
 - normal 95% UCL = 127.29
 - lognormal 95% UCL = 134.73

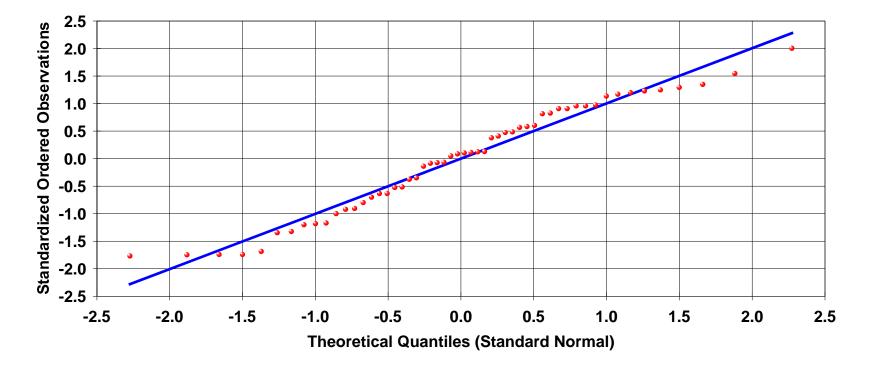
Normal Q-Q Plot for Grice

N = 20, Mean = 113.4500, Stdv = 35.7896 Slope = 1.0233, Intercept = 0.0000, Correlation, R = 0.98577759 Shapiro-Wilk Statistic = 0.961, Critical Value(0.05) = 0.905, Data are Normal

Lognormal Q-Q Plot for Grice

N = 20, Mean = 4.6735, Stdv = 0.3709 Slope = 0.9912, Intercept = 0.0000, Correlation, R = 0.95491839 Shapiro-Wilk Statistic = 0.912, Critical Value(0.05) = 0.905, Data are Lognormal


🛃 ProUCL Version 3.0 - [Lognormal UCL Statistics for Grice.dat]					
贒 File	Edit View Options Summary Statistics Histog	ram Goodne	ss-of-Fit Tes	ts UCLs W	indow Help
D 😅 👗 🛍 🛍 🎒 🤗 💦					
	A B C D	E	F	G	Н
1	Data File D:\drive_c\sprfnd02\proucl2003\g	rice.dat	Variable:	Grice.dat	
2					
3	Number of Valid Samples 20				
4	Number of Distinct Samples				
5	Minimum of log data	3.6888795			
6	Maximum of log data	5.1059455			
7	Mean of log data	4.673464			
8	Standard Deviation of log data	0.3708584			
9	Variance of log data 0.137				
10					
11	Shapiro-Wilk Test Statisitic	0.9115046			
12	Shapiro-Wilk 5% Critical Value	0.905			
13	Data are lognormal at 5% significance level				
14					
15	95% UCL (Assuming Normal Distribution)				
16	Student's-t 127.2				
17					
18	Estimates Assuming Lognormal Distri				
19	MLE Mean 114.6899				
20	MLE Standard Deviation	44.03897			
21	MLE Coefficient of Variation	0.383983			
22	MLE Skewness	1.2085645			
23	MLE Median	107.06799			
24	MLE 80% Quantile	146.47274			
25	MLE 90% Quantile	172.43443			
26	MLE 95% Quantile	197.0635			
27	MLE 99% Quantile 253.68176				
28					
29	MVU Estimate of Median	106.70042			
30	MVU Estimate of Mean	114.27318			
31	MVU Estimate of Sd	43.305246			
32	MVU Estimate of SE of Mean 9.6740949				
33					
34	95% Non-parametric UCLs				
35	Adjusted-CLT UCL (Adjusted for Skewness)				
36	Modified-t UCL (Adjusted for Skewness)	127.18193			
- 27		405 44040			


A Real Data Set Cornell Dublier Site

<u>Example 2</u>. Consider a real data set of Aroclor –1254 concentrations of size 54 from a Superfund Site.

- At 5% significance level, data are lognormal (and not normal).
- Sd, $\hat{\sigma}$ of log data =4.20, very high.
- Data set has at least one outlier = 130,000.
- Lognormal distribution accommodates the outlier(s).

EXAMPLE 2: REAL DATA SET

Lognormal Q-Q Plot for Aroclor-1254

N = 54, Mean = 3.3537, Stdv = 4.2015Slope = 1.0028, Intercept = 0.0000, Correlation, R = 0.98534636Lilliefors Statistic = 0.089, Critical Value(0.05) = 0.121, Data are Lognormal

Gamma Distribution is Missing From EPA Applications? Why?

Statistical tools are not easily available:

- Gamma goodness of fit tests not readily available.
- Available in SAS, S-Plus, SPSS for limited values of n and k.
- Estimation of gamma parameters, (k, θ) is computationally intensive missing from text books.
- Need complex numerical iterative methods (e.g., Newton-Raphson Method) which involve Digamma and Trigamma functions (Choi and Wette, 1969, Johnson, Kotz, Balakrishnan, 1994).

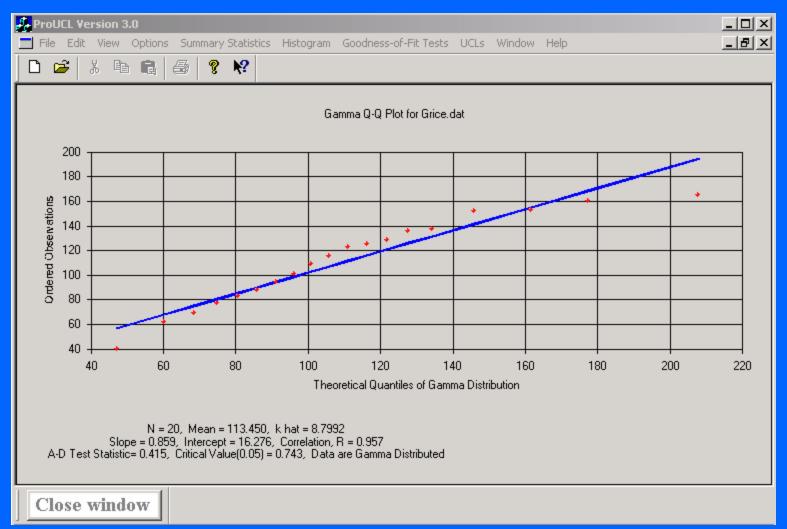
Available Goodness-of-Fit Tests for Gamma Model (e.g., in ExpertFit)

Only limited critical values for selected values of k and sample size, n were available:

- D'Agostino and Stephens (1986): A-D test
- B. E. Schneider (1978): K-S test

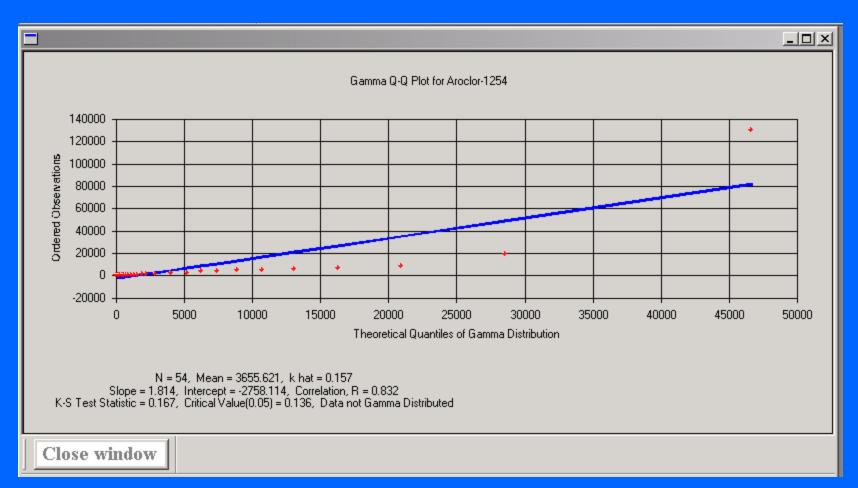
Software ExpertFit has A-D and K-S tests, uses generic critical values (for all distributions) of A-D and K-S tests, when all parameters are known (Stephens, 1970) – <u>not good enough</u>. Goodness-of-Fit Tests for Gamma Distribution - in ProUCL, V 3.0

We obtained simulated critical values for A-D and K-S tests for samples of size up to 2500 for various values of k – in ProUCL, V 3.0.

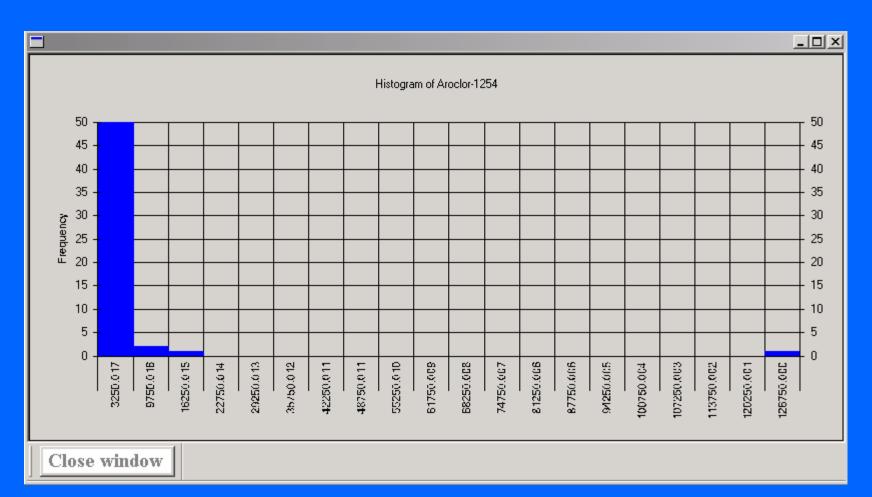

- ProUCL has graphical gamma Q-Q plot and histogram.

■ For A-D (= A²) and K-S (=D) tests, if calculated value is smaller than the respective critical value:

- conclude data pass for a gamma model.


ProUCL computes MLEs of k and θ

EXAMPLE 1: – WELL BEHAVED DATA SET - GRICE.DAT



32

EXAMPLE 2: - REAL DATA SET FOR AROCLOR – 1254

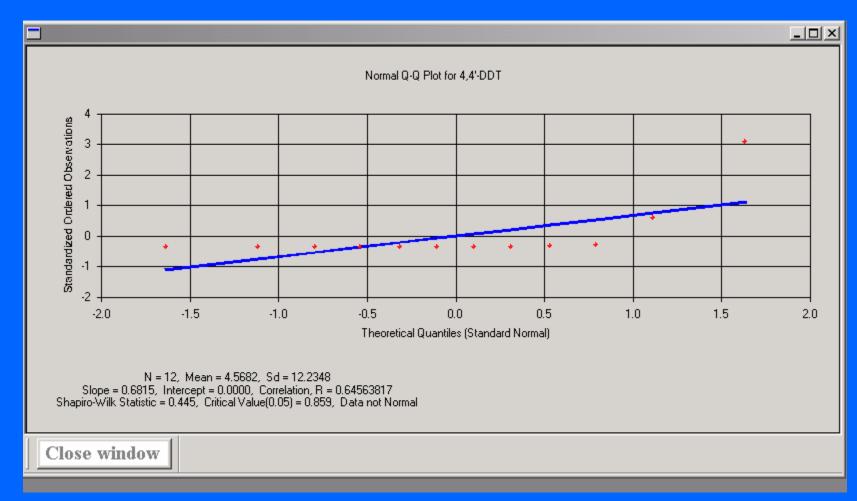
EXAMPLE 2: - REAL DATA SET FOR AROCLOR – 1254

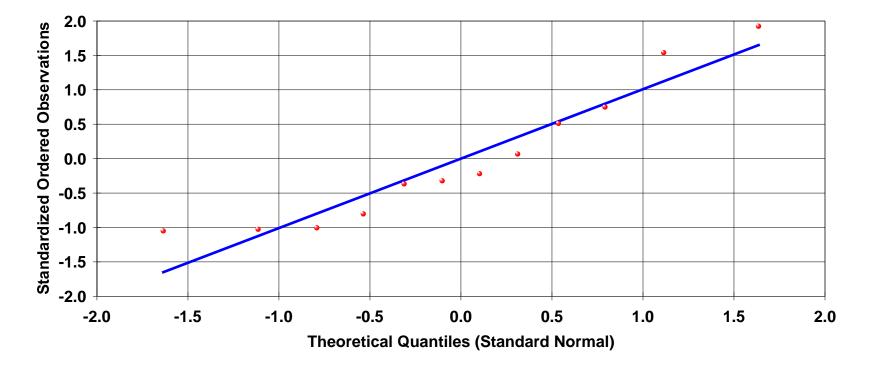
<u>Need For Accurate Critical Values (Rather Than using</u> <u>Generic Values) for Gamma Goodness –of-Fit- Tests.</u>

Example 2 (continued) Aroclor - 1254: Test for Gamma Model using conservative generic critical values

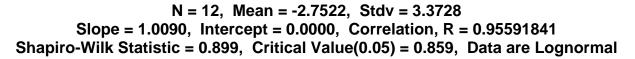
	A-D test stat	K-S test stat
Calculated	2.18	0.167
5%Tabulated	2.49 (conservative)	~0.17

