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Waste and Emergency Response (OSWER)
and all ten Regional Offices.  The objectives of
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s t a t e - o f - t h e - s c i e n c e  c o n t a m i n a n t
characterization technologies and expertise to
Regional staff, facilitate the evaluation and
application of site characterization
technologies at Superfund and RCRA sites,
and to improve communications between
Regions and ORD Laboratories.  The TSC
identified a need to provide federal, state, and
private environmental scientists working on
hazardous waste sites with a technical issue
paper that identifies data assessment
applications that can be implemented to better
define and identify the distribution of
hazardous waste site contaminants.  The
examples given in this Issue paper and the
recommendations provided were the result of
numerous data assessment approaches
performed by the TSC at hazardous waste sites.
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In Superfund and RCRA projects of the
U.S. EPA, cleanup, exposure, and risk
assessment decisions are often made based
upon the mean concentrations of the
contaminants of potential concern.  A 95%
upper confidence limit (UCL) of the
population mean is used to estimate the
exposure point concentration (EPC) term
(EPA, 1992), to determine the attainment of
cleanup standards (EPA, 1989), to estimate
background level contaminant concentrations,
or to compare the soil concentrations with the
site specific soil screening levels (EPA, 1996).
It is, therefore, important to compute an
accurate and stable 95% UCL of the population
mean from the available data.

The formula for computing a UCL depends
upon the data distribution. Typically,
environmental data are positively skewed, and
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a lognormal distribution (EPA, 1992) is often used
to model such data distributions. The H-statistic
(Land, 1971) based upper confidence limit of the
mean (denoted henceforth as H-UCL) is used in
these applications.  However, recent research in
this area (Hardin and Gilbert, 1992; Singh, et al.,
1997, 1999; and Schultz and Griffin, 1999)
suggest that this may not be an appropriate choice.
It is observed that for large values of standard
deviation (e.g., exceeding 1.5 - 2.0) of the log-
transformed data, the use of H-statistic leads to
unreasonably large, unstable, and impractical UCL
values. This is especially true for sample sets of
smaller sizes (e.g., n < 20-25).  The H-UCL is also
very sensitive to a few low or high values.  For
example, the addition of a sample below detection
limit can cause the H-UCL to increase by a large
amount.  Realizing that the use of H-statistic can
result in an unreasonably large UCL, it has been
recommended (EPA, 1992) to use the maximum
observed value as an estimate of the UCL (EPC
term) in cases where the H-UCL exceeds the
maximum observed value.  Also, when the sample
size is 5 or less, the maximum observed
concentration is often used as an estimate of the
EPC term.  However, it is observed that for highly
skewed data sets, use of the maximum observed
concentration may not provide the specified 95%
coverage to the population mean (as shown in
Section 5).  This is especially true for samples of
small size (e.g., 5-10).  For larger sample sets/data
sets (e.g., n$20), the use of the maximum
observed value results in an overestimate of the
95% UCL of population mean.  For such highly
skewed data sets, use of a gamma distribution
based UCL of the mean provides a viable option.

A positively skewed data set can quite often
be modeled by lognormal as well as gamma
distributions. Due to the relative computational
ease, however, the lognormal distribution is used
to model positively skewed data sets.  However,
use of a lognormal model for an environmental
data set unjustifiably elevates the minimum
variance unbiased estimate of the mean and its
UCL to levels that may not be applicable in
practice.  In this paper, we propose the use of a
gamma distribution to model positively skewed
data sets.  The objective of the present work is to

study procedures which can be used to compute a
stable and accurate UCL of the mean based upon
a gamma distribution.  Several parametric and
non-parametric (e.g., standard bootstrap,
bootstrap-t, Hall’s bootstrap, Chebyshev
inequality) methods of computing a UCL of the
unknown population mean, :, have also been
considered.  Monte Carlo simulation experiments
have been performed to compare the performances
of these methods.  The comparison of the various
methods has been evaluated in terms of the
coverage (confidence coefficient) probabilities
achieved by the various UCLs.  Based upon this
study, in Section 6, recommendations have been
made about the computation of a UCL of the mean
for skewed data distributions originating from
various environmental applications.

1.  Introduction

Suppose the Regional Project Manager (RPM)
of a Superfund site believes that the mean
concentration of the contaminant of potential
concern (COPC) exceeds a specified cleanup
standard, Cs, but the potentially responsible party
(PRP) claims that the mean concentration is below
Cs.  In statistical terminology this can be stated in
terms of testing of hypotheses.  The hypotheses of
interest are the null hypothesis that the mean
concentration exceeds the cleanup standard, H0: :
$ Cs, versus the alternative hypothesis, Ha:  : < Cs.
This formulation of the problem is protective of
the environment because it assumes that the area
in question is contaminated, and the burden of
testing is to show otherwise.  In order to perform
a test of these hypotheses, a random sample is
collected from the site and concentrations of the
COPC in these samples are determined.  A
suitable statistical test is then used to make a
decision.

A convenient way to perform a test of
hypotheses about an unknown population
parameter is first to compute a confidence interval
for the parameter, and then reject H0 if the
hypothesized value, in this case the cleanup
standard, Cs, lies outside of the confidence
interval.  For the one-sided hypotheses mentioned

above, the test is based on a one-sided UCL of the
mean.  A one-sided UCL is a statistic such that the

true population mean, :, is less than the UCL with
a prescribed probability or level of confidence, say
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(1)

(1 ! ").  For example, if the UCL is a 95% one-
sided upper confidence limit, then  : < UCL with
95% confidence (or with 0.95 probability), and the
set of all real numbers less than UCL forms a 95%
upper one-sided confidence interval.  The
corresponding statistical test will reject H0 (i.e.,
declare the site clean) if UCL < Cs, and the
significance level of this test, or false positive
error rate, is ".  This follows because if the site is
contaminated (i.e., : $ Cs), then the probability of
declaring it clean is the probability that UCL < Cs,
which is at most ".

Testing of these hypotheses and computation
of a UCL of the mean depends upon the
population distribution of the COPC
concentrations.  Several procedures are available
to compute a UCL of the mean of a normal or a
lognormal distribution in the literature of
environmental statistics (i.e., Singh, Singh, and
Engelhardt, 1997, 1999; Schultz and Griffin,
1999).  In this paper, we focus our effort on the
inference procedures for an unknown population
mean based upon a gamma distribution.  The
objective here is to study procedures that can be
used to compute an accurate and stable UCL of the
mean.  Several parametric (Johnson, 1978; Chen,
1995; and, Grice and Bain, 1980) and non-
parametric (e.g., standard bootstrap, bootstrap-t
(Efron, 1982, Hall, 1988), Hall’s bootstrap (Hall,
1992), Chebyshev inequality) methods of
computing a UCL of population mean, :, of a
skewed distribution have also been considered.
The comparison of the various methods has been
performed in terms of the coverage (confidence
coefficient) probabilities provided by the various
95% UCLs.  Monte Carlo simulation experiments
have been performed to compare the performances
of these methods.  Based upon this study,
recommendations have been made about the
computation of a UCL of the mean for skewed
data distributions originating from various
environmental applications.

