

I PERGINE **DetAiled instruct the Grange, PhiDuth a** Fir Andrew Hoger Crange, PhiDuvith **Environmental Chemistry Branch** an al-P:0: Box-93478, Las Vegas, NV -89193/s NT. grange.andrew@epa.gov

ICE is Easy A.H. Grange NERL. ESD. ECB

Mt. Hood, Oregon

Acronyms

MPPSIRD – Mass Peak Profiling from Selected Ion Recording Data

PGM - Profile Generation Model

ICE is Nice, which is available from grange.andrew@epa.gov, describes MPPSIRD and the PGM, and illustrates applications of ICE. It should be viewed before ICE is Easy.

> During this presentation: right click to pause, then left click to resume.

Numerous column labels contain "M+1" or "M+2". Fragment ions are also investigated using ICE. Ignore the "M" in these headers.

Determining an lon Composition Select an ion in the low resolution mass spectrum **Acquire Survey Data Acquire Full Profile with 10,000 Resolution** Enter Exact Mass into the PGM – **Select Hypothetical Composition Acquire Full or Partial Profile Data Enter Exact Masses and Relative Abundances into the PGM**

lon compositions will be determined for the apparent molecular ions from background subtracted mass spectra for 3 chromatographic peaks in the total ion chromatogram.

Prior Preparation

If MPPSIRD has not been performed recently, it is prudent to perform:

 A magnetic calibration using PFK over a mass range that includes at least 50 Da below and 100 Da above all masses to be studied. .pfkcal 50,500,10,3

2. An electric scan calibration

If lock-on fails, perform both calibrations. This generally solves the problem.

These procedures are described in screen 37.

A	B	С	D	E	F	GH	1	ЛК
	ENT	ER the Reso	lution, (Center Mas	sses & Time	s desire	d.	
	Allow at le Cottl>G aff	er last entry	etween	each end	time and the after o	e next st lata has	art time. been acci	uired.
			4000		00/Deathar //			
	SIEP Ke	solution:	3000		GC/Probe (C Scan	Speed:	1.00	
	-	ı			E	l or Cl:	El	
	۱ <u>ـ</u>		3.3	pts/prof		tarne:	demot	
	5 5	SIEIS			PFK (or ALK:		
	Ce	nter Mass	Sta	art Time	End Tim	e MID G	rp	
		186.97000 133.07000		<u>17:32</u> 20:50	17:44			
		98.07000		28:55	29:07			

▲ ▼ +100 +10 +10 +10 +10 +10 +10 -10	-11.0 V P 1.00 mA 70.0 V d 250 C s 257 C EI POS U(a) 4772 V Entr. Slit Exit Slit Sweep Mass Virt. Mass Virt. Mass Link Mass Sweep Width Sweep Speed U(a) Offset U(a) Offset U(a) /U(esa) Multiplier Dyn. Volt. Ref. Inlet Beam Rot.	SCAN A -62.0 V 34 Wi S Cli S Cli S SC 34 ma -62.0 (UNASS) (VMASS) (VMASS) (VMASS) (VMASS) (VMASS) (VMASS) (VMASS) (VMASS) (UNASS)	UTOTUNE I thin the ck tune anning a anning a ass peak magnetic U(esa) 72 340.0 390.0 180.73 180.73 1.00 0.0 2.025 1.60 pos 150 -0.5	UNE tune to st cros prof 7.4 V amu amu amu % /s V % kV C V	R =	906	2 728 8	11 uV
	Focus Quad VVR	(FQUAD)	-7.4 NE DESCRIE	V PTOR				
	VG off VS2 VV off VS3	off off	eiposag RESTORE		179.83	18	0.73 C V LOCK	181.63 UNLK
	TUNE : . mini tiy the	nter	.midů,					C

€ Elle						ICE is	Easy	A.H. Gran	ige l	NERL, ESD, E
	NOT ACQUIRING		12 Jan	2001	10:31	ELAPS	ED: ND:			
► +100	FILE:demol SAMP:demol OPER: COMM:Clark Co	. effluent	STUDY: CLIENT:			AMT	Tim : 0.0	e: MID)O VO INJ.VO	run L: 0 L: 1	time .00 .00
+10 -10 +1 -1 +0.1 -0.1	METHOD LIST: init(1) SAVE	pm Vial 1	g c 3	3 7)	mŗ	p	mpp	.icl	mi	d 3 7
	FILE >	AUTOSAMP VI. pm	AL D:INLE 1 GC:gc	37	ICL H	PROC.	DS P mp	ROC. p.prn	S/T/ \$ m:	'M DLY id37

vmake 1;.#analysis doze 2 vsend;.#analysis;.#f1^demo1^a^pm^v^1 vsend;.#analysis;.#g^gc37^i^sim chr

vsend;.#analysis;.#d^mpp.icl \$^m^mid37 doze 5

To run the correct GC temperature program, save the GC program desired as GC37.