Calculated values < critical values, data pass for a gamma model at 0.05 level of significance – <u>Incorrect conclusion based upon</u> <u>generic critical values.</u>

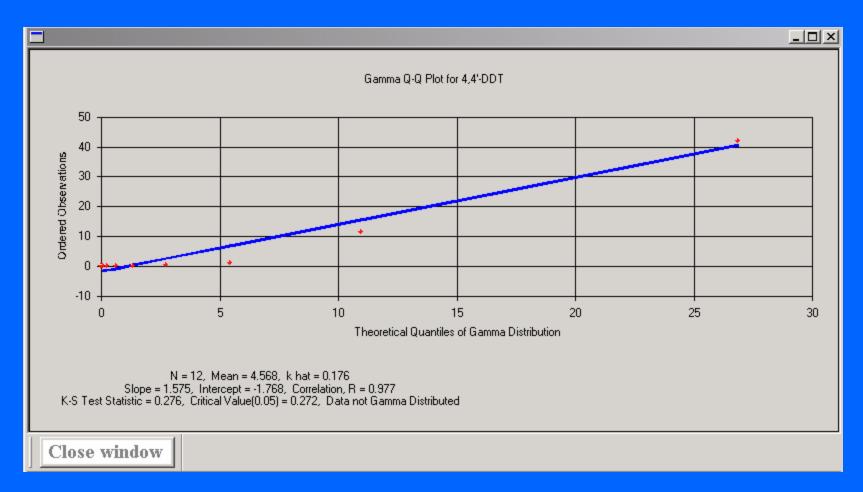

EXAMPLE 3: REAL DATA SET 4,4' – DDT CONCENTRATIONS

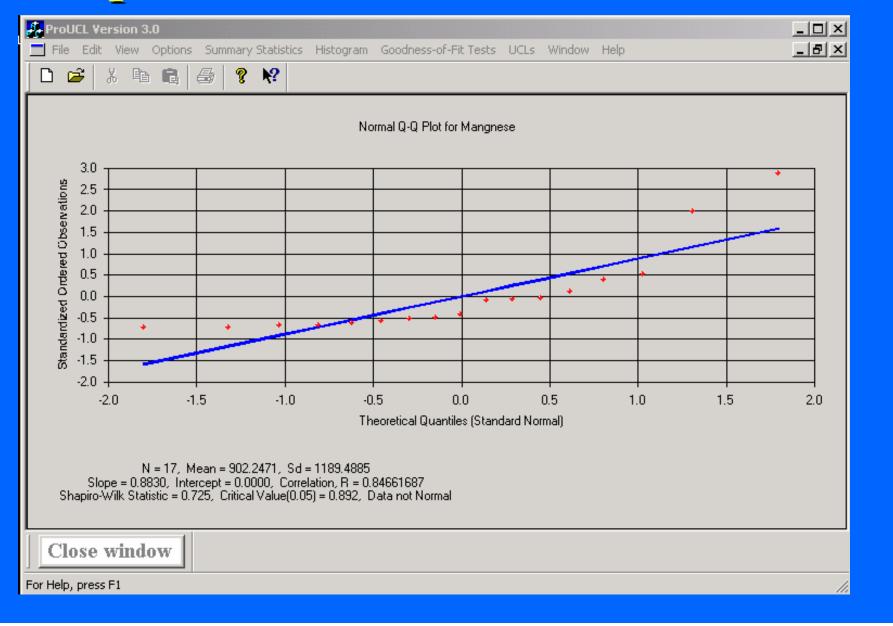

Test for Gamma Model using conservative generic critical values.

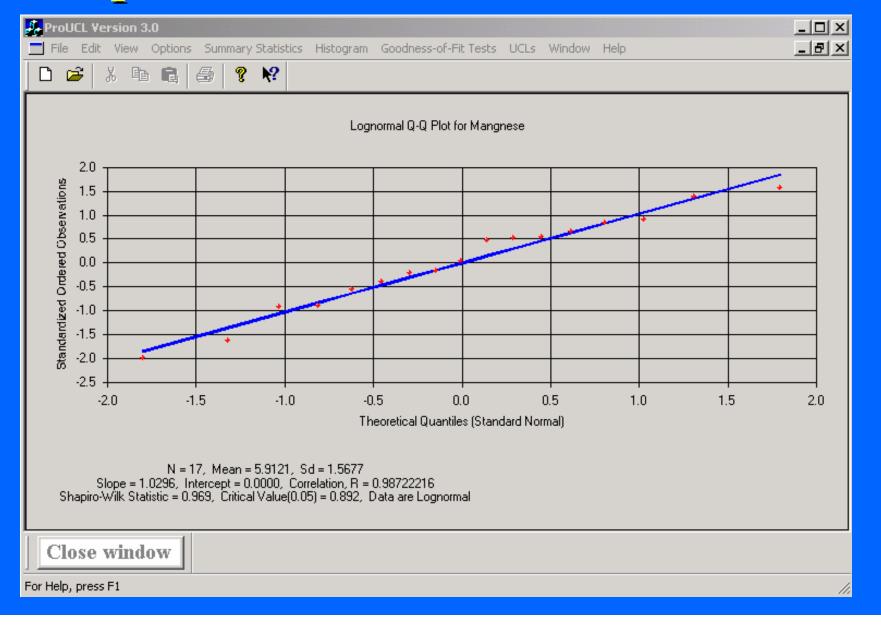
	A-D test stat	K-S test stat
Calculated	1.26	0.275
5%Tabulated	2.49 (conservative)	~0.29


<u>Conclusion: Data pass for a gamma</u> model - this may be incorrect.

EXAMPLE 3: REAL 4,4' DDT DATA SET




Lognormal Q-Q Plot for 4,4'-DDT


EXAMPLE 3: REAL 4,4' DDT DATA SET

Example 4: Real Mn Data - NCBC Site

Example 4: Real Mn Data - NCBC Site

Example 4: Real Mn Data - NCBC Site

UCLs in ProUCL, Version 3.0

Computes UCLs for normal, lognormal, Gamma models and also for non-parametric data sets.

5 Parametric UCL Methods:

- Student's t (normal)
- H-UCL, Chebyshev (MVUE) UCL (lognormal)
- Approximate and Adjusted gamma UCLs

Several Non-parametric UCL Methods:
 Modified - t, CLT, Adjusted - CLT, Chebyshev (Mean, Sd)

UCLs in ProUCL, Version 3.0

- Non-parametric Resampling UCL Methods: Jackknife and Bootstrap (Efron, 1981, 1982, Hall, 1992).
 - Jackknife UCL of mean same as Student's-t UCL
 - Standard Bootstrap
 - Bootstrap t: use with caution
 - Hall's Bootstrap procedure: use with caution
 - BCA Bootstrap Method
 - Percentile Bootstrap Method
- <u>Caution</u>: Bootstrap-t and Hall's methods can be easily influenced by outliers, and can result in erratic inflated UCL values (Efron & Tibshirani,1993).

UCL Based Upon a Normal Distribution

Normal distribution is symmetric, skewness ~ 0.

Student's – t statistic is used to compute a UCL of the mean (in EPA 1992 guidance document):

$$UCL = \overline{x} + t_{n-1,1-\alpha} \frac{s_x}{\sqrt{n}}$$

■ Here $t_{n-1,1-\alpha}$ is the upper α th percentile of student's t-distribution.

- Sensitive to outliers, which may need to be removed.
- UCL does not provide adequate coverage for mean of skewed probability models.

UCL of Mean Based Upon a Lognormal Distribution

- Land's H-Statistic based (1-a) 100 % UCL of mean (in 1992 EPA guidance):
 - $H UCL = \exp(\overline{y} + 0.5s_y^2 + s_y \frac{H_{1-\alpha}}{\sqrt{n-1}})$
 - \overline{y} = mean of $y_i = \ln(x_i)$, $s_y = sd$ of y_i
 - $H_{1-\alpha}$ = value from H-tables (Land, 1975) $H_{1-\alpha}$ increases with s_v
 - Even a small increase in sd, s_y can cause an unjustifiable increase in mean and its H-UCL.
 - Often results in unstable and impractically large H-UCL.
 - H-UCL is very sensitive to outliers (small and large).

Lognormal Chebyshev UCL

■ A $(1-\alpha)100\%$ lognormal UCL of mean (Singh et al., 1997, 1999, 2000) is given by:

UCL = MVUE of mean +

$\sqrt{((1/\alpha)-1)}$ MVUE of SE of mean

- Tends to provide a conservative estimate, Chebyshev (MVUE) UCL, especially when sample size is large (e.g., >20).
- Sensitive to outliers, which may need to be removed.

	Α	В	С	D	E	F	G	Н	I	J
1	Data File D:\drive_c\sprfnd02\pr			roucl2003\gi	rice.dat	Variable:	Grice.dat			
2										
3		Raw Statis	tics			Normal	Distribution	i Test		
4	Number of	f Valid Sam	ples	20	Shapir	ro-Wilk Test	t Statisitic		0.9613402	
5	Number of	f Unique Sa	mples	19	Shapii	ro-Wilk 5%	Critical Valu	16	0.905	
6	Minimum			40	Data a	are normal a	it 5% signifi	cance level		
7	Maximum			165						
8	Mean			113.45	9	5% UCL (A:	ssuming No	rmal Distril	bution)	
9	Median			119	Stude	nt's-t UCL			127.28788	
10	Standard I	Deviation		35.789553						
11	Variance			1280.8921			nma Distrib	ution Test		
12		t of Variatio	n	0.3154654		est Statistic			0.414965	
13	Skewness	3		-0.355233		% Critical V			0.7426541	
14						est Statistic			0.1386766	
15	Gamma Statistics					K-S 5% Critical Value 0.1939989				
16	k hat			8.7992147			ia distributio	n		
17	· ·	s corrected)	7.5126658	at 5%	significance	e level			
18	Theta hat			12.893196						
19	Theta star	,		15.101164			uming Gam	ma Distribu		
20	nu hat			351.96859		ximate Gam			130.45122	
21	nu star			300.50663	Adjust	ed Gamma	UCL		131.90595	
22		ni Square Va		261.34273						
23		Level of Sigr		0.038		Lognormal Distribution Test				
24	Adjusted (Chi Square '	Value	258.46051		ro-Wilk Test			0.9115046	
25							Critical Valu		0.905	
26		ansformed S	statistics		Data a	are lognorma	al at 5% sig	nificance le	evel	
27		of log data		3.6888795						
28	Maximum of log data		5.1059455			suming Log	normal Dis			
29	Mean of log data		4.673464	95% H				134.72948		
30	Standard Deviation of log data		0.3708584			MVUE) UCL		156.44158		
31	Variance of log data			0.1375359	97.5%	Chebyshe	/ (MVUE) U	CL	174.68788	
32					99% 0	≎hebyshev (MVUE) UCI	-	210.52921	
33										
34							-parametric	UCLs		
35					CLT U				126.61341	
36					Adj-Cl	LI UCL (Adj	usted for sk	(ewness)	125.93418	

<u>Example 1 (Cont.)</u>. Two (2) below detection limit values = 0.05 are added to Grice.dat resulting in a sample of 22.

- Normal Student's-t UCL= 120.63
- Lognormal H-UCL=7144.51

Note earlier in Example 1:
 Normal UCL = 127.29, and H-UCL = 134.73

• Not a reasonable behavior of H-UCL

Grice1.dat with 2 ND observations = 0.05

	A	В	С	D	E	F	G	Н	I	J
3	Raw Statistics					Normal Distribution Test				
4	Number of Valid Samples			22	Shapir	Shapiro-Wilk Test Statisitic 0.9253104				
5	Number of Unique Samples			20	Shapir	Shapiro-Wilk 5% Critical Value 0.911				
6	Minimum			0.05	Data a	re normal a	at 5% signifi	cance level	I	
7	Maximum			165						
8	Mean			103.14091	95	% UCL (A	ssuming No	rmal Distril	bution)	
9	Median			112	Studer	t's-t UCL			120.62874	
10	Standard De	eviation		47.668482						
11	Variance			2272.2842		Gar	mma Distrib	ution Test		
12	Coefficient o	of Variation		0.4621685	A-D Te	st Statistic	;		3.8974314	
13	Skewness			-0.819751	A-D 5%	6 Critical V	'alue		0.7762745	
14					K-S Te	st Statistic	;		0.3346237	
15	Gamma Statistics				K-S 5%	6 Critical V	'alue		0.1916182	
16	k hat			0.8875401	Data d	Data do not follow gamma distribution				
17	k star (bias corrected)			0.796815	at 5%	at 5% significance level				
18	Theta hat			116.20985						
19	Theta star			129.44148		95% UCLs (Assuming Gamma Distribution)				
20	nu hat			39.051766					160.63787	
21	nu star			35.059858	Adjust	Adjusted Gamma UCL			166.17908	
22	Approx.Chi			22.510917						
23	Adjusted Let			0.0386		Lognormal Distribution Test				
24	Adjusted Ch	ni Square ∖	/alue	21.760294		o-Wilk Test			0.4652824	
25									0.911	
26		sformed St	atistics		Data n	Data not lognormal at 5% significance level				
27	Minimum of			-2.995732						
28	Maximum of			5.1059455			suming Log	normal Dis		
29	Mean of log			3.9762644	95% H				7144.5048	
30	Standard De		og data	2.2840274			MVUE) UCI		1911.3177	
31	Variance of log data			5.2167812			v (MVUE) U		2514.1904	
32					99% C	hebyshev (MVUE) UCI	-	3698.417	
33										
34							-parametric	UCLs		
35					CLT U				119.85748	
36							justed for sk		117.95959	
37							sted for skev	vness)	120.33271	
38					Jackkr	ife UCL			120.62874	

Modified – t Statistic UCL

■ A $(1-\alpha)100\%$ UCL of mean (Johnson (1978)) is given by:

$$UCL = \overline{x} + \frac{\mu_3}{6ns_x^2} + t_{n-1,1-\alpha} \frac{s_x}{\sqrt{n}}$$
$$n\sum_{i} (x_i - \overline{x})^3$$

$$\hat{u}_3 = \frac{n \sum (n_i - n_i)}{(n-1)(n-2)}$$

- A Non-parametric method for skewed data sets.

