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Executive Summary 

Decision-makers need information on cumulative and aggregate stressors as well as clear information 
on where problems are likely to occur in the future in order to prioritize risk management actions. The 
most pervasive and difficult to assess changes are the result of regional-scale drivers of change that act 
simultaneously on a suite of resources that are important to society and to ecological sustainability.  A 
great deal of data already exist that could potentially inform risk management decisions; however, there 
has been no effort previously to synthesize these data into meaningful assessment results that can inform 
the multiple criteria that go into any kind of decision-making.  Methods to do this are critical to timely, 
responsive, and proactive decision-making. 

The Regional Vulnerability Assessment (ReVA) Program has focused initially on the synthesis of 
existing data.  We have used the same set of spatial data and synthesized these data using a total of 11 
existing and newly developed integration methods.  These methods were evaluated in terms of 1) how 
well each individual method performs given different data issues that are encountered with existing data, 
and 2) how effectively each method addresses different types of assessment questions. 

Specific data issues that are addressed in our evaluation of integration methods include: 

¾	 Discontinuity – How are the methods affected by variables that (in raw form) are counts, such 
as number of aquatic species, versus having only continuous data? 

¾	 Imbalance – What effect does having too many variables of a particular type (e.g., 
representative of terrestrial conditions versus aquatic) have on the integration results from 
individual methods? 

¾	 Skewness – What effect does having variables with highly skewed distributions have on 
integration results?  Many statistical methods are valid only for symmetrically distributed 
data or require transformation of the data. 

¾	 Interdependency – How are the methods affected by including variables that are highly 
correlated with one another? 

Prioritization of risk management actions involves balancing many different factors that can be 
addressed through a series of assessment questions.  ReVA’s evaluation of integration methods considers 
which methods are most suitable to address questions such as: 

¾	 What is the overall environmental condition of the region? 

¾	 What is the relative condition of locations within a region? 

¾	 Where are the most vulnerable (i.e., both high stressor levels and high numbers of resources) 
locations in a region? 

¾	 How will conditions and vulnerabilities change in the future? 

¾	 How applicable are risk management options to other locations in the region? 
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Analysis results presented here should provide useful information to others involved in integrated risk 
assessment in that integration methods were tested and compared using the same set of regional spatial 
data. This should allow analysts to avoid problems presented by the use of existing data that may 
invalidate results from integration methods that are sensitive to inherent issues.  Additionally, by 
comparing the results of each method, we have identified which integration methods are appropriate to 
address different types of assessment questions that contribute to informing decisions that require 
prioritization of areas for risk management actions.  These results are directly transferable to other regions 
and can be applied to other scales of data. 

Below are recommendations for the use of the integration methods described in this report: 

A.	 Use a suite of integration methods: There is no universal integration method that can cover all 
tasks of an integrated environmental assessment.  An individual method has advantages in 
some aspects but is disadvantaged regarding others.  The use of multiple methods in a 
complementary manner will help the user look at the problem from different 
angles/perspectives.  It also gives the user a better chance to detect whether a 
pattern/abnormality on the map is a real environmental signal or just an arbitrary object 
created by some “strange” calculation. 

B.	 Start with the simple methods (Simple Sum, Best/Worst Quantiles) first and move to other 
complicated ones later.  This will help the user to have a general picture of the study area 
before involving in more complicated and detailed calculations (i.e., see the forest first before 
get down to the tree). 

C.	 Keep it simple: If several methods provide similar patterns and/or results, stick with the 
simple methods and drop off the complicated ones. 

D.	 Pay proper care to data: The ways in which data are coded or transformed have a big 
influence on the integration results.  Try to keep a balance between data transformation and 
data interpretation. It is because, while data transformation can reduce some particular 
problems (e.g., log transform to reduce skewness), it might cause difficulties in interpreting 
as well as in putting the transformed variable in the same calculation with other variables in 
the data set. 
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Section 1 

Introduction 

Background 

The U.S. EPA’s Regional Vulnerability Assessment (ReVA) program is designed to develop and 
demonstrate approaches that address the latter phases of an integrated ecological risk assessment (U.S. 
EPA 1998), following development of specific assessment questions (problem formulation) and building 
on available monitoring data, with a focus on integrating and synthesizing information on the spatial 
patterns of multiple exposures to allow a comparison and prioritization of risks. ReVA is not designed to 
do complete regional assessments and assumes that assessment endpoints have already been identified 
and that monitoring data that represent these endpoints are available.  ReVA will provide guidance and 
tools for this phase of the assessment process, but the full assessment of regional vulnerabilities is 
primarily the responsibility of regional decision-makers (Moss 2002), including those in EPA regional 
offices, as well as state and local administrators.  

ReVA’s strategic priorities include: 

1.	 Focus on the synthesis of existing data.  As the second phase in the assessment process, 
ReVA uses available monitoring data and model results to address current decision-making 
needs. 

2.	 Expand the scope of research to include a full suite of stressors and ecological resources and 
refine the integration techniques through application to this broader array of information. 

3.	 Develop the ReVA approaches and demonstrate their application at the regional, watershed, 
and local scale. 

4.	 Initiate studies in other regions to test the applicability of the methods and approaches in 
other areas and repeat the process (Smith et al. 2002). 

Regional Vulnerability 

A region is defined as a large, multi-state geographic area such as the Mid-Atlantic, Northeast, 
Southeast, or Pacific Northwest regions within the United States. An EPA Region is a useful 
representation of a geographic region because it reflects the size of the geographic area initially 
considered in the ReVA program and because strategic planning and management decisions are made at 
this scale. This regional-scale information should prove valuable for decision-making at finer scales 
because it will provide context as well as insights into changes in regional-scale stresses.  Integration 
methods presented here should be scale-independent. 

Vulnerability has multiple elements in its definition but is most simply represented by the probability 
that future conditions will deteriorate or degrade. We see ecosystems as relatively stable configurations of 
a number of species with the ability to resist and/or recover from the normal array of disturbances such as 
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fire, flood, and drought that it has experienced over its evolutionary history. We assume stability, 
resiliency, adaptability, and resistance when we extract resources from the system, depend on it to purify 
wastes, or impose recreational impacts. However, these assumptions are no longer valid when the stresses 
we impose are outside the range that the organisms have evolved to resist and move that ecological 
system outside the normal range of variability. Thus, the vulnerability of an ecological system increases 
as the number, intensity, and frequency of stressors increases.  Cumulative and aggregate stresses that 
have occurred over time may influence the prioritization of ecosystems based on vulnerability. 

Regional vulnerability is many things. It is rarity, synergy, sensitivity, spatial context, and history. No 
single question or approach will suffice to encompass it. Likewise, decision-making based on ecological 
vulnerability is a complex prioritization process that includes evaluation of multiple criteria (Saaty and 
Vargas 1982, Ridgley and Rijsberman 1992).  Decisions to implement risk management or risk reduction 
strategies can include evaluations of 1) current conditions, 2) risk of future harm, 3) feasibility of 
management options, and 4) value of the ecosystem at risk, all of which have different levels of 
importance for different decision-makers.  Regional vulnerability analysis approaches developed by 
ReVA will thus draw on many sources of data, will explore many different assessment methods, and will 
enable decision-makers to ask many different questions. 

Purpose of this Report 

This report presents analyses supportive of our first strategic priority and evaluates existing and 
newly developed integration methods with regards to 1) how well each individual method performs given 
different data issues that are encountered with existing data, and 2) how effectively each method 
addresses different types of assessment questions.  As our focus here is on the evaluation of integration 
methods, results of these integrations should not be considered to be a complete assessment of regional 
conditions or vulnerabilities.  Those results will be presented in future ReVA reports which will focus on 
addressing a suite of assessment questions and future scenarios that might be used to target risk reduction 
actions and prioritize use of resources (ReVA’s second strategic priority). 

Limiting analyses to the use of existing data both poses both opportunities and problems.  By 
constraining our analyses, we do not have the luxury of either collecting data specifically relevant to 
assessment questions or having data that are particularly suited for integration.  However, use of existing 
data allows much more timely decision-making, avoids the expense of additional data collection, and to 
some degree reflects the regional issues of concern in that existing monitoring was initiated in response to 
some perceived need.  Specific data issues that are being addressed in our evaluation of integration 
methods include: 

�	 Discontinuity – How are the methods affected by variables that (in raw form) are counts, such 
as number of aquatic species, versus having only continuous data? 

�	 Imbalance – What effect does having too many variables of a particular type (e.g., 
representative of terrestrial conditions versus aquatic) have on the integration results from 
individual methods? 

�	 Skewness – What effect does having variables with highly skewed distributions have on 
integration results?  Many statistical methods are valid only for symmetrically distributed 
data or require transformation of the data. 

�	 Interdependency – How are the methods affected by including variables that are highly 
correlated with one another? 
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Prioritization of risk management actions involves balancing many different factors that can be 
addressed through a series of assessment questions.  ReVA’s evaluation of integration methods considers 
which methods are most suitable to address questions such as: 

�	 What is the overall environmental condition of the region? 

�	 What is the relative condition of locations within a region? 

�	 Where are the most vulnerable (i.e., both high stressor levels and high numbers of resources) 
locations in a region? 

�	 How will conditions and vulnerabilities change in the future? 

�	 How applicable are risk management options to other locations in the region? 

Analysis results presented here should provide useful information to others involved in integrated risk 
assessment in that a total of 11 different integration methods were tested and compared using the same set 
of regional spatial data.  This should allow analysts to avoid problems presented by the use of existing 
data that may invalidate results from integration methods that are sensitive to inherent issues. 
Additionally, by comparing the results of each method, we have identified which integration methods are 
appropriate to address different types of assessment questions that contribute to informing decisions that 
require prioritization of areas for risk management actions.  These results are directly transferable to other 
regions and can be applied to other scales of data. 

Pilot Study Area 

ReVA’s pilot area is the Mid-Atlantic region as part of the Mid-Atlantic Integrated Assessment 
(MAIA) (Bradley and Landy 2000).  The Mid-Atlantic encompasses portions of three physiographic 
provinces and eight states (see Figure 1), and it includes a wide range of ecological and environmental 
conditions. Human disturbance over the past 300 years has caused widespread changes.  Some of these 
changes, such as the buildup of large urban areas, are obvious and easily interpreted; others are subtle 
synergistic effects that can only be examined by looking at groups of environmental measures. 

Current land use patterns (see Figure 2) show predominantly forest with a long history of human 
disturbance. The coastal plain is dominated by urban development and most of the large cities in the 
region lie along the geologic boundary between the coastal plain and the piedmont.  The piedmont 
includes most of the region’s agricultural lands, with smaller cities and scattered forestland.  The 
Appalachian highlands contain the world’s largest remaining contiguous temperate forest (Riitters et al. 
2000), interspersed with small- to medium-sized cities, some agriculture, and many mines.  In essence, 
we have a gradient from the coastal plain (urban/agricultural matrix) to the piedmont (agriculture/forest 
matrix) to the Appalachians (forest matrix). 

Data 

For these analyses, our objective in data choice was to have regionally consistent spatial coverages 
for a reasonable number of reporting units. The choice of data was intended primarily to represent the 
range of data issues that might be encountered when doing a regional integrated assessment using existing 
data, rather than to be representative of data that would (or should) be used in the assessment of 
conditions or vulnerabilities for the region (these data will be used in ReVA’s second report).  The 
reporting units we used here include 8-digit hydrologic unit codes (HUCs), the only regionally consistent 
watershed delineation currently available.  Beginning with a set of over 100 spatial coverages (variables) 
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for the region, we then eliminated variables with missing values and variables that were highly correlated 
(>98% correlation) (see data correlation Table 1A, Appendix).  This left us with a total of 50 variables 
related to land cover, land use, aquatic life, terrestrial life, and economics over 141, 8-digit HUCs (see 
Table 1). 

Figure 1. Map displaying the Mid-Atlantic region watershed (8-digit Hydrologic Unit Code) and 
state boundaries. 
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Figure 2. Land cover map of the Mid-Atlantic region (source: National Land Cover Database). 
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Table 1. List of variables used in evaluating integration methods. 

Abbreviation  	 Description 

AGSL 	 Proportion of watershed with agriculture land cover on slopes that are greater 
than three percent 

AQUAEXOTIC  	 Count of exotic aquatic – fish and mussels – species 

AQUANATIVE	 Count of native aquatic – fish and mussels – species 

AQUATE 	 Count of threatened and endangered aquatics – fish and mussels species 

C5FS 	 Children (0-5) in families & subfamilies  

CROPSL 	 Proportion of watershed with crop land cover on slopes that are greater than 
three percent 

DAMS 	 Impoundment density (number of dams per 1,000 kilometers of stream length) 

DISSOLVEDP 	 Estimated suspended sediment in streams modeled using land cover metrics  

EDGE2 	 Percentage of forest habitat called edge (2 ha scale)  

EDGE65 	 Percentage of forest habitat called edge (65 ha scale) 

EMAGRIC 	 Employed persons by industry – agriculture, forestry, fisheries 1990 

EMMINE 	 Employed persons by industry – mining 1990  

FORCOVDEFOL  	 Percent of forest cover defoliated and with mortality as proportion of existing 
forest 

FUNGICIDE  	 Annual fungicide loadings 

HARDCHIPMIL  	 Estimate of increase (decrease) in chip mill for hardwoods capacity in tons, 
based on our regression, and assuming the Mid-Atlantic behaves like the 
South 

HARDWOODINV  	 Index values for hardwood forest inventory. The index compares a baseline of 
most recently available FIA data against projections to 2020. Index values >1 
are areas with increasing inventory 

HARDWOODREM  	 Index values for hardwood removals. The index compares a baseline of most 
recently available FIA data against projections to 2020. Index values >1 are 
areas with increasing inventory 

HERBICIDE  	 Annual atrazine loadings 1990-93  

IMPLCPCT 	 Percent impervious surface by land cover 

INDTHPTH	 Infant deaths per 1,000 live births 1990  

INSECTICIDE  	 Annual O-P Insecticides loadings 1990-93  

INT2 	 Percentage of forest habitat called interior (2 ha scale) 

INT65 	 Percentage of forest habitat called interior (65 ha scale)  

MIGSCENARIO  	 Number of migratory scenarios for long-distance forest migrants that use a 
particular HUC or hexagon. Scenarios are defined by a combination of 
compass heading, landfall location along the gulf coast and southern Atlantic 
Coast, and nightly flight distance  

NATCOVERPCT 	 Percent coverage with FOREST that matches potential vegetation in Kuchler  

NBLDPM97  	 New private housing building permits 1997  
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Table 1. (Continued) 

Abbreviation  	 Description 

NO3DEPMODEL  Modeled annual wet deposition of nitrate based on averages from 1987-1999  

NONCLIMAXPCT Percent coverage with FOREST but the species are not the climax listed by 
Kuchler (1964) 

NTCMPPLM 	 Incomplete plumbing  

OZONE8HR 	 Ozone (8 hr max) is a human health indicator and is given in parts per billion 
(ppb) 

POPDENS 	 Population density  

POPGROWTH  	 Population growth rate from 1990-1995 

POV65 	 65+ below poverty  

PSOIL 	 Proportion of watershed with potential soil loss greater than 1 ton per acre per 
year; the percentage of HUC or hexagon area that is estimated to lose more 
than 1 ton/acre/year of soil due to erosion  

RDDENS 	 The density numbers are meters of road per hectare of area  

RIPAG 	 Proportion of total stream length with adjacent agriculture land cover; percent 
riparian buffer that is agricultural land 

RIPFOR 	 Proportion of total stream length with adjacent forest land cover; percent 
riparian buffer that is forest 

SO4DEPMODEL  	 Modeled annual wet deposition of sulfate based on averages from 1987-1999  

SOFTCHIPMIL  	 Estimate of increase (decrease) in chip mill for softwoods capacity in tons, 
based on our regression, and assuming the Mid-Atlantic behaves like the 
South 

SOFTWOODINV  	 Index values for softwood forest inventory. The index compares a baseline of 
most recently available FIA data against projections to 2020. Index values >1 
are areas with increasing inventory  

SOFTWOODREM  	 Index values for softwood removals. The index compares a baseline of most 
recently available FIA data against projections to 2020. Index values >1 are 
areas with increasing inventory 

STRD 	 Number of road crossings per total stream length  

SUM06 	 Cumulative sum of all hourly ozone concentrations equal to or above 0.06 ppm 
(or 60 ppb) for hours between 7 a.m. and 7 p.m. The SUM06 index is an 
indicator of ozone exposure that plants receive during daylight hours 

TERREXOTIC  Count of exotic birds, mammals, butterflies, amphibians, and reptiles  

TERRNATIVE Count of native birds, mammals, butterflies, amphibians, and reptiles 

TERRTE Count of threatened and endangered birds, mammals, butterflies, amphibians, 
and reptiles 

TOTALN	 Estimated total nitrogen in streams modeled using land cover metrics  

UINDEX 	 Human use index (proportion of watershed area with agriculture or urban land 
cover) 

UVB 	 Mean Annual UV-B Irradiance  

WETLNDSPCT  	 Percent of area classified as wetlands  
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All variables used in these analyses were normalized and inverted if necessary to make all indicators 
in the range of 0 to 1, where 0 and 1 represent environmentally desirable (good) and undesirable (poor) 
conditions, respectively.  Values of zero represent the best conditions across the region, while those of 
one represent the worst conditions across the region. Normalization is used because it is a linear 
transformation that preserves the ranking and correlation structure of the variables, and it allows for 
variables with different scales to be used together (see Pielou 1984, p. 46-47). 

Color-coded rankings presented here are designated based on equal intervals between values rather 
than having equal numbers of watersheds displayed for each class.  This was an arbitrary choice and 
affects the resulting map.  There is no apparent advantage to using either method.  Ranking methods are 
displayed in this report in a red to green color-coding that reflects poor conditions to favorable.  For the 
grouping methods, a palette that ranges from tan to brown was used as no ranking is intended.  
Watersheds with similar color-codings reflect similar characteristics. 
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Section 2 


Integration Methods


The 11 methods presented in this report are outlined in Table 2.  Each method will be described in 
detail. 

Table 2. Summary of data integration methods. 

Method Description 

Best/Worst Quantiles Number of variables in the best/worst quantile 

Simple Sum Add the normalized values of all variables 

Principal Component Analysis (PCA) Transform variables and then calculate Euclidean distance 
from a reference 

State Space Analysis Mahalanobis distance from a reference 

Criticality Analysis Fuzzy distance to a hypothetical “natural” state 

Analytical Hierarchy Process (AHP) Multi-criteria tool that uses decision-maker preferences in 
the calculations 

Cluster Analysis Partitioning methods to group watersheds 

Self-organizing Map (SOM) Self-organizing map to group watersheds 

Stressor-Resource Overlay High-stress values with high-resource values 

Change Analysis Comparison of two regional maps 

Stressor-Resource Matrix Ranks stressors and resources 

Best and Worst Quantiles 

One of the simplest ways to integrate environmental data is to compute a value for the phenomena of 
interest, rank the result, and create categories that represent an equal number of mapping units in each 
condition class. The resulting maps enable the user to see the relative difference between mapping units 
across the study area.  A logical next step is to add the number of variables in the best class (or the worst 
class). This process creates easily interpretable maps that illustrate where favorable conditions cluster 
and where unfavorable conditions cluster. 

The variables were ranked and subdivided into quantiles with the same number of watersheds. Each 
watershed was then evaluated in terms of the number of its scores that fell in the best and worst quantiles.  
The watersheds were depicted using the best quantile scores divided into seven equal intervals and then 
again using the worst quantile scores divided into seven equal intervals.  The maps were colored such that 
green always implies best overall conditions and red always implies worst overall conditions.   
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Results

 The Best Quantile map is shown in Figure 3.  The map shows that the watersheds in the best 
environmental conditions (greens) are concentrated in the highlands along the western edge of the region. 
Areas of intermediate condition (yellows) are scattered over the region.  Along the eastern edge of the 
map, these intermediate watersheds could be good candidates for preservation or remediation. 

Figure 3. 	 Map displays results of the Best Quantile ranking method.  This method ranks 
watersheds based on the number of variables with the best values (closest to 0 on the 
normalized scale) within the region.  Watersheds with a high number of variables in 
good condition are shown in green, while those with only few variables in good 
condition are shown in red.

 The Worst Quantile map is shown in Figure 4.  The map illustrates that the watersheds in the poorest 
environmental condition are concentrated in the urban areas along the eastern edge of the map. 

Figure 4. 	 Map displays results of the Worst Quantile ranking method.  This method ranks 
watersheds based on the number of variables with the worst values (closest to 1 on 
the normalized scale) within the region. 
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Advantages & Disadvantages 

The advantage of the Quantile approach is ease of interpretation: The best and worst Quantile maps 
clearly present a landscape that separates high quality areas from the poor quality areas. 