Section 2 has a brief description of the gamma
distribution and a discussion of goodness-of-fit
tests for the gamma distribution.  Section 2 also
describes estimation of gamma parameters and the
computation of the UCL of mean based upon a
gamma distribution.  Section 3 describes the
various other methods which can be used to
compute a UCL of population mean.  Section 4

has some examples illustrating the procedures
used.  Section 5 discusses the Monte Carlo
experiments used to illustrate these methods and
results.  Section 6 consists of our
recommendations for dealing with heavily skewed
data sets.

2.  The Gamma Distribution

A continuous random variable, X (e.g., COPC
concentration), is said to follow a two-parameter
gamma distribution, G(k,2) with parameters k>0
and 2>0, if  its probability density function is
given by the following equation:

and zero otherwise. The parameter k is the shape
parameter, and 2 is the scale parameter (the
location parameter is set to zero).  Plots of the
gamma distribution, G(k,2) for varying choices of
the shape parameter, k, and the scale parameter, 2,
are shown in Figures 1-4.  These figures have been
generated using the statistical software package,
MINITAB.  The mean, variance, and skewness of
a gamma distribution, G(k,2) are given as follows:

Mean = : = k2.          (2)

Variance = F2 = k22.          (3)

Skewness = 2/qk.          (4)

From equation (4), it is noted that skewness
increases as the shape parameter k decreases.
Figures 1 and 2 have the graphs of highly skewed
distributions.  As k increases, skewness decreases,
and consequently a gamma distribution starts
approaching a normal distribution for larger values
of k (e.g., k $10), as can be seen in Figures 3 and
4.  Thus for larger values of k, the UCL based
upon a gamma distribution and a UCL based upon
a normal distribution are in close agreement.
From Figures 1-4, it can also be seen that the scale
parameter, 2, simply affects the scale of the
distribution and has no effect on the shape of the
gamma distribution.  In practice, a highly skewed
data set can be fitted by both lognormal and
gamma distributions. However, the difference
between the UCLs obtained using the two
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Figure 1. Graphs of the gamma distributions G(0.1, 1), G(0.2, 1), and
G(0.5, 1).

Figure 2. Graphs of the gamma distributions G(0.1, 50), G(0.2, 50), and
G(0.5, 50).

distributions can be enormous.  This is especially
true when the shape parameter is small (e.g., k <

1).  This is illustrated in examples 2-5 given in
Section 4.
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Figure 3. Graphs of the gamma distributions G(2, 1), G(4, 1), and
G(10, 1).

Figure 4. Graphs of the gamma distributions G(2, 50), G(4, 50), and
G(10, 50).

2.1 Goodness-of-Fit Tests for Gamma
Distribution

Since the goodness-of-fit tests for gamma
distributions are not readily available, a brief
description of those tests is given here.  Several
tests based upon empirical distribution functions
(EDF) exist in the statistical literature, and can be

used to test for a gamma distribution.  These tests
include Kolmogorov-Smirnov, D-test statistic,
Anderson-Darling, A2-test statistic, and Cramer-
von Mises test statistics, W2 and U2 (e.g., see
D’Agostino and Stephens (1986), page 101).  The
exact critical values of these statistics are not
available; this is especially true when the shape
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parameter, k, of the gamma distribution is less
than 1.  Some asymptotic upper-tail critical values
of the test statistics, W2, A2, and U2 are given in
D’Agostino and Stephens (1986) for values of the
shape parameter, k$1 (pages 152-155).  Schneider
(1978) also studied the goodness-of-fit tests for
gamma distribution.  He derived the critical values
of Kolmogorov-Smirnov, D-test statistic for
selected values of the shape parameter, k, and the
sample size for the gamma distribution with
unknown parameters.  All of these tests are right-
tailed.  This means that if a computed test-statistic
exceeds its respective "100% critical value, the
null hypothesis of gamma distribution will be
rejected at " level of significance.

Most of the commercially available software
packages such as SAS and S-PLUS do not provide
the goodness-of-fit tests for a gamma distribution.
The software ExpertFit (developed by Law &
Associates, Inc., 2001) performs a goodness-of-fit
test for gamma distribution using the Anderson-
Darling test statistic, A2 and Kolmogorov-Smirnov
test statistic.  Due to the unavailability of the exact
critical values of the general test statistics, the
software ExpertFit (Law and Kelton (2000)) uses
approximate critical values of the test statistic
under the assumption that all parameters (e.g.,
shape and scale) of the distribution are known,
that is the distribution is completely specified as
given in Stephens (1970).  Those critical values
are the generic critical values for all completely
specified distributions.  ExpertFit uses these
generic critical values to test for a gamma
distribution.  These critical values are also given
on page 105 of D’Agostino and Stephens (1986).
The authors of this article also developed a
program, GamGood (2002), to test for a gamma
distribution.  This program computes the various
goodness-of-fit test statistics using the formulae as
given on page 101 of D’Agostino and Stephens
(1986).  In this paper, we also use the smoothed
percentage points of the Kolmogorov-Smirnov (K-
S), D-test statistic as computed by Schneider and
Clickner (1976), Schneider (1978) to test for a
gamma distribution.  An illustration of the
goodness-of-fit test for a gamma distribution has
been discussed in Example 1.

Example 1
The following data set of size 20 is given by Grice
and Bain (1980): 152, 152, 115, 109, 137, 88, 94,
77, 160, 165, 125, 40, 128, 123, 136, 101, 62, 153,
83, and 69.  None of the parameters of the
underlying distribution are known.  The various
goodness-of-fit test statistics are given by A2 =
0.41496, W2 = 0.06142, U2 =  0.05111, and D =
0.13867.  The estimated shape parameter, k, for
this data set is 7.513 (see Example 1, to be
continued).  For a shape parameter of 7.513, the
asymptotic 5% critical values (Table 4-21, page
155, D’Agostino and Stephens, 1986) of these
statistics are:  A2 = 0.755, W2 = 0.127, and U2 =
0.117, and the critical value of the K-S statistic, is
D = 0.196 (Table 7 of Schneider, 1978).  Since all
of the test-statistics are less than their respective
critical values, it is concluded that there is
insufficient evidence to conclude at the 0.05 level
of significance that the data do not follow a
gamma distribution.

2.2 Estimation of Parameters of the Gamma
Distribution

Next, we consider the estimation of the
parameters of a gamma distribution.  The
population mean and variance of a gamma
distribution, G(k,2), are functions of both
parameters, k and 2.  In order to estimate the
mean, one has to obtain estimates of k and 2.
Computation of the maximum likelihood estimate
(MLE) of k is quite complex and requires the
computation of Digamma and Trigamma functions
(Choi and Wette, 1969).  Several authors (Choi
and Wette, 1969, Bowman and Shenton, 1988,
Johnson, Kotz, and Balakrishnan, 1994) have
studied the estimation of shape and scale
parameters of a gamma distribution.  The
maximum likelihood estimation procedure to
estimate shape and scale parameters of a gamma
distribution is described below.