- This UCL does not provide adequate coverage for moderately to highly skewed data sets (e.g., gamma).
- Sensitive to outliers, which may need to be removed.

UCL Based Upon Adjusted-CLT

■ A $(1-\alpha)100\%$ UCL of mean (to be used when sample size is large) is given by (Chen, JASA 1995): $UCL = \overline{x} + [z_{\alpha} + \hat{k}_{3}(\frac{1+2z_{\alpha}^{2}}{6\sqrt{n}})]\frac{s_{x}}{\sqrt{n}}$

 $z_{\alpha} =$ upper α th percentile of SND $\hat{k}_{3} = \frac{\hat{\mu}_{3}}{s_{x}^{3}}$, skewness coef. (raw data)

- A Non-parametric method for skewed data sets.
- UCL does not provide adequate coverage for moderately skewed to highly skewed data (e.g., gamma).
- Sensitive to outliers, which may need to be removed.

Non-parametric Chebyshev UCL

■ A $(1-\alpha)100\%$ non-parametric UCL of mean (Singh et al., 1997, 1999, 2000) is given by:

$$UCL = \overline{x} + \sqrt{((1/\alpha) - 1)} \frac{s_x}{\sqrt{n}}$$

- This method tends to provide a conservative but reasonable estimate (providing at least $(1-\alpha)100\%$ coverage) of UCL (= Chebyshev (mean,std)), especially when sample size is large (e.g., >20).

– Sensitive to outliers, which may need to be removed.

UCL Based Upon Standard Bootstrap Method

■ A $(1-\alpha)100\%$ UCL of mean is given by:

 $UCL = \overline{x} + z_{\alpha}\hat{\sigma}_{B}$, where

$$\hat{\sigma}_{\rm B} = \sqrt{\frac{\sum (\overline{x}_i - \overline{x}_B)^2}{(N-1)}},$$

N = number of bootstrap samples (e.g., 2000)

$$\overline{x}_B = \sum_{i=1}^N \overline{x}_i / N,$$

 \overline{x}_i = mean of the ith bootstrap sample

 This UCL does not provide adequate coverage for skewed models (e.g., gamma). **Bootstrap-t UCL Method** $A(1-\alpha)100\%$ UCL of mean is given by:

$$UCL = \overline{x} - t_{(\alpha N)} s_x / \sqrt{n}$$
, where

N = number of bootstrap samples

$$t_i = \sqrt{n(\overline{x}_i - \overline{x})} / s_{x,i}, i = 1, 2, \dots, N$$

 $t_{(\alpha N)}$ = lower α th quantile of $t_i, i = 1, 2, ..., N$

– Outliers can influence this UCL substantially.

 For Gamma distribution – provides better coverage than Adj-CLT, Modified-t, standard, BCA bootstrap methods.

UCL Based Upon Hall's Bootstrap

□ A(1- α)100% UCL (Manly, 1997) is:

 $UCL = \overline{x} - W(q_{\alpha})s_{x}$ $W(q_{\alpha}) = 3[(1 + \hat{k}_{3}(q_{\alpha} - \hat{k}_{3}/(6n)))^{1/3} - 1]/\hat{k}_{3}, \text{ where}$ $q_{\alpha} = (\alpha N)th \text{ ordered value of } Q_{i}(W_{i}), i = 1, 2, ..., N$ $Q_{i}(W_{i}) = W_{i} + \hat{k}_{3i}W_{i}^{2}/3 + \hat{k}_{3i}^{2}W_{i}^{3}/27 + \hat{k}_{3i}/(6n)$ $W_{i} = (\overline{x_{i}} - \overline{x})/s_{x,i}$

- Influenced by outliers, which may need to be removed.

UCL Based Upon a Gamma Model Chi-square distribution can be used. \square A (1- α)100% uniformly most accurate UCL of mean is given by (Grice and Bain, 1980): $P(\mu_1 \leq 2nk\overline{x} / \chi^2_{2nk}(\alpha)) = 1 - \alpha$, where $\chi^2_{2nk}(\alpha) = \text{lower } \alpha \text{ th percentile of } \chi^2_{2nk} \text{ distribution}$

k needs to be estimated from data, therefore coverage is not guaranteed - needs an adjustment. UCL Based Upon a Gamma Model An approximate $(1 - \alpha)100\%$ UCL of mean:

$$UCL = 2n\hat{k}\overline{x} / \chi^2_{2n\hat{k}}(\alpha)$$

■ An Adjusted $(1-\alpha)100\%$ UCL of mean:

$$UCL = 2n\hat{k}\overline{x} / \chi^2_{2n\hat{k}}(\beta)$$

□ Adjusted α are given by β in Table 1.

□ Note Chi-square critical values increase with df.

UCL Based Upon Gamma Model

		Table 1	
	∞ =0.05	$\alpha = 0.1$	c =0.01
n	probability level, β	probability level, β	probability level, β
5	0.0086	0.0432	0.0000
10	0.0267	0.0724	0.0015
20	0.0380	0.0866	0.0046
40	0.0440	0.0934	0.0070
Ø	0.0500	0.1000	0.0100

UCL Based Upon Gamma Model

■ Note gamma UCL does not depend upon scale parameter, θ or its MLE.

Also note that Gamma UCL is the only UCL which does not depend on the sd of data, therefore, outliers have reduced influence on estimation of gamma UCL.

Recommendations in ProUCL

- ProUCL makes recommendations based upon the most appropriate data distribution, associated skewness, and coverage probabilities.
 - ProUCL prints out message(s) about data distribution(s) -(normal, gamma, lognormal, or non-parametric).
 - ProUCL also recommends which 95% UCL(s) to use.
 - It is the user's responsibility to select the most appropriate UCL.
 - » This may require testing and removing of outliers especially when bootstrap UCLs are recommended.

Table 1 Summary Table for the Computation of a 95% UCL of the Unknown Mean, μ_1 of a Gamma Distribution

\hat{k}	Sample Size, n	Recommendation		
$\hat{k} \ge 0.5$	For all n	Approximate Gamma 95% <i>UCL</i>		
$0.1 \le \hat{k} < 0.5$	For all n	Adjusted Gamma 95% UCL		
$\hat{k} < 0.1$	n < 15	95% UCL Based Upon Bootstrap-t or Hall's Bootstrap Method *		
	n ≥ 15	Adjusted Gamma 95% UCL if available, otherwise use Approximate Gamma 95% UCL		

* If bootstrap-t or Hall's bootstrap methods yield erratic, inflated, and unstable UCL values (which often happens when outliers are present), the UCL of the mean should be computed using adjusted gamma UCL

Table 2									
Summary Table for the Computation of a 95% UCL									
	of the Unknown Mean, $\mu_1^{}$ of a Lognormal Population								
ð	b Sample Size, n Recommendation								
ð < 0.5	For all n	Student's-t, modified-t, or <i>H-UCL</i>							
0.5 ≤ ĉ < 1.0	For all n	H-UCL							
1.0 ≤ 8 < 1.5	n < 25	95% Chebyshev <i>(MVUE) UCL</i>							
1.0 5 0 < 1.5	n ≥ 25	H-UCL							
	n < 20	99% Chebyshev <i>(MVUE) UCL</i>							
1.5 ≤ ĉ < 2.0	20 ≤ n < 50	95% Chebyshev <i>(MVUE) UCL</i>							
	n ≥ 50	H-UCL							
	n < 20	99% Chebyshev <i>(MVUE) UCL</i>							
2.0 ≤ 8 < 2.5	20 ≤ n < 50	97.5% Chebyshev <i>(MVUE) UCL</i>							
2.0 5 0 ~ 2.5	50 ≤ n < 70	95% Chebyshev <i>(MVUE) UCL</i>							
	n ≥ 70	H-UCL							
	n < 30	Larger of (99% Chebyshev <i>(MVUE) UCL,</i> 99% Chebyshev(Mean, Sd))							
2.5 ≤ ĉ < 3.0	30 ≤ n < 70	97.5% Chebyshev <i>(MVUE) UCL</i>							
	$70 \le n \le 100$	95% Chebyshev <i>(MVUE) UCL</i>							
	n ≥ 100	H-UCL							

TABLE 2 - CONTINUED

	n < 20	99% Chebyshev <i>(MVUE) UCL</i>			
1.5 ≤ ð < 2.0	$20 \le n \le 50$	95% Chebyshev <i>(MVUE) UCL</i>			
	n ≥ 50	H-UCL			
	n < 20	99% Chebyshev (MVUE) UCL			
2.0 ≤ 8 < 2.5	$20 \le n \le 50$	97.5% Chebyshev <i>(MVUE) UCL</i>			
2.0 3 0 ~ 2.0	$50 \le n \le 70$	95% Chebyshev <i>(MVUE) UCL</i>			
	n ≥ 70	H-UCL			
	n < 30	Larger of (99% Chebyshev (MVUE) UCL,			
		99% Chebyshev(Mean, Sd))			
2.5 ≤ ð < 3.0	30 ≤ n < 70	97.5% Chebyshev <i>(MVUE) UCL</i>			
	70 ≤ n < 100	95% Chebyshev <i>(MVUE) UCL</i>			
	n ≥ 100	H-UCL			
	n < 15	Hall's bootstrap method *			
	15 ≤ n < 50	Larger of (99% Chebyshev (MVUE) UCL,			
3.0 ≤ 8 ≤ 3.5		99% Chebyshev(Mean, Sd))			
0.0 2 0 2 0.0	$50 \le n \le 100$	97.5% Chebyshev <i>(MVUE) UCL</i>			
	$100 \le n \le 150$	95% Chebyshev <i>(MVUE) UCL</i>			
	n ≥ 150	H-UCL			
ð > 3.5	For all n	Use non-parametric methods *			

* If Hall's bootstrap method yields an erratic unrealistically large UCL value, then the UCL of the mean may be computed based upon the Chebyshev inequality.

64

Table 3

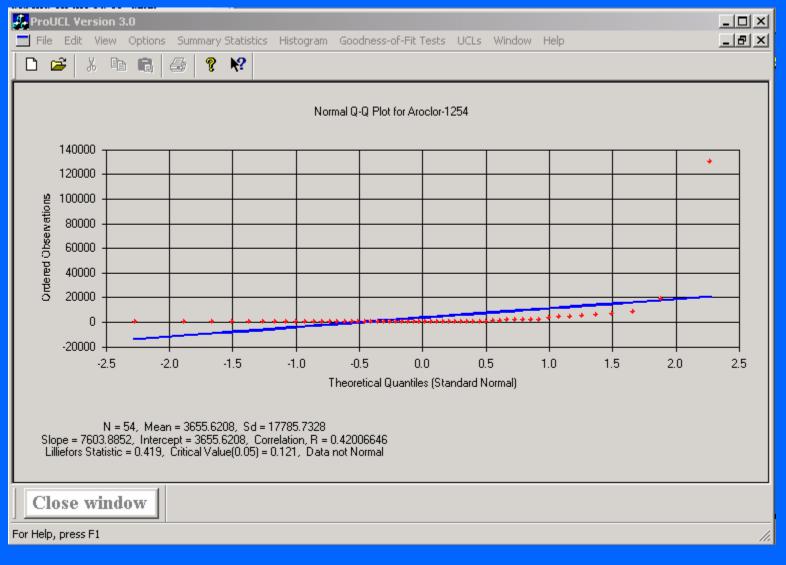
Summary Table for the Computation of a 95% UCL of the Unknown Mean, μ_1 of a Skewed Non-parametric Distribution with all Positive Values, Where $\hat{\sigma}$ is the Sd of Log-transformed Data

Ĝ	Sample Size, n	Recommendation
<i>σ</i> ≤ 0.5	For all n	95% UCL based upon Student's-t statistic or Modified-t statistic
$0.5 < \hat{\sigma} \le 1.0$	For all n	95% Chebyshev (Mean, Sd) UCL
10 - 7 - 700	n < 50	99% Chebyshev (Mean, Sd) UCL
$1.0 < \hat{\sigma} \le 2.0$	n ≥ 50	97.5% Chebyshev (Mean, Sd) UCL
2012220	n < 10	Hall's Bootstrap <i>UCL</i> *
2.0 < σ̂ ≤ 3.0	n ≥ 10	99% Chebyshev (Mean, Sd) UCL
3.0 < ∂ [°] ≤ 3.5	n < 30	Hall's Bootstrap <i>UCL</i> *
	n ≥ 30	99% Chebyshev (Mean, Sd) UCL
^. 25	n < 100	Hall's Bootstrap <i>UCL</i> *
<i>α</i> > 3.5	n≥ 100	99% Chebyshev (Mean, Sd) UCL

* If the Hall's bootstrap method yields an erratic and unstable *UCL* value (e.g., this tends to happen when outliers are present), the EPC term may be computed using the 99% Chebyshev (Mean, Sd) UCL.