The Quantile method does not account for correlation between environmental measures.  For 
example, if several variables measure forest condition in slightly different ways, a watershed with high 
percentage forest will have high scores for many forest variables and therefore have a high-best quantile 
score. 

Recommendations

 The Best and Worst Quantile method is an unsophisticated approach to integration.  It ignores the 
complex relationships among the variables.  Any integration or assessment based on this method should 
be done with extreme caution and only accepted if supported with confirming independent evidence.  
Because these methods provide a quick overview of the region, they are best used as preliminary 
visualization methods. 

To facilitate this application, it is recommended that the Best Quantile map show only the top three or 
four septiles in shades of green and leave the rest of the watersheds in gray.  Likewise, the Worst Quantile 
map should show only the lowest three or four septiles in shades of red and leave the rest of the 
watersheds in gray. 

Simple Sum

 A straightforward approach to integrating environmental variables is to sum the normalized values 
that range from 0 (good) to 1 (bad).   In this Simple Sum method, the smaller the sum, the better the 
overall environmental condition of the watershed.  To display the results of the Simple Sum on the map, 
watersheds were grouped into seven equally sized groups or septiles (see Figure 5). 

Figure 5. 	 Map displays results of Simple Sum method. This method sums the normalized values 
of every variable, then it ranks the values based on equal intervals between values. 
Green indicates low values (good condition) and red indicates high values (bad 
conditions). 
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Advantages & Disadvantages

 The Simple Sum has the advantage of being intuitively simple and easily communicated.  It makes no 
assumptions about the statistical distribution of the variables and therefore is not sensitive to 
discontinuities or non-normal distributions. 

Using any single indicator always has the associated problem of occluding (Suter 1993a).  This 
occurs when one or two variables that are clearly unsatisfactory cannot be detected because they occur on 
the same watershed with many variables indicating good conditions.  The sum produces an intermediate 
value that occludes the danger. Although the problem is minimized in the ReVA analysis where the 
assessor has immediate access to all of the variables, nevertheless, any method as simple as summing the 
normalized variables incurs this problem. 

A second disadvantage is that the Simple Sum does not account for the covariance structure of the 
data set. Thus, two highly correlated variables are added together as though they were independent of 
each other. The result is that a watershed may be overly penalized by a number of related stressors or 
appear better than it truly is because correlated resources are added as though they were independent. 

Another disadvantage is that the Simple Sum only gives a relative ranking of the watersheds.  There is 
no objective standard to which all the watersheds can be compared.  Thus, the best watershed may not be 
objectively satisfactory and the worst watershed may not be objectively problematic.  Therefore, the 
method should not be interpreted in isolation and should be used in conjunction with other methods that 
provide more objective standards. 

Recommendations

 The Simple Sum method is an inadequate approach to integration.  Because it ignores the complex 
relationships among the variables, any integration or assessment based on this method should be done 
with extreme caution and only accepted if backed up with confirming independent evidence.  The Simple 
Sum method should not be used in isolation from other methods. 

Principal Component Analysis 

Principal Component Analysis (PCA), introduced by Pearson (1901) and independently by Hotelling 
(1933), is one of the oldest and most widely used statistical multivariate techniques.  The basic idea is to 
describe the variation of a set of multivariate data with a new set of uncorrelated variables, each of which 
is a linear combination of the original variables, using the covariance (or correlation) matrix.  PCA uses 
eigenvalues and their corresponding eigenvectors of the covariance (or correlation) matrix to derive the 
new variables in a decreasing order of importance in explaining variation of the original variables.  
Usually, if correlations among the original variables are large enough, the first few components will 
account for most of the variation in the original data.  If that is the case, then a few can be used to 
represent the data with little loss of information, thus reducing the dimensionality of the data. 

PCA has been applied in a wide array of studies in environmental sciences, especially for determining 
sources of some substances (e.g., Rachdawong and Christensen 1997; Statherropoulos and others 1998; 
Topalián and others 1999; Yu and Chang 2000) and revealing the relationships among different indicators 
(e.g., Calais and others 1996; Sjögren and others 1996; Yu and others 1998). 

The PCA in this study was performed with varimax rotation to minimize the number of variables that 
have high loadings on each factor, simplifying the interpretation of the factors (Everitt and Dunn 1992). 
The use of the correlation matrix instead of the covariance matrix in the PCA was to assign equal weights 
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for all of the variables (Chatfield and Collins 1980). Then the eigenvectors (loadings) derived from the 
PCA was used to compute the so-called principal component (PC)-based indices.  The PC-based indices 
were weighted sums of the 50 indicators where the weights were the loadings’ absolute values (in other 
words, the PC-based indices were the principal component scores where all of the negative component 
score coefficients were converted to positive values).  This was to make values of the PC-based indices 
represent environmental conditions similarly to those of the individual variables (i.e., small values for 
good conditions and large values for the opposite).  Next, the averages of the 11 PC-based indices, 
calculated for all of the watersheds, were used as an integrated index for ranking and clustering purposes. 
Using 1.0 as the cut-off value for eigenvalues in the PCA, the first 11 PCs accounted for 80.49 percent of 
the total variation and were used to calculate the 11 PC-based indices mentioned above. The septile map 
of the PCA-based integrated index is displayed in Figure 6. 

Figure 6. 	 The PCA results displayed in equal-interval septiles.  Values are principal component-
based indices that reflect good (green) to bad (red) conditions. 

Advantages & Disadvantages 

The main advantage of PCA is the replacement of a set of multivariate data with a new set of 
uncorrelated variables. By explicitly accounting for the correlation structure of the data sets, this method 
avoids a major disadvantage of the first two integration methods. However, this advantage comes with a 
price that it is often difficult to interpret environmental meanings of the new set of uncorrelated variables.  
Thus, while it will display a map of the region that is not distorted by correlations, it is more difficult to 
analyze the pattern in terms of the original variables. The main disadvantage of the PCA method is that it 
might be influenced by data abnormalities (e.g., non-normal distribution, discontinuities). Data 
abnormalities might have impacts to different extents on the correlation matrix, and subsequently, on the 
loadings of variables on various principal components.  Details on possible impacts of data abnormalities 
on PCA and their treatment can be found in Jobson (1992) and Rencher (1995). 

Recommendations

 The Simple Sum and the PCA methods should be used together because they are sensitive to different 
data problems. Where the methods agree on the spatial patterning of environmental quality, the results 
can reasonably be assumed to be free from data peculiarities. 
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State Space Analysis 

Accurate assessment of the environmental quality and vulnerability of watersheds requires that we 
make maximum use of all of the available variables.  A simple integration method, such as the Simple 
Sum, makes use of all the information available, but it takes no account of the correlations among the 
variables. A multivariate approach accounts for the correlation substructure of the variables, but it 
reduces the dimensionality of the analysis.  Therefore, we considered a State Space approach (Johnson 
1988) that calculates the Mahalanobis distance (Mahalanobis 1936).  This approach uses all of the 
variables in calculating the distance between two watersheds, but it corrects the distances to account for 
covariances. 

The objective of this approach is to determine the distance of each watershed from the most 
vulnerable watershed in the region. This would provide us with a different spatial pattern that might 
reveal new nuances about the regional environment.  It remains a challenge to determine an objective 
means to specify the most vulnerable watershed.  The concept is to choose a watershed that still has a 
reasonable amount of valued resources but is already under some stress. 

To develop and test the method, it is sufficient to choose a test watershed that lies somewhere near the 
center of the distribution of variables, with both remaining resources and stressors acting on those 
resources. The coded variables range from 0 to 1.  Therefore, a watershed with an average variable value 
near 0.5 would have both moderate resources and moderate stressors.  Because the variables are not 
equally distributed between 0 and 1, the average is closer to 0.4. Using this arbitrary criterion, a 
watershed was chosen to serve as the surrogate “most vulnerable” watershed: Appomattox. 

The resulting map is shown in Figure 7.  The calculated distances were divided into septiles with dark 
red indicating the watershed closest to the “most vulnerable” watershed.  The vulnerable watersheds are 
found on the coastal plain of Virginia, central Pennsylvania, western West Virginia, and along the North 
Carolina border.  This pattern is different from those shown by other methods.  It remains to be 
determined if the pattern is meaningful. 

Figure 7. 	 State Space Analysis results displayed in equal-size septiles with Appomattox as the 
“most vulnerable” watershed (average normalized variable value of 0.4).  Watersheds 
with the darkest red colors are closest to this watershed in multivariate-state space; 
those in green are furthest away. 
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Tests 

The major weakness involved in this method is the choice of “most vulnerable” watershed.  To test 
the sensitivity of the approach to this assumption, we chose a second watershed.  In this case, we 
systematically went through the data set, eliminating watersheds with the lowest resources combined with 
the highest stressors. The logic was that these watersheds were already heavily impacted and had few 
resources left to be vulnerable to further stress.  We also discarded watersheds with the highest resources 
combined with the lowest stressors.  The logic was that these watersheds were relatively pristine and 
inaccessible.  Therefore, they were less likely to be subjected to development.  This systematic approach 
produced a second, test watershed, Lower York Shenandoah.  The map is shown in Figure 8. 

Figure 8. 	 State Space Analysis results displayed in equal-size septiles with Lower York 
Shenandoah as the “most vulnerable” watershed.  Use of this watershed as reference 
reflects the removal of watersheds with few resources and high stress and high 
resources and low stress.  Watersheds with dark red color-coding are closest to this 
watershed, while those in green are furthest away. 

The spatial pattern on Figure 8 is similar to Figure 7 with vulnerable watersheds closer to the coast.  
Most of the watersheds that have shifted only changed by one septile.  Nevertheless, the test shows the 
approach is sensitive to the choice of “most vulnerable” watershed. 

Advantages & Disadvantages

 The State Space method has the advantage of maintaining the full dimensionality of the regional 
database while modifying the calculation of distance in a manner that accounts for the covariance 
substructure of the data set. This is a property that we should take advantage of. 

Calculating how far a given watershed is from the most vulnerable watershed in the region is a unique 
approach. The spatial pattern produced is quite different from the other forms of analysis in the regional 
assessment.  If the results are meaningful, then it opens the possibility of another way to look at the 
environmental quality of the region. 

The primary disadvantage of the State Space approach is not the method itself but the choice of the 
“most vulnerable” watershed.  Presently, there is no objective definition of this reference point and the 
test showed the method to be sensitive to the reference.  The sensitivity is likely to be due to the skewed 
distribution of many of the variables.  Generally, the variables are not normally distributed over the range 
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from 0 to 1.  Many variables have distributions weighted heavily toward 0 with a few outliers at the upper 
range. As a result, choosing a reference toward the center of the range may not be appropriate. 

Recommendations

 The State Space approach should be retained as one of the ReVA integration methods.  Some research 
may be needed to determine its sensitivity as a function of variable distributions.  Nonetheless, the 
approach has advantages such as avoiding problems that occur with other methods for integrated 
assessment. 

The challenge appears to be to choose an objective reference point.  If the reference point is both 
objective and relevant, then the sensitivity problem is eliminated because the reference point is no longer 
an assumption.  It may be possible, for example, to define a sufficient number of thresholds so that the 
Mahalanobis distance above or below the threshold references would be of interest. 

Criticality Analysis 

Criticality Analysis calculates the Euclidean distance between the vector of variable values 
representing current conditions of each watershed and a vector representing a hypothetical “natural” state. 
This natural state is an attempt to reconstruct the set of conditions under which the ecological system 
evolved. 

During the period of natural selection prior to human disturbance, ecological systems evolved a 
complex infrastructure of feedbacks that permitted recovery from natural disturbances and maintenance of 
relative stability.  The further a system is moved from its natural state, the greater the probability that the 
system will be unable to respond stably to natural disturbances and normal variations in environmental 
conditions. Strangely missing from the assessment literature is a consideration of natural catastrophes 
that should be considered in the very definition of risk assessment (Suter 1993b) and can precipitate 
irreversible changes in ecological systems weakened by human stressors.  

Nonlinear change is well documented in the ecological literature, including the fossil record (Crowley 
and North 1988, McGhee 1990).  Sudden catastrophic changes have occurred in lake eutrophication, 
(Rosenzweig 1971), desertification (Schlesinger et al. 1990), forest pest outbreaks (Berryman et al. 1984), 
and fisheries collapses (Jones and Walters 1976).  Nonlinear changes occur in soil forming processes 
(Phillips 1993), aquatic (Dubois 1979, Hughes 1994) and terrestrial systems (Gatto and Renaldi 1987) 
and in linked ecological-economic systems (Tainter 1988, Rosser 1991, Rosser et al. 1994). 

We have known for a long time that even simple ecological systems can undergo catastrophic change 
(May 1977; O’Neill et al. 1982, 1989; Schaeffer and Kot 1986; Loehle 1989).  We know that ecological 
systems are nonequilibrium (Kay 1991, Levin 1999, O’Neill 2001), can exist in multiple states (Peterman 
et al. 1979, Sutherland 1974), and that following a disturbance the system may not recover to the same 
state (Holling 1973, 1986; O’Neill 1999).  Predictions of the effects of climate change on vegetation 
distributions (Bachelet et al. 2001, Iverson and Prasad 2001) show that even small incremental changes in 
environment can precipitate large spatial changes in the biotic system.  We know that this type of radical 
change can occur in biological systems ranging from populations (Spromberg et al. 1998) to whole 
landscapes (Ingegnoli 1990).  The challenge is estimating how tightly strung the rubber band is and the 
risk that it will snap with the next minor impact (Casti 1982). 

ReVA attempts to estimate the relative risk of catastrophic nonlinear change.  It is not even 
theoretically possible to predict the exact position of the bifurcation (i.e., the critical threshold beyond 
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 which the ecological system will move to a new and undesired state).  Therefore, we will focus on 
estimating how far ecological systems have moved from their natural state.  

This approach assumes that systems in the natural state retain the feedback networks that permitted 
stable response to disturbances over the long period of evolutionary history.  As human activities add 
stressors (e.g., chemical pollutants), extract resources (e.g., lumber), and change land cover (e.g., 
fragmentation), the natural feedbacks are disrupted and the system becomes more vulnerable to radical 
and potentially irreversible change.  

Methodology 

The first step in applying the Criticality approach is to define the hypothetical “natural” state.  The 
task is simple for some variables, e.g., human population and pollutants, which can be assumed to have 
been zero. The task is more arbitrary for other variables such as biodiversity.  In addition, it cannot be 
assumed that biotic variables can be represented by a single value.  The watersheds in the Mid-Atlantic 
Region range from highland forests in the Appalachians through the Ridge and Valley Province to the 
Coastal Plains.  Even under pre-human conditions, it cannot be assumed that this diversity of systems was 
characterized by a single set of biotic variables. 

To deal with the uncertainties involved in defining the natural state, the Criticality Analysis will be 
based on “fuzzy” values.   A fuzzy value is expressed not as a single number but as a range of possible 
values plus an assumed distribution.  The range of values is selected as the lowest and highest values that 
can be reasonably expected to have existed in the natural state.  A triangular distribution is assumed if the 
most reasonable value would be expected to lie toward the center of this range. A flat or rectangular 
distribution is assumed if our ignorance only permits us to say that the value lies somewhere within the 
range. 

For purposes of testing the method the following definition of the natural state was used: 

1)	 Human population and activities were set equal to zero.  This includes AGSL, CROPSL, DAMS, 
RIPAG, FUNGICIDE, HERBICIDE, INSECTICIDE, STRD, NTCMPLM, HARDCHIPMIL, 
SOFTCHIPMIL, EMMINE, IMPLCPCT, NBLDPM97, POPGROWTH, POPDENS, RDDENS, 
UINDEX, C5FS, EMAGRIC, INDTHPTH, and POV65. 

2)	 Some pollutants are simply higher than normal values for natural phenomena (DISSOLVEDP, 
NO3DEPMODEL, OZONE8HR, SEDIMENT, SO4DEPMODEL, SUMO6, TOTALN, and UVB).  
For these we assumed a range from 0 to the upper bound of the second lowest quintile and a 
triangular distribution. In this and following definitions, the range of values for the variable (from 
the smallest value found on any watershed within the region to the largest value found on any 
watershed within the region) was divided into five intervals to define the quintiles. 

3)	 Forest edge (EDGE2, EDGE65, and EDGE600) was assumed to range from 0 to the upper bound 
of the lowest quintile with a rectangular distribution.  Forest interior (INT2, INT65, and INT600) 
as well as riparian forests (RIPFOR) and wetlands WETLANDSPECT) were assumed to range 
from the lower to the upper bound of the highest quintile.  

4)	 Forest damage (FORDEFOL and FORMORT) is a natural phenomenon although the current state 
of the system is probably more damaged than the natural state due, for example, to introduced 
pests. For these we used a range of 0 to the upper bound of the second lowest quintile and a 
triangular distribution. 

5)	 It is difficult to determine what the forest inventories (HARDWOODINV, HARDWOODREM, 
SOFTWOODINV, and SOFTWOODREM) would have been under natural conditions with no 
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harvesting. We assumed a range from 0 to the present value on a watershed with a triangular 
distribution. 

6)	 For forest cover (LLSLPINE, MAPLEBEECH, OAKGUMCYPRESS, OAKHICKORY, 
OAKPINE, and SPRUCEFIR) we assumed that the natural state lay somewhere between the 
current cover and 100 percent cover with a rectangular distribution.  For forest types that are 
largely planted (LOPSLPINE and WRJACKP), we assumed a range from 0 to the present cover on 
a watershed with a rectangular distribution. 

7)	 For soil loss potential, we assumed a range from 0 to the upper bound of the lowest quintile and 
triangular distribution. 

8)	 Our estimates for acid neutralizing capacity were based on underlying bedrock and the “natural” 
state was defined as the present value unchanged. 

9)	 We assumed that exotic and rare/threatened species were not present in the natural state and these 
variables were set to 0: AMPHEXOTIC, BIRDEXOTIC, FISHEXOTIC, MAMMALEXOTIC, 
MUSSELEXOTIC, REPTILEEXOTIC, AMPHTE, BIRDTE, FISHTE, MAMMALTE, 
MUSSELTE, and REPTILETE. 

10)	 For native biodiversity, we assumed that our ignorance is profound but that diversity was probably 
higher than under present conditions.  We assumed a range from the lower bound of the second 
highest quintile to the largest current value with a triangular distribution for AMPHNATIVE, 
BIRDNATIVE, MAMMALNATIVE, MUSSELNATIVE, and REPTILENATIVE. 

Once the definition of the “natural state” is established, it is possible to calculate a “fuzzy” distance 
between each watershed and the natural state. (See Appendix B; Tran and Duckstein 2002.) 

Preliminary Results 

The relatively arbitrary definition of “natural state” given above produces the map shown in Figure 9.  
The map shows the regional pattern of vulnerability to passing through a critical threshold and moving to 
a new undesired state. Watersheds shown in green are closer to their natural state and less likely to 
experience radical changes due to natural processes and incremental stressors.  Watersheds shown in 
yellow, orange and red are further from their natural state and more vulnerable, i.e., more likely to 
experience potentially irreversible changes. 

In general, the map shows the typical pattern seen with other approaches.  The greatest vulnerability 
is associated with watersheds subject to more intense human activity, particularly in the vicinity of the 
Philadelphia-Baltimore-Washington axis and Pittsburgh.  The least vulnerable watersheds are in areas of 
high elevation and higher topographic gradients, i.e., less accessible to human activity. 

Although the Criticality map shows the recognizable pattern, a comparison with the Simple Sum map 
(Figure 5) shows clear differences.  In general, the Criticality Analysis provides a more conservative 
assessment. Because of our “fuzzy” definitions of the natural state, many (>20) more watersheds appear 
in the lowest two quintiles (darker shades of green).  In other words, there are a number of watersheds 
that cannot be shown to be clearly vulnerable.  Thus, the analysis appears to be biased in the direction of 
giving false negatives, i.e., possibly underestimating the risk of catastrophic change for a number of 
watersheds. This bias can be interpreted in either of two ways.  First, it makes a strong case that the 
watersheds shown in yellow/orange/red are indeed vulnerable.  Second, the results should not be 
interpreted as meaning that the watersheds shown in green are “safe” for further development. 
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Figure 9. 	 Map shows Criticality Analysis results.  Watersheds in red are the furthest distance in 
multivariate space from natural conditions as specified in this example, while 
watersheds in green are the closest. 

