

Mention of trade or commercial products in this presentation does not constitute endorsement or recommendation for use by the Office of Research and Development (ORD) or the Environmental Protection Agency (EPA).

> Note: although the ORD has peer reviewed this PowerPoint presentation, it does not necessarily reflect the views or opinions of ORD or EPA.

e A.H. Grange ORD, NERL, ESD, ECB

Version 1: 9/1/00

Greated, Written, Narrated, and Prepared by: Andrew H. Grange, Ph.D. **U.S. Environmental Protection Agency** P.O. Box 93478, Las Vegas, NV 89193 William C. Brumley, Ph. D. & G. Wayne Sovocool, Ph. D. mposition Elucidat Mt. Hood, Oregon

17

$\begin{array}{c} 7 \ C \\ 7 \ H \\ 1 \ N \\ 3 \ O \end{array} \right) \rightarrow C_7 H_7 NO_3^{\dagger}$

Problem Solved by ICE Scientific Basis, Advantages, Limitations of ICE Data Acquisition: Mass Peak Profiling from Selected Ion Recording Data (MPPSIRD)

> Automated Data Interpretation: **Profile Generation Model (PGM)**

3 Example Applications of ICE

ORD, NERL, ESD, ECB

Chromatographic Peak

m

uo

Z

n

ORD, NERL, ESD, ECB

ORD, NERL, ESD, ECB

ORD. NERL. ESD. ECB A.H. Grange **ICE** is Nice That's the Problem, ICE is Nice A.H. Grange ORD, NER **Tentative Identification of organic compounds by LRMS: Clean mass spectrum Several mass peaks Mass spectrum in the NIST or Wiley library** Limitations - No Tentative Identification: **Multiple library matches No library matches Liquid sample introduction – ESI or APCI** Soft ionization – few ions for comparison **No libraries of ESI or APCI mass spectra** Majority of Organic Compounds are not Identified by LRMS

Multiple Matches

C₈H₉NO₂⁺

Acetaminophen

Selected Ion Recording

Selected Ion Recording

SEPA DEFINICE IS NICE A.H. Grange ORD, NERL, ESD, ECB DEFINICATION ORD, NERL, ESD, ECB DEFINITION

SEPA DEFINICE IS NICE A.H. Grange ORD, NERL, ESD, ECB DEFINICATION ORD, NERL, ESD, ECB DEFINITION

SEPA DEFINICE IS NICE A.H. Grange ORD, NERL, ESD, ECB ORD, NERL, ESD, ECB DEFINITION

Mass Peak Profiling from Selected Ion Recording Data

SEPA DEFINICE IS NICE A.H. Grange ORD, NERL, ESD, ECB ORD, NERL, ESD, ECB DEFINITION

Mass Peak Profiling from Selected Ion Recording Data

SEPA DEFINICE IS NICE A.H. Grange ORD, NERL, ESD, ECB ORD, NERL, ESD, ECB DEFINITION

Mass Peak Profiling from Selected Ion Recording Data

Instrumental Advantages of MPPSIR

Delineate chromatographic peaks

For a single m/z ratio

Retention Time

100-fold greater than full scans

Higher resolution feasible

Instrumental Advantages of MP

Speed

Delineate chromatographic peaks

For a single m/z ratio

100-fold greater than full scans

Higher resolution feasible

Instrumental Advantages of

Speed

Delineate chromatographic peaks

For a single m/z ratio on Abundance

100-fold greater than full scans

Higher resolution feasible

Retention Time

Speed Delineate chromatographic peaks

For a single m/z ratio

Sensitivity

Selectivity

100-fold greater than full scans

Higher resolution feasible

Stability Lock mass recalibration each cycle

Measurement Advantages of MPPSIRD

Accurate Exact Masses & Relative Abundances

Quality Assurance Advantage of MPPSIRD Interferences Revealed

Gaussian shape usually indicates no major Interferences

SEPA Limitations of MPPSIRD

Monitor four or fewer Analyte Profiles

- Full Analyte Profile
 Full Analyte Profiles
 Partial Analyte Profiles
- **4 Partial Analyte Profiles**
- **Multiple Experiments required**
- Double Focusing Mass Spectrometers are expensive