65

Maximum Value Should Not be Used to Estimate EPC Term


The EPC term represents average exposure over an exposure area (EA) during a long period of time.

Therefore, the Max value should not be used as an estimate of EPC term – ignores most info in data set.

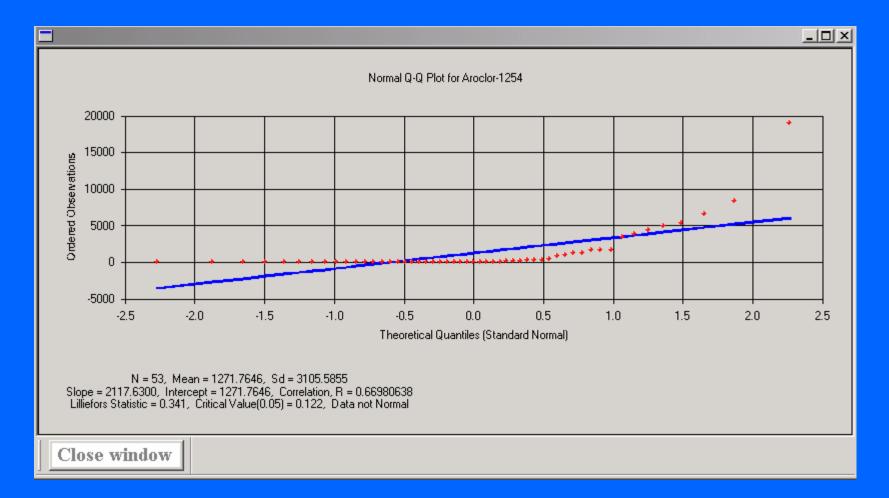
ProUCL displays a warning message when the recommended 95% UCL (e.g., H-UCL, Hall's bootstrap UCL etc.) exceeds the Max value.

For such cases, alternative UCL computation method such as the Chebyshev (mean, Sd) should be used.

Example 2: Aroclor 1254 - withOutlier = 130,000

67

Example 2: Aroclor 1254 - withOutlier = 130,000


	Α	В	С	D	E	F	G	Н	I	J
1	Data File D:\drive_c\SPRFND95\cornell\A-5			54.dat	Variable:	Aroclor-125	54			
2										
3		Raw Statist	ics			Normal	Distribution	Test		
4	Number of	f Valid Sam	oles	54	Lilliefor	rs Test Stat	isitic		0.4185768	
5	Number of	f Unique Sai	nples	50	Lilliefor	rs 5% Critic	al Value		0.1205693	
6	Minimum			0.017	Data n	ot normal a	t 5% signifio	cance level		
7	Maximum			130000						
8	Mean			3655.6208	95	5% UCL (As	ssuming No	rmal Distril	oution)	
9	Median			42.5	Studer	nt's-t UCL			7707.5365	
10	Standard I	Deviation		17785.733						
11	Variance			3.2E+008			nma Distribu	ution Test		
12		t of Variatior	1	4.8653112	A-D Te	est Statistic			2.183231	
13	Skewness	;		7.0302526	A-D 5%	% Critical V	alue		0.9380814	
14					K-S Te	K-S Test Statistic 0.1666673				
15	Gamma Statistics				K-S 5% Critical Value 0.1357658					
16	k hat			0.1573544			gamma dis	tribution		
17		s corrected)		0.1609582	at 5%	significance	e level			
18	Theta hat			23231.765						
19	Theta star			22711.618		95% UCLs (Assuming Gamma Distribution)				
20	nu hat			16.994277		(imate Gam			7103.8453	
21	nu star			17.383484	Adjust	ed Gamma	UCL		7238.6552	
22		ni Square Va		8.9454967						
23		_evel of Sigr		0.0455556		Lognormal Distribution Test				
24	Adjusted (Chi Square Y	/alue	8.7788993		rs Test Stat			0.0888924	
25						rs 5% Critic			0.1205693	
26		ansformed S	tatistics		Data a	re lognorma	al at 5% sigi	nificance le	vel	
27		of log data		-4.074542						
28		of log data		11.77529			suming Log	normal Dis		
29	Mean of lo			3.3537198	95% H				9176544.8	
30		Deviation of	log data	4.2015474			MVUE) UCL		293727.75	
31	Variance o	of log data		17.653001			(MVUE) U		394494.73	
32					99% C	hebyshev (l	MVUE) UCL		592431.96	

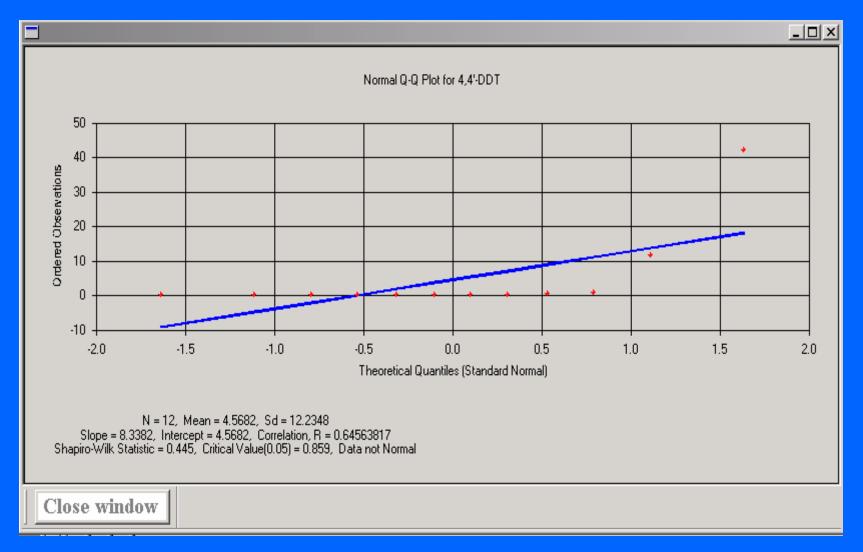
68

Example 2: Aroclor 1254 - withOutlier = 130,000

19	Theta star	22711.618	95% UCLs (Assuming Gamma Distrib	ution)		
20	nu hat	16.994277	Approximate Gamma UCL	7103.8453		
21	nu star	17.383484	Adjusted Gamma UCL	7238.6552		
22	Approx.Chi Square Value (.05)	8.9454967				
23	Adjusted Level of Significance	0.0455556	Lognormal Distribution Test			
24	Adjusted Chi Square Value	8.7788993	Lilliefors Test Statisitic	0.0888924		
25			Lilliefors 5% Critical Value	0.1205693		
26	Log-transformed Statistics		Data are lognormal at 5% significance l	evel		
27	Minimum of log data	-4.074542				
28	Maximum of log data	11.77529	95% UCLs (Assuming Lognormal Di	stribution)		
29	Mean of log data	3.3537198	95% H-UCL	9176544.8		
30	Standard Deviation of log data	4.2015474	95% Chebyshev (MVUE) UCL	293727.75		
31	Variance of log data	17.653001	97.5% Chebyshev (MVUE) UCL	394494.73		
32			99% Chebyshev (MVUE) UCL	592431.96		
33						
34			95% Non-parametric UCLs			
35			CLT UCL	7636.7121		
36			Adj-CLT UCL (Adjusted for skewness)	10110.881		
37			Mod-t UCL (Adjusted for skewness)	8093.4568		
38			Jackknife UCL	7707.5365		
39			Standard Bootstrap UCL	7522.7743		
40			Bootstrap-t UCL	31956.2		
41	RECOMMENDATION		Hall's Bootstrap UCL	21720.324		
42	Data are lognormal (0.05)	Percentile Bootstrap UCL	8348.5959		
43			BCA Bootstrap UCL	8131.3965		
44	Use Hall's Bootstrap UCL		95% Chebyshev (Mean, Sd) UCL	14205.602		
45 46	In accellula Restation wathout	uioldo	97.5% Chebyshev (Mean, Sd) UCL	18770.587		
40	In case Hall's Bootstrap method		99% Chebyshev (Mean, Sd) UCL	27737.617		
47	an erratic, unreasonably large U					
	use 99% Chebyshev (Mean, Sd)	OCL				
49						

Example 2: Aroclor 1254 – Without Outlier = 130,000

Example 2: Aroclor 1254 – Without Outlier = 130,000

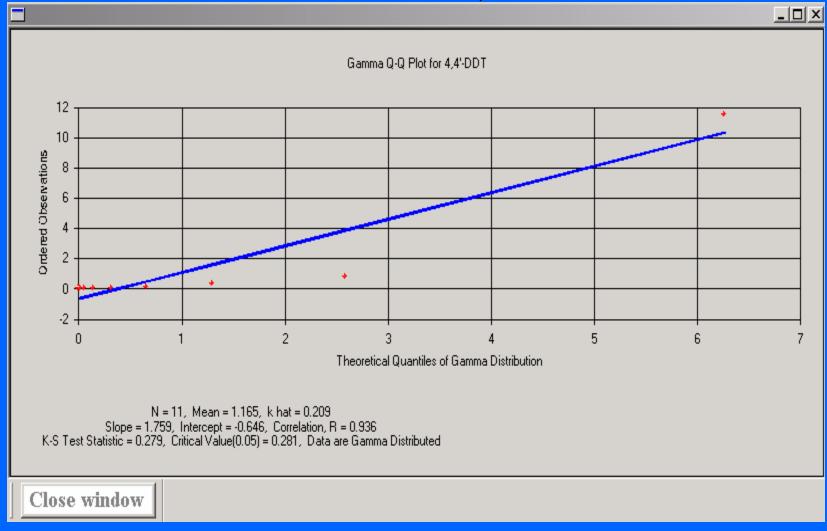

	Α	В	С	D	E	F	G	Н	I	
1	Data File D:\drive_c\sprfnd02\prouc			roucl2004\A	-53.dat	Variable:	Aroclor-125	54		
2										
3		Raw Statist	ics			Normal Distribution Test				
4	Number of	Valid Samp	oles	53	Lilliefor	s Test Stat	isitic		0.3410852	
5	Number of	Unique Sar	nples	49	Lilliefor	s 5% Critic	al Value		0.1217015	
6	Minimum			0.017	Data ne	ot normal a	t 5% signific	cance level		
7	Maximum			19000						
8	Mean			1271.7646	95	i% UCL (As	ssuming No	rmal Distrib	oution)	
9	Median			41	Studen	t's-t UCL			1986.1617	
10	Standard Deviation			3105.5855						
11	Variance			9644661.5		Gamma Distribution Test				
12	Coefficient of Variation			2.44195	A-D Te	A-D Test Statistic			1.132286	
13	Skewness			4.1242405	A-D 5%	A-D 5% Critical Value			0.9164426	
14						K-S Test Statistic			0.1555879	
15		Gamma S	Statistics			K-S 5% Critical Value 0.1			0.1358339	
16	k hat			0.1879527		Data do not follow gamma distribution				
17	k star (bia:	s corrected)		0.1898925	at 5% s	significance	e level			
18	Theta hat			6766.4064						
19	Theta star			6697.2864			uming Gami	ma Distribu	ition)	
20	nu hat			19.92299	Approx	imate Gam	ma UCL		2338.9686	
21	nu star			20.128607	Adjuste	ed Gamma	UCL		2380.2993	
22	Approx.Chi Square Value (.05)			10.944503						
23		evel of Sign		0.0454717			rmal Distrib	ution Test		
24	Adjusted Chi Square Value		10.754467		Lilliefors Test Statisitic			0.0935493		
25					Lilliefors 5% Critical Value 0.1217					
26	Log-tra	nsformed S	tatistics		Data ar	re lognorma	al at 5% sig	nificance le	vel	