A comparison between the Criticality map and the PCA/SUM map (Figure 6) shows similar results.  
The PCA/SUM method calculates the distance of a watershed from the best value of each variable found 
on any watershed in the region.  So the similarity in the maps can be simply explained by the observation 
that the highest values in the region are close to our definition of the “natural” state.  This is not 
surprising, given the relatively undisturbed nature of the Appalachian watersheds.  However, the 
similarity in the results means that a decision will need to be made about whether the Criticality approach 
provides anything different from the PCA or if they should be combined. 

Testing the Sensitivity of the Method to Assumptions 

The important assumption in the Criticality Analysis is the definition of the “natural” state.  To test 
the sensitivity of the results to this assumption, we developed an alternative definition of the natural state.  
We chose to devise an even more conservative approach – accepting broader ranges that perhaps better 
represent our ignorance of the natural state.  The alternative definition is: 

1)	 Human population and activities remained equal to zero. 

2)	 For naturally occurring pollutants (DISSOLVEDP, NO3DEPMODEL, OZONE8HR, SEDIMENT, 
SO4DEPMODEL, SUMO6, TOTALN, and UVB), we continued to assume a range from 0 to the 
upper bound of the second lowest quintile but used a more conservative rectangular distribution. 

3)	 Forest edge was assumed to range from 0 to the upper bound of the second lowest quintile with a 
rectangular distribution.  Forest interior, riparian forest, and wetlands were assumed to range from 
the lower to the upper bound of the second highest quintile with a triangular distribution. 

4)	 Forest damage (FORDEFOL and FORMORT) continued to assume a range of 0 to the upper bound 
of the second lowest quintile but we chose a more conservative rectangular distribution. 

5)	 Forest inventories (HARDWOODINV, HARDWOODREM, SOFTWOODINV, and 

SOFTWOODREM) were assumed to have been at their present values. 


6)	 Forest cover variables were assumed to be at their present values. 
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7)	 For soil loss potential we assumed a range from 0 to the upper bound of the second lowest quintile 
with a rectangular distribution. 

8)	 We continued to assume that acid-neutralizing capacity was at the present value. 

9)	 Since species invasion was a possible phenomenon in the natural state we assumed that exotic 

species and threatened/endangered species ranged from 0 to 1 with a rectangular distribution. 


10)	 For native biodiversity, we assumed the same range from the lower bound of the second highest 

quintile to the largest current value but used a more conservative rectangular distribution. 


Test 

The critical assumption in the Criticality Analysis is the definition of the “natural” state.  To test the 
sensitivity of the results to this assumption, we developed an alternative definition of the natural state.  
We chose to devise an even more conservative approach – accepting broader ranges that perhaps better 
represent our ignorance of the natural state.  The alternative definition is: 

11)	 Human population and activities remained equal to zero. 

12)	 For naturally occurring pollutants, we assumed the same range but used a more conservative 

rectangular distribution. 


13)	 For forest edge, we increased the range to include the lowest two quintiles.  For forest interior, 

riparian forest, and wetlands, we increased the range to include the highest two quintiles. 


14)	 Forest defoliation was assumed to have a more conservative rectangular distribution. 

15)	 For forest inventories, we assumed a more conservative rectangular distribution. 

16)	 Our original assumptions for the forest cover variables were already conservative and were 

unchanged for the test. 


17)	 For soil loss potential, we included the lowest two quintiles and a rectangular distribution. 

18)	 Because species invasions were possible without human intervention, we assumed that exotic 
species and threatened/endangered species ranged from 0 to the present value on a watershed with 
a rectangular distribution. 

19)	 For native biodiversity, we assumed the same range but used a more conservative rectangular 

distribution. 


A comparison of the Criticality map using the original (see Figure 9) and alternative definitions (see 
Figure 10) shows the maps are very similar, with a few watersheds categorized one septile less vulnerable 
(green) in the alternative.  This is the expected result of choosing more conservative values.  Vulnerable 
watersheds remained vulnerable and intermediate watersheds were categorized as less vulnerable. 
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Figure 10. Results of the Criticality Analysis done with a second set of reference conditions that 
might be considered more conservative.  Watersheds that are the furthest distance 
from reference conditions are indicated in red.  

Given these results, the analysis appears relatively robust to the definition of the natural state.  This 
insensitivity to the assumptions is most likely due to the fact that however one changes the assumptions 
about the biotic variables, setting human activities to zero is implicit in the definition of the natural state.  
Further, the values chosen for the biotic and land use variables are constrained because the natural state 
was less impacted than at present.  Therefore, no matter what specific assumptions appeal to the assessor, 
the values are constrained. As a result, the general pattern of vulnerability (see Figure 9) is insensitive to 
the details of the definition of the natural state. 

Advantages & Disadvantages 

The greatest strength of the Criticality approach is that it provides a unique perspective on watersheds 
in the Region.  The phenomenon of catastrophic change in complex adaptive systems is a potentially 
important concept in large-scale assessment.  The technique outlined above may provide a reasonable 
approach for bringing this concept to bear on assessment problems.  Most importantly, the Criticality 
approach provides some perspective on the potentially irreversible impacts of further development on 
vulnerable watersheds. 

Another strength of the Criticality approach is its apparent insensitivity to the assumptions involved 
in defining a “natural” state.  By allowing the assessor to include uncertainty about the specifics of the 
natural state into the fuzzy definition of variables, a major impediment is overcome.  In particular, the 
most vulnerable watersheds appear to emerge no matter how uncertain we are about the details of the pre­
human system. 

The calculation of criticality does not appear to be dependant on the distributions of the individual 
variables. As the results show, however, the distribution of calculated criticality values across watersheds 
is highly skewed, due in part, to the incorporation of uncertainty in the analysis through the use of fuzzy 
distance calculations. 

The greatest weakness of the Criticality approach is our inability to predict where the threshold of 
criticality is.  Although it appears reasonable to estimate relative risk, it is not possible to pinpoint exactly 
which watersheds will undergo radical change given a natural disturbance or further development.  Thus, 
we cannot assess which watersheds are free of significant risk.  Simply because a watershed is closer to 
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its natural state does not mean that it is “safe.”  Because the analysis incorporates a large amount of 
uncertainty in our estimates of the natural conditions, it is relatively conservative.  Therefore, the 
distribution of calculated criticality values are highly skewed with more watersheds classified as “not so 
vulnerable,” and a small number of watersheds classified as highly vulnerable (see Figure 9). 

Recommendations

 Criticality Analysis is unique among the integration techniques presented here.  It is the only method 
that compares the condition of a watershed to its assumed natural state.  This comparison provides us with 
a better understanding of the vulnerability of a watershed than many of the other methods.  Most of the 
other techniques rank the watersheds based on the condition of the “best” or “worst” watershed.  This 
type of ranking is not very useful for determining the degree that a watershed has moved from its natural 
state toward a critical threshold beyond which irreversible change can occur.  Criticality gives us some 
insight into how vulnerable a watershed is likely to be to catastrophic change in its ecological systems. 

Despite the major advantage of the technique for addressing the issue of vulnerability, the method is 
biased toward identifying more watersheds that are closer to a natural state.  Because we cannot identify 
the critical thresholds beyond which catastrophic changes may occur, we are unable to say with certainty 
that these watersheds are “safe,” i.e., not vulnerable.  Therefore, it is not possible to make a quantitative 
statement about just how dangerous it is to make an incremental change in an individual watershed.  The 
applicability of the approach in a decision-making context depends heavily on the ability of the decision-
maker to evaluate and weigh the risk against the benefits involved in the decision.  The only important 
contribution of this analysis is to inform the decision-makers that further changes on a vulnerable 
watershed might precipitate irreversible changes. 

Because the approach is most robust for the most disturbed sites (the watersheds furthest from the 
natural state tend to remain unchanged as the assumptions about the natural state are changed), we 
suggest that the interpretation of the Criticality Analysis should focus on these sites.  Instead of ranking 
all sites based on criticality, it might be wise to highlight only the most vulnerable sites.  By showing only 
the worst watersheds, we indicate the watersheds that are at greatest risk of catastrophic change and our 
argument for robustness is strong. An objective approach for selecting the most vulnerable watersheds 
would be to construct a histogram of fuzzy distances. It might then be possible to argue that there is a 
breakpoint in the histogram and map only the watersheds above this breakpoint.

 The Criticality Analysis could be improved by strengthening the definition of the natural state.  Even 
though the analysis is relatively robust, the verisimilitude of the results is dependent on how well we can 
establish the natural state definitions. 

Analytic Hierarchy Process 

Developed by Saaty in 1980 (Saaty 1980), Analytical Hierarchy Process (AHP) is one of the most 
widely used multi-criteria decision-making methods.  One of the reasons for AHP’s popularity is that it 
derives preference information from the decision-makers in a manner that they find easy to understand.  
Beside the original version of Saaty, there have been several variants of AHP seen in the decision-making 
science literature.  For instance, Lootsma (1997, 1999) modified the scale and aggregation procedure in 
the original AHP to come up with the Additive AHP and Multiplicative AHP.  The AHP’s original 
version as well as its two variants developed by Lootsma has been altered to deal with fuzzy numbers (see 
Saaty (1977, 1978), Chen and Hwang (1992) for the original model, and Lootsma (1997, 1999) for the 
modified versions).  AHP has been applied widely in different environmental problems (e.g., Saaty 1986, 
Lewis and Levy 1989, Varis 1989), especially in resources allocation and planning (e.g., Ramanathan and 
Ganesh 1995, Mummolo 1996, Alphonce 1997). 
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AHP is a systematic procedure to construct and represent the elements of a problem in a hierarchy. 
The basic rationale of AHP is organized by the breakdown of the problem into smaller constituent parts at 
different levels. Decision-makers are guided through a series of pair-wise comparison judgments to 
reveal the relative impacts, or the priorities of elements (e.g., criteria, alternatives) in the hierarchy.  These 
judgments in turn are transformed to ratio-scale numbers representing relative local and global weights of 
the elements at a certain level of the hierarchy. The hierarchy in AHP is often constructed from the top 
(goal from management standpoint, e.g., environmentally-sound development), through intermediate 
levels (criteria on which subsequent levels depend, e.g., physical, chemical, biological, and 
socioeconomic criteria) to the lowest level (usually a set of alternatives, possible actions). 

To perform a regional environmental assessment, we designed a four-level hierarchy AHP model 
displayed in Figure 11. The lowest level (the fourth level) is for the watersheds to be assessed and/or 
compared. The third level consists of all of the indicators used in the assessment. The second level has 
eight components representing eight groups of indicators at the third level (Table 3). 
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Figure 11. Diagram of the hierarchies in the AHP model for regional environmental assessment. 

23 



Table 3. Groups of variables for the AHP Method. 

Groups 	Variables 

Aquatic Resources 	 AQUANATIVE, AQUATE, and PSOIL 

Aquatic Stressors 	 AGSL, AQUAEXOTIC, CROPSL, DAMS, DISSOLVEDP, IMPLCPCT, 
NO3DEPMODEL, NTCMPPLM, RIPAG, SO4DEPMODEL, STRD, and 
TOTALN 

Economics - Extractive EMAGRIC, EMMINE, HARDCHIPMIL, HARDWOODINV, 
Industries HARDWOODREM, SOFTCHIPMIL, SOFTWOODINV, and 

SOFTWOODREM 

Human Health - Sensitive C5FS, INDTHPTH, and POV65 
Populations 

Human Health - Stressors 	 OZONE8HR and UVB 

Population Pressure 	 NBLDPM97, POPDENS, and POPGROWTH 

Terrestrial Resources 	 EDGE2, EDGE65, INT2, INT65, MIGSCENARIO, NATCOVERPCT, 
NONCLIMAXPCT, RIPFOR, TERRNATIVE, TERRTE, and 
WETLNDSPCT 

Terrestrial Stressors 	 FORCOVDEFOL, FUNGICIDE, HERBICIDE, INSECTICIDE, RDDENS, 
SUM06, TERREXOTIC, and UINDEX 

Somewhat different from common AHP applications, we used measurement rather than pair-wise 
comparison at the lowest level of the hierarchy.  Our aim is to rate the watersheds on a single-indicator 
basis. As measurement involves a measuring standard, the watersheds are rated against some reference 
points, namely some ideal and undesirable ecological states (conditions) of the indicator under study.  In 
this analysis, we simply construct the ideal and undesirable states for a particular indicator by using its 
minimum and maximum values derived from the indicators’ data from all of the watersheds.  Then those 
single-indicator-based distances of a watershed are aggregated gradually from the bottom to the top of the 
hierarchy to come up with an ultimate score for that watershed.  Conceptually, the ultimate score of a 
watershed represents the distance of the watershed to an arbitrary ideal watershed that has the ideal states 
for all of the indicators.  Next, all of the ultimate scores are used to derive a relative ranking for the 
watersheds. 

Note that grouping of indicators in the third level into groups at the second level can be done in 
various ways.  For example, we can divide indicators into groups based on some subjective 
judgment/classification as presented above.  Alternatively, we can group indicators in an objective 
manner with the use of multivariate statistical analysis (e.g., principal component analysis) (Tran et al. 
2003).  Furthermore, we can combine subjective judgment and objective analysis complementarily in 
grouping indicators. 

 Normally in AHP, the next step after constructing the hierarchy is to carry out pair-wise comparison 
judgments at different levels of the hierarchy to reveal the criteria’s relative weights.  However, to create 
the baseline model, we assigned equal weights for the eight components at the second level (i.e., equal 
local weights of 0.125), implying they were treated equally.  In the same manner, weights at the third 
level for indicators in the same level-two component are equally assigned.  When the model is used for a 
real ecological assessment with actual decision-maker(s) and stakeholder(s), pair-wise comparisons 
should be carried out thoroughly, following the common procedure of AHP, to determine the criteria’s 
relative weights at all levels in the hierarchy (except the lowest level).  Therefore, those potential real-
world applications probably will have different sets of weights and consequently have different sets of 
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ranking which in turn might not be the same as those in this baseline analysis.  Those differences reflect 
divergence in public values, preferences, and priorities of different decision-makers and stakeholders. 

 Commonly in AHP, local weights determined from pair-wise comparison are synthesized from the 
second level down to the very last level to derive the global weights for all criteria.  However, we suggest 
the local weights to be used to compute scores of the watersheds at each criterion in the hierarchy.  The 
reason is to make the scores computed at all criteria in all levels of the hierarchy be on the same 0-to-1 
scale, conceptually representing the distances from the watersheds to the ideal states of the corresponding 
criteria. Note that the conversion between scores computed by local weights with those by global weights 
is trivial. 

Within the hierarchical structure, the normalized values of watersheds regarding various indicators at 
the fourth level are aggregated to produce combined scores at other higher levels of the hierarchy.  Scores 
at the third level are computed by two different methods: L1 norm (sum of the scores) and L2 norm 
(square root of sum of the squared scores) as follows: 

criterion _ i 
m criterion _ k

L1: Dlevel _ j =∑ wk ⋅Dlevel _ j+1 
k =1 

criterion _ i criterion _ k 2 
⋅∑ 

m 

wk (Dlevel _ j +1 )L2: Dlevel _ j = 
k =1 

where Dcriterion _ i  is the score at criterion i in the level j; wk
 is the local weight of criterion k in the levellevel _ j 

j+1; and m is the number of indicators (criteria) in the level j+1 associated with criterion i. Scores at the 
second and first levels are computed by the L1 norm only. 

Results 

The ultimate scores for all of the watersheds and their rankings, derived from the two different 
methods (so-called AHP-L1 and AHP-L2), in turn are grouped into seven groups ranked from 1 (good 
condition) to 7 (bad condition) (see Figures 12 and 13). 

Figure 12. AHP-L1 (sum of AHP scores) results displayed in equal-size septiles, where 
watersheds the furthest distance from ideal are shown in dark red. 
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Figure 13.	 AHP-L2 (square root of the sum of the squared AHP scores) results displayed in equal-
size septiles, where watersheds the furthest distance from ideal are shown in dark red. 

Some spatial patterns are revealed from AHP-based maps.  In general, watersheds located near urban 
centers (e.g., Philadelphia; Washington, DC; Pittsburgh) have relative high ultimate impact scores (i.e., 
bad condition).  There are several adjacent watersheds in the southwestern part of the study area (i.e., 
West Virginia) that were in good condition in comparison with the others in the region.  However, there is 
no simple spatial transition from the bad watersheds to the good ones.  Watersheds in one cluster are not 
clearly spatially contiguous, but rather, intermingled with watersheds in other clusters throughout the 
study area, showing that some relatively good watersheds are located right next to some bad watersheds.  
It is obvious that watersheds are not independent but rather interdependent in terms of ecological impacts.  
What happens in one watershed might have impacts on its neighboring watersheds to a certain extent.  For 
example, a new transportation line is likely to cause some impacts (e.g., air pollution, changes in stream 
flow and sedimentation, etc.) not only on the watersheds that it goes through but also on watersheds 
nearby.  Hence, even there are no direct risks within their boundaries; good watersheds are not completely 
safe from degradation due to interrelated impacts among all of the watersheds. 

Tests 

Results of the two models AHP-L1 and AHP-L2 were different significantly from one to another. 
While AHP-L1 showed patterns somewhat similar to ecoregion settings in the study area, AHP-L2 
revealed more rural-versus-urban arrangement.  Note that the two models were the same in terms of 
structure and weights at every level except the fact that different norms (L1 versus L2) were used at the 
lowest level of the hierarchy in each model.  It suggested that distance measure (e.g., Euclidean and 
Mahalanobis distances) could play a role in shaping the classification/ranking pattern. 

Advantages & Disadvantages 

The use of AHP for regional environmental assessment has several advantages.  First, it helped to 
organize a complex problem into a well-structured hierarchy.  AHP not only offers the ultimate scores at 
the highest level, it also provides the impact scores regarding a specific criterion at any level in the 
hierarchy, allowing a comprehensive multi-level assessment. 
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Second, AHP can deal with various types of data and information (e.g., qualitative and quantitative 
data, expert judgment) in a single framework without requiring data transformation.  It is because AHP 
uses a ratio 1-9 scale to compare one variable/criterion/object to another.  AHP uses different means to 
carry out the pair-wise comparison.  Some of them include questionnaire, graphic, verbal, and matrix. 

Third, AHP allows judgment from various experts to be included and integrated in a single model.  
This aspect is very attractive because integrated environmental assessment is often a process involving 
multiple stakeholders and/or decision-makers. 

The main disadvantage of AHP is that the amount of pair-wise comparison might be enormous if 
there are many criteria and/or alternatives to be compared in the model.  At one level, we were able to use 
measurements to avoid the problem.  But the decision-maker would still need to pair-wise compare the 
groups of variables and determine relative ratings.  So the disadvantage remains. 

A second disadvantage of AHP is its sensitivity to the method of calculating the ultimate score.  Some 
objective criterion must be developed to determine which method of calculating will be used in future 
assessments. 

Another disadvantage of our application is that our variables are not independent, as assumed in AHP.  
Several indicators in the same component at the second level describe more or less the same aspect of the 
ecosystem.  As a consequence, it is likely that change in one indicator will accompany changes in other 
indicators in the same component.  At this point, one might question why highly correlated indicators are 
not eliminated from the analysis, in general, and the AHP, in particular.  Arguably, although some 
indicators are highly correlated, they still have their own signatures that are distinct from those of others 
to some extent.  For example, although both of the indicators INT65 and INT2 – interior habitat in 65-ha 
and 2-ha windows, respectively – describe the same type of forest habitat condition, they are derived at 
two different scales, representing the picture of forest interior habitat from two different angles.  Hence, 
choosing one while eliminating the other is not an easy decision to make.  A better approach would be to 
use both of them but have some appropriate way to cope with the codependence problem.  For example, 
the codependence problem among indicators can be solved by a careful weighting procedure, giving small 
weights to highly correlated indicators (e.g., inverse correlation coefficients as weights can be a feasible 
solution).  However, equal weights at the second and third levels of the hierarchy as in this analysis is 
considered reasonable for a baseline model, when insights of the relationships among variables have not 
been verified by other careful judgments or analyses. 

Recommendations 

Given the fact that the approach has real advantages in terms of ranking/classifying environmental 
conditions for integrated assessment in a user-friendly framework, the AHP approach should be used as 
one of the integration methods in ReVA.  Some research may be needed to determine its appropriateness 
in dealing with the codependence problem (e.g., by an appropriate weighting scheme) or another more 
complicated model, the Analytical Network Process, might be needed. 