Let x1,x2,...,xn be a random sample (of COPC
concentrations) of size n from a gamma
distribution, G(k,2), with unknown shape and
scale parameters k and 2, respectively.  The log
likelihood function is given as follows: 

(5)
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(9)
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(7)

(8)

(10)

(11)

(12)

(13)

(6)

(14)

(15)

To find the MLEs of k and 2, which are and ,$k $θ
respectively, we differentiate the log likelihood
function as given in (5) with respect to k and 2,
and set the derivatives to zero.  This results in the
following two equations:

Solving equation (7) for  and substituting the$θ
result in equation (6), we get the following
equation:

There does not exist a closed form solution of
equation (8).  This equation needs to be solved
numerically for , which requires the$k
computation of  digamma and  trigamma
functions.  This is quite easy to do using a
personal computer.  An estimate of k can be
computed iteratively by using the Newton-

Raphson (Faires and Burden, 1993) method
leading to the following iterative equation:

The iterative process stops when starts to$k
converge.  In practice, convergence is typically
achieved in fewer than 10 iterations.  In
equation (9):

where Q (k) is the digamma function and QN (k) is
the trigamma function.  In order to obtain the
MLEs of k and 2, one needs to compute the
digamma and trigamma functions.  Good
approximate values for these two functions (Choi
and Wette, 1969) can be obtained using the
following approximations.

For k$8, these functions are approximated by:

and

For k < 8, one can use the following recurrence
relation to compute these functions:

The iterative process requires an initial estimate of
k. A good starting value for k in this iterative
process is given by k0 = 1/(2M).  Thom (1968)
suggests the following approximation as an
estimate of k:

Bowman and Shenton (1988) suggested using as$k
given by equation (14) to be a starting value of k
for an iterative procedure, calculating at the lth

iteration from the following formula:

Both equations (9) and (15) have been used to
compute the MLE of k.  It is observed that the
estimate,  based upon Newton-Raphson method$k
as given by equation (9) is in close agreement with
that obtained using equation (15) with Thom’s
approximation as an initial estimate.  Choi and
Wette (1969) further concluded that the MLE of k,

, is biased high.  A bias corrected (Johnson, et$k
al., 1994) estimate of k is given by the following
equation:

(16)

In (16), is the MLE of k obtained using either$k
(9) or (15).  Substitution of equation (16) in
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(19)

       (17)

(18)

equation (7) yields an estimate of the scale
parameter, 2 given as follows:

Next we provide an example illustrating the
computations of the MLEs of k and 2.

Consider the data set of Example 1.  The sample
mean, , is 113.5.  The MLEs of the twox
parameters, k and 2, are obtained iteratively using
the Newton-Raphson method (equation 9), and
Bowman and Shenton’s proposal as given by
equation (15).  The two sets of estimates are in
agreement and are given by = 8.799, and  =$k $θ
12.893.  The corresponding bias-corrected
estimates of k and 2, as given by equations (16)
and (17) are * = 7.51267 and * = 15.101.  Note$k $θ
that the bias-corrected MLE of the shape
parameter, k = 7.51267, which is quite high;
consequently, the skewness of this data set is mild
and its MLE = 0.73 (from equation (4)).
Goodness-of-fit tests performed on this data set
suggest that the data cannot reject the hypothesis
that the data are normal or that they are lognormal.

2.3 Computation of UCL of the Mean of a
Gamma, G(k,2) Distribution

In the statistical literature, even though
procedures exist to compute a UCL of the mean of
a gamma distribution (Grice and Bain, 1980,
Wong, 1993), those procedures have not become
popular due to their computational complexity.
Those approximate and adjusted procedures
depend upon the Chi-square distribution and an
estimate of the shape parameter, k.  As seen
above, computation of a MLE of k is quite
involved, and this works as a deterrent to the use
of a gamma distribution-based UCL of the mean.
However, the computation  of a gamma UCL
currently should not be a problem due to easy
availability of personal computers.

Given a random sample, x1,x2,...,xn of size n
from a gamma, G(k,2) distribution, it can be
shown that  follows a Chi-square2  /  nX θ
distribution,  , with 2nk degrees of freedom
(df).  It  is   noted  that   = 2(X1 + X2 + ...(2 ) / nX θ

+ Xn)  / 2.  Using a simple transformation of
variables, it is seen that each of the random
variables, 2Xi/2;i:=1,2,...,n follows a chi-square,

, distribution.  Also those chi-square random
variables are independently distributed.  Since the
sum of the independently distributed chi-square
random variables also follows a chi-square
distribution, it is concluded that (2 )  /  nX θ
follows a chi-square,  distribution with 2nk
degrees-of-freedom.  When the shape parameter,
k, is known, a uniformly most powerful test of size
" of the null hypothesis, H0: :$Cs, against the
alternative hypothesis, H1: :<Cs, is to reject H0 if

 The corresponding (1-")x C nk nk/ ( ) /s < χ 2    
2 2 .α

100% uniformly most accurate UCL for the mean,
:, is then given by the probability statement:

where  (") denotes the " cumulative percentage
point of the Chi-square distribution.  That is, if Y
follows  , then .  InP Y( ( ))≤ =χ α αυ

2

practice, k is not known and needs to be estimated
from data.  A reasonable procedure is to replace k
by its bias corrected estimate, *, as given by$k
equation (16).  This results in the following
approximate (1-") 100% UCL of the mean:

It should be pointed out that the UCL given in
(19) is an approximate UCL and there is no
guarantee that the confidence level of (1-") will be
achieved by this UCL.  However, it does provide
a way of computing a UCL of mean of a gamma
distribution.  Simulation studies conducted in
Section 4 suggest that an approximate gamma
UCL thus obtained provides the specified
coverage (95%) as the shape parameter, k
approaches 0.5.  Thus when k$0.5, one can use the
approximate UCL given by (19).  It should be
observed that this approximation is good even for
smaller (e.g., n=5) sample sizes.

Grice and Bain (1980) computed an adjusted
probability level, $, which can be used in (19) to
achieve the specified confidence level of (1-").

For " = 0.05 (confidence coefficient of 0.95), " =
0.1, and " = 0.01, these adjusted probability levels

are given below for some values of the sample size
n (Table 1).  One can use linear interpolation to
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(20)

Figure 5. Graphs of coverage probabilities by 95% UCLs of mean of
G(k = 0.10, 2 = 50).

obtain an adjusted $ for values of n not covered in
the table.  The adjusted (1-") 100% UCL of
gamma mean, : = k2 is given by:

where $ is given in Table 1 for "=0.05, 0.1, and
0.01.  Note that as the sample size, n, becomes
large, the adjusted probability level, $, approaches
".  Except for the computation of the MLE of k,
equations (19) and (20) provide simple Chi-

square-distribution-based UCLs of the mean of a
gamma distribution.  It should also be noted that
the UCLs as given by (19) and (20) only depend
upon the estimate of the shape parameter, k, and
are independent of the scale parameter, 2, and its
estimate.  Consequently, as expected, it is
observed that coverage probabilities for the mean
associated with these UCLs do not depend upon
the values of the scale parameter, 2.  This is
further discussed in Section 4.