71

Example 2: Aroclor 1254 – Without Outlier = 130,000

17	k star (bias corrected)	0.1898925	at 5% significance level			
18	Theta hat	6766.4064				
19	Theta star	6697.2864	95% UCLs (Assuming Gamma Distrib	ution)		
20	nu hat	19.92299	Approximate Gamma UCL	2338.9686		
21	nu star	20.128607	Adjusted Gamma UCL	2380.2993		
22	Approx.Chi Square Value (.05)	10.944503				
23	Adjusted Level of Significance	0.0454717	Lognormal Distribution Test			
24	Adjusted Chi Square Value	10.754467	Lilliefors Test Statisitic	0.0935493		
25			Lilliefors 5% Critical Value	0.1217015		
26	Log-transformed Statistics		Data are lognormal at 5% significance l	evel		
27	Minimum of log data	-4.074542				
28	Maximum of log data	9.8521943	95% UCLs (Assuming Lognormal Di			
29	Mean of log data	3.1948223	95% H-UCL	3876782.2		
30	Standard Deviation of log data	4.0746591	95% Chebyshev (MVUE) UCL	161169.26		
31	Variance of log data	16.602847	97.5% Chebyshev (MVUE) UCL	216268.24		
32			99% Chebyshev (MVUE) UCL	324499.54		
33						
34			95% Non-parametric UCLs			
35			CLT UCL	1973.4344		
36			Adj-CLT UCL (Adjusted for skewness)	2231.6557		
37			Mod-t UCL (Adjusted for skewness)	2026.439		
38			Jackknife UCL	1986.1617		
39			Standard Bootstrap UCL	1985.9029		
40			Bootstrap-t UCL 2727.			
41	RECOMMENDATION		Hall's Bootstrap UCL	4682.1017		
42	Data are lognormal (0.05)	Percentile Bootstrap UCL	2024.076		
43			BCA Bootstrap UCL 1858			
44	Use Hall's Bootstrap UCL		95% Chebyshev (Mean, Sd) UCL	3131.2054		
45			97.5% Chebyshev (Mean, Sd) UCL	3935.7869		
46	In case Hall's Bootstrap method		99% Chebyshev (Mean, Sd) UCL	5516.2315		
47	an erratic, unreasonably large U					
48	use 99% Chebyshev (Mean, Sd)	UCL				

Example 3: 4'4 DDT Data, n=12

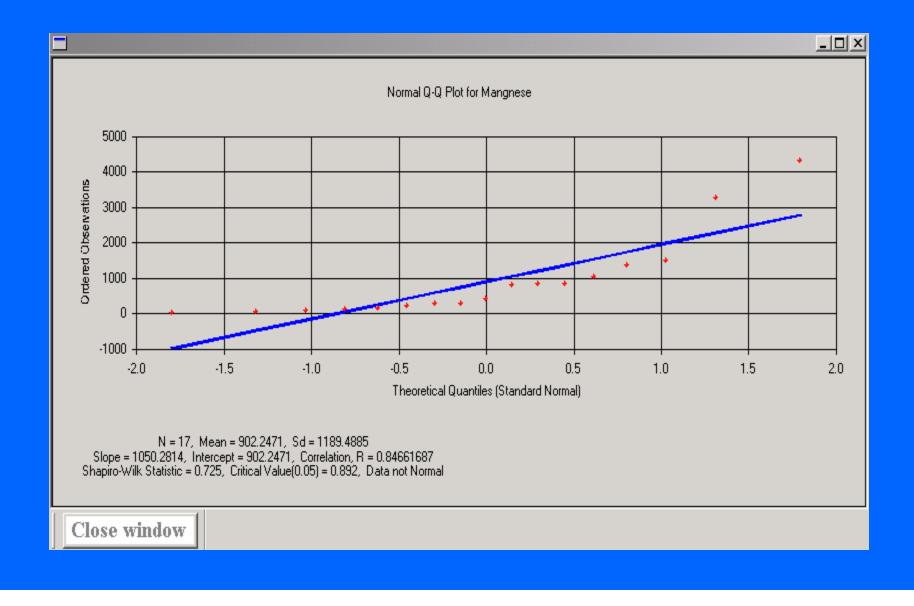

Example 3: 4'4 DDT Data, n=12

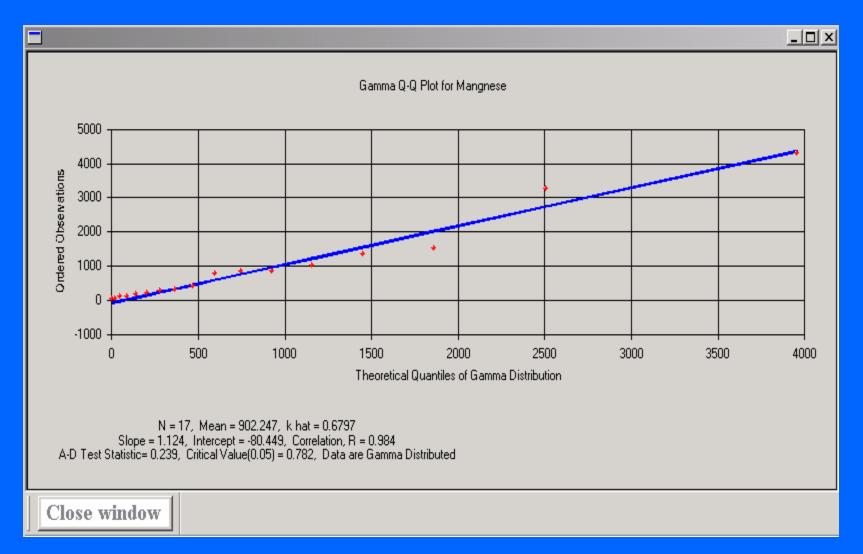
	А	В	С	D	E	F	G	Н	I	
1	Data File	D:\drive_c\	sprfnd02\pr	roucl2004\D	DT-12.dat	Variable:	4,4'-DDT			
2										
3		Raw Statist	ics			Normal	Distribution	Test		
4	Number of	Valid Sam	oles	12	Shapiro	Shapiro-Wilk Test Statisitic				
5	Number of	Unique Sar	nples	12	Shapiro	ہ Wilk 5%	Critical Valu	le	0.859	
6	Minimum			0.00185	Data ne	ot normal a	t 5% signifi	cance level		
7	Maximum			42						
8	Mean				95	i% UCL (As	ssuming No	rmal Distrib	oution)	
9	Median			0.026	Studen	t's-t UCL			10.911082	
10	Standard D	Standard Deviation								
11	Variance			149.69126		Gan	nma Distrib	ution Test		
12	Coefficient of Variation			2.6782574	A-D Te	A-D Test Statistic				
13	Skewness			3.0914053	A-D 5%	6 Critical V	alue		0.8736293	
14					K-S Te	st Statistic			0.2756245	
15		Gamma S	Statistics		K-S 5%	K-S 5% Critical Value				
16	k hat			0.1757525	Data do not follow gamma distribution					
17	k star (bias	s corrected)		0.1873699	at 5% s	significance	e level			
18	Theta hat			25.99228						
19	Theta star			24.38069			uming Gam	ma Distribu		
20	nu hat			4.2180601	Approx	imate Gam	ima UCL		22.162437	
21	nu star			4.4968784	Adjuste	ed Gamma	UCL		28.962989	
22	Approx.Chi Square Value (.05)		0.9269142							
23	Adjusted Level of Significance			0.02896	Lognormal Distribution Test					
24	Adjusted Chi Square Value		0.7092734	Shapiro	Shapiro-Wilk Test Statisitic					
25					Shapiro-Wilk 5% Critical Value					
26	Log-tra	nsformed S	tatistics		Data ar	re lognorma	al at 5% sig	nificance le	vel	

Example 3: 4'4 DDT Data, n=12

26	Log-transformed Statistics		Data are lognormal at 5% significance level
27	Minimum of log data	-6.29257	
28	Maximum of log data	3.7376696	95% UCLs (Assuming Lognormal Distribution)
29	Mean of log data	-2.752233	95% H-UCL 66699.737
30	Standard Deviation of log data	3.3727967	95% Chebyshev (MVUE) UCL 17.795819
31	Variance of log data	11.375758	97.5% Chebyshev (MVUE) UCL 23.915811
32			99% Chebyshev (MVUE) UCL 35.937349
33			
34			95% Non-parametric UCLs
35			CLT UCL 10.377656
36			Adj-CLT UCL (Adjusted for skewness) 13.745511
37			Mod-t UCL (Adjusted for skewness) 11.436399
38			Jackknife UCL 10.911082
39			Standard Bootstrap UCL 10.282371
40			Bootstrap-t UCL 232.03236
41	RECOMMENDATION		Hall's Bootstrap UCL 189.66219
42	Data are lognormal (0.05	5)	Percentile Bootstrap UCL 10.543208
43			BCA Bootstrap UCL 10.582163
44	Use Hall's Bootstrap UCL		95% Chebyshev (Mean, Sd) UCL 19.963375
45			97.5% Chebyshev (Mean, Sd) UCL 26.624876
46			99% Chebyshev (Mean, Sd) UCL 39.710104
47	Recommended UCL exceeds th	ie maximum	observation
48			
49	In case Hall's Bootstrap method	· ·	
50	an erratic, unreasonably large U		
51	use 99% Chebyshev (Mean, Sd) UCL	

Example 3: 4'4 DDT Data, without outlier = 42, n=11

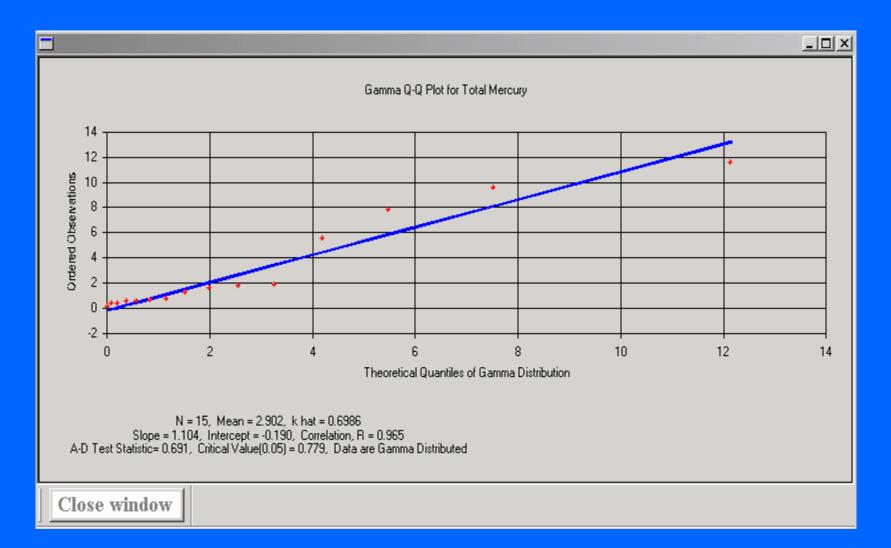

76


Example 3: 4'4 DDT Data, without outlier = 42, n=11

	Α	В	С	D	E	F	G	Н	I	J	
1	Data File	D:\drive_c\	sprfnd02\pi	roucl2004\D	DT-11.dat	Variable:	4,4'-DDT				
2											
3		Raw Statist	ics			Normal	Distribution	i Test			
4	Number of	Valid Sam	oles	11	Shapiro	Shapiro-Wilk Test Statisitic 0.					
5	Number of	Number of Unique Samples		11	Shapiro	o-Wilk 5% (Critical Valu	le	0.85		
6	Minimum			0.00185	Data ne	ot normal a	t 5% signifi	cance level			
7	Maximum		11.5								
8	Mean		1.1653182			ssuming No	rmal Distrit	oution)			
9	Median			0.0215	Studen	t's-t UCL			3.0432343		
10	Standard Deviation			3.436401							
11	Variance			11.808852		Gan	nma Distrib	ution Test	1.2125145		
12	Coefficient of Variation		2.948895	A-D Te	A-D Test Statistic						
13	Skewness		3.2865534		6 Critical V			0.8564558			
14						st Statistic			0.2787718		
15		Gamma S	Statistics			K-S 5% Critical Value 0.2813882					
16	k hat			0.2090901		Data follow approximate gamma distibution					
17		s corrected)		0.2126716	at 5% :	significance	e level				
18	Theta hat			5.5732837							
19	Theta star			5.4794267			uming Gam	ma Distribu			
20	nu hat			4.5999812		imate Gam			5.4175272		
21	nu star			4.6787742	Adjuste	ed Gamma	UCL		7.1607382		
22		ii Square Va		1.0064113							
23		evel of Sigr		0.02783			rmal Distrib				
24	Adjusted (Chi Square \	Value	0.7614104		p-Wilk Test			0.9099724		
25							Critical Valu		0.85		
26	-	nsformed S	tatistics		Data ai	re lognorma	il at 5% sig	nificance le	vel		
27	Minimum (of log data		-6.29257							