Clustering Analysis 

Clustering is a very common approach used in a wide array of problems, including environmental 
studies. Its aim is to partition a data set into a set of clusters.  However, “clustering” is a general term that 
embraces various approaches, such as crisp clustering, fuzzy clustering (Bezdek and Pal 1992), and 
mixture model-based clustering (McLahlan and Basford 1987).  In this analysis, we focus only on: K-
means cluster analysis and hierarchical cluster analysis.  Although the general course of clustering is to 
maximize within-cluster similarity and/or between-cluster dissimilarity, various proximity measures (e.g., 
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Euclidean, city-block, and Mahalanobis distances) and various distance criteria (within-cluster: average, 
nearest neighbor, and centroid distances; between-cluster: single, complete, average, and centroid 
linkages) exist, causing clustering results on the same data set to vary from one analysis to another.  For 
illustration, we limit the scope of this analysis to the Euclidean distance measure and to a couple of 
common between-/within-cluster distance criteria only. A thorough discussion on proximity measures and 
clustering distance criteria can be found in various multivariate statistical textbooks, such as those of 
Jobson (1992) and Rencher (1995). 

There are two main ways to cluster data: partitive and hierarchical approaches.  K-means cluster 
analysis is a typical partitive clustering technique in which the data set is divided directly into a 
predefined number of clusters (e.g., the clustering process does not depend upon previously found 
clusters). This method implicitly assumes spherical shapes of the clusters.  In the hierarchical clustering 
approach, the data set is organized into a hierarchical clustering tree (dendrogram) via either top-down 
(divisive) or bottom-up (agglomerative) algorithms.  Between the two, agglomerative procedures are 
more commonly used than the divisive ones.  The dendrogram can be used to study the data structure and 
to determine the number of clusters.  With the dendrogram, it is guaranteed that a subcluster belongs 
completely to a larger cluster.  This feature is not always true with the K-means clustering and other 
partitive approaches. 

The “best” clustering (e.g., the number of clusters) among different clustering results can be selected 
by using some type of validity index such as those in Milligan and Cooper (1985) and Bezdek (1998). 
Some common validity indices include the Davies-Bouldin index (Davies and Bouldin 1979) and the 
average Silhouette width (Rousseeuw 1987).  More on stopping rules and ways of finding out the “best” 
number of cluster can be found in McCune and Grace (2002). 

In the ReVA context, clustering can be used to classify watersheds with similar environmental 
conditions into the same group (i.e., classification).  However, clustering alone cannot tell which group of 
watershed is in good or bad condition or which group is better or worse than the others (i.e., ranking). To 
be able to do that, clustering needs to be combined with other ranking methods presented in this report 
(e.g., Simple Sum, PCA, AHP). 

Results 

The results of the K-means clustering for two cases – 15 and 7 clusters – are shown on Figure 14.  
The spatial distribution of the K-means 15 clusters showed a combination of the urban-versus-rural 
patterns with the “ecoregion” settings of the Mid-Atlantic.  However, the seven K-means clusters seemed 
too coarse to reveal any details.  The number of watersheds associated with a cluster varied significantly 
from one cluster to another, especially in the case of the K-means 7 clusters.  Some clusters had very few 
watersheds associated with them (e.g., clusters 13 and 3 of the K-means 15-cluster and 7-cluster analyses, 
respectively), showing that those watersheds were quite different from the others. 
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(a)	 (b) 

Figure 14. 	Results of K-means Clustering analysis: (a) 15 clusters and (b) 7 clusters (numbers in 
parentheses are numbers of watersheds in each cluster).  Watersheds with similar 
colors are in the same cluster. 

The results of the hierarchical clustering using the within-group average linkage for two cases – 15 
and 7 clusters – are shown in Figure 15.  Similar to the K-means clustering, the number of watersheds 
associated with a cluster in hierarchical clustering varied considerably from one cluster to another.  
Figures 14 and 15 show that the clustering patterns were very different from K-means clustering to 
hierarchical clustering. 

Note that, using the average Silhouette width to compare various clustering results on the 50-variable 
data set, we could not determine the “best” clustering.  It was because the differences of the Silhouette 
widths among different clusterings were insignificant.  However, “best” clustering can be found in 
clusterings on some subsets of the data set (e.g., human health – stressors, terrestrial resources). 

(a) (b) 

Figure 15. 	Results of hierarchical Clustering analysis using within-group average linkage: (a) 15 
clusters and (b) 7 clusters (numbers in parentheses are numbers of watersheds in 
each cluster).  Watersheds with similar colors are in the same cluster. 
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Tests 

To test the clustering approach, we carried out clustering analyses for a wide array of distance 
criteria. Some of the results are displayed in Figure 16.  The main finding of these analyses was that the 
spatial clustering patterns were very diverse from one clustering analysis to another. 

(a) (b) 

Figure 16. Results of hierarchical Clustering analysis using (a) complete linkage and (b) Ward 
linkage (numbers in parentheses are numbers of watersheds in each cluster).  
Watersheds with similar colors are in the same cluster. 

Advantages & Disadvantages

 The Clustering Analysis has the advantage of being intuitively simple and easily communicated.  It 
can be used to detect similarity and/or abnormality in environmental conditions.  It makes no assumptions 
about the statistical distribution of the indicators.  However, the Clustering Analysis may be influenced by 
the covariance structure of the data set, especially when the Euclidean distance is used. 

The Clustering Analysis is only good at clustering and classification.  It is impossible to do the 
ranking or vulnerability assessment with Clustering Analysis alone. However, it can be combined with 
other ranking and vulnerability integration methods in a complementary manner. 

A crucial disadvantage of Clustering Analysis, which had been found from our analyses, is that the 
clustering patterns are quite diverse from one clustering technique to another, and from one distance 
criterion to another. It makes the task of interpreting the clustering results quite difficult. 

Recommendations 

Given the fact that the approach has various advantages and disadvantages in terms of 
clustering/classification, the Clustering Analysis should be used in a complementary manner with other 
methods. The tests reveal that small changes in the methodology make significant changes in the spatial 
pattern of clusters. This sensitivity will make decision-makers wonder which approach is “correct.” 

We recommend that further research be carried out with Clustering before it is used in regional 
assessments.  It is possible, for example, to use the method for specific objectives, such as clustering 
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watersheds based on their potential for restoration.  For a specific objective, it may be possible to specify 
the details of the methodology that are most appropriate for the purpose.  It may also be possible to find 
that the clustering method is less sensitive for specific objectives. 

Self-organizing Map 

In a nutshell, the self-organizing map (SOM) is a clustering method with additional visualization 
capability to reveal the distribution of data under analysis.  The self-organizing map (SOM) method is a 
neural network developed by Kohonen in the early 1980s (1982, 2001) (so-called Kohonen SOM 
hereafter). The Kohonen SOM is capable of learning from complex, multi-dimensional data without 
specification of what the outputs should be and generating a nonlinear classification of clusters.  SOM has 
been applied in a wide array of classification problems.  Kohonen (2001) identified more than 4,300 
scientific papers related to the Kohonen SOM from 1981 to 2001. Recently, the Kohonen SOM has been 
used in several environmental studies including Trautmann and Denoeux (1995), Aguilera and others 
(2001), Brosse and others (2001), Cereghino and others (2001), Clare and Cohen (2001), Giraudel and 
Lek (2001), Obach and others (2001), and Walley and O’Connor (2001). 

The Kohonen SOMs unsupervised learning algorithm involves a self-organizing process to identify 
the weight factors in the network, reflecting the main features of the input data as a whole.  In that 
process, the input data is mapped onto a lower dimensional (usually two-dimensional) map of output 
nodes with little or no knowledge of the data structure being required.  The output nodes, which associate 
with parametric-reference vectors having the same dimension as the input vectors (in this case, 50­
dimensional space), represent groups of entities with similar properties, revealing possible clusters in the 
input data.  Note that, although the Kohonen SOM is unsupervised in learning and determining the output 
nodes’ parametric-reference vectors, the number of the output nodes and the output map’s configuration 
need to be specified before the learning process.  This aspect is similar to K-means clustering where the 
number of clusters is chosen beforehand. 

The algorithm used in this analysis is the SOMPAK package, version 3.1 (Kohonen and others 1996).  
More specifically, the vfind program in SOMPAK was utilized to search for good mappings (i.e., low 
quantization error).  The search in vfind is done by automatically repeating different initializing and 
training procedures (Kohonen and others 1996).  Note that SOMPAK uses the Euclidean distance to 
measure dissimilarity between samples. 

The clustering process used in this paper was a two-level SOM as illustrated in Figure 17.  Note that 
similar multi-level SOM approaches have been explored in some papers with respect to their clustering 
capability (e.g., Lampinen and Oja 1992, Vesanto and Alhoniemi 2000).  However, multi-level SOM has 
not been applied to environmental problems, in general, and environmental assessment, in particular.  In 
this study, the first-level SOM was applied directly to the data to produce a 10x5 map (50 prototype 
vectors). The second-level SOM was then applied to the 50 prototype vectors in the 10x6 map to produce 
a more agglomerative 7x1 map. 
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First-level Second-levelFirst-level Second-level 
self-organizing self-organizingself-organizing self-organizing
map training map trainingmap training map training

First-level self-organizing mapFirst-level self-organizing map Second-level self-organizing mapSecond-level self-organizing map
N data samples M prototype vectors K clustersN data samples M prototype vectors K clusters

Figure 17. Diagram of a two-level self-organizing map model. 

Results 

The first-level SOM’s 10x5 map is displayed in Figure 18. The map, created by the U-matrix method 
(Ultsch 1993), visualizes the distances between each prototype vector to each of its neighbors in a gray 
scale on the map. As density of the SOM vectors reflects the density of the data points, the distances 
among neighboring SOM vectors reflect the distribution of the data set (Kaski and others 2000). Lighter 
shades on the map indicate denser distribution of SOM vectors or clustering tendency whereas darker 
shades show big distances from one SOM vector to another or sparse area in between clusters. 

Although there were 50 nodes on the 10x6 map, only 41 nodes were populated. The number of 
watersheds at each populated node ranged from 1 to 10. The second-level SOM’s 7x1 map is displayed 
in Figure 19. All 7 nodes on the 7x1 map were occupied by several of the first-level SOM nodes. The 
nodes were represented by a set of 50-dimensional vectors that will be used as benchmark vectors in 
further calculations (e.g., environmental assessment and management). 

The orders of the watersheds on the U-matrix displays of the first- and second-level SOMs (Figures 
18 and 19) indicate the similarity of environmental conditions of the watersheds in the study area. 
Generally, watersheds within one node have more similarity in environmental conditions than with those 
associated with other nodes. Among all nodes on the map, neighboring nodes have more similarity in 
environmental conditions than nodes being far away on the SOMs. Among neighboring nodes, a lighter 
shade between two nodes indicates more similarity in environmental conditions between the two than 
between those with darker shades. In general, given a wide array of ecological indicators, the U-matrix 
displays of the SOMs were able to represent the relative arrangement of the watersheds under study in 
terms of overall environmental conditions. 

Figure 20 geographically displays the watersheds associated with the seven second-level SOM nodes 
(or clusters) on the Mid-Atlantic region map. It shows that most of the watersheds associated with a 
second-level SOM cluster were spatially contiguous to some extent. It can be seen that two nodes that are 
faraway on the second-level SOM (Figure 19) can have their watersheds located adjacent to each other on 
the geographical map (Figure 20) (e.g., watersheds associated with clusters 1 and 7 in Virginia), showing 
that watersheds with distinctly different conditions (e.g., “good” versus “bad”) can be spatially located 
next to each other. 
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Figure 18. First-level 10x5 self-organizing map created by the U-matrix method. 
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Figure 19. Second-level 7x1 self-organizing map created by the U-matrix method. 
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Figure 20. 	Map shows geographic distribution of the two-level SOM’s seven clusters.  Watersheds 
with similar colors are in the same cluster. 

Tests & Sensitivity 

In general, the selection of the number of nodes in SOM is subjective.  It can be decided via trial and 
error or by prior knowledge of the study problem.  In this analysis, several factors were considered in 
deciding the size of the first- and second-level SOMs (10x5 and 7x1, respectively). They include data set 
size, possible clusters identified from the first-level SOM, and suitability for further analysis (i.e., a 
reasonable number of clusters, neither too many to fall short for generalization nor too few to dilute 
details). Regarding the relationship between the two SOMs, the 50 prototype vectors in the first-level 
SOM can be interpreted as subclusters that serve as ingredients to form larger clusters in the second-level 
SOM. Lampinen and Oja (1992) stated that the main benefit of the two-level SOM was noise reduction.  
Quantitatively, information from this analysis was insufficient to prove this.  However, qualitatively, it 
can be seen that the within-cluster spatial adjoining of watersheds associated with cluster 5 in the two-
level SOM (Figure 20) is better than those in the one-level SOM (Figure 21).  This aspect can be 
explained because, as the prototype vectors are locally averaged from data associated with the subclusters, 
the impact of outliers on vector quantization would be reduced to some extent.  Using the two-level 
approach, outliers associated with each subcluster are explored in detail by means of the first-level SOM. 
Whereas the first-level SOM showed a more detailed map of environmental conditions of single 
watersheds at a sub-regional level, the second-level SOM provided a more generalized picture of larger 
clusters of watersheds for the whole study area. 

The use of the Euclidean distance to measure dissimilarity between samples in SOMPAK might have 
some implication on clustering results because it did not account for the interdependence among 
variables. Consequently, the clustering result might be biased toward indicators that are highly correlated 
and occupy a large portion in the data set.  This problem can be addressed by using a more advanced 
distance measure, e.g., the Mahalanobis distance (Mahalanobis 1936).  Another alternative is applying the 
Kohonen SOM to a set uncorrelated variables derived from PCA.  However, this alternative has the 
tradeoff of being unable to identify the contribution of individual indicators to the clustering process. 
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Figure 21. 	Map shows geographic distribution of the one-level SOM’s seven clusters.  
Watersheds with similar colors are in the same cluster. 

Advantages & Disadvantages 

The main advantage of SOM for regional environmental assessment is in its nonlinear clustering 
ability and its capability in revealing the distribution of a multi-dimensional data set on a lower 
dimensional space (e.g., the U-matrix method). Another advantage of the two-level SOM used in this 
analysis is that it provided a unique means in exploring the region from different perspectives. Whereas 
the first-level SOM showed a detailed map of environmental conditions of sub-clusters at a sub-regional 
level, the second-level SOM provided a more generalized picture of larger clusters for the whole study 
area. Briefly, the two-level SOM in this study was proven a viable tool for clustering and classification of 
complex environmental data set. 

Similar to other clustering methods, the primary disadvantage of the SOM approach is that it can be 
used for clustering/classification only but not for other common tasks of a regional environmental 
assessment, such as ranking or vulnerability analysis.  However, this disadvantage can be overcome by 
combining SOM with other approaches to form a more comprehensive method.  For example, Tran et al. 
(2003) combined SOM with PCA and various visualization tools in a method capable of classifying and 
ranking complex environmental conditions. 

As a secondary disadvantage, while the ability of SOM in visualization is unquestionable (and was 
one of the main reasons that SOM was chosen in this analysis), there is no guarantee that SOM produces 
the best clusters within data (Kohonen 2001).  However, this point was not so crucial because clustering 
was only one among various important aspects taken into consideration with SOM (e.g., visualization, 
transition among watersheds, and possibility of multi-level clustering). 
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Recommendation 

Given its unique capability in clustering and displaying distribution of the data set, SOM should be 
retained as a classification technique for regional environmental assessment.  Furthermore, the strengths 
of the SOM’s nonlinear clustering ability can be combined with the PCA’s capability in reducing the 
dimensionality of multivariate data as well as with several constructive visualization tools (e.g., U-matrix 
map, component planes, parallel coordinate plots) to form a more comprehensive method which can 
perform a regional environmental assessment with the focus on cumulative impact of multiple stressors 
on a large area (Tran et al. 2003). 

Despite its many advantages, the exact approach for incorporating SOM in regional assessments 
remains a research question.  Certainly, further work is needed before SOM can be recommended for 
direct application by decision-makers without the guidance of an experienced analyst. 

Stressor-Resource Overlay 

The Stressor-Resource Overlay method attempts to locate watersheds where high levels of valued 
resources occur with high levels of stressors.  For this analysis, the ReVA variables were first divided into 
stressors and resources. Stressor and resource variables were then divided into quintiles.  Watersheds 
were scored on the number of stressor variables that fell into the worst two quintiles and also on the 
number of resource variables that fell into the best two quintiles.  Results were displayed as a 16-category 
map in Figure 22. The solid red color showed that those watersheds are most vulnerable because they 
have valued resources endangered by multiple worst stressors.  In contrast, the solid green color was for 
watersheds having good resources and no serious stressors. 

The figure illustrates some of the subtle features of vulnerability analysis.  For example, the 
watershed containing Baltimore is highly stressed, but it is not among the most vulnerable because few 
valued resources remain.  If we focus on the most vulnerable watersheds (in red and dark tan), we find a 
dozen watersheds with similar properties in rural suburban areas or watersheds containing smaller cities 
such as Allentown and Raleigh.  They have populations and/or population growth in the upper two 
quintiles but human resources, such as low poverty and low infant death, are still in the lower two 
quintiles of the region. These human resources are likely to be vulnerable to further urbanization and 
population growth.  Many of these vulnerable watersheds have agriculture on steep slopes, in riparian 
zones, and on erodible soils.  Combined with high levels of atmospheric deposition, agriculture has led to 
high levels of nitrogen in the aquatic systems and only one of the watersheds, Raleigh, retains native 
aquatic organisms in the highest two quintiles.  While the aquatic resources have been largely lost, 
significant terrestrial resources remain.  The forests are stressed by fragmentation, ozone, and exotic 
species but still have considerable forest resources in hardwoods and softwoods and five of the 
watersheds have native terrestrial fauna in the upper two quintiles of the region.  Thus, the Stressor-
Resource Overlay was able to identify a set of watersheds that have largely lost their aquatic resources but 
retained human and terrestrial resources that are vulnerable to further stresses. 
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Figure 22. Results of the Stressor-Resource Overlay method displayed in a 16-category map. 
The two-dimensional matrix provides color-codings for different combinations of 
stressors and resources.  Increasing stressors go from left to right across the top, 
while increasing resources go from top to bottom on the left.  Areas with the highest 
resources and highest stressors are indicated by dark red, shown in the bottom right-
hand corner. 

Advantages & Disadvantages 

The advantage of the Stressor-Resource Overlay is in its unique ability to identify areas that could 
lose valued resources with further stress by directly addressing the geographic distribution of 
vulnerability.  A watershed could have many valued resources but still not be vulnerable because it is not 
experiencing stress. On the other hand, a highly stressed watershed may not be considered vulnerable 
because its valued resources have already been destroyed.  The most vulnerable watersheds can be 
considered to be those with intermediate to high levels of stressors together with intermediate to high 
levels of resources. 

As with many of the methods, the Stressor-Resource Overlay has the disadvantage that it does not 
account for correlation between variables.  However, in this case, this is not a significant disadvantage.  
Two stressors may be highly correlated, but because of synergistic effects, the two stressors may 
represent more impact than each stressor independently.  Similarly, two resources may be highly 
correlated but because each is valued the two resources may be more highly valued than each resource 
independently.  As a result, the Stressor-Resource Overlay is not influenced by the correlation structure of 
the data as long as each resource is valued and stressors can interact to cause synergistic effects. 

Recommendations

 The Stressor-Resource Overlay method is an effective approach to estimate vulnerability.  It takes a 
unique view of vulnerability that does not overlap with the other integration methods and the simplicity of 
its logic makes it robust to the peculiarities of the data structure.  As such it should be incorporated into 
any regional assessment. 
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Change Analysis 

The Change Analysis method compares two regional maps.  If a watershed falls into the same septile 
on both maps, the watershed is colored gray.  If the watershed is improved by one septile, the watershed is 
colored light green.  If the watershed is improved by two or more septiles, the watershed is colored dark 
green. If the watershed is degraded by one septile, it is colored light red.  If the watershed is degraded by 
two or more septiles, it is colored dark red.  Thus, the difference or change between the two maps is easily 
visualized. 

The Change Analysis method can be used to compare any pair of maps.  For example, it is possible to 
compare the results from different integration methods to determine differences in spatial patterns.  To 
illustrate the method, we compared present conditions with a projected future scenario.  The future 
scenario considered that forestland cover on each watershed was reduced by 30 percent.  Riparian forest 
was changed to agriculture.  Forest on slopes >3 percent was changed to crops.  Interior forest was 
changed to human land use. All other variables were kept at their current values.  The present and future 
scenarios were both evaluated using the Simple Sum method. This exercise was not intended to evaluate a 
realistic future scenario but simply to determine if the Change Analysis method would have the sensitivity 
to indicate the change. 

The comparison map produced by the Change Analysis method test is shown in Figure 23. The 
comparison map indicates that a significant number of watersheds changed their rank by a septile.  The 
map clearly shows where the changes occur and simplifies interpretation. 