Table 1.  Adjusted Critical Level, $ for Various Values of " and n
" = 0.05 " = 0.1 " = 0.01

n probability level, $ probability level, $ probability level, $
5 0.0086 0.0432 0.0000
10 0.0267 0.0724 0.0015
20 0.0380 0.0866 0.0046
40 0.0440 0.0934 0.0070
4 0.0500 0.1000 0.0100

It is observed (Figures 5-7) that except for
highly skewed (k<0.15) data and samples of small
size (e.g., <10), the adjusted gamma UCL given
by (20) provides the specified 95% coverage of
the population mean.  It is also noted that for
highly skewed (k<0.15) data sets of small sizes,
except for the H-UCL, the coverage probability
provided by the adjusted gamma UCL is the

highest and is close to the specified level, 0.95.
However, for these highly skewed data sets, the H-
statistic results in unacceptably large values of the
UCL.  This is further illustrated in examples 2-4.
For values of k $0.2, the specified coverage of
0.95 is always approximately achieved by the
adjusted gamma UCL given by equation (20), as
shown in Figures 7-14.
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Figure 6. Graphs of coverage probabilities by 95% UCLs of mean
of G(k = 0.15, 2 = 50).

Figure 7. Graphs of coverage probabilities by 95% UCLs of mean
of G(k = 0.20, 2 = 50).

Figure 8. Graphs of coverage probabilities by 95% UCLs of mean
of G(k = 0.25, 2 = 50).
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Figure 9. Graphs of coverage probabilities by 95% UCLs of mean
of G(k = 0.50, 2 = 50).

Figure 10. Graphs of coverage probabilities by 95% UCLs of mean
of G(k = 1.0, 2 = 50).

Figure 11. Graphs of coverage probabilities by 95% UCLs of mean
of G(k = 2.0, 2 = 50).
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Figure 12. Graphs of coverage probabilities by 95% UCLs of mean
of G(k = 4.0, 2 = 50).

Figure 13. Graphs of coverage probabilities by 95% UCLs of mean
of G(k = 6.0, 2 = 50).

Figure 14. Graphs of coverage probabilities by 95% UCLs of mean
of G(k = 10.0, 2 = 50).
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(21)

(22)

(23)

(24)

Example 1 (Continued)
The data set of size 20 and the associated MLEs of
parameters k and 2 are given in Example 1.  For
n=20 and  =0.05, the adjusted probability level,∝
$ = 0.038 (Table 1), and the adjusted df, * =2nk$

= 300.507.  The approximate 95% UCL of theυ *

mean obtained using equation (19) is given by
UCL = 130.447, and the adjusted 95% UCL of
mean obtained using equation (20) is given by
UCL = 131.901.  As noted above, this data set
passes both normality as well as lognormality
tests.  The associated Student’s t-statistic based
and the H-statistic based UCLs are 127.288 and
134.73, respectively.  For this mildly skewed data
set, one can use any of these four UCLs.

3.  Other UCL Computation Methods

Several authors (Johnson, 1978, Kleijnen,
Kloppenburg, and Meeuwsen, 1986, Chen, 1995,
Sutton, 1993) have developed inference
procedures for estimating the means of
asymmetrical distributions. Also, several bootstrap
procedures (Efron, 1982, Hall, 1988 and 1992,
Manly, 1997) have been recommended for the
computation of confidence intervals for means of
skewed distributions. These are summarized below
and are also included in the simulation experiments
described in Section 4. Some examples have been
included to illustrate these procedures.

3.1  UCL Based Upon Student’s t-Statistic

A (1 !") 100% one-sided upper confidence
limit for the mean based upon Student’s t-statistic
is given by the following equation:

where t", n!1 is the upper " th percentile of the
Student's t distribution with n !1 degrees of
freedom, and the sample variance is given by:

This UCL should be used when either the data
follow a normal distribution, or when the data
distribution is only mildly skewed and sample
size n is large.  For highly skewed data sets, the
UCL based upon this method fails to provide the

specified (1-") 100% coverage for the population
mean, :.

3.2 UCL Based Upon Modified Student’s t-
Statistic for Asymmetric Distributions

Johnson (1978) and Sutton (1993) proposed
the use of a modified t-statistic for testing the
mean of a positively skewed distribution.  An
adjusted (1-") 100% UCL (Singh, Singh, and
Engelhardt, 1999) of the mean, :, based upon
modified t-statistic is given as follows:

Where,  an unbiased moment estimate$µ3

(Kleijnen, Kloppenburg, and Meeuwsen, 1986) of
the third central moment, , is given as follows:µ3

The simulation study conducted in Section 4
suggests that the UCL based upon the modified-t
statistic also fails to provide the specified
coverage (95% here) for skewed data sets from
gamma distributions.

3.3 UCL of the Mean Based Upon the
Adjusted Central Limit Theorem for
Skewed Distributions

Given a random sample, x1, x2, ... , xn of size n
from a population with finite variance, F2, and
mean, :, the Central Limit Theorem (CLT) states
that the asymptotic distribution (as n approaches
infinity) of the sample mean,  is normallyxn ,
distributed with mean : and variance F2/n.  An
often cited rule of thumb for a minimum sample
size satisfying the CLT is n $ 30.  However, this
is not adequate if the population is highly skewed
(Singh, Singh, and Engelhardt, 1999).  A
refinement of the CLT approach which makes an
adjustment for skewness is discussed by Chen
(1995).  Specifically, the "adjusted CLT" UCL is
given by:

where , the coefficient of skewness, is given by$k3
.  The simulation study conducted in$ $ /k sx3 3

3= µ
Section 5 suggests that even for larger samples,
the adjustment made in the CLT-UCL method is
not effective enough to provide the specified
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(25)

(26)

(27)

(95%) coverage for skewed data sets.  As
skewness decreases, the coverage provided by the
adjusted CLT-UCL approaches 95% for larger
sample sizes, as can be seen in Figures 12-14.

3.4 UCL of the Mean of a Lognormal
Distribution Based Upon Land’s
Method

In practice, a skewed data set can be modeled
by both lognormal and gamma distribution.
However, due to computational ease, the
lognormal distribution is typically used to model
such skewed data sets.  A (1!")100% UCL for the
mean, :, of a lognormal distribution based upon
Land’s H-statistic (1971) is given as follows:

where and are the sample mean and variancey sy
2

of the log-transformed data.  Tables of values
denoted by H1 ! " can be found in Gilbert (1987).
From the simulation experiments discussed in
Section 4, it is observed that H-statistic based
UCL grossly overestimates the 95% UCL and
consequently, coverage provided by a H-UCL is
always larger than the specified coverage of 95%.
In Section 4, examples to illustrate this
unreasonable behavior of the H-statistic based
UCL are included.  The practical merit of a H-
UCL is doubtful as it results in unacceptably high
UCL values.  This is especially true for samples of
small size (e.g., <25) with values of sy exceeding
1.5-2.0.  This is illustrated in examples 2-4.

3.5 UCL of the Mean Based Upon the
Chebyshev Inequality

Chebyshev inequality can be used to obtain a
reasonably conservative but stable estimate of the
UCL of the mean.  The two-sided Chebyshev
Theorem states that given a random variable X
with finite mean and standard deviation, : and F,
we have:

Here, j is a positive real number.  This result can
be applied with the sample mean, , to obtain ax
conservative UCL for the population mean.
Specifically, a (1-") 100% UCL of the mean, :, is
given by:

Of course, this would require the user to know the
value of F.  The obvious modification would be to
replace F with the sample standard deviation, sx,
but this is estimated from data, and therefore, the
result is no longer guaranteed to be conservative.
In general, if : is an unknown mean,  is an$µ
estimate, and  ( ) is an estimate of the standard$σ $µ
error of , then the quantity UCL =  + 4.359$µ $µ

 will provide a 95% UCL for :, which$ ( $ )σ µ
should tend to be conservative, but this is not
assured.  In this article we use equation (27) to
compute a 95% UCL of mean based upon
Chebyshev inequality.