Help

ANALYSIS:

*The puzzle for running this program automatically has not been solved.

midtune.icl

vsend;.#analysis;.#d^mpp.icl^m^mid37 doze 5 vmake 1;.#mid The / doze 2 mmn1 subre

vmake 1;.#tune doze 2 autotune

The *mid* view will appear and subroutine *mpp1.icl* will be run to prepare a SIR descriptor for each eluting GC peak.

resset 3000

vsend;.#tune;.#r vmake 4;.#tune;.#gc;.#mid;.#analysis vsend;.#tune;.#w0.5 ratio 1 Note lock:doze 9 vsend;.#tune;.#w0.050 can vsend;.#tune;#r doze 1 This doze 1 Scre vsend;.#gc;.#sc90 vmake 1;.#mid:doze 3 repeat 5 .#click >& enter mpp2, if > 9 groups doze 1:.# doze 1:end vmake 4;.#tune;.#gc;.#mid;.#analysis

Note that subroutines such as *mpp1.icl* can be run independently of *midtune.icl*. This will be illustrated in the next screen.

€I									
	MID Set Up Parameters			MID	Masses	for	Time	Wind	ow 1
\equiv	MID File	mid3	7	#	mass	F	int	gr t	ime(ms)
	Measure/lock ratio (X)	1		8	186.82	04	1	1	20.48
	Set Damping relay (T)	TRUE		9	186.83	91	1	1	20.48
·100	Width first lock (A)	1.00	amu	10	186.85	78	1	1	20.48
100	Electric jump time (E)	10	ms	11	186.87	65	1	1	20.48
+10	Magnetic jump time (D)	60	ms	12	186.89	52	1	1	20.48
· · · ·	Offset (O)	1	cts	13	186.91	39	1	1	20.48
-10	Electric range (R)	300	8	14	186.932	26	1	1	20.48
+1	Sweep peak width (W)	5.00		15	186.95	13	1	1	20.48
-1	Acq mode (C P)	Cent	mode	16	186.97	00	1	1	20.48
+0.1	MID mode (J M L N)	Lock	mode	17	186.98	87	1	1	20.48
.0.1	MID Time Windows		\sim	18	187.00	74	1	1	20.48
0.1				19	187.02	61	1	1	20.48
	# Start Measure End	Cyclet	time	20	187.04	48	1	1	20.48
	1 29:07 0.31 29:38 m	in 1:00	sec	21	187.060	35	1	1	20.48
	2 0:00			22	187.083	22	1	1	20.48
	³ Similarly th	a m/z		23	187.10	09	1	1	20.48
	4 China y , Ch	5 11/2		24	187.11	96	1	1	20.48
	⁵ ratios and grou	p time	S	25	180.080	33	1	1	20.48
	6			26	180.060)()	1	1	20.48
	7 would appea	ar tor		27	192.900	30 30	1	1	20.48
	⁸ Groups 2 ar			28	192.980	24	1	1	20.48
	9 Cioups Z ai			29	192.988	38 C	1	1	20.48
	Clear Clear		ear	30	192.99	こく	1	1	20.48
	Menu Times	Ma:	sses	31	19 3.00 (20.48
	Start MID SAVE	Ma:	in	<	Lock	Mas	s	Cali	Mass
	MID: .mpp13 Enter.mp	p1							Click