Figure 23. 	Graphic illustrates the Change Analysis method. The difference map at the bottom 
highlights areas where values are better in the map on the left-hand side (LHS) in blue 
and where values are better in the map on the right-hand side (RHS) in pink. 
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Advantages & Disadvantages 

The primary advantage of the Change Analysis method is its simplicity.  As a result, the analysis is 
easily understood and easily communicated.  It is immediately apparent to what degree a change has 
occurred and the change in overall regional pattern.  The second advantage of the Change Analysis 
method is its sensitivity.  The illustration, shown on upper right of Figure 23, reflected only a change in 
the land use variables but the spatial pattern of change was clearly indicated. 

Because of the inherent simplicity of the approach, the Change Analysis method has no disadvantages 
or sensitivities to data distributions or other problems.  Any disadvantages come directly from the choice 
of the two maps being compared. 

Recommendation

 The Change Analysis method should prove useful in future assessments.  The method is simple and 
intuitive and should appeal to a broad audience.  The method is flexible and can be used to compare 
present and future scenarios as well as testing the effectiveness of restoration strategies over a region or 
subregion. It shows the spatial pattern of change that can occur across the region in response to any 
postulated change. 

It should be remembered, however, that the Change Analysis method is only useful in comparing two 
maps. It is not, in itself, an integration method.  It is rather a visualization technique that allows the 
assessor to determine where change has occurred. 

Stressor-Resource Matrix Analysis 

As an approach to deal with multiple stressors, the assessment community developed a matrix 
procedure (Foran and Ferenc 1999, Ferenc and Foran 2000).  The matrix represents stressors as the rows 
and the endpoints as the columns.  Using a matrix format simply to organize complex assessment 
information has a long history (Phillips Brandt Reddick, McDonald and Grefe, Inc. 1978; Lumb 1982a, 
1982b; Witmer et al. 1985; Clark 1986; Emery 1986; Risser 1988).  Leopold et al. (1971) originally 
proposed the approach and Canter (1977) reviewed a number of variations.  

In addition to organizing information, matrices have been used for diverse applications, each 
application involving significant variations.  For example, Cada and McLean (1985) used a definition 
matrix to associate rankings with quantitative ranges of potential impact (sedimentation, cover loss, 
restriction of fish movement, and loss of food base) and weighted means to compare impacts across 12 
projects. Bain et al. (1986) used a computer-assisted matrix method to analyze the impact of multiple 
human developments on multiple resources.  All possible combinations of stressors are considered with 
the impact of each combination computed as the sum of all project-specific impacts, adjusted for the 
effect of interactions among projects.  This results in a matrix representing the relative impact of every 
possible combination of stressors on each endpoint.  The matrix is then searched for combinations that 
minimize the impact summed across all endpoints.  Stull et al. (1987) used a matrix approach to evaluate 
multiple hydropower impacts on elk and salmon.  The approach involves multiplying interaction and 
impact matrices to determine cumulative impact.  Landis and Wiegers (1997) used matrices to find the 
overlap of wastewater inputs with crab and clam endpoints across different spatial areas.  Foran and 
Ferenc (1999) use a matrix to compare qualitative estimates of likelihood and consequences across a set 
of potential scenarios. After eliminating scenarios of low probability and impact, further analyses might 
involve quantitative estimates of risk curves (i.e., probability of different levels of impact) and 
possibilities of remedial actions.  A number of additional refinements using probability theory and fuzzy 
set theory are available (e.g., Ferson and Kuhn 1992, Jooste 2000). 
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In more recent applications of the approach, the emphasis has been on ranking stressors (Cormier et 
al. 2000).  Harris et al. (1994) developed an impact matrix of stressors and endpoints in the form of 
impaired use criteria.  Experts then filled in the matrix with values from 0 (no impact) to 3 (major 
impact).  The stressors can then be ranked by looking at the row sums of the matrix.  The row sums point 
out the stressor with the greatest impacts summed across the suite of endpoints. 

In the typical application of the matrix approach, quantitative information is not available for the 
individual cells of the matrix.  A panel of experts is asked to assess the individual impacts and supply a 
qualitative value, for example, 1 for a minor impact, 2 for a moderate impact, and 3 for a major impact.  
When the matrix is complete, the values in each row are summed and taken as the total impact of each 
stressor across all endpoints.  The row sums can then be ranked to indicate which stressors are having the 
greatest impact and, in a decision-making context, are in greatest need of control. 

Data are available for stressors and resources and a unique opportunity exists to apply the matrix 
approach quantitatively.  The rows contain both traditional stressors, such as nitrate and sulfate 
deposition, and also some conditioning variables, such as soil loss potential, which might modify stressor-
resource relationships across watersheds.  The columns contain both traditional endpoints, such as native 
aquatic biota, and also assets such as interior forest (see Table 2A, Appendix).  The values in each column 
can also be summed and taken as an indicator of vulnerability, in the sense of how much stress is already 
being imposed on the assets across all stressors.  In a decision-making context, these assets might be 
considered the most vulnerable to further stress and most in need of protection or remediation. 

The regional data can be analyzed in either of two ways.  A correlation matrix expresses how the 
variability in a stressor is related to variability in a resource.  This provides insight into the overall 
cumulative relationship among all stressors and resources across the watersheds.  A second approach 
involves regression analysis in which each coefficient expresses how a small increase in a stressor results 
in a small increase or decrease in a resource.  The two approaches provide different insights into the 
relationships between stressors and resources and both approaches were used. 

Correlation – Results and Tests 

In the first approach, a correlation matrix is calculated for the entire data set over all watersheds and 
each row of correlation coefficients is summed.  The resultant row sum is then an indicator that includes 
all of the direct and indirect interactions among the variables.  Thus, indirect effects (both positive and 
negative) with other stressors are included along with the effects of stressors on resources. 

Stressors: Results and Tests 

The first column of Table 4 gives the top four stressors: human land cover (UINDEX), dissolved 
phosphorus (DISSOLVEDP), Nitrogen in the aquatic system (TOTALN), and small-scale forest 
fragmentation (EDGE2).  The second column gives their row sums.  The importance of the land cover 
and fragmentation stressors is consistent with previous large-scale studies.  The importance of aquatic 
nutrients is also reasonable in light of our understanding of nutrient dynamics.  The dominance of the 
aquatic nutrient variables is somewhat surprising, given that many of the resource variables are terrestrial.  
The explanation is probably that the aquatic nutrients are leached from the watershed and therefore 
nutrient status in the freshwater system reflects nutrient status in the soils on the watershed as well. 
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Table 4. Correlation matrix results: top four stressors. 

Full > |0.1| > |0.2| > |0.3| 

UINDEX 12.3 12.1 12.2 12.1 
DISSOLVEDP 12.0 11.9 11.5 10.5 
TOTALN 11.2 11.2 10.5 11.0 
EDGE2 9.6 9.6 8.7 7.5 

The correlation analysis involves 50x50 interactions and therefore probably includes a number of 
spurious correlations. Small, spurious coefficients might accumulate over the row sum and alter the 
results. To test the sensitivity of the method, we systematically removed smaller coefficients and 
recalculated the row sums. Columns 3 to 5 in the table represent the row sums with all coefficients 
smaller than +/- 0.1, +/- 0.2, and +/- 0.3 set to 0.  The results in the table indicate that the ranking is 
insensitive. The likely explanation is that small coefficients are equally likely to be positive or negative 
and only have a minor influence on the row sum.  Beyond the first four stressors, the row sums become 
more sensitive and the ordering of the rest of the stressors tends to change as the smaller coefficients are 
removed from the matrix.  It appears, therefore, that the correlation matrix approach should be limited to 
designating the top three or four stressors. 

Vulnerable Resources: Results and Tests 

The correlation matrix can also be used to indicate the resources experiencing the greatest stress by 
ranking the column sums associated with the resources instead of the stressors.  The most vulnerable 
resources are given in the first column of Table 5: intact forest at a small scale (INT2) and habitat for 
migratory birds (MIGSCENARIO).  The vulnerability of habitat assets seems reasonable. 

Table 5. Correlation matrix results: top five vulnerable resources. 

Full > |0.1| > |0.2| > |0.3| 

INT2 10.9 10.8 10 10.2 
MIGSCENARIO 10.3 10.1 9.6 8.5 
EMAGRIC 8.4 8.2 


SOFTWOODREM 
 8.4 
RIPFOR 6.8 

As with the stressor analysis, we tested the sensitivity of these results by removing small correlation 
coefficients from the matrix.  Because of the number of variables in the analysis, small and potentially 
spurious values could be summed to change the rankings of a stressor or vulnerable asset.  Columns 2 to 4 
in the table represent the row sums with all coefficients smaller than +/- 0.1, +/- 0.2, and +/- 0.3 set to 0.  
The top two resources do not change.  Once again, the matrix approach is robust to this test primarily 
because both positive and negative values are eliminated.  As a result, the sums are only minimally 
influenced and the rankings are unchanged.  However, it should be noted that beyond the first two 
variables, the rankings of the remaining variables change significantly as the smaller coefficients are 
removed. 
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The question arises as to whether removing the small coefficients is a better approach, rather than just 
a test. In typical applications of a correlation matrix, significant causes or correlates are sought.  Within a 
stated probability (alpha), only values greater than a certain value are significant.  Thus, the typical test 
guards against false positives: falsely identifying a variable when, in fact, the correlation is spurious.  The 
test does not guard against false negatives: falsely eliminating a small but real correlation.  Therefore, 
eliminating small correlations is not necessarily justified.  Alternatively, there is a good reason to retain 
them: these small correlations may quantify the subtle cumulative effects of large numbers of stressors. 

Regression – Results and Tests 

The regression analysis involves a univariate regression of each resource as a function of all the 
stressors. The regression coefficients associated with a stressor are then summed across all resources.  
This method will be less sensitive to indirect effects than the correlation approach, but it should be more 
useful for determining the stressors that dominate direct effects.  To emphasize the direct effects, 
insignificant regression coefficients (less than |0.25|) and negative coefficients were dropped from the 
matrix before doing the row sums.  Because the regressions were done with the coded variables, only a 
significant, positive regression coefficient indicates a direct effect. 

Stressors 

The first column of Table 6 shows the top four stressors determined by the regression matrix row 
sums.  Three of the four are identical to those determined by the correlation approach (Table 4) and road 
density replaces EDGE2. Because the insignificant coefficients were already removed from the matrix 
before summing the rows, the removal of small coefficients could not be used here to test the sensitivity 
of the method.  Instead, another aspect of the approach was tested. 

Table 6. Regression analysis results: top four stressors. 

UINDEX 9.3 1.5 
DISSOLVEDP 14.2 2.4 
TOTALN 6.8 1.4 
RDDENS 9.1 2.1 

Full WS 

Taking the row sum across all resources gives equal weight to each resource.  However, the ReVA data 
set does not have the same number of variables in each resource categories or families.  There are six 
socio-economic resources, nine forest variables, four aquatic and three terrestrial population resources.  
With the possibility that stressor effects may dominate the row sum on forest alone, we performed a 
weighted sum to test for the influence of this imbalance among resources.  The coefficients within each 
family of variables were averaged and then the four averages were summed.  The second column of Table 
2 shows the top four stressors using the weighted sums of the regression coefficients.  Both the weighted 
and unweighted sums indicate the same top stressors. Therefore, the regression matrix approach does not 
appear to be particularly sensitive to the imbalance among resources. 

Vulnerable Resources 

Regression analysis can also be applied to determine the most stressed resources.  The approach 
would be to sum the regression coefficients across all the stressors. However, there would then be a 
problem comparing these sums because each univariate regression considers only a single resource.  
Therefore, the sum of the regression coefficients may have more to do with the goodness of fit of the 

43 



individual univariate regressions than with the overall relative stress on the resource.  As a result, one 
might be comparing goodness of fit rather than levels of stress when one univariate row sum is compared 
to another univariate row sum.

 Table 7 illustrates the problems with the regression approach.  The first column shows the sum of all 
coefficients for the top three positive values.  Remember that with the coded variables, a positive sum 
indicates a negative impact on the resource.  The resources are reasonable as the most stressed: 
employment in agriculture (EMAGRIC), habitat for migratory birds (MIGSCENARIO), and intact forest 
(INT65). However, only one of these variables, MIGSCENARIO, was also determined to be a highly 
stressed resource in the correlation analysis.  In comparing the correlation and regression approaches for 
the stressors, three of the top four stressors were the same.  In comparing the correlation and regression 
approach for the resources, only on variable was common to both. 

Table 7. Regression analysis results: top five vulnerable resources. 

Full > |0.25| > 0.25 

EMAGRIC 2.4 
MIGSCENARIO 1.6 
INT65 1.6 1.5 5.3 
NONCLIMAXPCT 1.6 
TERRTE 1 
NATCOVERPCT 4.3 
AQUANATIVE 3.4 

The problem is more evident in the second column of Table 4, which removes the insignificant 
regression coefficients. Two new variables enter the top three and only the INT65 remains.  In column 
three, only positive values are included in the sum and again two new variables enter.  So the rankings 
based on the row sums do not appear to be very stable to these manipulations.  Because of this instability 
and the lack of agreement between the regression analysis and the correlation analysis, this analysis 
should probably be dropped from future work.  There really is no theoretical foundation for comparing 
coefficient sums for unrelated univariate regressions. 

Advantages & Disadvantages 

The primary advantage of the Matrix approach to integration is that it takes a completely different 
view of the region.  Instead of comparing watersheds, it compares stressors and resources across the entire 
region. Thus, it provides a viewpoint that is complementary to the other integration methods. 

The primary disadvantage of this approach to integration is the difficulty of interpreting and 
communicating the results.  This approach has been used in the literature to rank direct impacts.  In the 
current analysis, correlations are not direct impacts.  Even large negative values are a complex 
combination of direct and indirect impacts as well as synergistic and cumulative effects.  The correlations 
will be strongly influenced by spatial patterns of co-occurrence.  In some cases, the present condition of a 
resource may be strongly influenced by past stressors not captured in the present values used in the 
analysis. 

The important point is that the correlations express the resultant of past and present stressors, spatial 
pattern, and synergistic and cumulative effects.  Therefore, the results of the correlation analysis will have 
to be carefully stated with sufficient caveats warning the reader against the natural tendency to interpret 
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the results as direct impacts.  In the usual application, the top ranked stressors are identified as the one 
most in need of immediate managerial action.  That conclusion is not necessarily valid in our case and 
elimination of the top stressors might well result in little, or long-delayed, responses. 

A similar problem exists with spatial autocorrelation.  Spatial autocorrelation occurs when data from 
two adjacent points in space show a higher correlation than data from two randomly chosen points.  Such 
proximity relationships clearly occur in the ReVA data set.  Spatial autocorrelation causes a problem, for 
example, in regression analyses that test for significant relationships between variables.  The variables 
may simply co-occur in space rather than being causally related. 

Spatial autocorrelation does not pose a serious problem for the Stressor-Resource Matrix analysis 
because no hypotheses are tested and no attempt is made to establish causal relationships between 
variables. However, spatial autocorrelation does restrict the interpretation that can be applied to the 
results. 

In regression analysis, negative coefficients are more closely related to direct effects.  However, the 
measurements are not consecutive in time on a single watershed.  Rather, they are at a single time across 
many watersheds.  Therefore, reducing a top stressor can be expected to have an effect across the region.  
However, reducing a top stressor will not necessarily be an effective strategy on any particular watershed.  
So the interpretation is still different from the smaller scaled applications in the literature.  Once again this 
makes it more difficult to communicate the results. 

Recommendations 

We should use this approach in the assessment – but we will need to carefully argue each step so that 
the results are not misinterpreted.  The results of the correlation analysis seem to be reasonable for both 
stressors and resources.  The results of the regression analysis should be limited to the stressors and seem 
to reinforce the results obtained from the correlation analysis.  If future applications continue to show that 
the regression results for stressors do not differ from the correlation results, then the regression approach 
can be dropped. 

The technique was originally designed to identify the top few stressors within a site or watershed.  
The tests performed here reinforce the idea of limiting the results to two or three stressors and vulnerable 
assets.  Once the analysis gets beyond about three, the row or column sums tend to converge and the exact 
ranking of a stressor or asset becomes very sensitive to small changes in the sums.  The first two or three 
are robust to the assumptions.  But the rest of the rankings are less reliable and more dependent on 
assumptions. 
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Section 3 

Sensitivity of Integration Methodology to Data 

We examined the methods described in previous sections for their sensitivity to various data 
problems.  We identified various data issues that might influence the performance of the integration 
methods. They include: 

�	 Discontinuity – There are variables that took on only integer values, e.g., presence/absence of 
a species. This might influence methods using statistics that assume continuous variables.  
This problem was solved in the Mid-Atlantic Region by redefining variables so that the 
discontinuities were eliminated.  However, care must be taken in future regional applications 
to eliminate discontinuous variables or test explicitly for their impact on the methodology. 

�	 Skewness – Many variables have distributions that are highly skewed toward zero.  This is 
the natural result of collecting data across a diverse region.  Many watersheds had little or no 
problems, only a few had high values.  Some methods had no problem with this (e.g., SUM) 
but other methods did (e.g., regression in the Stressor-Resource Matrix method). 

�	 Imbalance – The variables are not equally distributed across families (e.g., terrestrial 
biodiversity, human variables, etc.).  This is a problem with methods that sum a score/rank 
across variables (e.g., SUM).  The obvious solution is to average within families of similar 
variables and then sum across the families. 

�	 Interdependency – The variables are correlated and methods (e.g., SUM) that do not account 
for this interdependency can give misleading results.  The bias introduced is similar to the 
Imbalance problem because two highly correlated variables are added in twice when their 
information is not actually independent. Some of the statistically based methods 
automatically account for interdependency. For other methods the problem must be resolved 
individually. 

�	 Auto-correlation – Although the variables are auto-correlated to various extents, it is not a 
problem for any of the methods except the Stressor-Resource Matrix. This is because the 
methods in this report do not seek to explain the pattern-process relationships among 
variables but focus on the overall environmental condition on the individual watershed basis. 

On the one hand, we identified possible alternatives to handle each problem properly.  For example, 
the skewness problem can be solved by appropriate data transformation (e.g., log transform) or dropping 
outliers; the imbalance can be dealt by reducing the between-family imbalance or averaging the within-
family values first.  On the other hand, we examined the methods to find out how sensitive each of them 
was to the data used in the analysis. Table 8 displays information on sensitivity of the integration 
methods regarding various data problems listed above. 
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Table 8. Effects of various data issues on each integration method. 

Discontinuity Skewness Imbalance Correlation 

Quantiles Not sensitive Not sensitive Sensitive Sensitive 
Simple Sum Not sensitive Not sensitive Sensitive Sensitive 
PCA Sensitive Sensitive Not sensitive Not sensitive 
State Space Sensitive Sensitive Not sensitive Not sensitive 
Criticality Not sensitive Not sensitive Sensitive Sensitive 
AHP Not sensitive Not sensitive Not sensitive Sensitive 
Cluster Not sensitive Sensitive Sensitive Sensitive 
SOM Not sensitive Sensitive Sensitive Sensitive 
Overlay Not sensitive Not sensitive Not sensitive Not sensitive 
Matrix Sensitive Sensitive Sensitive Not Sensitive 

Discontinuity and skewness do not affect the Best/Worst Quantiles but imbalance and 
interdependency do when they coexist. In such cases, the results might be biased toward a large family of 
highly correlated variables. 

 With the Simple Sum, discontinuity is not a problem as there is no assumption about continuous 
variables. Skewness is not a problem for the Simple Sum, either. Since with Simple Sum, we are only 
interested in the relative environmental quality within the region.  Outliers will stand out and that is 
appropriate. But it also means that we cannot depend on this method to finely discriminate among the 
intermediate watersheds.  There is a problem with imbalance so we should always average families of 
variables and then sum.  There is a potential problem with interdependency (i.e., double-counting related 
variables) for the Simple Sum. Hence, this method should be used in a complementary manner with the 
PCA and other distance-based methods. 

 As the PCA uses the covariance (or correlation) matrix in its calculation, discontinuity and skewness 
might affect the PCA. Regardless, the PCA is an effective way to handle imbalance and interdependency. 

Using the Mahalanobis distance in its calculation, the State Space Analysis handled the problems of 
imbalance and interdependency quite well.  However, abnormal values might occur if collinearity exists 
(due to problem with the inversed covariance matrix in case of collinearity). 

In this study, we evaluated the Criticality Analysis using fuzzy distances.  Other methods of 
calculating the distances from the natural state would change the sensitivities.  However, using the fuzzy 
distances seems most appropriate for regional application given the difficulty in precisely defining the 
natural state. 