From the Monte-Carlo results discussed in
Section 4, it is observed that for highly skewed
data sets (with k<0.5), the coverage provided by
the Chebyshev UCL is smaller than the specified
coverage of 0.95.  This is especially true when the
sample size is smaller than 20.  As expected, for
larger samples sizes, the coverage provided by the
Chebyshev UCL is at least 95%.  This means that
for larger samples, the Chebyshev UCL will result
in a higher (but stable) UCL of the gamma, G(k,
2) mean.

Bootstrap Procedures

General methods for deriving estimates, such
as the method of maximum likelihood, often result
in estimates that are biased.  Bootstrap procedures
as discussed by Efron (1982) are nonparametric
statistical techniques which can be used to reduce
bias of point estimates and construct approximate
confidence intervals for parameters such as the
population mean.  These procedures require no
assumptions regarding the statistical distribution
(e.g. normal, lognormal, gamma) for the
underlying population, and can be applied to a
variety of situations no matter how complicated.
However, it should be pointed out that a use of a
parametric statistical method (depending upon
distributional assumptions) when appropriate is
more efficient than its nonparametric counterpart.
In practice, parametric assumptions are often
difficult to justify, especially in environmental
applications.  In these cases, nonparametric
methods provide valuable tools for obtaining
reliable estimates of the parameters of interest.
Use of these methods has been considered in
environmental applications (Singh, Singh, and
Engelhardt, 1997, 1999; Schulz and Griffin,
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(31)
(28)

1999).  Some of those methods are described as
follows.

Let x1, x2, ... , xn be a random sample of size n
from a population with an unknown parameter 2
(e.g., 2 = :) and let  be an estimate of 2 which$θ
is a function of all n observations.  For example,
the parameter 2 could be the mean, and a
reasonable choice for the estimate  might be the$θ
sample mean .  In the bootstrap procedures,x
repeated samples of size n are drawn with
replacement from the given set of observations.
The process is repeated a large number of times
(e.g., 1000), and each time an estimate, , of 2$θ
(the mean, here) is computed.  The estimates thus
obtained are used to compute an estimate of the
standard error of .  There exists in the literature$θ
of statistics an extensive array of different
bootstrap methods for constructing confidence
intervals.  In this article three of those methods are
considered: 1) the standard bootstrap method, and
2) bootstrap - t method (Efron, 1982, Hall, 1988),
and 3) Hall’s bootstrap method (Hall, 1992,
Manly, 1997).

3.6 UCL of the Mean Based Upon the
Standard Bootstrap Method

Step 1. Let (xi1, xi2, ... , xin) represent the ith sample
of size n with replacement from the
original data set  (x1, x2, ..., xn).  Compute
the sample mean  of the  ith sample.x i

Step 2. Repeat Step 1 independently N times
(e.g., 1000-2000), each time calculating a
new estimate.  Denote these estimates by

N.  The bootstrapx x x x1 2 3, , , . . . ,
estimate of the population mean is the
arithmetic mean, B, of the Nx
estimates .  The bootstrap estimate ofxi

the standard error is given by:

The general bootstrap estimate, denoted by , isBθ
the arithmetic mean of the N estimates.  The
difference, , provides an estimate of theˆ

Bθ θ−
bias of the estimate, .$θ

The standard bootstrap confidence interval is
derived from the following pivotal quantity, t:

A (1!") 100% standard bootstrap UCL for 2,
which assumes that equation (29) is approximately
normal, is given as follows:

(30)

It is observed that the standard bootstrap method
does not adequately adjust for skewness, and the
UCL given by equation (30) fails to provide the
specified (1-") 100% coverage of the population
mean of skewed data distributions.

3.7 UCL of the Mean Based Upon the
Bootstrap – t Method

Another variation of the bootstrap method,
called the "bootstrap - t" by Efron (1982) is a
nonparametric procedure which uses the bootstrap
methodology to estimate quantiles of the t-
statistic, given by (29), directly from data (Hall,
1988).  In practice, for non-normal populations,
the required t-quantiles may not be easily
obtained, or may be impossible to derive exactly.
In this method, as before in Steps 1 and 2
described above,  is the sample mean computedx
from the original data, and  and  are thexi sx,i
sample mean and sample standard deviation
computed from the ith resampling of the original
data.  The N quantities ti = q(n)  are( ) /x x si x, i−

computed and sorted, yielding ordered quantities
t(1) # t(2) # @@@ # t(N).  The estimate of the lower "th

quantile of the pivotal quantity (29) is t", B = t("N).
For example, if N = 1000 bootstrap samples are
generated, then the 50th ordered value, t(50) , would
be the bootstrap estimate of the lower 0.05th
quantile of the t-statistic as given by (29).  Then a
(1-") 100% UCL of mean based upon bootstrap t-
method is given as follows:

3.8 UCL of the Mean Based Upon Hall’s
Bootstrap Method

Hall (1992) proposed a bootstrap method
which adjusts for bias as well as skewness. In this
method  that is the sample mean,
sample standard deviation, and sample skewness,
respectively (as given in Section 3.3 above) are
computed from the ith resampling (i=1,2,..., N) of

(29)



16

(32)

(33)

the original data.  Let  be the sample mean, sxx
be the sample standard deviation, and  be the$k3
sample skewness computed from the original data.

The quantities Wi and Qi given as follows are
computed for each of the N bootstrap samples,
where:

The quantities Qi(Wi) given above are arranged in
ascending order.  For a specified (1-") confidence
coefficient, compute the ("N)th ordered value, q"

of quantities Qi(Wi).  Finally, compute W(q") using
the inverse function, which is given as follows:

Finally, the (1-") 100% UCL of the population
mean based upon Hall’s bootstrap method (Manly,
1997) is given as follows:

It is observed (Section 4) that the coverage
probabilities provided by bootstrap - t and Hall’s
bootstrap methods are in close agreement.  For
larger samples these two methods approximately
provide the specified 95% coverage to the
population mean, k2.  For smaller sample sizes,
the coverage provided by these methods is only
slightly lower than the specified level of 0.95.  It
is also noted that, for highly skewed (Figures 5-8)
data sets (with k#0.25) of small size (e.g., n<10),
coverage probability provided by these two
methods is higher than the Chebyshev UCL.

4.  Examples

Several examples illustrating the computation
of the various 95% UCLs of the population mean
are included in this section.  Software, ProUCL
(EPA 2002) has been used to compute some of the
UCLs values.  Gamma UCLs are computed using
the program Chi_test (2002).  Examples are
generated from the gamma distribution and the
lognormal distribution, and UCLs are computed

using all of the methods discussed in this paper.
It is observed that for small data sets, it is not easy
to distinguish between a gamma model and a
lognormal distribution.  It is further noted that use
of a gamma distribution results in practical and
reliable UCLs of the population mean.  Simulation
results discussed in Section 5 suggest that the
adjusted gamma UCL approximately provides the
specified 95% coverage to the population mean
for data sets with shape parameter, k, exceeding
0.1.