File

Help

GC-LC Type: HP 6890 GC GC ready IC < GC	MID Set Up Parameters MID Masses for Time Window 4
GC DescriptorGC elapsed time0.0 MinOn Display: gc37GC runtime32.0 Min	MID File mid37 # mass Fint gr time(ms Measure/lock ratio (X) 1 1 0.0000
In GC : g037 Stabilize time 0.0 Min Current GC Temperature	Set Damping relay (T) TRUE 2 Width first lock (A) 1.00 amu 3
$\begin{bmatrix} 400 \\ 700 \end{bmatrix} = \begin{bmatrix} 400 \\ 700 \end{bmatrix} = \begin{bmatrix} 400 \\ 700 \end{bmatrix} = \begin{bmatrix} 400 \\ 700 \end{bmatrix}$	Electric jump time (E) 10 ms 4 Magnetic jump time (D) 60 ms 5
	Offset (0) 1 cts 6 Electric range (R) 300 % 7 Operator sets with (N) 5 00
You are now ready to	Cont mode 9 Lock mode 10
	Cycletime <u>1</u> 3 in 1.00 sec 14
	in 1,00 sec 15 in 1,00 sec 16
	20 21
Ra Te	Clear 22
Double left click START in the a	Masses 24 Masses Lock Mass Cali Mass
-15.0 V SCAN AUTOTUNE TUNE R = 3.077 423.494 uV	NOT ACQUIRING ELAPSED: 5 Jun 2001 11:32 END:
1.00 mA 3400 2957 2845 1359 70.0 V d S 1 - X 59	FILE:demo1 STUDY: Time: MID run time SAMP:demo1 AMT: 0.00 VOL: 0.00
	OPER: CLIENT: INJ.VOL: 1.00 COMM:Clark Co. effluent
EI POS -54.0 V magnetic	
U(a) 4772 V U U(esa) 763.8 V Entr. Slit (ENS) 184.8	METHOD LIST: T 000000 Mpp mpp,ic1 mid37
Exit Slit (EXS) 191.1 Sweep Mass (MASS) 192.989 amu	init(1) Vial 1
Virt. Mass (VMASS) 192,989 amu Link Mass (LMASS) 192,989 amu Swam Width (SU)	STILE AUTOSAMP VIAL D:INLET ICL PROC. DS PROC. S/T/M DLY
Sweep Speed (SS) 1.0 /s	1>demo1 pm 1 GC:gc37 mpp mpp+icl mid37
U(a)/U(esa) (URATIO) 1,900 % Multiplier (EMULT) 1,60 kV	
Dyn. Volt. (DYNODE) pos Ref. Inlet (TREF) 150 C	
Focus Quad (FQUAD) -8.9 V	
VG off VVR off TUNE DESCRIPTOR 192,941 192,989 193,03 VV off VS2 off eiposag	

Ľ

Help

filament current to 0 until shortly before the first SIR group start

EI POS U(a) 4769 Entr. Slit Exit Slit Sweep Mass Virt. Mass Link Mass Sweep Widt

-11.0 V p

0.00 mA 70.0V

> 250 C 251 C

SEPA Orea

File

+1

-1

time. awaits the first SIR descriptor start time.

After the last SIR group data is recorded, the MID vic Signal is recorded for the interval between the start and end times specified by the user.

The adjacent plots are printed for archiving.

	fo	Survey Data	MII	ICE is Easy Masses f	0,000 Resolution
#	mass	Mass Increment	#	mass	Mass Increment
1	180.9767		1	180.9852	
2	180.9828	Calibrant ion of	2	180.9870	Calibrant ion of
3	180.9888		3	180.9888	
4	180.9948	known mass	4	180.9906	known mass
5	181.0009	33 ppm 🛛	5	180.9924	10 ppm
6	186.7830		6	186.9452	
7	186.8017		7	186.9471	
8	186.8204		8	186.9490	
9	186.8391		9	186.9508	
10	186.8578	Analyte ion of	10	186.9527	Analyte ion of
11	186.8765	' unknown mass 🖕	he	100.9540	unknown mass
12	186.8952	100 ppm	00 r e	esolution	10 ppm
13	186.9139		13	186.9583	
14	186.9326		14	186.9602	
15	186.9513		15	186.9621	
16	186.9700		16	186.9639	
17	186.9887		17	186.9658	
18	187.0074	8	18	186.9677	
19	187.0261		19	186.9695	
20	187.0448		20	186.9714	
21	187.0635		21	186.9733	
22	187.0822		22	186.9751	
23	187.1009		23	186.9770	
24	187.1196		24	186.9789	
>	📃 Lock Ma	.ss 📃 Cali Mass	>	Lock Ma	ss 🗌 Cali M <mark>Ç</mark> Ç

Review screens 7 through 17 to perform MPPSIRD at 10,000 resolution.

Midtune.icl contains two additional instructions:

These are subroutines that autotune the focus quadrupoles and the rotational quadrupoles.

These adjustments are only important at high mass resolution and are not performed by Autotune.

🖻 🎦 🖴 🗊 🗢 ⊀ 🔁 🔊 🔁 🛸 🖉 📑	er 4P for the hypothe	etical composition.
		ciour composition
A B C	DEr	
m/z 186.95955 ± 6 ppm		
	C10 H22 N10 010 P10 :	819 F10 CL2
Enter the Hur	othetical Composition #*	(P)
	fochected composition wa	
# Errimmu & ppmJ KUB Kange	e Composition	2/1+1 &M+2
1 -0.6 -3.1 2.5	C2 H2 N4 O F CL2	3.74 64.21
2 -0.1 -0.4 1.5	C3 H6 N2 O P CL2	4.17 64.22
3 +0.8 +4.1 2.0 3.0	C4 H4 N 02 F CL2	4-91 64-45
<u> </u>	C7 H3 N 0 CL2	8 16 64 45
2.0 0.0	01 113 11 0 062	

The "P" automatically executes a modified C:\QB\1.BAS file to provide calculated mass peak profiles, exact masses, and relative abundances for the *hypothetical composition*.