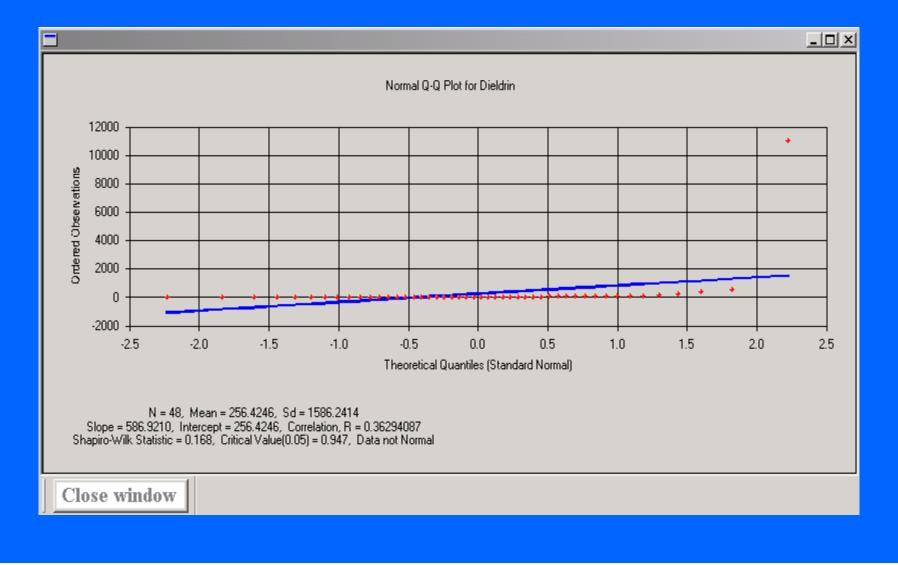
Example 3: 4'4 DDT Data, without outlier = 42, n=11

18	Theta hat	5.5732837		
19	Theta star	5.4794267	95% UCLs (Assuming Gamma Distrib	ution)
20	nu hat	4.5999812	Approximate Gamma UCL	5.4175272
21	nu star	4.6787742	Adjusted Gamma UCL	7.1607382
22	Approx.Chi Square Value (.05)	1.0064113		
23	Adjusted Level of Significance	0.02783	Lognormal Distribution Test	
24	Adjusted Chi Square Value	0.7614104	Shapiro-Wilk Test Statisitic	0.9099724
25			Shapiro-Wilk 5% Critical Value	0.85
26	Log-transformed Statistics		Data are lognormal at 5% significance l	evel
27	Minimum of log data	-6.29257		
28	Maximum of log data	2.442347	95% UCLs (Assuming Lognormal Di	stribution)
29	Mean of log data	-3.342224	95% H-UCL	1014.1227
30	Standard Deviation of log data	2.8139921	95% Chebyshev (MVUE) UCL	3.0095789
31	Variance of log data	7.9185516	97.5% Chebyshev (MVUE) UCL	4.026235
32			99% Chebyshev (MVUE) UCL	6.023259
33				
34			95% Non-parametric UCLs	
35			CLT UCL	2.8695739
36			Adj-CLT UCL (Adjusted for skewness)	3.9666386
37			Mod-t UCL (Adjusted for skewness)	3.2143542
38			Jackknife UCL	3.0432343
39			Standard Bootstrap UCL	2.7967694
40			Bootstrap-t UCL	37.870738
41	RECOMMENDATION		Hall's Bootstrap UCL	35.520978
42	Assuming gamma distributi	on (0.05)	Percentile Bootstrap UCL	3.2183591
43			BCA Bootstrap UCL	3.1806727
44	Use Adjusted Gamma UCL		95% Chebyshev (Mean, Sd) UCL	5.6816339
45			97.5% Chebyshev (Mean, Sd) UCL	7.6358473
46			99% Chebyshev (Mean, Sd) UCL	11.474521



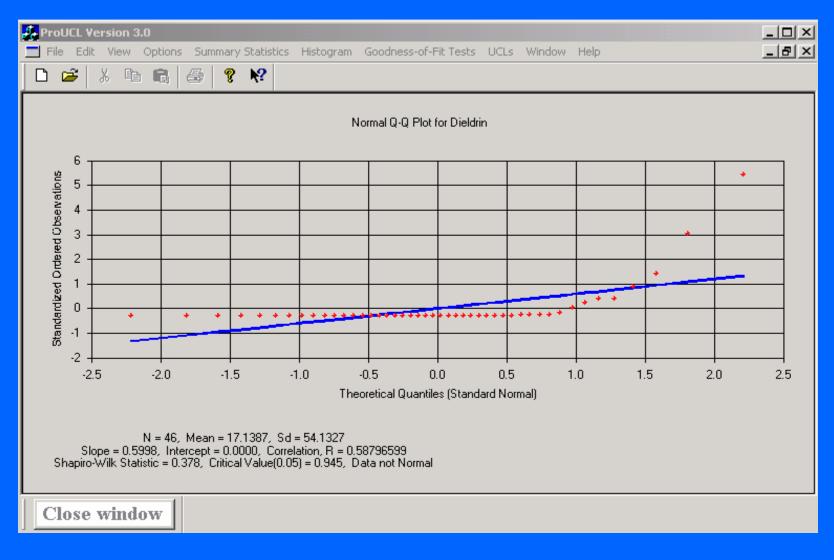
80

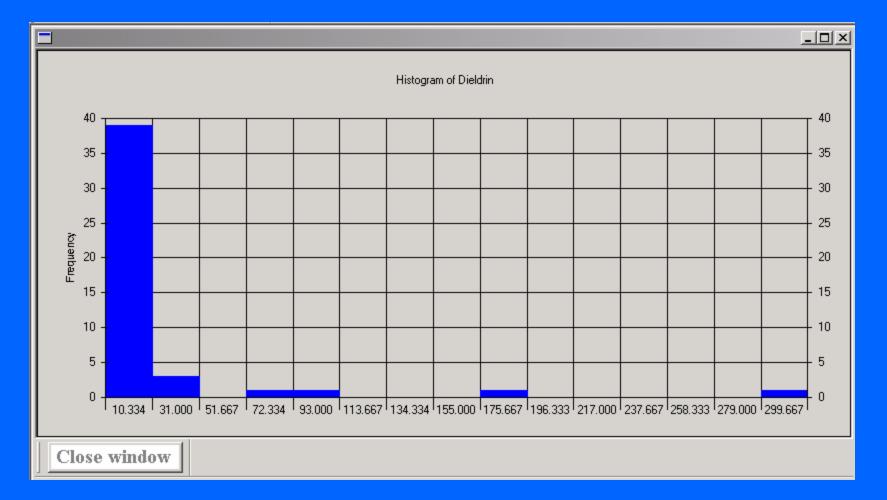
	Α	В	С	D	E	F	G	Н	I	
1	Data File	D:\drive_c\	sprfnd02\pr	oucl2004\N	SBC-MAN	(Variable:	Mangnese			
2										
3		Raw Statist	tics			Normal	Distribution	Test		
4	Number of	Valid Sam	ples	17	Shapir	Shapiro-Wilk Test Statisitic				
5	Number of	Unique Sai	mples	17	Shapir	o-Wilk 5% I	Critical Valu	ie	0.892	
6	Minimum			15.8	Data n	ot normal a	t 5% signific	cance level		
7	Maximum			4300						
8	Mean			902.24706	95	5% UCL (A:	ssuming No	rmal Distrik	oution)	
9	Median				Studer	it's-t UCL			1405.9228	
10	Standard D	Deviation		1189.4885						
11	Variance						nma Distribu	ution Test		
12	Coefficient of Variation			1.3183623	A-D Te	A-D Test Statistic				
13	Skewness			2.0455011		6 Critical V			0.7824581 0.1168327	
14										
15		Gamma S	Statistics		K-S 5%	K-S 5% Critical Value 0				
16	k hat			0.6797386		-	a distributio	n		
17		s corrected)		0.5990004	at 5%	significance	e level			
18	Theta hat			1327.3442						
19	Theta star			1506.2545			uming Gami	ma Distribu		
20	nu hat			23.111112		(imate Gam			1652.4595	
21	nu star			20.366014	Adjust	ed Gamma	UCL		1765.4423	
22		ii Square Va		11.119895						
23	Adjusted Level of Significance			0.03461			rmal Distrib	ution Test	0.9688235	
24	Adjusted C	Chi Square V	Value	10.408256		Shapiro-Wilk Test Statisitic				
25					Shapiro-Wilk 5% Critical Value					
26	Log-tra	nsformed S	tatistics		Data a	re lognorma	al at 5% sigi	nificance le	vel	


19	Theta star	1506.2545	95% UCLs (Assuming Gamma Distrib	ution)
20	nu hat	23.111112	Approximate Gamma UCL	1652.4595
21	nu star	20.366014	Adjusted Gamma UCL	1765.4423
22	Approx.Chi Square Value (.05)	11.119895		
23	Adjusted Level of Significance	0.03461	Lognormal Distribution Test	
24	Adjusted Chi Square Value	10.408256	Shapiro-Wilk Test Statisitic	0.9688235
25			Shapiro-Wilk 5% Critical Value	0.892
26	Log-transformed Statistics		Data are lognormal at 5% significance l	evel
27	Minimum of log data	2.7600099		
28	Maximum of log data	8.3663703	95% UCLs (Assuming Lognormal Di	stribution)
29	Mean of log data	5.9121322	95% H-UCL	5239.7026
30	Standard Deviation of log data	1.5676658	95% Chebyshev (MVUE) UCL	3237.4892
31	Variance of log data	2.4575762	97.5% Chebyshev (MVUE) UCL	4161.9824
32			99% Chebyshev (MVUE) UCL	5977.9704
33				
34			95% Non-parametric UCLs	
35			CLT UCL	1376.7764
36			Adj-CLT UCL (Adjusted for skewness)	1529.7059
37			Mod-t UCL (Adjusted for skewness)	1429.7768
38			Jackknife UCL	1405.9228
39			Standard Bootstrap UCL	1366.0647
40			Bootstrap-t UCL	1980.3313
41	RECOMMENDATION		Hall's Bootstrap UCL	3827.6703
42	Data follow gamma distribut	ion (0.05)	Percentile Bootstrap UCL	1372.7059
43			BCA Bootstrap UCL	1717.4824
44	Use Approximate Gamma U	CL	95% Chebyshev (Mean, Sd) UCL	2159.7604
45			97.5% Chebyshev (Mean, Sd) UCL	2703.8874
46			99% Chebγshev (Mean, Sd) UCL	3772.7195



1	Data File D:\drive_c\sprfnd02\n	epera\Table2	2.xls Variable: Total Mercury	
2				
3	Raw Statistics		Normal Distribution Test	
4	Number of Valid Samples	15	Shapiro-Wilk Test Statisitic	0.7288956
5	Number of Unique Samples	15	Shapiro-Wilk 5% Critical Value	0.881
6	Minimum	0.074	Data not normal at 5% significance leve	I
7	Maximum	11.548		
8	Mean	2.9022	95% UCL (Assuming Normal Distri	bution)
9	Median	1.179	Student's-t UCL	4.6180086
10	Standard Deviation	3.7729294		
11	Variance	14.234996	Gamma Distribution Test	
12	Coefficient of Variation	1.3000239	A-D Test Statistic	0.6905374
13	Skewness	1.453894	A-D 5% Critical Value	0.7787848
14			K-S Test Statistic	0.2173563
15	Gamma Statistics		K-S 5% Critical Value	0.2309578
16	k hat	0.6986189	Data follow gamma distribution	
17	k star (bias corrected)	0.6033396	at 5% significance level	
18	Theta hat	4.1541959		
19	Theta star	4.8102262	95% UCLs (Assuming Gamma Distrib	
20	nu hat	20.958568	Approximate Gamma UCL	5.5517622
21	nu star	18.100188	Adjusted Gamma UCL	6.0371894
22	Approx.Chi Square Value (.05)	9.4619264		
23	Adjusted Level of Significance	0.03235	Lognormal Distribution Test	
24	Adjusted Chi Square Value	8.7011293	Shapiro-Wilk Test Statisitic	0.951452
25			Shapiro-Wilk 5% Critical Value	0.881
26	Log-transformed Statistics		Data are lognormal at 5% significance le	evel
27	Minimum of log data	-2.60369		
28	Maximum of log data	2.4465123	95% UCLs (Assuming Lognormal Dis	
29	Mean of log data	0.2001752	95% H-UCL	13.354141
30	Standard Deviation of log data	1.4423611	95% Chebyshev (MVUE) UCL	8.7170048
31	Variance of log data	2.0804054	97.5% Chebyshev (MVUE) UCL	11.163643
32			99% Chebyshev (MVUE) UCL	15.96959
33				