Ancillary DOS capable Computer required

- Lotus 2.2, WordPerfect 5.1, QuickBasic 4.5
 - Procurement inconvenient
 - + Batch files supported, simple code

Wide mass range 3,000 mass resolution

Coarse estimate of the exact mass for the most abundant *Analyte* **ion**

Sources of Jons

Investigate the Analyte ion

Elements Considered: CHNOFPSSi m/z 151.11240 ± 6 ppm **Resolution 10,000** Err(mmu & ppm) **Composition** 1 -0.3 -2.0 C5 H14 N3 O F C10 H15 O 2 -0.1 -0.7 -325 ppm 151.06333

SEPA NUMBER OF POSSIBLE COMPOSITIONS ORD, NERL, ESD, ECB

3 Factors

m/z

Error Limit

Number of Elements

ICE is Nice A.H. Grange ORD, NERL, ESD, ECB ISOTOPIC ADUIDANCES

SEPA

SEPA ORD, NERL, ESD, ECB MONITOR PARTIAL PROFILES WIth MPPSIRD

		PGM:	Elements Considered:C H N O F P S Sim/z 151.11225 ± 6 ppmResolution 10,000				
			Ma	ass Def	ects	Relative Ab	undances
#	RDB	Composition	151	+1	+2	%+1(Range %+1)	%+2(Range %+2)
1	0.0	C5 H14 N3 O F	.11209	.11499	.11686 X	5.72(4.29- 7.23) X	0.20(0.09-0.33) X
2	3.5	C10 H15 O	.11229	.11570	.11848	11.32(9.50-13.14)	0.71(0.49-0.92)
Experimental Values:		.11225	.11581	.11934	11.98	0.91 Click	

Not identified by conventional low or high resolution mass spectrometry

.1212

16.3

Experimental Values: .1160 .1191

Limiting Possible Compounds

The number of possible compounds was greatly reduced, but further reduction is required.

Determine fragment ion compositions from full profiles with 10,000 resolution – 0-14 C, 0-14 H, and 0-2 N are the elemental limits.

SEPAExact Masses Determined for 10 Fragment Ions from the Isomers

Experimental						
Mass	<u> </u>	Error (mmu)	1 N	Error (mmu)	2 N	Error (mmu)
208.1001					C14H12N2	+0.1
206.0846					C14H10N2	+0.2
191.0607			C ₁₄ H ₉ N	- 12.8	C ₁₃ H ₇ N ₂	-0.2
181 0887	C14H13	-12.6 <	C ₁₃ H ₁₁ N	-0.4	$C_{12}H_9N_2$	+12.5
166.0661	C13H10	-12.2	C ₁₂ H ₈ N	+0.4	C11H6N2	+13.0
156.0816	C12H12	-12.3	C11H10N	+0.3	C ₁₀ H ₈ N ₂	+12.9
153.0578	C12H9	-12.6	C ₁₁ H ₇ N	0.0	C10H5N2	+12.5
140.0501	C11H8	-12.5	C ₁₀ H ₆ N	+0.1	C9H4N₂	+12.7
129.0707	C ₁₀ H ₉	+0.3	C ₉ H ₇ N	+12.9	C8H5N2	+25.4
115.0548	C ₉ H ₇	0.0	C8H5N	+12.6	C7H3N2	+25.2

ICE is Nice A.H. Grange ORD, NERL, ESD, ECB Exact Masses of Composite Neutral Losses Determined as the Mass Differences Between the Molecular and Fragment Ions

Experimental Mass	0 N	Error (mmu)	1 N	Error (mmu)	2 N I	Error (mmu)
2.0159	H ₂	+0.2				
4.0314	H4	+0.1				
19.0553	CH ₇	+0.5	NH₅	+13.1		
29.0273	C₂H₅	- 11.8	CH ₃ N	+0.8	N₂H	+13.3
44.0499	C ₃ H ₈	- 12.7	C ₂ H ₆ N	- 0.1	CH₄N₂	+12.5
54.0344	C ₄ H ₆	- 12.6		0.0	$C_2H_2N_2$	+12.6
57.0582	C ₄ H ₉	- 12.2	C ₃ H ₇ N	+0.4	C2H5N2	+12.9
70.0659	CsHio	- 12.4		+0.2	$C_3H_6N_2$	+12.8
81.0453	C ₆ H ₉	- 25.1	C₅H7N	- 25.1		2 0.0
95.0612	C7H11	- 24.9	C ₆ H ₉ N	- 24.9	C ₅ H ₇ N ₂	2 +0.3