🖉 Lotu	s SmartSui	te - 1-2	-3 - [Ht.123]					•••••			ICE is	Easy	А.Н.	Grange	NER	L, ESD, E
<u>Eile</u>	<u>E</u> dit <u>V</u> iev	/ <u>C</u> reate	<u>R</u> ange <u>S</u> he	et <u>W</u> indow	<u>H</u> elp											· · ·
	NAM		🔓 🧕	^demo	2											
<u>ී</u> වි 🖻	3 🖰 🖁	s 📴 🟅	ر 🛃 🇞 د	£1 <mark>°</mark> 🛍 🚣	v 🔿 🍕 🗄	+2 []	7 🛍 🤏	阿彌	$\exists \mathbf{N}$	\bigcirc abc						
A)																
A		A		В	С		D	E	=		F	G	H		ЛК	L
1																
2				E	NTER the	Reso	lution,	Center	r Mas	ses &	Times	desir	ed.			
- Ч И				Allow	t loget 17	soc h	otwoo	n oach	ond	timo a	und the	novt	etart (limo		
4 5				Allow a	it least 17	set b	elwee	n each	enu		inu ine	пехс	Start	une.		
6			ENTER	<cntl>G</cntl>	after last	entry	-	ENTE	R <c< th=""><th>nti>B</th><th>after d</th><th>ata ha</th><th>s bee</th><th>en acq</th><th>uired.</th><th></th></c<>	nti>B	after d	ata ha	s bee	en acq	uired.	
7																
8				STEP	Resolut	tion:	10000		1	GC/Pr	obe (G	or P):		G		
9				SLIT	Resolut	tion:	10000				Scan S	Speed	: 1	1.00		
10								-			E	I or Cl	:	EI		
11	1				-		10 () nts/nr	of		Dat	afile	d	emo2		
12	-				1_1	L	10.0	, bravbi	.					JIIIV2	U	
13				:	5 5 ST E1	٢5					PFK o	r ALK	:	PFK		
14													_	-	•	
15					Genter	Mass	St	art Ti	me	End	Time	MID	Grp			
16					400.05	0.4.7		4.7	26	4	7.47	,	r 1			
10	-				185.93	917		20	-30 -52	2	1:47		2			
10	-				188.05	626	-	20	00	20	9.12		3			
20	-				100.33	020		2.01								
21																
22					_		1									
23				The 🤅	3 exac	ct m	lass	es w	<i>ier</i>	e er	ntere	ed ii	nto	the		
24					-4 Ex	tor		4-1		f or					do	
25			ma	1 55 II :	5 L. E I	iter			∎,∎	lan	leu		vas	ma	ue	
26			(e	.g. tl	ne wre	ong	SIR	grou	up v	was	S COI	nsid	ere	ed) t	0	
27										000		ore	d			
28					remov	e ti		ast N	las	585	ent	ere	u .		(
29	-															SING!
30																

	ICE is Easy A.	H. Grange NERL, ESD, ECB 💻
CLIA CARACTER (CARACTER CONTRACTOR CONT	,,	
🚰 🎦 🗳 💭 🦧 🗟 🎽 🎦 🏊 🎒 🛒 💺 🔍	🊹 🍓 🚎 🗔 🔪 🔿 abc	
	3P for the hypothetic	cal composition
m/z 133.06411 ± 6 ppm	044 NO OO E7 DA GA GTA L	14.9.9
	GII M2 UO F7 F4 84 814 F	1192
Enter the Hypot	hetical Composition #: 🏭	
# Err(mmu & ppm) RDB Range	Composition	%M+1 %M+2
1 -0.3 -2.3 2.5	C2 H6 N6 F	4.50 0.08
2 +0.2 +1.5 1.5	C3 H10 N4 P	4.93 0.10
3 -0.1 -0.8 6.0	C7 H7 N3	8.92 0.35

Again, the apparent molecular ion was prominent, suggesting aromatic character. Only the last composition has 4 or more rings and double bonds.