4.1 Simulated Examples from Gamma
Distribution

Example 2
A data set of size 15 is generated from a gamma,
G(0.2, 100), distribution with the true population
mean = 20, and skewness =4.472.  The data are:
0.7269, 0.00025, 0.0000002548, 0.9510,
0.000457, 32.5884, 0.02950, 1.6843, 3.3981,
170.4109, 59.8188, 0.00042, 0.8227, 0.00726,
2.1037.  The data set consists of very small values
as well as some large values.  These types of data
sets often occur in environmental applications.
The sample mean is 18.17.  Using the Shapiro-
Wilk’s test, it is concluded that the data also
follow a lognormal model.  The standard deviation
(sd) of log-transformed data is quite large, 5.618;
therefore, the H-statistic based UCL of mean
becomes unpractically large.  The bias-corrected
MLEs of k and 2 are 0.16527 and 109.939,
respectively.  The adjusted (using bias-corrected
estimate of k) df, = 4.958.  For " =0.05, and$*υ
n=15, the critical probability level, $, to be used is
0.0324 (from Table 1).  The UCLs obtained using
the various methods are summarized in the
following table.
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UCL Computation Method 95% UCL of Mean
Approximate gamma UCL (equation (19)) 79.968
Adjusted gamma UCL (equation (20)) 98.139
UCL based upon t-statistic (equation (21)) 38.778
UCL based upon modified t-statistic (equation (22)) 40.356
UCL based upon adjusted CLT (equation (24)) 47.537
UCL based upon H-statistic (equation (25)) 5.4E+13
UCL based upon Chebyshev (equation (27)) 69.171
UCL based upon standard bootstrap (equation (30)) 36.889
UCL based upon bootstrap - t (equation (31)) 102.392
Hall’s bootstrap UCL (equation (33)) 114.252

Note that the H-UCL becomes unacceptably
large.  Since the H-UCL exceeds the maximum
observed value of 170.41, using the
recommendation made in the EPA (1992) RAGS
document, one would use that maximum value as
an estimate of the EPC term.  Simulation results
summarized in the next section (Figures 6-7)
suggest that for n=15 and an estimate of k = 0.165,
the adjusted UCL based upon a gamma model
provides the specified 95% coverage to the
population mean.  Therefore, for this data set, the
use of the adjusted gamma UCL of 98.139
(equation 20) is an appropriate choice for an
estimate of the EPC term.  The maximum
observed value represents an overestimate of the
EPC term.

Example 3
A data set of size 15 is generated from a gamma
distribution with:  k=0.5; and 2 =100 with mean,
: = k2 = 50, and skewness = 2.828.  The data are:
343.31, 102.44, 0.33, 1.42, 13.17, 439.59, 130.66,
158.0, 70.65, 25.05, 144.84, 63.65, 62.50, 11.58,
1.097.  Using Shapiro-Wilk’s test, it is concluded
that these data cannot reject the hypothesis that the
data also follow a lognormal distribution with
sample mean = 104.553.  The bias-corrected
estimates of k and 2 are 0.46166, and 226.473,
respectively.  The adjusted df, , for theυ * *$= 2nk
Chi-square distribution =13.85.  As before, for "
=0.05, and n=15, the critical probability level, $ =
0.0324.  The 95% UCLs of mean obtained using
the various methods described above are given
below.

UCL Computation Method 95% UCL of Mean
Approximate gamma UCL (equation (19)) 223.879
Adjusted gamma UCL (equation (20)) 247.257
UCL based upon t-statistic (equation (21)) 163.413
UCL based upon modified t-statistic (equation (22)) 165.92
UCL based upon adjusted CLT (equation (24)) 175.596
UCL based upon H-statistic (equation (25)) 5687.383
UCL based upon Chebyshev (equation (27)) 250.22
UCL based upon standard bootstrap (equation (30)) 158.798
UCL based upon bootstrap - t (equation (31)) 223.665
Hall’s bootstrap UCL (equation (33)) 461.795

Again note that the H-UCL is 5687.38, which
is much higher than the UCLs obtained using any
of the other  methods.  Simulation results suggest
that, for n=15 and an MLE of k to be 0.46166,
both approximate as well as the adjusted UCLs
based upon a gamma model provide the specified

95% coverage to the population mean (Figure 9).
Also, note that the Chebyshev UCL is very close
to the adjusted gamma UCL.  Any of these three
methods may be used to compute the UCL of the
population mean.



18

Example 4
A random sample of size n=10 is generated from
a gamma (1,100) distribution with mean 100 and
skewness=2.  The data are:  3.0018, 31.0899,
9.0257, 271.3804, 155.8221, 157.8577, 73.3756,
95.0452, 1.4292, 65.7240.  Also, at 0.05 level of
significance, these data cannot reject the
hypothesis that the data follow a lognormal
distribution.  They also pass the Shapiro-Wilk’s

test for normality.  The sample mean is 86.375.
The bias corrected MLEs of k and 2 are 0.55121
and 156.7006, respectively, and the associated df
= 11.0242.  For n=10, and " =0.05, the critical
probability level, $, to be used (to achieve a
confidence coefficient of 0.95) is =0.0267.  The
UCLs obtained using the various methods are
given as follows.

UCL Computation Method 95% UCL of Mean
Approximate gamma UCL (equation (19)) 207.435
Adjusted gamma UCL (equation (20)) 244.531
UCL based upon t-statistic (equation (21)) 136.776
UCL based upon modified t-statistic (equation (22)) 138.368
UCL based upon adjusted CLT (equation (24)) 141.804
UCL based upon H-statistic (equation (25)) 3260.882
UCL based upon Chebyshev (equation (27)) 206.222
UCL based upon standard bootstrap (equation (30)) 130.526
UCL based upon bootstrap - t (equation (31)) 164.356
Hall’s bootstrap UCL (equation (33)) 148.938

Once again, note that the H-UCL is 3260.882,
which is much higher than the UCLs obtained
using any of the other methods.  Simulation results
summarized in the next section suggest that for,
for n=10 and an estimate of k to be 0.5512
(Figures 9-10), both the approximate and adjusted
UCLs based upon the gamma model at least
provide the specified 95% coverage to the
population mean.  95% Chebyshev UCL also
provides the specified coverage to population
mean.  For this combination of skewness and
sample size, any of these three methods may be
used to compute a 95% UCL of population mean.

Example 5
A mildly skewed data set of size 10 was generated
from a gamma distribution G(4,100) with mean
400 and skewness =1.  The data are 734.9055,
352.2732, 402.2431, 410.0733, 507.1526,
1010.3391, 199.9971, 296.4427, 1241.1702,
392.7091.  The sample mean = 554.730.  Based
upon the Shapiro-Wilk’s test, at 0.05 level of

significance, the data do not reject the hypotheses
of normality as well as of lognormality.  The sd of
the log-transformed data is 0.561.  The bias
corrected MLEs of k and 2 are 2.55276 and
217.307, respectively.  The associated df =51.055.
For n=10, and " =0.05, the critical probability
level, $ (to achieve a confidence coefficient of
0.095), to be used is =0.0267.  The UCLs obtained
using the various methods are given below.