	Α	В	С	D	E	F	G	Н	I	
1	Data File	D:\drive_c\	sprfnd02\ne	epera\Table2	2.xls	Variable:	Methylmer	cury %		
2										
3		Raw Statist	ics			Normal	Distribution	Test		
4	Number of	Valid Sam	oles	15	Shapiro	o-Wilk Test	Statisitic		0.8191722	
5	Number of	Unique Sai	mples	12	Shapiro	-Wilk 5% (Critical Valu	le	0.881	
6	Minimum			0.03	Data no	Data not normal at 5% significance level				
7	Maximum			0.85						
8	Mean			0.23			suming No			
9	Median			0.14	Studen	t's-t UCL			0.3383293	
10	Standard Deviation			0.2382076						
11	Variance			0.0567429 1.0356852			nma Distrib			
12	Coefficient	Coefficient of Variation			A-D Te	st Statistic			0.5595622	
13	Skewness			1.4287947	A-D 5%	6 Critical Va	alue		0.7622797	
14					K-S Te	K-S Test Statistic				
15		Gamma S	Statistics		K-S 5% Critical Value 0.22772					
16	k hat			1.0406006			a distributio	n		
17		s corrected)		0.8769249	at 5% s	significance	e level			
18	Theta hat			0.2210262						
19	Theta star			0.2622801		95% UCLs (Assuming Gamma Distribution)				
20	nu hat			31.218018		imate Gam			0.3875053	
21	nu star			26.307748	Adjuste	ed Gamma	UCL		0.4142477	
22		ii Square Va		15.614706						
23		evel of Sigr		0.03235			rmal Distrib			
24	Adjusted C	Chi Square V	√alue	14.606676		o-Wilk Test			0.9179229	
25							Critical Valu		0.881	
26	×	nsformed S	tatistics		Data ar	re lognorma	il at 5% sig	nificance le	vel	
27	Minimum o	¥		-3.506558						
28		of log data		-0.162519			suming Log			
29	Mean of lo	*		-2.021816	95% H-				0.6217778	
30	Standard Deviation of log data		log data	1.1363214		· ·	VIVUE) UCL		0.5728518 0.7182186	
31	Variance o	of log data		1.2912263		97.5% Chebyshev (MVUE) UCL				
32					99% CI	hebyshev (1	VIVUE) UCL	-	1.0037635	
33										


	A	B	C	D	E	F	G	H	I	J	
1	Data File	D:\drive_c\	sprfnd02\p	roucl2004\D	-48.DAT	Variable:	Dieldrin				
2											
3		Raw Statist				Normal	Distribution	Test			
4	Number of	Valid Samp	oles	48	Shapir	o-Wilk Test	Statisitic		0.1680365		
5	Number of	Unique Sar	nples	38	Shapir	Shapiro-Wilk 5% Critical Value 0.947					
6	Minimum			0.00032	Data n	ot normal a	t 5% signifi	cance level			
7	Maximum			11000							
8	Mean			256.42459	95	5% UCL (As	ssuming No	rmal Distrit	oution)		
9	Median			0.125	Studer	nt's-t UCL			640.59292		
10	Standard [Deviation		1586.2414							
11	Variance			2516161.8		Gan	nma Distribi	ution Test			
12	Coefficient	of Variation	1	6.1859958	A-D Te	st Statistic			6.0814679		
13	Skewness		6.8942515	A-D 5%	D 5% Critical Value			0.9665944			
14					K-S Te	st Statistic			0.2799734		
15		Gamma S	Statistics			6 Critical V			0.1450752		
16	k hat			0.1080292		Data do not follow gamma distribution					
17	k star (bia:	s corrected)		0.1151663	at 5%	at 5% significance level					
18	Theta hat			2373.6599							
19	Theta star			2226.5599			uming Gam	ma Distribu			
20	nu hat			10.370803		(imate Gam			614.82655		
21	nu star			11.055962	Adjust	ed Gamma	UCL		632.51946		
22		ii Square Va		4.6110897							
23		evel of Sign		0.045			rmal Distrib	ution Test			
24	Adjusted C	Chi Square ∖	/alue	4.4821078		o-Wilk Test			0.9088836		
25							Critical Valu		0.947		
26		nsformed S	tatistics		Data n	ot lognorma	al at 5% sig	nificance le	vel		
27	Minimum o	of log data		-8.04719							

22	Approx.Chi S	quare Value (.05)	4.6110897	
23	Adjusted Leve	l of Significance	0.045	Lognormal Distribution Test
24	Adjusted Chi	Square Value	4.4821078	Shapiro-Wilk Test Statisitic 0.9088836
25		·		Shapiro-Wilk 5% Critical Value 0.947
26	Log-transf	ormed Statistics		Data not lognormal at 5% significance level
27	Minimum of Ic	og data	-8.04719	
28	Maximum of I	og data	9.3056506	95% UCLs (Assuming Lognormal Distribution)
29	Mean of log d	ata	-1.896874	95% H-UCL 166544.37
30		iation of log data	4.348021	
31	Variance of lo	g data	18.905286	
32				99% Chebyshev (MVUE) UCL 4615.6484
33				
34				95% Non-parametric UCLs
35				CLT UCL 633.02078
36				Adj-CLT UCL (Adjusted for skewness) 876.46282
37				Mod-t UCL (Adjusted for skewness) 678.56496
38				Jackknife UCL 640.59292
39				Standard Bootstrap UCL 612.73957
40				Bootstrap-t UCL 8583.6274
41		COMMENDATION		Hall's Bootstrap UCL 5755.5691
42	Data ar	e Non-parametric (0.05)	Percentile Bootstrap UCL 717.06843
43				BCA Bootstrap UCL 704.22294
44	Use Hall's	Bootstrap UCL		95% Chebyshev (Mean, Sd) UCL 1254.4129
45				97.5% Chebyshev (Mean, Sd) UCL 1686.2433
46		Bootstrap method		99% Chebyshev (Mean, Sd) UCL 2534.4904
47		reasonably large U		
48	use 99% Che	byshev (Mean, Sd)	UCL	
49				

N = 46, Mean = 17.139, k hat = 0.149 Slope = 1.387, Intercept = -5.662, Correlation, R = 0.982 K-S Test Statistic = 0.242, Critical Value(0.05) = 0.146, Data not Gamma Distributed

	Α	В	С	D	E	F	G	Н	I	
1	Data File	D:\drive_c	\sprfnd02\pr	oucl2004\D	-46.DAT	Variable:	Dieldrin			
2										
3		Raw Statis	tics			Normal	Distribution	i Test		
4	Number of	⁻ Valid Sam	ples	46	Shapiro	Shapiro-Wilk Test Statisitic				
5	Number of	^r Unique Sa	mples	36	Shapir	o-Wilk 5% (Critical Valu	16	0.945	
6	Minimum			0.00032	Data n	ot normal a	t 5% signifi	cance level		
7	Maximum			310						
8	Mean			17.138701	95	5% UCL (As	ssuming No	rmal Distrib	oution)	
9	Median				Studen	it's-t UCL			30.542925	
10	Standard [Deviation		54.13267						
11	Variance					Gan	nma Distrib	ution Test		
12	Coefficient of Variation			3.1585049	A-D Te	A-D Test Statistic				
13	Skewness			4.3671579	A-D 5%	6 Critical V	alue		0.9384433	
14						st Statistic			0.2420304 0.1464637	
15		Gamma	Statistics			K-S 5% Critical Value				
16	k hat			0.1491094			gamma dis	stribution		
17		s corrected)	0.1538776	at 5%	significance	e level			
18	Theta hat			114.94044						
19	Theta star			111.37876			uming Gam	ma Distribu		
20	nu hat			13.718065		imate Gam			36.334358	
21	nu star			14.156742	Adjuste	ed Gamma	UCL		37.264868	
22	Approx.Chi Square Value (.05)			6.6776513		-				
23	Adjusted Level of Significance			0.0447826	Lognormal Distribution Test Shapiro-Wilk Test Statisitic 0.8996					
24	Adjusted (Chi Square	Value	6.5109091						
25					Shapiro-Wilk 5% Critical Value					
26	Log-tra	insformed S	Statistics		Data n	ot lognorma	al at 5% sig	nificance le	vel	

22	Approx.Chi Square Value (.05)	6.6776513	
23	Adjusted Level of Significance	0.0447826	Lognormal Distribution Test
24	Adjusted Chi Square Value	6.5109091	Shapiro-Wilk Test Statisitic 0.8996916
25			Shapiro-Wilk 5% Critical Value 0.945
26	Log-transformed Statistics		Data not lognormal at 5% significance level
27	Minimum of log data	-8.04719	
28	Maximum of log data	5.7365723	95% UCLs (Assuming Lognormal Distribution)
29	Mean of log data	-2.317597	95% H-UCL 8832.1207
30	Standard Deviation of log data	3.9114521	95% Chebyshev (MVUE) UCL 346.15005
31	Variance of log data	15.299458	97.5% Chebyshev (MVUE) UCL 464.2486
32			99% Chebyshev (MVUE) UCL 696.23034
33			
34			95% Non-parametric UCLs
35			CLT UCL 30.266979
36			Adj-CLT UCL (Adjusted for skewness) 35.758352
37			Mod-t UCL (Adjusted for skewness) 31.399468
38			Jackknife UCL 30.542925
39			Standard Bootstrap UCL 29.959657
40			Bootstrap-t UCL 56.771826
41	RECOMMENDATION		Hall's Bootstrap UCL 78.489944
42	Data are Non-parametric (0.05)	Percentile Bootstrap UCL 30.967498
43			BCA Bootstrap UCL 28.532952
44	Use Hall's Bootstrap UCL		95% Chebyshev (Mean, Sd) UCL 51.928933
45			97.5% Chebyshev (Mean, Sd) UCL 66.982695
46	In case Hall's Bootstrap method		99% Chebyshev (Mean, Sd) UCL 96.552894
47	an erratic, unreasonably large U		
48	use 99% Chebyshev (Mean, Sd)	UCL	
49			

Procedure to Compute a 95% UCL

- Identify potential outliers/multiple populations.
 - If justified, study them separately.
- Perform goodness-of-fit tests, look at data graphically using histogram, Q-Q plots <u>Never skip this step</u>.
 - In order to automate the EPC computation process for multiple variables, some users want to skip this step which is not recommended, as it may lead to incorrect conclusions by accommodating outliers/multiple populations.

If data follow a normal model (or approximate normal) – use Student's - t 95% UCL.

If data follow a gamma model – use adjusted or approximate gamma 95% UCL as described in Table 2. Procedure to Compute 95% UCL
 Avoid the use of a lognormal model, as:
 It accommodates outliers and multiple populations.

 It often yields unstable/ impractical UCLs, especially for highly skewed small data sets (e.g., n <10-20 etc.).

– Use the procedure described in Table 1 with caution.

For nonparametric data sets, compute 95% UCLs using the procedure as summarized in Table 3.

Procedure to Compute 95% UCL

Caution: When Hall's or bootstrap – t UCLs are recommended, make sure there are no outliers.

Do not use the Max value to estimate the EPC Term. ProUCL recommends alternative UCL methods for EPC.

Decision Tables 1-3 are programmed in ProUCL.

ProUCL recommends the most suitable method(s) which may be used to compute an appropriate 95% UCL of the mean (EPC Term).

ProUCL Questions/Comments

- Contact Gareth Pearson at the USEPA Technical Support Center in Las Vegas
 702-798-2101 or 702-798-2270
 - /02-/96-2101 01 /02-/96-22/
 - pearson.gareth@epa.gov

ProUCL, Version 3.0 is available for download at: http://www.epa.gov/nerlesd1/tsc/software.htm BACKGROUND VS SITE COMPARISONS & COMPUTATION OF BACKGROUND THRESHOLD VALUES (BTV)

100

BACKGROUND VS SITE COMPARISONS

Why compare background contamination levels (mean, UPL, UTL, Percentiles) with contamination levels introduced by some potentially responsible party (PRP) at an industrial site?

- □ This is a high interest topic in the area of:
 - making cleanup decisions such as Where to clean? How much (to what concentration level) to clean?
 - verification of the attainment of cleanup levels (such as represented by BTVs) at a polluted site - perhaps after performing some remediation actions.

Workshop Objectives - Background

Discuss comparison of site vs background data.

1. Based upon two sample comparisons:

to be used when enough site and background data are available.

2. Based upon background threshold values:

- when individual site values (typically used when enough site data are not available) are to be compared with a BTV.

Workshop Objectives - Background
 To estimate BTVs using:

- 95% upper prediction limits (UPLs)
- 95% upper percentiles parametric and non-parametric

To identify site outliers – perhaps representing contaminated areas, site hotspots in comparison with the site background:

- Discussion on how to interpret site values exceeding BTVs.

Workshop Outline

Comparison of background versus site data: - Two sample comparisons with enough data - Comparison of each site value with BTV Computation of BTVs - 95% UPLs – 95% upper percentiles (parameteric/nonparametric) Illustrations using real data sets Recommended procedure to compute BTVs How to interpret site values exceeding BTVs?

Evaluation of Background and Site Data

Two Sample comparisons:

- Site versus Background used when enough data from the two populations are available.
- Discussed in detail in EPA 2002 CERCLA Background Guidance Document.

Computation of BTVs:

- Compare individual site observations with some BTV.
- If most site data (e.g., > 95%) fall below BTV, then site data can be considered as coming from the background population.
- Site observations > BTV may require further investigation.

105

Evaluation of Background vs Site Data- Attainment of Cleanup Standard? Is site contaminated? Do Site and Background data

come from the same statistical population?

□ Two Ways to address these questions.

- 1. If enough site and background data (e.g., ≥ 10 points):
- Perform two sample comparisons: t-test, Wilcoxon Rank Sum Test / Mann - Whitney Test – discussed in background CERCLA document.
- 2. When individual (and not mean) site values are to be compared with some background value:
- Compute BTV procedures not provided in CERCLA background document.