€F	PA	OT-	<u>Sheet</u> <u>W</u> indow	<u>H</u> elp				_ 1		
	NAM		🔋 îdemi	02	ICE is Easy A.H.	Grange NE	RL, ESD, ECB			
🖻 i	<u>b</u>	, 🖪 🗢 🦧 🛛	b d 🖬 🕮 🗳	<u>_</u> → & = ± m						
				<u> </u>	6P for the hypothetica	l com	osition			
		Δ	R			1	a i i			
	m/z 198.05576 ± 6 ppm									
					CI6 NI4 UIZ FIU P6 56 517	H196				
			Ent	ter the Hypot	netical Composition #: 16 P					
	Ŧ	Errumu	g bbw	KUB Kange	Composition	84+1	28M+Z			
	1	+0.8	+4.3	-1.0 0.0	US H18 UZ S S12	16.11	12.67			
	Z,	+0.2	+1.0	0.0	US H14 U6 SI	11.01	5.01			
	- 3	-0.4	-2.0	1-1	65 H13 NZ FZ P 81	11.50	3.86			
	<u> </u>	+0.4	+2.2	5.5	US H8 N7 S	8.99	4.80			
	- <u>-</u>	+0.1	+0.6		U6 H17 F P2 S1	11.93	3.91			
	<u>6</u>	+]-]	+5.4	-1.0 0.0	UG H18 U SZ SI	13.56	13.17			
		-1-Z	-5.8	0.0 1.0	UG H15 UZ F S SI	12.77	8.89			
	8	+0.4	+2.2	0.0 1.0	C6 H14 U5 S	1.80	5.70			
	<u> </u>	+0.4	+2.2	1.5	C6 H11 N U F3 S1	12.25	4.15			
	10	-0.9	-4-7	0.0 1.0	C7 H15 U F S2	9.56	9.47			
	11	+0.7	+3.4	1.5	C7 H11 N F3 S	9.04	4.79			
	12	-0.5	-2.3	6.0 7.0	C7 H7 N4 O2 F	9.36	0.79			
	13	+0.1	+0.3	5.0 6.0	C8 H11 N2 O2 P	9.79	0.83			
	14	-0.7	-3.5	5.5	C9 H10 N F2 SI	15.50	4.38			
	15	+0.9	+4.5	5.5 6.5	C9 H9 N O3 F	10.53	1.10			
	16	-0.3	-1.3	9.5 10.5	C12 H8 N 02	13.79	1.28			

Of these,appearateon/positio ioha(sn/hei 98)/watshtile tratems and is chpeak,auggestipg*theticatic on practicen*. Only thempetision with the position blance theorem is reoringst in the only of blands cases.

n an			
•••	•••	•	

MID	Masses for	r Time 👗 📈 1	Sepa Ores	MID Masses for T	ime 📉 w 2
#	mass	Fint / ne(ms)		# mass Fi	int / \me(ms)
1	180.9852	1 🕺 20.48	ICE is Easy A.H. Grange	1 130.9894	1 / 21.84
2	180.9870	1 / 🔓 20.48	NERL, ESD, ECB	2 130.9907	1 / 21.84
3	180.9888		Lock Mass		21.84
4	180.9906	i në first tw		ors written by	1 21.84
5	180.9924	mpp1.lcl as r		<i>icl</i> are shown	1 21.84
6	186.9536				1 21 84
7	186.9554				💦 В 4
8	186.9573	Multiple analy		I be monitored	1 4 34
9 10	186.9592				4 B4
1 U 1 1	186.9610			10 133.0633	/ 👌 34
11 10	106.9629		m/z 133	11 133.0647	4 \ 34
13	187 9567			12 133.0660	
14	187 9586	$1 \qquad A \qquad 20.40$			
15	187.9605	$1 \sqrt{20.48}$			-34
16	187.9623	1 / 20.48			1 1 21.84
17	187.9642	1 / \$ 20.48		16 134.0606	84
18	187.9661	1 / 20.48		10 124.0019	
19	187.9680	1 20.48		19 134.0000	
20	188.9506	1 1 20.48		20 134 0659	
21	188.9525	1 🔨 20.48		21 134 0673	
22	188.9544	1 / 20.48		22 134.0686	
23	188.9563	1 / 20.48		23 134.0700	
24	188.9581	1 / 20.48		24 134.0713	34
25	188 9600	1 / 20.48		25 134 0726	
26	188.9619	1 20.48		26 142 9891	1 1 21.04 1 1 21.84
27	192.9850	1 20.48		27 142.9906	1 8 21.84
28	192.9869	1 🔨 20.48	Cal. Mass	28 142.9920 c	1 1 21.84
29	192.9888	c 1 🦸 20.48		29 142.9934	1 1 21.84
30	192.9908	1 / 20.48		30 142.9948	1 21.84
31	192.9927	1 / 20.48		31	
<	Lock Ma	ss 🚺 🌡 Mass		Lock Mass	