A limited number of possible isomers

A core portion loses several H atoms

C₁₀H₉ is characteristic of Tetralin, which loses multiple H atoms to increase aromaticity

Two N atoms are external to the rings Two CN groups account for 4 RDB

ice A.H. Grange ORD, NERL, ESD, ECB

ICE is Nice A.H. Gran

Compound Identification is 1 link in the chain of evidence

ICE provides a Preponderance of Evidence:

Exacts masses of molecular and fragment ions Exact masses, relative abundances, and shapes of +1 and +2 profiles Rejection of all but one composition for each ion

Tables of fragment ion and composite

neutral loss compositions

Logical fragmentation pattern

Superimposed ion chromatograms obtained

with high mass resolution

Opposing Council – Attack a Weaker Link, e.g. the Transport Model

Variation in Isotopic AbundancesInstrumental Precision

Partial Profile Errors:

Center Mass Offsets for Other Compositions Up to 1 mass increment experimental offsets Up to 10% mass resolution error

Partial or Full Profiles?

Partial profile advantages:

- Five measurements –
 3 exact masses &
 2 relative abundances
- Less profile overlap with interferences

Full profile advantages:

Fewer errors – narrower relative abundance ranges

Simpler to explain in legal proceedings

EPA Utility of Limited ICE is Nice A.H. Grange ORD, NERL, ESD, ECB Utility of Limited ICE Information Extract of chlorine-disinfected drinking water

Ion Chromatograms

SEPA Partial Profiles for m/z 415 Fragment Ion and m/z 430 Molecular Ion

€EPA	m/z = 415.12744 ± 3 ppm	Elements: CHNOFPSCIBC A.H. Grange ORD, NERL, ESD, E Resolution: 20000		
	# RDB Rance Composition	415 +1 +2	<u>%+1 (Range +1)</u> %+2 (Range+2)	
	Image Composition 1 4.5 C19 H25 F5 S CL 2 5.5 C19 H22 O F6 CL 3 6.5 7.5 C19 H21 O 2 P4 4 5.0 6.0 C19 H31 N 02 P BR 5 8.0 9.0 C19 H23 N 03 F2 P2 6 8.0 10.0 C19 H23 N 05 F2 S 7 7.5 C19 H27 N2 0 F P2 CL 8 6.5 8.5 C19 H28 N2 02 S2 CL 9 9.5 11.5 C19 H23 N4 F2 CL2 10 9.0 10.0 C19 H23 N4 F2 CL2	410 +1 +2 .12857 .13184 .12561 .12634 .12974 .12358 X .12745 .13087 .13391 X .12758 .13092 .12567 .12777 .13110 .13393 X .12650 .12971 .12559 .12712 .13037 .12438 .12807 .13109 .12504 .12810 .13134 .13399 X .12744 .13060 .12473 .12678 .12987 .12403 X	A+1 Citaligo +15 A+2 Citaligo +25 22.11 (19.03-25.22) X 37.71 (28.31- 48.09) X 21.70 (18.25-25.22) X 32.27 (25.25- 40.01) X 21.58 (18.12-25.05) X 1.01 (0.24- 1.98) X 21.79 (18.26-25.33) X 98.23 (85.51-111.10) X 21.79 (18.74-24.87) X 1.11 (0.29- 2.13) X 22.52 (19.32-25.78) X 5.83 (4.62- 7.36) X 21.98 (18.87-25.15) X 32.63 (25.51- 40.49) X 23.47 (19.74-27.26) X 1.23 (0.36- 2.29) X 22.14 (18.99-25.37) X 32.73 (24.87- 41.33) X 22.37 (19.14-25.71) X 63.74 (48.92- 79.67) X	
430.15123	12 12.5 C19 H21 N6 F P S 13 12.5 13.5 C19 H20 N6 03 CL 43 12.5 C24 H22 02 F2 CL 44 12.0 C24 H24 N F CL2 45 16.0 C24 H22 N3 P S 46 16.5 17.5 C25 H20 N2 0 F S 47 15.5 16.5 C26 H24 0 P S 48 16.5 17.5 C26 H21 02 F P 49 16.5 C27 H21 0 F CL	.12701 .12983 .12496 .12854 .13148 .12588 * * .12764 .13103 .12512 .12698 .13031 .12413 .12721 .13031 .12683 .12804 .13121 .12683 .12805 .13185 .12975 .12855 .13185 .12975 .12632 .12971 .13288 .12650 .12988 .12389	23.35 (19.78-27.01) 5.52 (4.58- 6.70) X 23.03 (19.47-26.71) 33.89 (25.77- 42.90) X 27.01 (22.68-31.34) 33.14 (26.27- 40.93) X 27.24 (23.44-31.07) 64.12 (48.92- 80.59) X 28.32 (24.28-32.47) 5.84 (4.55- 7.51) X 29.19 (25.06-33.37) 5.80 (4.53- 7.48) X 29.59 (24.89-34.39) 2.14 (0.59- 4.11) X 30.35 (26.16-34.55) X	
- 415.12744 15.02379	50 20.5 C28 H19 N2 S 16 5.5 C20 H29 03 F BR 39 9.5 C23 H28 02 BR	.12689 .13008 .12888 X .12841 .13182 .12652 .12727 .13067 .12541	32.50 (27.91-37.17) 6.34 (4.71- 8.44) 22.51 (18.86-26.12) 97.84 (85.25-110.56) 26.04 (22.43-29.65) 98.59 (86.48-110.97)	
15.02348 CH₃	Experimental Values: m/z = 430 15123 + 3 mm	.12744 .13066 .12547 Elements: C H N O F P S CI Br	26.00 102.01 Resolution: 20000	
	31 5.0 C21 H32 03 F BR 54 9.0 C24 H31 02 BR	.15188 .15530 .15001 .15074 .15415 .14891	24.11 (19.75-28.57) 98.91(86.86-111.21) 26.73 (21.79-31.62) 98.66(86.59-111.01)	
	Experimental Values:	.15123 .15536 .14945		