The AHP does not make any assumption on discontinuity and skewness but assumes independence 
among variables.  If interdependence exists, another more comprehensive model named the Analytical 
Network Process (ANP) (Saaty 2001) may be more appropriate and this alternative should be explored in 
future research. 

Although there is no assumption about data in Cluster Analysis, clustering result is highly dependent 
upon the distance criteria used in the partitioning algorithm, which in turn is strongly influenced by the 
data distributions.  For example, the clustering results of single linkage (or nearest neighbor) and the 
complete linkage (or furthest neighbor), which are based on a pair of two objects to measure the distance 
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between two groups, are sensitive to outliers.  Interdependency and imbalance also affect the Cluster 
Analysis whose results might be biased toward the pattern of big family of highly-correlated variables, 
masking the signals of other important but stand-alone variables.  In such a case, the problem can be 
overcome by the use of the Mahalanobis distance instead of the common Euclidean distance. The SOM’s 
sensitivity to data problems is similar to the Cluster Analysis. 

The Stressor-Resource Overlay is the only method that is not sensitive to data peculiarities.  
However, this conclusion depends on two assumptions.  First, multiple stressors impose synergistic 
effects. Therefore, if two stressors are present at high levels on a watershed, then the effect is at least 
twice as great.  This will be true whether the stressors are or are not correlated across the region. Second, 
each of the resources is valued independently whether or not the resources are correlated across the 
region. Generally, these assumptions will hold as long as the variable list is carefully scrutinized.  For 
example, two variables, which are really different measures of the same stressor or resource, should not 
be used together. 

The Stressor-Resource Matrix uses either correlation or regression coefficients and has a problem 
with integer variables. Skewness is likely to cause problems with the correlations and regressions.  Log 
transformations are inappropriate here because the method directly interprets the regression coefficients.  
Dropping outliers will not work, either.  This is because we are looking for the outlier stressors.  In 
addition, dropping variables will not work because the worst stressors are associated with the most 
skewed variables. So, skewness is a substantial problem here.  The analyses will have to be carefully 
interpreted and checks provided for the influence of skewness.  Imbalance is also a problem with this 
method since correlation/regression coefficients are summed across families.  This will be addressed in 
the following two ways: (1) the analysis will be done for each family separately and (2) the sum will be 
taken over the averages of each family. 

Generally, integration methodology is sensitive to some or all of the data problems.  There is no 
universal solution for all methods and/or all problems.  Hence, we need to be aware of the potential 
pitfall(s) of each method regarding data problems.  Furthermore, we need to deal with each method 
regarding each problem individually. 
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Section 4 

Discussion & Recommendations 

Discussion 

In the following section, we discuss the integration methods regarding various key components of a 
regional environmental assessment, such as classification/ranking, risk/vulnerability assessment, and 
planning/restoration/development, as well as other related issues (e.g., data, uncertainty). 

Classification/Ranking 

Generally, the aim of classification in environmental assessment is to group watersheds into 
homogeneous classes or to rank watersheds from the best to the worst with regard to a set of criteria.  In 
more detail, this type of problem can be referred to as classification or sorting.  Although these two terms 
describe the overall objective of assigning watersheds into groups, they represent two different situations.  
While classification does not need an order among groups (nominal measurements), sorting requires 
groups to be ordered from the best to the worst one (ordinal measurements).  For example, in an 
ecoregion-based classification scheme, the identification of a watershed according to its physical and 
ecological attributes is a classification problem because it is nonsense to establish a preference ordering 
among ecoregions and eco-subregions.  However, the vulnerability assessment of watersheds in ReVA is 
a sorting problem because vulnerability can be ordered into different levels ranging from high to low.  
Both classification and sorting problems have been encountered extensively in environmental studies and 
they have practically motivated researchers to develop models based on various approaches to achieve 
higher accuracy in classification and prediction.  For several decades, the source-based approaches such 
as those focused on a specific chemical contaminant (e.g., dose-response curves) have been applied 
extensively in risk assessment and related sorting and classification problems. Multivariate statistical 
analyses (e.g., various clustering techniques, linear, and quadratic discriminant analysis) have become 
more prevalent recently.  While multivariate analysis can be used to analyze and present associations 
between multiple stressors and multiple endpoints/impacts, the parametric nature as well as the statistical 
assumptions and restrictions of these techniques have been a major issue in their practical applicability 
and usefulness. Recently, classification and sorting models have been developed based on techniques in 
decision-making science and artificial intelligence. 

The integration methods presented in previous sections cover various approaches ranging from simple 
ones (e.g., Simple Sum, Stressor-Resource Overlay) to conventional statistics (PCA, Cluster Analysis with 
K-means clustering and hierarchical clustering), to artificial neural network (e.g., multi-level SOM) and 
decision-making methods (AHP). These methods are capable of classifying/ranking at various levels.  
For example, while the clustering methods (Cluster Analysis, SOM) are mainly for classification, their use 
for ranking purposes is absolutely possible by combining them with another method (e.g., Simple Sum, 
PCA). Alternatively, the distance-based methods (e.g., Simple Sum, PCA, State Space Analysis, 
Criticality Analysis, AHP) are mainly for ranking purpose.  However, they should be used in parallel with 
a clustering method to find out whether or not their score-/rank-based groups reflect any real 
environmental pattern within and/or between groups. 
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Common integrated assessment questions regarding classification and ranking include (but are not 
limited to): What is the overall environmental condition of the region?  What is relative condition of 
locations within a region?  What is the pattern of the overall condition?  What are the patterns of abiotic/ 
biotic factors and/or resources associated with environmental condition of the region?  What are the 
relative rankings of regional stressors/resources? What are the differences between areas with good 
versus poor condition? 

Depending upon the question(s) and study phase, integration methods can be used individually or in 
combination.  For example, for preliminary exploratory purposes, Best/Worst Quantiles and Simple Sum 
are very suitable due to their simplicity and visual effectiveness.  Similarly, preliminary classification can 
be done with Clustering Analysis and/or SOM to explore spatial pattern of the overall environmental 
condition. At a later phase of the assessment, pattern classification can also be carried out with 
Clustering Analysis and/or SOM but in a more complex manner, such as multiple-level clustering (e.g., 
hierarchical clustering and multi-level SOM) on different subsets or the whole set of variables to explore 
spatial patterns of various environmental dimensions (e.g., stressors, resources, human health pressure, 
etc.). Questions regarding overall or specific environmental conditions of the region as well as relative 
condition of locations can be revealed in a distance-based measuring/ranking method, from a simple 
method like Simple Sum to more complicated ones, such as PCA, State Space Analysis, Criticality 
Analysis, and AHP, which can be applied on different subsets or the whole set of variables. 

Risk/Vulnerability Assessment 

Conventional ecological risk/vulnerability assessment is mainly based on a “source-based” approach 
(single stressor on single resource) in which the concept of probability is dominant.  However, it is not 
easy (or almost impossible) to derive a probabilistic risk/vulnerability in a “place-based” method as in 
ReVA where data are multiple stressors and resources collected from various sources with different types 
of uncertainty (or no information on uncertainty at all).  In that context, the integration methods in ReVA 
portray a risk/vulnerability concept in a “qualitative” and “relative” context (e.g., relatively low risk, high 
risk, extremely high risk, etc.).  This risk/vulnerability concept is based on a relative comparison and 
spatial relationships among watersheds.  For example, the closer a watershed with high resources is to a 
watershed with high levels of stressors, the higher risk the former watershed is facing.  And if there is no 
plan of protection/preservation/adaptation for those resources, the more vulnerable the watershed is. 

Common risk/vulnerability assessment questions include (but are not limited to):  Where are the “hot 
spots” of poor condition (i.e., places with high stressors and poor resources) or the “most vulnerable” 
(i.e., both high stressor levels and high numbers of resources) locations in the region?  Which resources 
are at risk? What are the socioeconomic factors contributing to stressors and condition? How will 
conditions and vulnerabilities change in the future? Which areas will change in a negative direction 
environmentally because of future conditions?  Which environmental problems are putting the Region at 
greatest risk? 

As mentioned in the Introduction section, regional vulnerability includes many aspects: rarity, 
synergy, sensitivity, spatial context, and history. In that context, the questions listed above are not 
separate but interwoven. There is no single method that will suffice to answer those questions.  However, 
the combination of both clustering- and ranking-oriented methods described in this report is capable of 
answering several aspects of regional vulnerability. Criticality Analysis, Stressor-Resource Overlay, 
Stressor-Resource Matrix, and State Space Analysis are methods that adequately demonstrate the concept 
of relative risk/vulnerability stated above.  Those methods can be used in combination with future 
scenario analysis to explore conditions and vulnerabilities that change in the future.  Furthermore, 
Clustering Analysis and/or SOM can assist in explaining some spatial aspects of regional vulnerability 
(e.g., whether vulnerability is locally limited or spatially widespread).  Note that the integration methods 
do not handle time series data (because no time series data are available).  Additional analyses (e.g., time 
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series data analysis if data are available, experts’ judgment) are needed to account for the temporal 
aspects of vulnerability (e.g., cumulative and aggregate stresses occurring over time can influence the 
prioritization of ecosystems regarding vulnerability). 

Planning/Restoration/Development 

The assessment questions listed in the two sections above are also common questions being asked in 
environmental planning, restoration, and development.  Other common questions include: How 
applicable are risk management options to other locations in the region? What are socioeconomic and 
environmental costs and benefits associated with alternative management programs?  What are the 
tradeoffs associated with alternative management programs? 

All of the integration methods in this report can be used in various tasks of planning, restoration, and 
development.  For example, both clustering- and ranking-oriented methods are capable of pointing out 
which watersheds are at risk or in bad shape for protection or restoration purposes.  Future scenario 
analysis is an important task in environmental planning and policy development and each method in this 
report can facilitate this task in its own fashion.  For example, the Change Analysis directly serves 
scenario analysis for either a single variables or a whole data set.  For the clustering-oriented methods 
(Cluster Analysis, SOM), scenario analysis can be carried out by comparing changes with the benchmark 
clustering pattern to see if a watershed is moving from the current cluster to a better one or the reverse in 
terms of environmental conditions.  For the ranking-oriented and distance-based methods (e.g., Simple 
Sum, PCA, State Space Analysis, Criticality Analysis, AHP), rank or distance to some reference points 
(e.g., a pristine watershed) can be used to measure the magnitude of change from a future scenario in 
comparison with the status quo (i.e., the current ranking or distances).  Among the integration methods, 
AHP is an explicitly designated multi-criteria decision-making model.  Understandably, AHP has several 
advantages compared with other methods in exploring socioeconomic and environmental tradeoffs 
associated with alternative management programs.  In addition to being able to organize a complex 
problem into a well-structured hierarchy, AHP can be expanded to include other social, cultural, and 
economic components (e.g., putting the hierarchy in this analysis into another larger hierarchy), moving 
from ecological assessment to social-economic-environmental-policy evaluation. 

Subjective Judgments/Expert Knowledge 

An integrated assessment is often put in the context of a larger decision-making problem where 
variables or indicators are seldom weighted equally. For example, resources providing goods and services 
or directly benefiting human health might be considered by some to be more important than non-
monetized resources, such as native biodiversity.  Similarly, some stressors have larger impacts or affect a 
greater number of resources than others and thus should be given greater weights.  User-specified 
weightings offer a means to communicate results of the assessment in terms of what is important to 
different groups with different values and a way to explore how weighting groups of stressors or 
resources more heavily than others affects overall patterns of vulnerability. Varying weights allows the 
user to explore the data by focusing on subsets of information to evaluate the contribution of these subsets 
to overall patterns.  Comparison of resulting maps based on different weightings allows an assessment of 
tradeoffs associated with different management priorities.  Within that context, the AHP provides a 
powerful and flexible framework to facilitate such a multiple-criteria decision-making process with 
multiple stakeholders.  Weights for different variables or criteria can be derived and/or put into the model 
via pair-wise comparison (by ways of graphic, questionnaire, verbal, or matrix) or absolute measurements 
(direct data entry).  The model can incorporate group judgments and derive combined weights from 
multiple stakeholders.  Furthermore, the AHP helps to organize a complex problem into a well-structured 
hierarchy.  It also can be expanded in the future to include other social, cultural, and economic 
components (e.g., putting the hierarchy in this analysis into another larger hierarchy), moving from 
ecological assessment to social-economic-environmental-policy evaluation. 
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Combination of Integration Methods 

Although the integration methods are presented as separate methods in this report, their combination 
to create a more comprehensive integration model is feasible and promising.  For example, Tran el al. 
(2002) developed a fuzzy decision analysis method for integrating ecological indicators.  This was a 
combination of the fuzzy ranking method (Section 13) with the AHP and the PCA. The method was 
capable of ranking ecosystems in terms of environmental conditions and suggesting cumulative impacts 
across a large region. Using a data set on land cover, population, roads, streams, air pollution, and 
topography of the Mid-Atlantic region which is very similar to the one in this report, the authors were 
able to point out areas which were in relatively poor condition and/or vulnerable to future deterioration.  
The method offered an easy and comprehensive way to combine the strengths of fuzzy set theory and the 
AHP for ecological assessment.  Furthermore, the suggested method can serve as a building block for the 
evaluation of environmental policies.  In another example, Tran et al. (2003) created another assessment 
model by combining the SOM and the PCA. The method is capable of clustering ecosystems in terms of 
environmental conditions and suggesting relative cumulative environmental impacts of multiple factors 
across a large region.  We expect to develop other comprehensive models in the next phase of ReVA. 

Clearly, a regional vulnerability assessment involves various aspects with many interwoven 
questions. Furthermore, there is no single method appropriate for a specific question.  The set of 
questions should be examined with a set of methods in an integrated fashion.  In that context, a 
classification of “method versus question” or the question of “what is the best method?” can be 
misleading and it is not recommended in this report. 

Recommendations 

Following are recommendations for the use of the integration methods described in this report: 

�	 Use a suite of integration methods: There is no universal integration method that can cover all 
tasks of an integrated environmental assessment.  A method has advantages on some aspects 
but is disadvantaged on others.  The use of multiple methods in a complementary manner will 
help a user look at the problem from different angles/perspectives.  It also gives the user a 
better chance to detect whether a pattern/abnormality on the map is a real environmental 
signal or just an arbitrary view created by some “strange” calculation. 

�	 Start with the simple methods (Simple Sum, Best/Worst Quantiles) first and move to other 
complicated ones later.  It will help the user to have a general picture of the study area before 
involving in more complicated and detailed calculations (i.e., see the forest first before 
viewing the tree). 

�	 Keep it simple: If several methods provide similar patterns and/or results, stick with the 
simple methods and drop off the complicated ones. 

�	 Pay proper care to data: How data are coded or transformed has a big influence on the 
integration results.  Try to balance between data transformation and data interpretation 
because data transformation can reduce some particular problems (e.g., log transform to 
reduce skewness), while causing difficulties in interpreting due to the combination of 
transformed variables used in combination with non-transformed ones. 

�	 Note that the methods described in this report are products of the ReVA’s first phase only. 
ReVA will expand its focus to include more products that have broader application and will 
work directly with clients to develop tools that will support environmental decision-making. 
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Table 1A. Correlation matrix for variables included in the evaluation of integration methods. 
Huc.dims SOFTWOODINV SOFTWOODREM HARDWOODINV HARDWOODREM IMPLCPCT RDDENS DISSOLVEDP UINDEX TOTALN PSOIL 