44										
45	# RDB Range	Composition	М	M+1	M+ 2	%M+1 (%M+1	Range)	%M+2 (%M+2)	Range)	
46										
47	1 -2.0 0.0	H4 N O3 F3 S2	.95847	.95780 X	.95441 X	0.62(0.15-1.	.22) X	8.27(6.39-10	D.09) X	
48	2 -0.5 0.5	N2 O2 F5 S	.96006	.95854 X	.95611	0.65(0.17-1.	.33) X	4.80(3.76-5	.96) X	
49	3 2.5 3.5	H2 N4 O3 F P2	.95862	.95591 X	.96279 X	0.16(0.01-0.	.40) X	0.03(0.00-0	.13) X	
50	4 1.5 4.5	H3 N4 O4 S2	.95957	.95812 X	.95561	1.03(0.24-2.	.14) X	9.19(7.39-1)	1.10) X	
51	5 -0.5 0.5	С Н ОЗ F5 Р	.95835	.96181	.96260 X	1.26(1.05-1.	.47) X	0.02(0.00-0	.14) X	
52	6 2.0 3.0	СН N 010	.96005	.96283	.96429 X	1.79(1.37-2.	.26) X	0.01(0.00-0	.18) X	
53	7 1.5 2.5	C H6 N2 O3 P3	.95913	.96082 X	.96333 X	1.51(1.04-2.	.04) X	0.01(0.00-0	.09) X	
54	8 3.0 5.0	C N3 04 F2 P	.95945	.95996 X	.96362 X	1.54(0.91-2.	.28) X	0.01(0.00-0	.11) X	
55	9 1.5	C H4 N4 F S3	.95821	.95778 X	.95403 X	1.44(0.46-2.	.68) X	10.77(7.41-	13.89) X	
56	10 2.5 3.5	C H2 N4 O2 F P CL	.95879	.95867 X	.95590	1.23(0.66-1.	.92) X	32.36(25.37	-39.99) X	
57	11 2.0	C H4 N5 P CL2	.95814	.95727 X	.95519	0.88(0.39-1.	.50) X	63.99(51.37	-77.73)	
58	12 2.0 4.0	C2 H4 N O4 F P2	.95996	.96299	.96423 X	2.70(2.18-3.	.26) X	0.00(0.00-7	.00) X	
59	13 2.0 4.0	C2 H2 N O6 F S	.95869	.96074 X	.95537	2.93(2.07-3.	.81) X	4.89(4.09-5	.81) X	
60	14 0.5	C2 H8 N2 P S3	.95872	.95955 X	.95455 X	3.21(1.76-4.	.82) X	11.71(8.35-	14.92) X	

Again, a blank row between the last and preceding compositions indicate that *only* the last composition was consistent with all 5 measured values. All other possible compositions based on the Exact Mass of the m/z 187 ion were rejected by comparing the measured and calculated values of Exact Masses and Relative Abundances for the +1 and +2 partial profiles. At least 1 X is seen in each other composition's row.

10											
77	31 5.	О С6 Н5	N S3	.95841	.96064 X	.95435 X	7.92(5.90-9.9	94)	11.48(8.27-	14.51) X	
78	32 6.0	7.0 C6 H3	N O2 P CL	.95899	.96214	.95613	6.99(5.98-8.0)2)	32.27(25.36	-39.79) X	
79	33 6.	· ·	burn of				1410-00)	4.10(3.21-4	.97) X	
80	34 6.	s ine	πγροτ	петіса	I CON	npos	ποπ)	31.91(25.08	-39.30) X	
81	36 10.5							89) X	0.01(0.00-0	.12) X	
82	37 10.	was	corre	CT: 67	Π ₃ INU	UI 2		50) X	32.74(25.20	-41.04) X	
83						-					
84	35 6.	О С7 НЗ	N O CL2	.95917	.96234	.95626	8.05(6.90-9.2	(4)	64.01(50.11	-79.05)	
85											
86	Experimenta	l Values:		.95915	.96232	.95616	7.39		64.3		
87											

With a step resolution of 10,000, the 5% levels were not monitored for these broadened profiles. A step resolution of 6700 would usually ensure observation of 5% of profile maximum levels with a slit resolution of 10,000. Because both +1 and +2 partial profiles were monitored for two analytes, 10,000 resolution was preferred.