For this data set, the difference between the H-
UCL and other UCLs is small. Simulation results
suggest that as the sample size increases, these
differences in the UCLs will decrease.  From these
results (Figures 11-12), it is noted that for a
sample of size 10 and an estimate of k=2.55, both
the approximate Gamma UCL and  adjusted
gamma UCL at least provide the specified 95%
coverage to the population mean.  Any of the two
methods can be used to compute a 95% UCL of
the mean.  The Chebyshev inequality results in an
overestimate of the UCL.
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UCL Computation Method 95% UCL of Mean
Approximate gamma UCL (equation (19)) 794.531
Adjusted gamma UCL (equation (20)) 847.442
UCL based upon t-statistic (equation (21)) 749.638
UCL based upon modified t-statistic (equation (22)) 756.657
UCL based upon adjusted CLT (equation (24)) 775.617
UCL based upon H-statistic (equation (25)) 862.649
UCL based upon Chebyshev (equation (27)) 1018.95
UCL based upon standard bootstrap (equation (30)) 715.892
UCL based upon bootstrap - t (equation (31)) 902.716
Hall’s bootstrap UCL (equation (33)) 889.773

4.2 Simulated Examples from Lognormal
Distributions

Next we consider a couple of small data sets
generated from lognormal distributions.  It is
observed that those data sets also follow gamma
models.

Example 6
A sample of size n = 15 is generated from the
lognormal distribution with parameters : = 5, F =
2; the true mean of this distribution is 1096.6, the
coefficient of variation (CV) is 7.32, and skewness
is 414.4.  The generated data are:  47.42, 2761.51,
2904.26, 6928.33, 14.73, 7.67, 73.36, 2843.79,
151.71, 103.52, 14.8, 37.32, 24.74, 658.04,
110.42.  A goodness-of-fit test showed the data
distribution to be non-normal (P < 0.01) and also
that the data passes the test of lognormality (P >
0.15).  The software packages ExpertFit (2001)
and GamGood (2002) were used to test the
goodness-of-fit of the gamma distribution.  The
observed value of the Anderson-Darling test
statistic is 1.094, and the approximate critical
value for test size 0.05 is 2.492, and hence an
approximate gamma distribution can also be used
to model the probability distribution of this data
set.  The Chi-square goodness-of-fit test with four
equal intervals led to the same conclusion.  The
bias-adjusted estimates of shape, k, and scale, 2,
of the gamma distribution are 0.321 and 3466.301,
respectively.  The 95% UCLs computed from the
various methods are given below.

Notice that the H-UCL is more than 5 times higher
than the maximum concentration in the sample,
and more than 10 times higher than all the other
UCLs.  All UCLs are larger than the true
population mean (1096.6) for this data set.  From

Figures 8 and 9, it is observed that for an estimate
of k=0.321 and n=15, the adjusted gamma UCL =
3276.40 provides the specified 95% coverage to
population mean.

Student’s t 2005.973
Adjusted CLT 2251.311
Modified t 2053.46
CLT 1946.872
Standard Bootstrap 1917.433
Bootstrap t 2541.425
Hall’s Bootstrap 2305.170
Chebyshev (Mean, Std) 3324.25
95% H-UCL 37726.46
Adjusted Gamma UCL 3276.40

Continuing with this example, suppose that
another sample is collected and it turns out to be
below the detection limit (DL) of the instrument.
Suppose further that DL = 10, and following EPA
guidance documents, this value is replaced by
DL/2 = 5.  One would expect that this additional
non-detect observation would result in a reduction
of the UCL.  The UCLs calculated from this
sample of n = 16 observations are given below:

Student’s t 1884
Adjusted CLT 2122.80
Modified t 1929.28
CLT 1832.02
Standard Bootstrap 1795.20
Bootstrap t 2369.23
Chebyshev 3134.05
H-UCL 40313.2
Gamma UCL 3013.70
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The UCLs computed from all but the H-statistic
based formula decreased with the addition of one
below-detect observation; the H-statistic based
formula, however, resulted in a much higher UCL.
This is unarguably an unacceptable value.

Example 7
Finally, we consider a data set of size 20 from a
highly skewed lognormal model with parameters
:=5 and F =3.  For this high value of F, the
population mean assuming a lognormal model
becomes quite high= 13359.73.  In practice, use of
such a model will unjustifiably inflate the
population mean; therefore, its use to estimate the
EPC term is not desirable.  Note that the
population median is only 148.413.  The generated
data are:  4453.2441, 337.7879, 2972.0916,
10.4690, 827.7806, 63.2507, 13969.2646,
11.1967, 5.2651, 65.7771, 921.7736, 7.6539,
756.6956, 223.3185, 140.8639, 466.1513, 3.1751,
418.6896, 1.1281, 22.4442.  The observations
range from 1.1281 to 13969.2646 with sample
mean = 1283.9.  Note that the population mean is
orders of magnitude higher than the sample mean.
It is also observed that at 0.05 level of
significance, this data set cannot reject the
hypothesis of a gamma model.  The bias corrected
MLEs of shape and scale for a gamma model are
0.28 and 4564.46, respectively.  The Kolmogorov-
Smirnov (K-S) test statistic for gamma distribution
is D= 0.176 which is less than the 5% critical
value of about 0.21 (with an estimated shape
parameter of 0.28, Table 7, Schneider, 1978)
leading to the conclusion that the data cannot
reject the hypothesis of a gamma distribution of
the data set.  The estimated population mean
assuming a gamma model is  = 0.28*4564.46
= 1278.049 which is close to the sample arithmetic
mean of 1283.9.

The adjusted 95% Gamma UCL = 3278.41;
the 95% UCLs based upon Student’s- t and
modified- t are 2517.889 and 2616.198,
respectively.  The 95% Bootstrap-t UCL=5823.31,
95% Chebyshev UCL=4394.61, and 95% H-
UCL=87052.  As mentioned earlier, use of a
lognormal model unjustifiably accommodates
large and unpractical values of the mean
concentration and its UCLs.  From Figures 8 and
9, it is noted that the adjusted gamma UCL will
provide the specified 95% coverage to the
population mean.  Thus, for this data set, a gamma

UCL = 3278.41 provides a reasonable estimate of
the EPC term.

5. Comparison of the Various UCL
Computation Methods

Using Monte Carlo simulation experiments for
data sets generated from gamma distributions, the
performances of the various UCL computation
methods have been compared in terms of the
coverage probabilities achieved by the respective
UCLs.  Similar comparisons (Singh, Singh,
Engelhardt, and Nocerino, 2001) have been
performed for the various UCL computation
methods using data sets generated from lognormal
distributions.  The methods considered in the
present simulation experiments include: Student’s
t-statistic, modified Student’s t-statistic, adjusted
CLT, Chebyshev method, H-UCL, approximate-
gamma UCL, adjusted gamma UCL, and the three
bootstrap methods: standard bootstrap, bootstrap-t
method (Efron, 1982; Hall, 1988), and Hall’s
(1992) bootstrap method.  For each of the three
bootstrap methods, 1000 resamples have been
used.  The EPA (1992) RAGS document
recommends the use of the maximum observed
concentration as an estimate of the EPC term
when  the H-UCL exceeds the maximum observed
value.  Therefore, the maximum observed value
(called Max-test in this paper) has also been
included in the simulation experiments.  Thus, 11
EPC computation methods have been considered
in these simulation experiments.