SOFTWOODINV 1.000 0.980 0.615 0.773 0.402 0.290 0.330 0.302 0.123 0.019 
SOFTWOODREM 0.980 1.000 0.521 0.729 0.413 0.318 0.379 0.351 0.182 0.073 
HARDWOODINV 0.615 0.521 1.000 0.722 0.199 0.082 0.123 0.142 0.017 -0.010 
HARDWOODREM 0.773 0.729 0.722 1.000 0.411 0.304 0.343 0.328 0.138 0.040 
IMPLCPCT 0.402 0.413 0.199 0.411 1.000 0.961 0.744 0.546 0.283 -0.125 
RDDENS 0.290 0.318 0.082 0.304 0.961 1.000 0.826 0.670 0.475 0.097 
DISSOLVEDP 0.330 0.379 0.123 0.343 0.744 0.826 1.000 0.958 0.847 0.582 
UINDEX 0.302 0.351 0.142 0.328 0.546 0.670 0.958 1.000 0.923 0.766 
TOTALN 0.123 0.182 0.017 0.138 0.283 0.475 0.847 0.923 1.000 0.897 
PSOIL 0.019 0.073 -0.010 0.040 -0.125 0.097 0.582 0.766 0.897 1.000 
EDGE2 0.379 0.408 0.081 0.216 0.164 0.284 0.517 0.567 0.537 0.519 
INT2 0.488 0.526 0.181 0.378 0.526 0.579 0.746 0.752 0.565 0.454 
INT65 0.368 0.387 0.058 0.169 0.245 0.328 0.434 0.448 0.376 0.317 
MIGSCENARIO 0.171 0.180 0.253 0.309 0.263 0.399 0.654 0.704 0.680 0.614 
N03DEPMODEL -0.549 -0.495 -0.436 -0.487 -0.039 0.091 0.005 -0.015 0.060 0.048 
S04DEPMODEL -0.478 -0.434 -0.435 -0.510 -0.032 0.105 -0.002 -0.027 0.043 0.026 
UVB 0.616 0.554 0.474 0.513 0.071 -0.012 0.051 0.072 -0.011 -0.017 
NONCLIMAXPCT 0.316 0.280 0.260 0.434 -0.037 -0.042 0.067 0.087 0.085 0.081 
NATCOVERPCT 0.410 0.380 0.308 0.460 0.119 0.004 0.134 0.115 0.043 -0.016 
AGSL -0.365 -0.306 -0.267 -0.451 -0.115 0.050 0.175 0.212 0.373 0.398 
CROPSL -0.341 -0.300 -0.140 -0.269 -0.085 0.075 0.166 0.204 0.332 0.343 
RIPAG -0.202 -0.152 -0.138 -0.259 -0.185 -0.047 0.295 0.411 0.581 0.672 
EDGE65 -0.309 -0.343 -0.215 -0.375 -0.431 -0.365 -0.540 -0.568 -0.326 -0.291 
RIPFOR 0.392 0.418 0.201 0.408 0.401 0.355 0.539 0.567 0.340 0.309 
EMAGRIC -0.040 0.023 -0.202 0.078 0.227 0.338 0.493 0.481 0.520 0.418 
FUNGICIDE 0.188 0.226 0.053 0.312 0.017 0.061 0.323 0.430 0.398 0.466 
HERBICIDE 0.264 0.282 0.216 0.356 -0.073 0.014 0.408 0.571 0.556 0.664 
INSECTICIDE 0.265 0.250 0.312 0.401 -0.103 -0.065 0.241 0.363 0.357 0.447 
NBLDPM97 0.291 0.267 0.247 0.303 -0.022 -0.003 0.232 0.301 0.302 0.335 
OZONE8HR 0.417 0.439 0.008 0.260 0.233 0.284 0.432 0.465 0.357 0.328 
POPGROWTH 0.280 0.249 0.217 0.281 0.097 0.102 0.281 0.292 0.317 0.265 
SOFTCHIPMIL 0.203 0.142 0.366 0.265 -0.108 -0.157 -0.089 -0.077 -0.053 -0.032 
TERRTE 0.496 0.497 0.375 0.616 0.279 0.182 0.313 0.322 0.141 0.102 
WETLNDSPCT -0.384 -0.360 -0.350 -0.514 0.056 0.125 -0.056 -0.138 -0.003 -0.126 
SUM06 -0.175 -0.192 -0.081 -0.164 -0.173 -0.160 -0.134 -0.119 -0.048 0.002 
HARDCHIPMIL -0.217 -0.255 -0.058 -0.211 -0.226 -0.254 -0.346 -0.371 -0.274 -0.241 
NTCMPPLM -0.063 -0.111 0.078 -0.032 -0.320 -0.394 -0.459 -0.415 -0.378 -0.263 
POV65 0.117 0.063 0.162 0.083 -0.287 -0.296 -0.322 -0.260 -0.223 -0.113 
EMMINE -0.175 -0.151 -0.260 -0.287 -0.057 -0.015 -0.257 -0.293 -0.290 -0.297 
STRD -0.155 -0.115 -0.273 -0.355 0.122 0.158 -0.087 -0.160 -0.147 -0.226 
AQUAEXOTIC 0.011 0.014 -0.024 0.019 0.019 0.000 0.072 0.053 0.114 0.077 
AQUANATIVE -0.114 -0.114 0.144 0.190 0.092 0.102 0.133 0.173 0.102 0.115 
AQUATE 0.184 0.213 -0.002 0.031 -0.066 -0.088 -0.102 -0.115 -0.087 -0.076 
C5FS 0.344 0.354 0.314 0.477 0.390 0.302 0.445 0.426 0.312 0.206 
DAMS -0.188 -0.174 -0.188 -0.183 0.153 0.243 0.107 0.024 0.061 -0.056 
FORCOVDEFOL -0.040 0.007 -0.401 0.007 0.280 0.280 0.237 0.157 0.126 -0.010 
INDTHPTH 0.258 0.211 0.262 0.329 0.150 0.066 0.051 0.033 -0.059 -0.093 
POPDENS 0.207 0.227 0.032 0.203 0.494 0.476 0.496 0.398 0.338 0.120 
TERREXOTIC -0.131 -0.053 -0.324 -0.036 0.080 0.168 0.341 0.369 0.344 0.351 
TERRNATIVE -0.061 -0.066 -0.133 -0.274 -0.107 -0.045 -0.172 -0.154 -0.128 -0.088 
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Table 1A. Continued 
Huc.dims EDGE2 INT2 INT65 MIGSCENARIO NO3DEPMODEL SO4DEPMODEL UVB NONCLIMAXPCT NATCOVERPCT AGSL 
SOFTWOODINV 0.379 0.488 0.368 0.171 -0.549 -0.478 0.616 0.316 0.410 -0.365 
SOFTWOODREM 0.408 0.526 0.387 0.180 -0.495 -0.434 0.554 0.280 0.380 -0.306 
HARDWOODINV 0.081 0.181 0.058 0.253 -0.436 -0.435 0.474 0.260 0.308 -0.267 
HARDWOODREM 0.216 0.378 0.169 0.309 -0.487 -0.510 0.513 0.434 0.460 -0.451 
IMPLCPCT 0.164 0.526 0.245 0.263 -0.039 -0.032 0.071 -0.037 0.119 -0.115 
RDDENS 0.284 0.579 0.328 0.399 0.091 0.105 -0.012 -0.042 0.004 0.050 
DISSOLVEDP 0.517 0.746 0.434 0.654 0.005 -0.002 0.051 0.067 0.134 0.175 
UINDEX 0.567 0.752 0.448 0.704 -0.015 -0.027 0.072 0.087 0.115 0.212 
TOTALN 0.537 0.565 0.376 0.680 0.060 0.043 -0.011 0.085 0.043 0.373 
PSOIL 0.519 0.454 0.317 0.614 0.048 0.026 -0.017 0.081 -0.016 0.398 
EDGE2 1.000 0.854 0.846 0.614 -0.065 -0.007 0.185 0.243 0.243 0.052 
INT2 0.854 1.000 0.760 0.640 -0.060 -0.031 0.156 0.135 0.224 0.011 
INT65 0.846 0.760 1.000 0.417 -0.118 -0.052 0.213 0.210 0.215 -0.016 
MIGSCENARIO 0.614 0.640 0.417 1.000 0.073 0.034 0.022 0.271 0.297 0.137 
N03DEPMODEL -0.065 -0.060 -0.118 0.073 1.000 0.955 -0.878 -0.618 -0.541 0.420 
S04DEPMODEL -0.007 -0.031 -0.052 0.034 0.955 1.000 -0.773 -0.610 -0.536 0.443 
UVB 0.185 0.156 0.213 0.022 -0.878 -0.773 1.000 0.710 0.623 -0.467 
NONCLIMAXPCT 0.243 0.135 0.210 0.271 -0.618 -0.610 0.710 1.000 0.787 -0.443 
NATCOVERPCT 0.243 0.224 0.215 0.297 -0.541 -0.536 0.623 0.787 1.000 -0.464 
AGSL 0.052 0.011 -0.016 0.137 0.420 0.443 -0.467 -0.443 -0.464 1.000 
CROPSL 0.115 0.063 0.087 0.254 0.436 0.400 -0.431 -0.245 -0.288 0.711 
RIPAG 0.070 0.052 -0.019 0.128 0.166 0.169 -0.209 -0.272 -0.313 0.700 
EDGE65 -0.220 -0.592 0.007 -0.391 -0.004 0.044 0.008 0.091 -0.131 0.101 
RIPFOR 0.352 0.634 0.303 0.353 -0.124 -0.148 0.118 0.013 0.210 -0.092 
EMAGRIC 0.250 0.301 0.142 0.369 0.107 0.018 -0.127 0.141 0.086 0.237 
FUNGICIDE 0.352 0.353 0.261 0.359 -0.185 -0.227 0.225 0.246 0.297 -0.280 
HERBICIDE 0.433 0.443 0.290 0.483 -0.192 -0.235 0.253 0.289 0.322 -0.305 
INSECTICIDE 0.318 0.284 0.189 0.390 -0.422 -0.435 0.540 0.519 0.514 -0.388 
NBLDPM97 0.231 0.219 0.131 0.437 -0.448 -0.458 0.411 0.451 0.369 -0.180 
OZONE8HR 0.595 0.626 0.523 0.346 -0.045 0.033 0.171 0.083 0.196 -0.182 
POPGROWTH 0.161 0.142 0.105 0.413 -0.376 -0.391 0.301 0.341 0.269 -0.052 
SOFTCHIPMIL 0.104 -0.005 0.085 0.276 -0.537 -0.539 0.542 0.608 0.498 -0.258 
TERRTE 0.157 0.357 0.068 0.249 -0.348 -0.381 0.434 0.416 0.486 -0.485 
WETLNDSPCT -0.257 -0.286 -0.147 -0.221 0.406 0.412 -0.533 -0.530 -0.520 0.588 
SUM06 -0.254 -0.254 -0.221 -0.085 0.014 0.021 -0.027 -0.060 -0.050 0.270 
HARDCHIPMIL -0.431 -0.477 -0.296 -0.241 -0.053 -0.049 0.002 -0.004 -0.091 0.133 
NTCMPPLM -0.333 -0.395 -0.344 -0.391 -0.246 -0.225 0.185 0.099 0.035 -0.237 
POV65 -0.066 -0.201 -0.009 -0.296 -0.417 -0.341 0.485 0.324 0.209 -0.214 
EMMINE -0.194 -0.240 -0.034 -0.470 0.201 0.274 -0.144 -0.291 -0.290 0.117 
STRD -0.271 -0.213 -0.082 -0.540 0.190 0.234 -0.218 -0.461 -0.472 0.279 
AQUAEXOTIC -0.162 -0.134 -0.186 0.077 -0.228 -0.290 0.064 0.078 0.023 0.305 
AQUANATIVE -0.076 0.041 -0.231 0.371 0.052 -0.049 -0.157 -0.020 0.048 0.001 
AQUATE -0.010 -0.047 -0.021 -0.295 -0.158 -0.124 0.182 -0.009 -0.016 0.057 
C5FS 0.232 0.387 0.203 0.446 -0.099 -0.173 0.081 0.153 0.388 -0.217 
DAMS 0.078 0.038 0.066 0.097 0.416 0.429 -0.349 -0.269 -0.143 0.235 
FORCOVDEFOL 0.100 0.159 0.063 -0.130 0.074 0.065 -0.111 0.029 0.007 -0.089 
INDTHPTH 0.103 0.109 0.147 0.125 -0.281 -0.247 0.378 0.349 0.390 -0.468 
POPDENS 0.215 0.301 0.148 0.284 -0.082 -0.090 0.053 0.109 0.131 0.089 
TERREXOTIC 0.175 0.286 0.017 0.320 0.402 0.304 -0.420 -0.131 -0.102 0.063 
TERRNATIVE 0.253 0.083 0.308 -0.158 0.194 0.311 -0.157 -0.280 -0.230 0.128 57 



Table 1A. Continued 
Huc.dims CROPSL RIPAG EDGE65 RIPFOR EMAGRIC FUNGICIDE HERBICIDE INSECTICIDE NBLDPM97 OZONE8HR POPGROWTH 
SOFTWOODINV -0.341 -0.202 -0.309 0.392 -0.040 0.188 0.264 0.265 0.291 0.417 0.280 
SOFTWOODREM -0.300 -0.152 -0.343 0.418 0.023 0.226 0.282 0.250 0.267 0.439 0.249 
HARDWOODINV -0.140 -0.138 -0.215 0.201 -0.202 0.053 0.216 0.312 0.247 0.008 0.217 
HARDWOODREM -0.269 -0.259 -0.375 0.408 0.078 0.312 0.356 0.401 0.303 0.260 0.281 
IMPLCPCT -0.085 -0.185 -0.431 0.401 0.227 0.017 -0.073 -0.103 -0.022 0.233 0.097 
RDDENS 0.075 -0.047 -0.365 0.355 0.338 0.061 0.014 -0.065 -0.003 0.284 0.102 
DISSOLVEDP 0.166 0.295 -0.540 0.539 0.493 0.323 0.408 0.241 0.232 0.432 0.281 
UINDEX 0.204 0.411 -0.568 0.567 0.481 0.430 0.571 0.363 0.301 0.465 0.292 
TOTALN 0.332 0.581 -0.326 0.340 0.520 0.398 0.556 0.357 0.302 0.357 0.317 
PSOIL 0.343 0.672 -0.291 0.309 0.418 0.466 0.664 0.447 0.335 0.328 0.265 
EDGE2 0.115 0.070 -0.220 0.352 0.250 0.352 0.433 0.318 0.231 0.595 0.161 
INT2 0.063 0.052 -0.592 0.634 0.301 0.353 0.443 0.284 0.219 0.626 0.142 
INT65 0.087 -0.019 0.007 0.303 0.142 0.261 0.290 0.189 0.131 0.523 0.105 
MIGSCENARIO 0.254 0.128 -0.391 0.353 0.369 0.359 0.483 0.390 0.437 0.346 0.413 
N03DEPMODEL 0.436 0.166 -0.004 -0.124 0.107 -0.185 -0.192 -0.422 -0.448 -0.045 -0.376 
S04DEPMODEL 0.400 0.169 0.044 -0.148 0.018 -0.227 -0.235 -0.435 -0.458 0.033 -0.391 
UVB -0.431 -0.209 0.008 0.118 -0.127 0.225 0.253 0.540 0.411 0.171 0.301 
NONCLIMAXPCT -0.245 -0.272 0.091 0.013 0.141 0.246 0.289 0.519 0.451 0.083 0.341 
NATCOVERPCT -0.288 -0.313 -0.131 0.210 0.086 0.297 0.322 0.514 0.369 0.196 0.269 
AGSL 0.711 0.700 0.101 -0.092 0.237 -0.280 -0.305 -0.388 -0.180 -0.182 -0.052 
CROPSL 1.000 0.421 0.113 -0.095 0.316 -0.193 -0.117 -0.248 -0.069 -0.065 -0.001 
RIPAG 0.421 1.000 -0.071 0.203 0.268 0.058 0.181 0.056 0.042 -0.077 0.045 
EDGE65 0.113 -0.071 1.000 -0.734 -0.211 -0.323 -0.467 -0.278 -0.175 -0.400 -0.064 
RIPFOR -0.095 0.203 -0.734 1.000 0.166 0.329 0.518 0.249 0.270 0.466 0.127 
EMAGRIC 0.316 0.268 -0.211 0.166 1.000 0.163 0.234 0.146 0.199 0.206 0.381 
FUNGICIDE -0.193 0.058 -0.323 0.329 0.163 1.000 0.614 0.684 0.160 0.329 0.094 
HERBICIDE -0.117 0.181 -0.467 0.518 0.234 0.614 1.000 0.742 0.418 0.495 0.198 
INSECTICIDE -0.248 0.056 -0.278 0.249 0.146 0.684 0.742 1.000 0.323 0.165 0.175 
NBLDPM97 -0.069 0.042 -0.175 0.270 0.199 0.160 0.418 0.323 1.000 0.292 0.700 
OZONE8HR -0.065 -0.077 -0.400 0.466 0.206 0.329 0.495 0.165 0.292 1.000 0.248 
POPGROWTH -0.001 0.045 -0.064 0.127 0.381 0.094 0.198 0.175 0.700 0.248 1.000 
SOFTCHIPMIL -0.129 -0.270 0.168 -0.205 -0.007 0.068 0.042 0.305 0.408 -0.110 0.396 
TERRTE -0.321 -0.175 -0.553 0.609 0.151 0.368 0.513 0.464 0.358 0.325 0.210 
WETLNDSPCT 0.457 0.186 0.373 -0.500 0.040 -0.453 -0.610 -0.680 -0.317 -0.225 -0.089 
SUM06 0.241 0.133 0.099 -0.234 0.374 -0.105 -0.190 -0.105 0.017 -0.078 0.249 
HARDCHIPMIL 0.153 -0.002 0.382 -0.416 0.066 -0.300 -0.369 -0.198 -0.066 -0.453 0.127 
NTCMPPLM -0.278 -0.215 0.159 -0.301 -0.354 0.098 -0.118 0.085 -0.074 -0.209 -0.127 
POV65 -0.240 -0.122 0.284 -0.219 -0.346 0.152 0.016 0.300 -0.131 -0.130 -0.227 
EMMINE 0.104 -0.129 0.304 -0.319 -0.006 -0.283 -0.333 -0.333 -0.399 -0.065 -0.316 
STRD 0.131 0.155 0.243 -0.224 -0.046 -0.313 -0.402 -0.386 -0.469 -0.205 -0.406 
AQUAEXOTIC 0.197 0.145 0.047 -0.112 0.336 -0.127 -0.225 -0.185 0.223 -0.112 0.417 
AQUANATIVE 0.109 -0.047 -0.345 0.291 0.029 0.137 0.205 0.082 0.160 -0.051 0.066 
AQUATE -0.075 0.000 0.087 -0.132 -0.014 -0.070 -0.110 -0.063 -0.029 0.015 -0.092 
C5FS -0.079 -0.049 -0.400 0.412 0.301 0.316 0.369 0.300 0.332 0.276 0.349 
DAMS 0.275 0.029 0.119 -0.083 0.209 -0.142 -0.196 -0.209 -0.221 0.036 -0.077 
FORCOVDEFOL -0.109 0.001 -0.133 0.081 0.261 0.084 -0.040 -0.071 -0.083 0.195 -0.050 
INDTHPTH -0.295 -0.346 -0.037 -0.021 -0.059 0.284 0.198 0.347 -0.010 0.138 0.082 
POPDENS 0.032 0.045 -0.212 0.173 0.581 0.042 0.003 -0.043 0.125 0.246 0.491 
TERREXOTIC 0.060 0.146 -0.475 0.417 0.492 0.184 0.387 0.020 0.119 0.406 0.134 
TERRNATIVE 0.133 -0.032 0.264 -0.140 -0.378 -0.133 -0.163 -0.279 -0.231 0.171 -0.277 
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Table 1A. Continued 
Huc.dims SOFTCHIPMIL TERRTE WETLNDSPCT SUM06 HARDCHIPMIL NTCMPPLM POV65 EMMINE STRD AQUAEXOTIC 
SOFTWOODINV 0.203 0.496 -0.384 -0.175 -0.217 -0.063 0.117 -0.175 -0.155 0.011 
SOFTWOODREM 0.142 0.497 -0.360 -0.192 -0.255 -0.111 0.063 -0.151 -0.115 0.014 
HARDWOODINV 0.366 0.375 -0.350 -0.081 -0.058 0.078 0.162 -0.260 -0.273 -0.024 
HARDWOODREM 0.265 0.616 -0.514 -0.164 -0.211 -0.032 0.083 -0.287 -0.355 0.019 
IMPLCPCT -0.108 0.279 0.056 -0.173 -0.226 -0.320 -0.287 -0.057 0.122 0.019 
RDDENS -0.157 0.182 0.125 -0.160 -0.254 -0.394 -0.296 -0.015 0.158 0.000 
DISSOLVEDP -0.089 0.313 -0.056 -0.134 -0.346 -0.459 -0.322 -0.257 -0.087 0.072 
UINDEX -0.077 0.322 -0.138 -0.119 -0.371 -0.415 -0.260 -0.293 -0.160 0.053 
TOTALN -0.053 0.141 -0.003 -0.048 -0.274 -0.378 -0.223 -0.290 -0.147 0.114 
PSOIL -0.032 0.102 -0.126 0.002 -0.241 -0.263 -0.113 -0.297 -0.226 0.077 
EDGE2 0.104 0.157 -0.257 -0.254 -0.431 -0.333 -0.066 -0.194 -0.271 -0.162 
INT2 -0.005 0.357 -0.286 -0.254 -0.477 -0.395 -0.201 -0.240 -0.213 -0.134 
INT65 0.085 0.068 -0.147 -0.221 -0.296 -0.344 -0.009 -0.034 -0.082 -0.186 
MIGSCENARIO 0.276 0.249 -0.221 -0.085 -0.241 -0.391 -0.296 -0.470 -0.540 0.077 
N03DEPMODEL -0.537 -0.348 0.406 0.014 -0.053 -0.246 -0.417 0.201 0.190 -0.228 
S04DEPMODEL -0.539 -0.381 0.412 0.021 -0.049 -0.225 -0.341 0.274 0.234 -0.290 
UVB 0.542 0.434 -0.533 -0.027 0.002 0.185 0.485 -0.144 -0.218 0.064 
NONCLIMAXPCT 0.608 0.416 -0.530 -0.060 -0.004 0.099 0.324 -0.291 -0.461 0.078 
NATCOVERPCT 0.498 0.486 -0.520 -0.050 -0.091 0.035 0.209 -0.290 -0.472 0.023 
AGSL -0.258 -0.485 0.588 0.270 0.133 -0.237 -0.214 0.117 0.279 0.305 
CROPSL -0.129 -0.321 0.457 0.241 0.153 -0.278 -0.240 0.104 0.131 0.197 
RIPAG -0.270 -0.175 0.186 0.133 -0.002 -0.215 -0.122 -0.129 0.155 0.145 
EDGE65 0.168 -0.553 0.373 0.099 0.382 0.159 0.284 0.304 0.243 0.047 
RIPFOR -0.205 0.609 -0.500 -0.234 -0.416 -0.301 -0.219 -0.319 -0.224 -0.112 
EMAGRIC -0.007 0.151 0.040 0.374 0.066 -0.354 -0.346 -0.006 -0.046 0.336 
FUNGICIDE 0.068 0.368 -0.453 -0.105 -0.300 0.098 0.152 -0.283 -0.313 -0.127 
HERBICIDE 0.042 0.513 -0.610 -0.190 -0.369 -0.118 0.016 -0.333 -0.402 -0.225 
INSECTICIDE 0.305 0.464 -0.680 -0.105 -0.198 0.085 0.300 -0.333 -0.386 -0.185 
NBLDPM97 0.408 0.358 -0.317 0.017 -0.066 -0.074 -0.131 -0.399 -0.469 0.223 
OZONE8HR -0.110 0.325 -0.225 -0.078 -0.453 -0.209 -0.130 -0.065 -0.205 -0.112 
POPGROWTH 0.396 0.210 -0.089 0.249 0.127 -0.127 -0.227 -0.316 -0.406 0.417 
SOFTCHIPMIL 1.000 0.102 -0.216 0.186 0.299 0.100 0.230 -0.300 -0.417 0.216 
TERRTE 0.102 1.000 -0.722 -0.109 -0.218 0.008 0.013 -0.317 -0.422 -0.024 
WETLNDSPCT -0.216 -0.722 1.000 0.275 0.280 0.019 -0.142 0.316 0.452 0.311 
SUM06 0.186 -0.109 0.275 1.000 0.758 0.132 0.097 0.247 -0.015 0.546 
HARDCHIPMIL 0.299 -0.218 0.280 0.758 1.000 0.146 0.162 0.187 0.023 0.416 
NTCMPPLM 0.100 0.008 0.019 0.132 0.146 1.000 0.671 -0.068 -0.137 0.017 
POV65 0.230 0.013 -0.142 0.097 0.162 0.671 1.000 -0.032 -0.056 -0.034 
EMMINE -0.300 -0.317 0.316 0.247 0.187 -0.068 -0.032 1.000 0.630 -0.072 
STRD -0.417 -0.422 0.452 -0.015 0.023 -0.137 -0.056 0.630 1.000 -0.125 
AQUAEXOTIC 0.216 -0.024 0.311 0.546 0.416 0.017 -0.034 -0.072 -0.125 1.000 
AQUANATIVE -0.044 0.286 -0.139 -0.126 -0.167 -0.031 -0.172 -0.205 -0.341 0.088 
AQUATE -0.030 -0.063 0.080 0.060 0.024 0.138 0.177 0.213 0.260 0.112 
C5FS 0.080 0.450 -0.373 -0.047 -0.166 -0.266 -0.365 -0.301 -0.358 -0.057 
DAMS -0.168 -0.233 0.255 0.062 -0.042 -0.234 -0.207 0.268 0.207 -0.064 
FORCOVDEFOL -0.182 0.063 0.035 -0.128 -0.193 -0.104 -0.133 -0.012 0.120 -0.017 
INDTHPTH 0.316 0.251 -0.372 -0.084 -0.042 0.092 0.172 -0.081 -0.241 -0.093 
POPDENS -0.023 0.134 0.086 0.193 -0.087 -0.276 -0.303 -0.014 -0.022 0.379 
TERREXOTIC -0.371 0.316 -0.152 0.048 -0.259 -0.299 -0.474 -0.086 -0.224 0.067 
TERRNATIVE -0.240 -0.513 0.302 -0.351 -0.241 0.012 0.069 0.192 0.270 -0.416 59 