134.076

A		<u>EI</u>		EJ	EK	EL	EM	EN	EO	EP	EQ	ER	ES-
43]n/z =	= 198.O	5538	$\pm 6 pp$	m	C16	N14 012 F1	O P6 S6 SI7	7 H196		Resolution:	10000	
44													
45	#	RDB Ra	nge	Compos	ition	М	M+1	M+ 2	%M+1 (%M+1	Range)	%M+2 (%M+2 R	ange)	
46													
47	1	1.	0	H11 N8	OPSI	.05627	.05504 X	.05337 X	3.92(1.51-7	.18) X	0.11(0.00-0.	40) X	
48	2	2.	0	H7 N10	FS	.05599) .05355 X	.05177 X	0.99(0.13-2	.40) X	0.01(0.00-0.	16) X	
49	3	1.	0	C H11 1	N8 P S	.05650) .05518 X	.05233 X	3.03(1.36-5	.26) X	0.02(0.00-0.	24) X	
50	4	2.	0	C H8 N	8 O F P	.05427	.05282 X	.05762 X	0.98(0.38-1	.78) X	0.10(0.03-0.	18) X	
51	5	-0.5	0.5	C2 H16	N3 O2 SI3	.05503	.05495 X	.05237 X	8.77(4.09-1	4.27)	0.13(0.00-0.	56) X	
52	6	1.	0	C2 H12	N6 O P2	.05478	3 .05527 X	.05833 X	2.46(1.46-3	.63) X	0.16(0.08-0.	25) X	
53	7	2.5	3.5	C2 H6 3	N7 O2 F2	.05510) .05521 X	.05888 X	2.56(1.42-3	.94) X	0.33(0.17-0.	50) X	
54	8	6.	0	C2 H6 1	N1O SI	.05462	.05409 X	.05164 X	3.75(1.60-6	.49) X	0.01(0.00-0.	09) X	
55	9												
56	10												
57	11												
58	12												
59	13												
60	14												
61	15				Alte	rnative	ely, on	le cou	ıld rep	eat d	ata		
62	16										-		
63	17				ac	quisiti	on ove	eran	arrow	er tim	e		
64	18					dow to	dicor	imina	to and	inct t	ho		
65	19				VVIII		uisci	IIIIIa	ite aya	inst t	lie		
66	20						interf	erina	ion_				
67	21							9					
68	22												
69	23												
70	24												
71	25												
72	26	_								-		Ť	
73	27	±•						-		J.OI, A	0.2010.00-0.	00) A	
74	28	2.	۶ 	I h	e nypo	otnetic	ai coi	mposi	τιοη	.43) X	0.46(0.36-0.	56) X	
75	29	6.0	7.0				• • •		+	J.50) X	0.68(0.47-0.	91) X	
76	30	5.0	6.0	SAA	15 COL	ecti	G12H	8NO	2	1.10) X	0.80(0.6		
77	31	5.	5	C9 HIO	м га рт	.0300	,,	A	13.10(5.00-	16.65)	0.32(0.01-1		
78	L												
79	32	9.5	10.5	C12 H8	N 02	.05550	.05877	.06130	13.73(11.79	-15.68)	1.25(1.02-1.	49)	
80				-									
81	Exper	imenta	l Va	lues:		.05538	.05860	.06125	13.27		1.26		

13.27%

100%

1.72%

Click

161 162

C:\WINNT\System32\CMD.exe

:\I\A\Ht.123

۱																
		El		EJ	EK		EL	EM		EN		EO	EP		E(Q
3	m/z ∶	= 152.9	9798	± 6 p;	pm		C12	N10 09 F8	P4	S4 CL4	H13	51		F	Resolut	ion:
4																
5	#	RDB Ra	nge	Compos	sition		М	M+2					% M +2	(%	M+2 Re	ange)
3																
7	1	2.5	3.5	С НЗ 1	N4 O2 F P		.9977	7.001	58 X	[0.43	(0.	36-0.5	50) X
8	2	2.	0	C H5 I	N5 P CL		.9971	1.994	16 X	[32.0	1(2	5.70-3	8.89)
9	3	1.5	2.5	C2 H7	N2 O2 P2		.9982	B .0024	45 X				0.44	(0.	36-0.5	51) X
)	4	3.0	4.0	C2 H I	N3 O3 F2		.9986	.002	59 X				0.65	(0.	54-0.7	76) X
1	5	2.	5	C2 H3	N4 OF C	L	.9979	4 .9950	04				32.2	4 (2	5.89-3	9.15)
2	6	1.	5	C3 H7	N2 O P C	L	.9984	5.995	56				32.2	5 (2	5.90-3	9.17)
3	7	6.	5	C3 1		_			_					(4.	00-5.2	1) X
4	8	1.	5	C4 1	A sin	gle c	ompo	osition	ĪS	; nov	N	consist	tent	5(5	51.44-7	7.84)
5	9	2.	5	C5 1		with	the	3 mea		red v				(4.	00-5.2	:1) X
3	10	7.0	8.0	C5 1						-				(0.	49-0.7	70) X
7	11	6.0	7.0	C6 H4	N 02 P		.9979	7 .0028	36 X	:			0.62	(0.	52-0.7	73) X
3	12	6.	5	C7 H2	03 F		.9988	0.003	33 X	[0.87	(0.	73-1.0)2) X
9	14	10.	5	C10 H	02		.9976	5.003	36 X	[0.97	(0.	81-1.1	.3) X
)																
1	13	6.	0 (С7 Н4	N O CL		.9981	4 .995:	32				32.4	8 (2	6.09-3	9.43)
2																
3	Expe	rimenta	l Va	lues:			.9979	.995)5		í		31.1	4		
4																
_									-							

However, for the second composition, a good estimate of the Exact Mass would still be provided. Monitoring the +2 profile would distinguish between these compositions.

MPPSIRDware Manua!

Profile Generation Model Manual

These manuals discuss all of the MPPSIRD and the Profile Generation Model code.