The simulation experiments are carried out for
various values of the sample size, n = 5, 10, 15,
20, 30, 50, 70, and 100.  Random deviates of
sample size n were generated from a gamma,
G(k,2) population. Various values of k and 2 have
been considered.  The considered values of k are
0.1, 0.15, 0.2, 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, and
10.0.  These values of k cover a wide range of
values of skewness, . The simulation2/ k
experiments were conducted for three values, 1.0,
50.0, and 100.0 of the scale parameter, 2.  As
noted earlier, gamma distribution based UCLs as
given by (19) and (20) only depend upon the
estimate of the shape parameter, k and are
independent of the scale parameter, 2 and its
estimate.  Consequently as expected,  it is
observed that coverage probabilities for the mean
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associated with the gamma UCLs do not depend
upon the values of the scale parameter, 2, and  the
differences in the coverage probabilities for these
three values of 2 are negligible.  Therefore, in this
article, the coverage probabilities are graphed for
2=50.0 only.  A typical simulation experiment can
be described in the following four steps:

Step 1. Generate a random sample of the
specified size, n, from a gamma, G(k,50)
distribution.  The algorithm as outlined in
Whittaker (1974) has been used to
generate the gamma deviates.

Step 2. For each generated sample, compute a
95% UCL of the mean using the various
methods described in Sections 2.0, 3.0,
and in ProUCL software package (EPA
2002).

Step 3. Repeat steps 1 and 2, 15,000 times.

Step 4. For each UCL computation method, count
the number of times the population mean,
k2, falls below a respective UCL.  The
percentages of these numbers provide the
coverage probabilities achieved by the
various UCL computation methods.

Simulation results suggest that the UCLs
based upon Student’s-t and standard bootstrap
methods fail to provide the specified 95%
coverage of the population mean of the
distributions considered here.  Also, as noted
earlier, the H-statistic overestimates the 95% UCL
as it provides almost 100% coverage of the
population mean.  Use of the H-statistic yields
impractically large UCL values.  This is especially
true for highly skewed data sets (k#1).  It is also
noted that the coverage probabilities provided by
bootstrap- t method and Hall’s bootstrap method
are quite similar.  Therefore, the coverage
percentages for these four methods:  Student’s -t,
standard bootstrap, Hall’s bootstrap, and H-UCL
are not included in the graphs presented in this
section.  The coverage percentages as obtained in
Step 4 for the remaining seven (7) methods are
given in Figures 5-14.  Figures 5-14 have the
coverage percentages when k=0.1, 0.15, 0.2, 0.25,
0.5, 1.0, 2.0, 4.0, 6.0, and 10.0, respectively.  The
following observations have been made from these
graphs.

1. From Figures 5-14, it is observed that UCLs
based upon the adjusted CLT and modified-t
methods  fail to provide the specified 95%
coverage of the population mean.  For mildly
skewed data sets (e.g., k$6),  the coverage
provided by the adjusted CLT-UCL
approaches 95% as the sample size becomes
larger than 50.

2. It is observed that for highly skewed data with
an estimate of k<0.25, even a Max-test
(maximum observation) fails to provide the
specified 95% coverage of the population
mean.  This is especially true when the sample
size is less than 10 (Figures 5-7).  For smaller
samples (e.g., #5), the Max-test fails to
provide the specified 95% coverage of the
mean for values of k as large as 6.  Thus, for
samples of size 5 or less, the default option of
using the maximum observation as an estimate
of the EPC term may not be appropriate.  It is
more appropriate to use an adjusted gamma-
distribution-based UCL of the mean.  It is also
observed that for samples of size 15 or larger,
the Max-test always provides at least 95%
coverage to population mean.  This means for
samples of size $15, the Max-test would result
in an overestimate of the 95% UCL of the
mean.

3. From Figures 5-9, it is also observed that for
skewed data sets with k#0.5, the 95%
Chebyshev UCL fails to provide the specified
95% coverage of the population mean.  This is
especially true when the sample size is less
20.  When k>0.5, the 95% Chebyshev UCL
provides the specified 95% coverage to the
population mean even for small samples
(Figures 10-14).  Furthermore, it is noted that
as the sample size increases, the 95%
Chebyshev UCL provides at least 95%
coverage to population mean resulting in a
conservative but stable estimate of the 95%
UCL of the mean.

4. It is observed that for highly skewed data sets
(Figures 5-6) with k<0.2, and samples of
small size (<10), the adjusted gamma UCL
provides the maximum coverage (and close to
0.95) of the population mean, and this
coverage approaches the specified coverage of
0.95 as k approaches 0.2 (Figure 7).  For
k$0.2, the adjusted gamma UCL provides at
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least 95% coverage of the population mean
(Figures 8-14) for samples of all sizes.

5. From Figures 5-8, it is observed that for
values of k<0.5, and samples of small size
(n<30), the approximate gamma UCL fails to
provide the specified 95% coverage of
population mean.  Also, from Figures 9-14, it
is observed that for values of k$0.5, an
approximate gamma UCL provides the
specified 95% coverage of population mean
for samples of all sizes.

6. From Figures 5-14, it is observed that the 95%
UCL based upon the bootstrap-t method
consistently provides about 90% coverage of
population mean.  This coverage approaches
95% as the sample size increases.

6.  Recommendations

Skewed data sets can be modeled by more
than one distribution.  Due to the computational
ease of working with a lognormal model, users
often choose the lognormal distribution for such
data sets.  It is observed that for small data sets, it
is not easy to distinguish between a gamma model
and a lognormal distribution.  However, there are
some fundamental problems associated with the
use of a lognormal distribution.  The use of a
lognormal model unjustifiably elevates the mean
and the associated UCL, therefore, its use in
environmental applications should be avoided.
Since the H-UCL becomes unrealistically large,
the Max-test is sometimes used as an estimate of
the EPC term.  It is shown that for highly skewed
(k<0.25) data sets of small size (n<10), the Max-
test does not provide the specified 95% coverage

of the means of gamma populations and for larger
samples, Max-test results in overestimates of the
EPC term.  Furthermore, the EPC term represents
an average concentration in an area, therefore, it
should be estimated by a UCL of the mean.  In this
paper, we have introduced the gamma distribution
which is well suited to model highly skewed data
sets originating from various environmental
applications.  It is further noted that use of the
gamma distribution results in practical and reliable
UCLs of the population mean.  Simulation results
discussed in Section 5 suggest that the adjusted
gamma UCL approximately provides the specified
95% coverage of the population mean for data sets
with shape parameter, k, exceeding 0.1.  It is,
therefore, recommended that for a given data set,
the user should use a goodness-of-fit test to see if
the data follow a gamma distribution.  If the data
do follow a gamma distribution, then the user
should compute a UCL of the mean based upon a
gamma model.  It is shown that both approximate
and adjusted gamma UCLs behave in a stable
manner.  For estimated values of the shape
parameter, k$0.5, one can use the approximate
gamma UCL as an estimate of the EPC term, and
for values of k<0.5, one can use the adjusted
gamma UCL.  Graphs presented in Figures 5-14
cover a wide range of the skewness of gamma
distributions.  These graphs can be used to
determine which method should be used for a
given combination of skewness and sample size.
For data sets which cannot be modeled by an
approximate gamma distribution, one can use a
UCL based upon the Chebyshev inequality or the
bootstrap t-procedure.  These two procedures
generally result in conservative, but reasonable,
estimates of the EPC term.
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