Reject incorrect compositions mechanically: Sums of Atomic Masses Sums of Isotopic Abundances Valences of Elements

For multiple remaining compositions, invoke **chemical** and **commercial** arguments

Commercial argument:

Anabolic steroids could be used to enhance cattle growth in a nearby feedlot.

* Possible Allylic Bromination Sites for Quinbolone

Multiple Isomers

Purchase Quinbolone Add to well water C24H32O2Br Chlorinate Extract products Obtain mass spectra and retention times for comparison

Characterization or IdentificationAnalysis & DataNumber of Possible Compositions

Low Resolution MS Nominal Mass and No Library Matches Conventional High Res MS Exact Mass of Apparent Molecular Ion ICE

Ion Composition of Apparent Molecular Ion Ion Composition of Multiple Fragment Ions

Chemical Literature Commercial Literature

A.H. Grange **ICE** is Nice Selected CE Publications and Posters

Grange, A.H.; Donnelly, J.R.; Brumley, W.C.; Billets, S.; Sovocool, G.W. **Mass Measurement by an Accurate and Sensitive Selected-Ion-Recording Technique** Anal. Chem., 1994, 66, 4416-4421

Grange, A.H.; Donnelly, J.R.; Brumley, W.C.; Sovocool, G.W. **Determination of Elemental Compositions from Mass Peak Profiles of the Molecular (M), M+1 and M+2 Ions** Anal. Chem., 1996, 553-560

Grange, A.H.; Brumley, W.C. **A Mass Peak Profile Generation Model to Facilitate Determination** of Elemental Compositions of Ions Based on Exact Masses and **Isotopic Abundances**

J. Amer. Soc. for Mass Spectrum., 1997, 8, 170-182

Grange, A.H.; Sovocool, G.W.; Donnelly, J.R.; Genicola, F.A.; Gurka, D.F. Identification of Pollutants in a Municipal Well Using High Resolution Mass Spectrometry Rapid Commun. Mass Spectrom., 1998, 12, 1161-1169

6 Posters - http://www.epa.gov/crdlvweb/chemistry/ecb-posters.htm