However, the MPPSIRDware manual describes Lotus 123 v2.2 and WordPerfect 5.1 code no longer used. The manual has not been updated to describe the new Lotus 123 v9.x code currently used. The PGM manual in Quick Basic fails to describe only a few features that have been added to permit its use directly from the spreadsheet.

Articles about ICE

- Grange, A.H.; Osemwengie, L.; Brilis, G.; Sovocool, G.W. "Ion Composition Elucidation (ICE): An Investigative Tool for Characterization and Identification of Compounds of Regulatory Importance" *International J. of Environmental Forensics*, **2001**, *2*, 61-74.
- Snyder, S.A.; Kelly, K.L.; Grange, A.H.; Sovocool, G.W.; Snyder, E.M. Giesy, J.P. "Pharmaceuticals and Personal Care Products in the Waters of Lake Mead, Nevada" Book Chapter, ACS Publications, August, 2001.
- Grange, A.H.; Sovocool, G.W. "Mass Peak Profiling from Selected Ion Recording Data (MPPSIRD) as a Tool for Regulatory Analyses" J. AOAC Int'l, 1999, 82, 1443-1457.
- Grange, A.H.; Sovocool, G.W. "Identifying Endocrine Disruptors by High Resolution Mass Spectrometry" Advances in Analysis of Environmental Endocrine Disruptors, **1999**, Ch. 9, 133-145.
- Grange, A.H.; Sovocool, G.W. "Determination of Elemental Compositions by High Resolution Mass Spectrometry without Mass Calibrants" Rapid Commun. Mass Spectrom., 1999, 13, 673-686.
- Grange, A.H.; Sovocool, G.W.; Donnelly, J.R.; Genicola, F.A.; Gurka, D.F. "Identification of Pollutants in a Municipal Well Using High Resolution Mass Spectrometry" *Rapid Commun. Mass Spectrom.*, **1998**, *12*, 1161-1169.
- Grange, A.H.; Brumley, W.C.; Sovocool, G.W. "Powerful New Tools for Analyzing Environmental Contaminants: Mass Peak Profiling from Selected-Ion-Recording Data and a Profile Generation Model" *American Environmental Laboratory*, **1998**, *10*, 1, 6-7.
- Grange, A.H.; Brumley, W.C. "A Mass Peak Profile Generation Model to Facilitate Determination of Elemental Compositions of Ions Based on Exact Masses and Isotopic Abundances", J. Amer. Soc. for Mass Spectrom. 1997, 8, 170-182.
- Grange, A.H.; Donnelly, J.R.; Brumley, W.C.; Sovocool, G.W. "Determination of Elemental Compositions from Mass Peak Profiles of the Molecular (M), M+1 and M+2 Ions" Anal. Chem. 1996, 68, 553-560.
- Grange, A.H.; Brumley, W.C. "Mass Spectral Determination" Environmental Testing & Analysis 1996, March/April, 22-26.
- Grange, A.H.; Brumley, W.C. "Determining Elemental Compositions from Exact Masses and Relative Abundances of Ions" *Trends in Analytical Chemistry*, **1996**, *15(1)*, 12-17.
- Grange, A.H.; Brumley, W.C. "Identification of Ions Produced from Components in a Complex Mixture by Determination of Exact Masses and Relative Abundances Using Mass Peak Profiling" *LC*•*GC*, **1996**, *14*, 478-486.
- Grange, A.H.; Donnelly, J.R.; Brumley, W.C.; Billets, S.; Sovocool, G.W. "Mass Measurements by an Accurate and Sensitive Selected-Ion-Recording Technique" Anal. Chem. 1994, 66, 4416-4421.
- Grange, A.H.; Brumley, W.C. "Plotting Mass Peak Profiles from Selected Ion Recording Data" *Rapid Comm. in Mass Spectrom.* **1992**, *6*, 68-70.

ICE Posters at http://www.epa.gov/nerlesd1/chemistry/ecb-posters.htm

- Well Pollutants Identified With A New Mass Spectrometric Technique
- Ion Composition Elucidation (ICE) of Ions from Trace Levels of Pharmaceuticals and Disinfection Byproducts in Water Supplies Characterizing Hazardous Waste Constituents: A New Tool
- Identification of Analytically Problematic Pollutants with a New Mass Spectrometric Technique
- Mass Determination of Intact a-Chain Hemoglobin Adducts to within 0.2 Da Using MPPSIRD with Electrospray Ionization
- Deconvoluting Overlapping Isotopic Patterns Using Mass Peak Profiling from Selected Ion Recording Data (MPP Determination of Elemental Compositions by High Resolution Mass Spectrometry without Mass Calibrants

Mention of trade or commercial products in this presentation does not constitute endorsement or recommendation for use by the Office of Research and Development (ORD) or the Environmental Protection Agency (EPA).

> Note: although the ORD has peer reviewed this PowerPoint presentation, it does not necessarily reflect the views or opinions of ORD or EPA.