Two Sample Comparisons

- 1. Null (baseline condition) hypothesis is $H_0: \mu_s \le \mu_b$, vs alternative hypothesis, $H_1: \mu_s > \mu_b$.
 - H₀ called Background Test Form 1.
 - This hypothesis is useful to verify the attainment of cleanup standards after some remediation actions have been performed at a typical contaminated site.

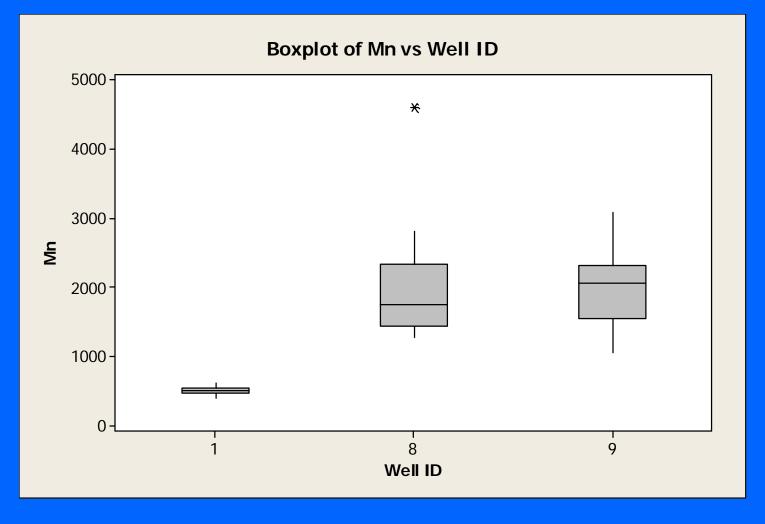
It is assumed that the null hypothesis is true, that is the site has been cleaned enough to attain cleanup standards (such as background mean value).

 Using the available data, the burden of proof is to prove it otherwise (e.g., reject the null hypothesis and conclude that the site mean still exceeds the background mean).

Two Sample Comparisons

2. Null (baseline condition) hypothesis is H₀ : μ_s ≥ μ_b, vs alternative hypothesis, H₁ :μ_s < μ_b.
 <u>– Called Background Test Form 2.</u>

This Null hypothesis is protective of the environment and human health.


■ It is assumed that the null hypothesis is true (that is the site is dirty and may be impacted by the site activities).

Some times, a factor, S>0 (e.g., =s_b, background sd) is added to the right hand side of the Form 2 hypotheses stated above. Two Sample Comparisons
 Using the available data, the burden of proof is to prove it otherwise (e.g., reject the null hypothesis and conclude the site is clean).

This Form 2 is often used when not much is known about an area of concern – such as prior to remediation actions etc. **Real Example: Two Sample Comparisons** Real data set (C&R Battery Site) – **COPCs are inorganics.** Consider Mn ■ MW 1= Upgradient background well ■ MW6, MW7, MW8, MW9 = Downgradient wells Should perform ANOVA for more than 2 populations – beyond the scope of Workshop.

Graphical Comparison First

Real Mn Data: Box Plots For Three Monitoring Wells

111

Assumptions Needed to Perform Two Sample Comparisons Samples should be normally distributed for t-test. **Two populations should be independent.** No distributional assumptions needed for WRS test or for Mann - Whitney two sample tests. **Caution:**

Do not use t-test on log-transformed data to compare means of two populations – a common mistake.

Use nonparametric tests instead.

Real Mn Data: Two Sample Comparison

Two-Sample T-Test for Mn: Background (MW1) vs MW8

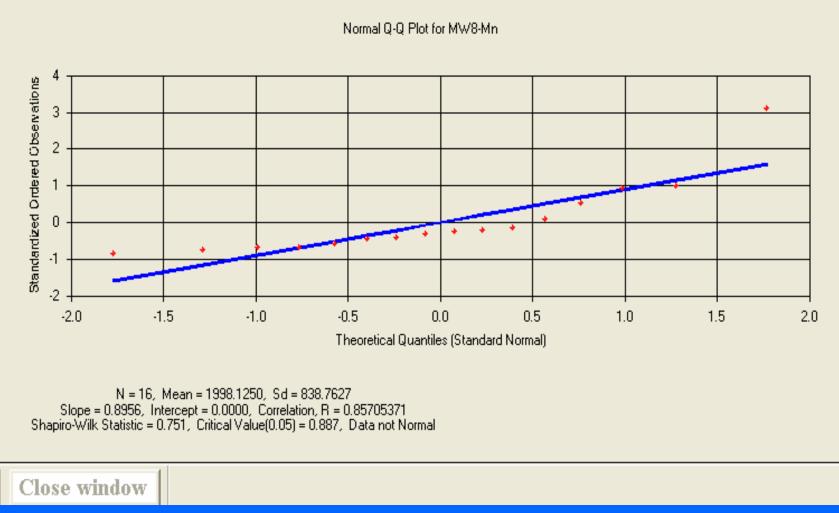
- ID
 N
 Mean
 StDev
 SE Mean

 1
 16
 502.4
 59.4
 15
- 8 16 1998 839 210

Difference = mu (1) - mu (8) Estimate for difference: -1495.75 95% upper bound for difference: -1127.23

T-Test of difference = 0 (vs <): T-Value = -7.12 P-Value = 0.000 DF = 15, highly significant.

Conclusion: Reject H_0 and conclude MW8 has much higher mean Mn than that of MW1 (upgradient well).


Real Mn Data:Normality Test for MW1

N = 16, Mean = 502.3750, Sd = 59.4226 Slope = 1.0368, Intercept = 0.0000, Correlation, R = 0.99218269 Shapiro-Wilk Statistic = 0.980, Critical Value(0.05) = 0.887, Data are Normal

114

Real Mn Data: Normality Test for MW8

Real Mn Data: Two Sample Comparison Mann-Whitney Test and CI: MW1-Mn, MW8-Mn

N Median MW1-Mn 16 502.0 MW8-Mn 16 1750.0

Point estimate for ETA1-ETA2 is -1237.0 95.2 Percent CI for ETA1-ETA2 is (-1509.1,-1025.2)

W = 136.0 Test of ETA1 = ETA2 vs ETA1 < ETA2 is significant at 0.0000 The test is significant at 0.0000 (adjusted for ties)

Conclusion: Reject H₀, and conclude MW8 has higher Mn than that of MW1

Real Mn Data: Two Sample Comparison Two-Sample T-Test for Mn: Background (MW1) vs MW =9

ID N Mean StDev SE Mean
1 16 502.4 59.4 15
9 16 1968 500 125

Difference = mu (1) - mu (9) Estimate for difference: -1465.75 95% upper bound for difference: -1244.99

T-Test of difference = 0 (vs <): T-Value = -11.64 P-Value = 0.000 DF = 15

Conclusion: Reject H₀ and conclude MW 9 has higher mean Mn than that of MW1 (Upgradient well).

How to Compute Background Threshold Values (BTV)?

Often need to compute BTVs for Superfund Site Evaluations - such as used for:

- Andrews Air Force Base
- South Weymouth Naval Air Station
- AMTL Charles River Site
- Wallops Air Facility
- Fort Benning Site, Georgia

No clear guidelines provided in Background CERCLA Document (2002) for Soils (EPA 540-R-01-003, OSWER 9285.7-41) or in any other Navy or EPA document on how to compute BTVs.

How to Compute **BTVs**?

Parametric Background Values:

- 95% upper prediction limit (UPL) also given in EPA 1992 RCRA document addendum.
- 95th upper percentile based upon background data distribution – mentioned in some Navy documents.
- However, formulae to compute the percentiles are missing.
- Make sure no significant outliers and/or multiple populations are present – treat them separately.

95% Parametric UPL

(1-α)100% UPL for normal background data sets (EPA 1992 RCRA document).

$$UPL = \overline{x} + t_{(n-1),\alpha} s \sqrt{1/n+1}$$

UPL for lognormal data - obtained using logtransformed data and then back transformation.

Normal 95% Upper Percentiles

Determine background data distribution first.

- Make sure no significant outliers and/or multiple populations are present.
- For Normal distribution, the p100% percentile is:

 $\hat{x}_p = x + sz_p$

- \Box z_p = upper p100th (e.g., =95%) percentile of N(0,1).
- If distributions of site and background data are really the same (meaning no contamination due to site activities), then site data should lie below the background 95% upper percentile with 0.95 confidence coefficient.

Lognormal 95% Upper Percentiles
 For lognormal Distribution, the p100% percentile is:

 $\hat{x}_p = exp(y + s_y z_p)$

- \Box z_p = upper p100th percentile of N(0,1).
- If distributions of site and background data are really the same (meaning no contamination due to site), then site data should lie below the background 95% upper percentile with 0.95 confidence coefficient.
- Similarly, one can obtain upper percentiles for gamma distribution using inverse gamma distribution.

Nonparametric Background Threshold Values

- Non-parametric Background Values:
 - Current practice: The largest or second largest value based upon professional judgment/site specific conditions is used to estimate BTV.
 - However, avoid its use, as it has no theoretical justification.
 - Use simple upper 95th percentile, $x_{0.95}$ of background data.
 - Where, X_p is that value such that p100% of background data lies at or below X_p .

Real data from Fort Benning Site - discussed next:

Computing BTV Using 95% UPLs Real Data Set

	A	В	C	D	E	F	G	Н
1		Shapiro-Wilks Statistics				95% Upper Prediction Limits		
2		Critical Value	Normal	Lognormal	Distribution	Normal	Lognormal	Non-Parametric
3	Barium	0.842	0.765	0.892	Lognormal	96.906	125.927	88.000
4	Chromium	0.842	0.672	0.953	Lognormal	18.850	23.245	7.200
5	Iron	0.940	0.574	0.963	Lognormal	59749,101	63044.750	52000.000
6	lron w/o Outlier	0.939	0.892	0.939	Non-Parametric	35077.163	51503.240	36900.000
7	Manganese	0.842	0.661	0.991	Lognormal	498.213	959,105	230.000
8	Vandium	0.905	0.647	0.973	Lognormal	29.745	31.094	18.000
9								

Computing BTV - 95% Upper Percentiles Real Data Set

	A	В	C	D	E	F	G	Η
1		Shapiro-Wilks Statistics				95% Percentiles		
2		Critical Value	Normal	Lognormal	Distribution	Normal	Lognormal	Non-Parametric
3	Barium	0.842	0.765	0.892	Lognormal	87.94	99.53	92.95
4	Chromium	0.842	0.672	0.953	Lognormal	17.00	18.06	16.44
5	Iron	0.940	0.574	0,963	Lognormal	58264.84	59191.34	37655.00
6	lron w/o Outlier	0.939	0.892	0,939	Non-Parametric	34333.12	48513.53	32490.00
7	Manganese	0.842	0.661	0,991	Lognormal	444.78	631.00	455.50
8	Vandium	0.905	0.647	0.973	Lognormal	28.37	28.08	19.70

Computing BTV - 95% Upper Percentiles and 95% UPLs - Real Data Set

	A	В	C	D	E	F	G	Н
1		Data	95% Upper Prediction Limits			95% Percentiles		
2	COPC	Distribution	Normal	Lognormal	Non-Parametric	Normal	Lognormal	Non-Parametric
3	Barium	Lognormal	96.906	125.927	88.000	87.94	99.53	92.95
4	Chromium	Lognormal	18.850	23.245	7.200	17.00	18.06	16.44
5	Iron	Lognormal	59749,101	63044.750	52000.000	58264.84	59191.34	37655.00
6	lron w/o Outlier	Non-Parametric	35077.163	51503.240	36900.000	34333.12	48513.53	32490.00
7	Manganese	Lognormal	498.213	959,105	230.000	444.78	631.00	455.50
8	Vandium	Lognormal	29.745	31.094	18.000	28.37	28.08	19.70

Recommended Procedure to Compute BTVs

- Make sure no significant outliers or multiple populations are present in the background data set.
- Background statistics should be computed based upon a single sample (from the background population) without outliers.
- Use graphical displays to visualize data these provide useful info about outliers, multiple populations etc.
- Determine background data distribution.

Recommended Procedure to Compute BTVs

Use 95% UPL or 95% upper percentile for normal, lognormal, or gamma distribution.

- Note lognormal distribution yields higher BTVs.

For nonparametric data sets, use the 95% upper percentiles instead of arbitrarily chosen largest or 2nd largest value. Determining Outlying Site Values and Hot Spots- Per EPA 2002
 2002 EPA CERCLA background document suggests the identification of site outliers based upon background 95% UTLs.

Background 95% UPL or 95% upper percentile can also be used to identify contaminated site values.

Site values exceeding a BTV may be considered as coming from a population different from the site background suggesting contamination due to site activities (perhaps representing a hot spot).

Determining Outlying Site Values and Hot Spots

- According to CERLA document, site outliers exceeding BTV can be interpreted as hot spots (contaminated parts of the site) – needing further investigation.
 - In practice, individual site values can exceed the BTV even when the site mean and the background mean appear to be the same.
 - It is desirable to use the two sample tests (provided enough data are available) as well as the BTVs to perform site and background comparisons.