Table 1A. Continued 
Huc.dims AQUANATIVE AQUATE C5FS DAMS FORCOVDEFOL INDTHPTH POPDENS TERREXOTIC TERRNATIVE 
SOFTWOODINV -0.114 0.184 0.344 -0.188 -0.040 0.258 0.207 -0.131 -0.061 
SOFTWOODREM -0.114 0.213 0.354 -0.174 0.007 0.211 0.227 -0.053 -0.066 
HARDWOODINV 0.144 -0.002 0.314 -0.188 -0.401 0.262 0.032 -0.324 -0.133 
HARDWOODREM 0.190 0.031 0.477 -0.183 0.007 0.329 0.203 -0.036 -0.274 
IMPLCPCT 0.092 -0.066 0.390 0.153 0.280 0.150 0.494 0.080 -0.107 
RDDENS 0.102 -0.088 0.302 0.243 0.280 0.066 0.476 0.168 -0.045 
DISSOLVEDP 0.133 -0.102 0.445 0.107 0.237 0.051 0.496 0.341 -0.172 
UINDEX 0.173 -0.115 0.426 0.024 0.157 0.033 0.398 0.369 -0.154 
TOTALN 0.102 -0.087 0.312 0.061 0.126 -0.059 0.338 0.344 -0.128 
PSOIL 0.115 -0.076 0.206 -0.056 -0.010 -0.093 0.120 0.351 -0.088 
EDGE2 -0.076 -0.010 0.232 0.078 0.100 0.103 0.215 0.175 0.253 
INT2 0.041 -0.047 0.387 0.038 0.159 0.109 0.301 0.286 0.083 
INT65 -0.231 -0.021 0.203 0.066 0.063 0.147 0.148 0.017 0.308 
MIGSCENARIO 0.371 -0.295 0.446 0.097 -0.130 0.125 0.284 0.320 -0.158 
N03DEPMODEL 0.052 -0.158 -0.099 0.416 0.074 -0.281 -0.082 0.402 0.194 
S04DEPMODEL -0.049 -0.124 -0.173 0.429 0.065 -0.247 -0.090 0.304 0.311 
UVB -0.157 0.182 0.081 -0.349 -0.111 0.378 0.053 -0.420 -0.157 
NONCLIMAXPCT -0.020 -0.009 0.153 -0.269 0.029 0.349 0.109 -0.131 -0.280 
NATCOVERPCT 0.048 -0.016 0.388 -0.143 0.007 0.390 0.131 -0.102 -0.230 
AGSL 0.001 0.057 -0.217 0.235 -0.089 -0.468 0.089 0.063 0.128 
CROPSL 0.109 -0.075 -0.079 0.275 -0.109 -0.295 0.032 0.060 0.133 
RIPAG -0.047 0.000 -0.049 0.029 0.001 -0.346 0.045 0.146 -0.032 
EDGE65 -0.345 0.087 -0.400 0.119 -0.133 -0.037 -0.212 -0.475 0.264 
RIPFOR 0.291 -0.132 0.412 -0.083 0.081 -0.021 0.173 0.417 -0.140 
EMAGRIC 0.029 -0.014 0.301 0.209 0.261 -0.059 0.581 0.492 -0.378 
FUNGICIDE 0.137 -0.070 0.316 -0.142 0.084 0.284 0.042 0.184 -0.133 
HERBICIDE 0.205 -0.110 0.369 -0.196 -0.040 0.198 0.003 0.387 -0.163 
INSECTICIDE 0.082 -0.063 0.300 -0.209 -0.071 0.347 -0.043 0.020 -0.279 
NBLDPM97 0.160 -0.029 0.332 -0.221 -0.083 -0.010 0.125 0.119 -0.231 
OZONE8HR -0.051 0.015 0.276 0.036 0.195 0.138 0.246 0.406 0.171 
POPGROWTH 0.066 -0.092 0.349 -0.077 -0.050 0.082 0.491 0.134 -0.277 
SOFTCHIPMIL -0.044 -0.030 0.080 -0.168 -0.182 0.316 -0.023 -0.371 -0.240 
TERRTE 0.286 -0.063 0.450 -0.233 0.063 0.251 0.134 0.316 -0.513 
WETLNDSPCT -0.139 0.080 -0.373 0.255 0.035 -0.372 0.086 -0.152 0.302 
SUM06 -0.126 0.060 -0.047 0.062 -0.128 -0.084 0.193 0.048 -0.351 
HARDCHIPMIL -0.167 0.024 -0.166 -0.042 -0.193 -0.042 -0.087 -0.259 -0.241 
NTCMPPLM -0.031 0.138 -0.266 -0.234 -0.104 0.092 -0.276 -0.299 0.012 
POV65 -0.172 0.177 -0.365 -0.207 -0.133 0.172 -0.303 -0.474 0.069 
EMMINE -0.205 0.213 -0.301 0.268 -0.012 -0.081 -0.014 -0.086 0.192 
STRD -0.341 0.260 -0.358 0.207 0.120 -0.241 -0.022 -0.224 0.270 
AQUAEXOTIC 0.088 0.112 -0.057 -0.064 -0.017 -0.093 0.379 0.067 -0.416 
AQUANATIVE 1.000 -0.539 0.187 -0.047 -0.137 -0.073 0.025 0.317 -0.154 
AQUATE -0.539 1.000 -0.140 -0.092 0.013 -0.093 -0.035 -0.196 0.001 
C5FS 0.187 -0.140 1.000 0.027 0.019 0.197 0.234 0.292 -0.289 
DAMS -0.047 -0.092 0.027 1.000 0.141 -0.040 0.110 0.127 0.083 
FORCOVDEFOL -0.137 0.013 0.019 0.141 1.000 -0.023 0.218 0.224 -0.028 
INDTHPTH -0.073 -0.093 0.197 -0.040 -0.023 1.000 0.102 -0.144 -0.139 
POPDENS 0.025 -0.035 0.234 0.110 0.218 0.102 1.000 0.278 -0.233 
TERREXOTIC 0.317 -0.196 0.292 0.127 0.224 -0.144 0.278 1.000 -0.332 
TERRNATIVE -0.154 0.001 -0.289 0.083 -0.028 -0.139 -0.233 -0.332 1.000 
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Table 2A. Variables representing resources in analyses. 
NAME Display Name Description 

C5FS Children (0-5) in families & subfamilies Children (0-5) in families & subfamilies 
EMAGRIC Employed persons in agriculture, forestry, 

fisheries 
Employed persons by industry - agriculture, forestry, fisheries 1990 

EMMINE Employed persons in mining 1990 Employed persons by industry – mining 1990 
HARDWOODINV Index values for hardwood inventory Index values for hardwood forest inventory.  The index compares a baseline of most recently 

available FIA data against projections to 2020. Index values > 1 are areas with increasing 
inventory. 

HARDWOODREM Index values for hardwood removals Index values for hardwood removals. The index compares a baseline of most recently available 
FIA data against projections to 2020. Index values > 1 are areas with increasing inventory. 

INDTHPTH Infant deaths per 1,000 live births 1990 Infant deaths per 1,000 live births 1990 
INT2 Forest interior habitat at the 2 ha scale Percentage of forest habitat called interior (2 ha scale) 
INT65 Forest interior habitat at the 65 ha scale Percentage of forest habitat called interior (65 ha scale) 
MIGSCENARIO Migratory scenarios that use area The number of migratory scenarios for long-distance forest migrants that use a particular HUC 

or hexagon.  Scenarios are defined by a combination of compass heading, landfall location 
along the gulf coast and southern Atlantic Coast, and nightly flight distance 

NTCMPPLM Incomplete plumbing Incomplete plumbing 
POV65 65+ below poverty 65+ below poverty 
PSOIL Soil loss potential Proportion of watershed with potential soil loss greater than 1 ton per acre per year; the 

percentage of HUC or hexagon area that is estimated to lose more than 1 ton/acre/year of soil 
due to erosion 

RIPFOR Forest land cover along streams Proportion of total stream length with adjacent forest land cover; % riparian buffer that is forest 
SOFTWOODINV Index values for softwood inventory Index values for softwood forest inventory. The index compares a baseline of most recently 

available FIA data against projections to 2020. Index values > 1 are areas with increasing 
inventory. 

SOFTWOODREM Index values for softwood removals Index values for softwood removals. The index compares a baseline of most recently available 
FIA data against projections to 2020. Index values > 1 are areas with increasing inventory. 

WETLNDSPCT Percent wetlands land cover Percent of area classified as wetlands 
AQUANATIVE Native aquatic species Count of native aquatic – fish and mussels – species 
AQUATE Threatened and endangered aquatic 

species 
Count of threatened and endangered aquatics – fish and mussels species 

TERRNATIVE Native terrestrial species Count of native birds, mammals, butterflies, amphibians, and reptiles 
TERRTE Threatened and endangered terrestrial 

species 
Count of threatened and endangered birds, mammals, butterflies, amphibians, and reptiles 

NONCLIMAXPCT Percent coverage of non-climax forest Percent coverage with FOREST but the species are not the climax listed by Kuchler 
NATCOVERPCT Percent coverage of natural forest Percent coverage with FOREST that matches potential vegetation in Kuchler 
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Table 3A. Variables representing stressors in analyses. 
NAME Display Name Description 

AGSL Agriculture land on steep slopes Proportion of watershed with agriculture land cover on slopes that are greater than 3% 
CROPSL Crop land on steep slopes Proportion of watershed with crop land cover on slopes that are greater than 3% 
DAMS Impoundment density Impoundment density (number of dams per 1,000 kilometers of stream length) 
DISSOLVEDP Dissolved phosphorus Estimated suspended sediment in streams modelled using land cover metrics 
EDGE2 Forest edge habitat at the 2 ha scale Percentage of forest habitat called edge (2 ha scale) 
EDGE65 Forest edge habitat at the 65 ha scale Percentage of forest habitat called edge (65 ha scale) 
FUNGICIDE Annual fungicide loadings Annual fungicide loadings 
HARDCHIPMIL Chip mill capacity for hardwoods Estimate of increase (decrease) in chip mill for hardwoods capacity in tons, based on our 

regression, and assuming the Mid-Atlantic behaves like the South 
HERBICIDE Annual atrazine loadings 1990-93 Annual atrazine loadings 1990-93 
IMPLCPCT Percent impervious land cover Percent impervious surface by land cover 
INSECTICIDE Annual O-P insecticides loadings 1990-93 Annual O-P Insecticides loadings 1990-93 
NBLDPM97 New private housing building permits 1997 New private housing building permits 1997 
NO3DEPMODEL Nitrate wet deposition – modeled Modeled annual wet deposition of nitrate based on averages from 1987-1999 
OZONE8HR Ozone - 8 hr max Ozone (8 hr max) is a human health indicator and is given in parts per billion (ppb) 
POPDENS Population density – 1995 Population density 
POPGROWTH Annual population growth rate 1990-1995 Population growth rate from 1990-1995 
RDDENS Road density The density numbers are meters of road per hectare of area 
RIPAG Agriculture land cover along streams Proportion of total stream length with adjacent agriculture land cover; % riparian buffer that is 

agricultural land 
SO4DEPMODEL Sulfate wet deposition – modeled Modeled annual wet deposition of sulfate based on averages from 1987-1999 
SOFTCHIPMIL Chip mill capacity for softwoods Estimate of increase (decrease) in chip mill for softwoods capacity in tons, based on our 

regression, and assuming the Mid-Atlantic behaves like the South 
STRD Roads crossing streams Number of road crossings per total stream length 
SUM06 Ozone – sum 06 Cumulative sum of all hourly ozone concentrations equal to or above 0.06 ppm (or 60 ppb) for 

hours between 7 a.m. and 7 p.m.  The SUM06 index is an indicator of ozone exposure that 
plants receive during daylight hours. 

TOTALN Nitrogen in surface water Estimated total nitrogen in streams modelled using land cover metrics 
UINDEX Human use index Human use index (proportion of watershed area with agriculture or urban land cover) 
UVB Mean annual UV-B irradiance Mean Annual UV-B Irradiance 
FORCOVDEFOL Pct forest cover defoliated as pct of existing 

forest 
Percent of forest cover defoliated and with mortality as proportion of existing forest 

AQUAEXOTIC Introduced (exotic) aquatic species Count of exotic aquatic – fish and mussels – species. 
TERREXOTIC Introduced (exotic) terrestrial species Count of exotic birds, mammals, butterflies, amphibians, and reptiles 
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Appendix B 

Calculations 

Tran and Duckstein’s Fuzzy Ranking Method 

The fuzzy ranking method developed by Tran and Duckstein is based on a distance measure 
for fuzzy numbers (FNs), which in turn is established on a distance measure for interval numbers 
(INs) as follows: 

Distance measure for interval numbers 

Let F(R) be the set of INs in R and the distance between two INs A(a1,a2) and B(b1,b2) be defined as 
(Tran and Duckstein, in press): 

1/ 2 1/ 2 2 
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Distance measure for fuzzy numbers 

To be able to deal with curvilinear membership functions, generalized left right fuzzy numbers 
(GLRFN) of Dubois and Prade (1980) as described by Bárdossy and Duckstein (1995) are defined first.  
A fuzzy set A = (a1, a2, a3, a4) is called a GLRFN if its membership function satisfies the following: 
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where L and R are strictly decreasing functions defined on [0, 1] and satisfying the conditions: 

L(x) = R(x) = 1 if x ≤ 0 and L(x) = R(x) = 0 if x ≥ 1 

For a2 = a3, we have the classical definition of left right fuzzy numbers (LRFN) of Dubois and Prade 
(1980).  Trapezoidal fuzzy numbers (TrFN) are special cases of GLRFN with L(x) = R(x) = 1 – x. 
Triangular fuzzy numbers (TFN) are also special cases of GLRFN with L(x) = R(x) = 1 – x and a2 = a3. 

 A GLRFN A is denoted as: 

A = (a1, a2, a3, a4)LA-RA


and an α-level interval of fuzzy number A as: 

A(α ) = (AL (α ), AU (α )) = 
⎛
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A 
1(α ), a3 + (a4 − a3 )RA 

−1(α )⎞⎟ 
⎝ ⎠ 

Let F(R) be the set of GLRFNs in R. Using the distance measure for interval numbers 
defined above, a distance between two GLRFNs A and B can be defined as: 
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Here f, which serves as a weighting function, is a continuous positive function defined on [0, 1].  The 
distance is a weighted sum (integral) of the distances between two intervals at all α levels from 0 to 1.  It 
is reasonable to choose f as an increasing function, indicating greater weight assigned to the distance 
between two intervals at a higher α level. The equations to compute distance for some of the commonly 
used fuzzy numbers with two different weighting functions (f(α)=1 representing equal weights for 
intervals at different α levels and f(α)=α indicating more weight given to intervals at higher α level) are 
presented in Table B1. 
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Table B1. Distance functions for some commonly used fuzzy numbers. 
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Mechanics of Integration Methods and Supporting Software 

The majority of the landscape metrics used in this report were calculated with the Analytical Tools 
Interface for Landscape Assessments (ATtILA), an ArcView extension developed by the EPA Landscape 
Ecology Branch.  ATtILA is available free of charge via email at ebert.donald@epa.gov. Using ATtILA 
requires ArcView software and the Spatial Analyst extension; both are commercial products available 
from Environmental Systems Research Institute (ESRI; www.esri.com). 

An interactive web-based application was built specifically to allow the comparison and evaluation of 
each of the integration methods that were tested for this report.  This web application was made available 
to the ReVA scientists for this work and results of the evaluation will be incorporated into a new version 
of the tool that will be released later as a decision-support toolkit.  

The web-based application is a statistical framework that uses S-Plus Stat Server Software (Insightful 
Corporation; www.insightful.com).  ArcView (version 3.2) shape files are read in S-PLUS using standard 
read file functions. The shape file provides attribute information (metric or variable values), which is read 
into various data frames and used to produce the graphs.  The polygon information includes the x and y 
points that are passed to the S-PLUS polygon function to draw the maps. 

Integration of data to produce the final maps follows a series of steps.  The first step is to take the raw 
data and run the specific calculation required by that method.  This calculation creates a list of values for 
each reporting unit (watershed in this case). These values are then classified either by putting an equal 
number of watersheds in each bin (quantile) or by creating equal size bins (equal interval).  There are 
seven bins that are represented by unique colors on the map.  

Mechanics of Each Data Integration Method 

Note: Number of variables used in report is 50. 
N = number of watersheds (141 in region) 
W = watershed 

Best Quintile 

For each variable: 

� Rank the watersheds from best (1) to worst (N) 

� Identify watersheds in the best quintile [rank(W)/N < 0.20] 

For each watershed: 

� Count the number of variables in the best quintile 

� Use the count as the value for the watershed 

� Use this value to bin and color the watershed 
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Worst Quintile 

For each variable: 

� Rank the data from best (1) to worst (N) 

� Identify watersheds in the worst quintile [rank(W)/N > 0.80] 

For each watershed: 

� Count the number of variables in the worst quintile 

� Plot watersheds using an equal-interval classification 

� Use the count as the value for the watershed 

� Use this value to bin and color the watershed 

Simple Sum 

Note: This is a special case of the “Weighted Sum” method.  For the Simple Sum, all variables are used 
and have equal weight. 

For each variable: 

� Raw data are converted to normalized data 

� “Best” variable value is assigned to a value of 0 

� “Worst” variable value is assigned to a value of 1 

For each watershed: 

� Add the normalized values for each variable to get the “Simple Sum” for that watershed. 

� Use this value to bin and color the watershed 

PCA Distance (Euclidean) 

Calculate the correlation matrix (Σ) for the normalized data (X)  

Note: The correlation values are identical for raw data and normalized data except possibly a sign 
difference (+/-). 

Find the principal components for the correlation matrix (Σ = QΛQT) 


Use the vector of first five principal components (Q5) 


Take the absolute value of the “loadings” of the first five principal components, abs(Q5) = Q5
*


“Rotate” the normalized data by post-multiplying the data by the principal components: (Y = X Q5
*) 
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For each watershed: 

�	 Calculate the Euclidean distance from ideal (0).  [NOTE: This is equivalent to calculating the 
sum of squares of each resulting row (watershed)] 

�	 Use this value to bin and color the watershed 

State Space (zero reference location) 

Reference (ideal) watershed has zero value for all variables 

Calculate the Mahalanobis distance from the current watershed to the ideal watershed 

The Mahalanobis formula is: xΣ-1xT, where x is the vector of a watershed’s variable values 

Plot watersheds using an equal-interval classification 

Note: Hampton Roads (value = 152.20) was a drastic outlier, and it was assigned the next highest value 
(85.63). 

�	 Using the smallest and largest value, create seven equally spaced bins to color-code the 
watersheds 

�	 Assign the watershed to a color based on which bin the simple sum falls in 

Criticality Analysis 

Reference values for all variables based on a “natural state” (see Section 2 for further details) 


Use fuzzy distance measure to get each watershed’s “distance from natural state”


Plot watersheds using an equal-interval classification 


�	 Using the smallest and largest value, create seven equally spaced bins to color-code the 
watersheds 

�	 Assign the watershed to a color based on which bin the simple sum falls in 

Stressor/Resource Overlay 

For each watershed: 

�	 Count the number of stressor variables that are in the worst two quintiles (worst 40 percent of 
watersheds) 

�	 Count the number of resource variables that are in the best two quintiles (best 40 percent of 
watersheds) 

Determine stressors and resource thresholds separately using equal interval and quantile classifications 

�	 Equal bin sizes (for individual category, not combined category) 

�	 Bin by quantile (for individual category, not combined category) 
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Color scheme for map 

� Lighter to darker with increasing resources (top to bottom on tables) 

� Green to red with increasing stressors (left to right on tables) 
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