Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

Evaluation of Hydrologic Models for Alternative Covers at Mine Waste Sites

EPA Grant Number: R829515C007
Subproject: this is subproject number 007 , established and managed by the Center Director under grant R829515
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: HSRC - Rocky Mountain Regional Hazardous Substance Research Center for Remediation of Mine Waste Sites
Center Director: Shackelford, Charles D.
Title: Evaluation of Hydrologic Models for Alternative Covers at Mine Waste Sites
Investigators: Shackelford, Charles D. , Benson, Craig H.
Institution: Colorado State University , University of Wisconsin - Madison
EPA Project Officer: Lasat, Mitch
Project Period: October 1, 2002 through September 30, 2005
Project Amount: Refer to main center abstract for funding details.
RFA: Hazardous Substance Research Centers - HSRC (2001)
Research Category: Hazardous Waste/Remediation

Description:

Objective:

The conventional approach to final cover design is to use a compacted clay layer and/or a geomembrane (polymeric sheet) as the primary barrier to flow. This approach is impractical at many mine sites because of expense, the lack of suitable clay borrow sources, and the potential for damage by frost and desiccation. As a result, alternative approaches to final cover design are being investigated. Although the underlying principle of alternative covers (e.g., monolithic covers, capillary barrier covers) is simple, predicting their hydrologic performance is fraught with difficulties that introduce appreciable uncertainty regarding the accuracy of predictions, and only limited effort has been devoted towards ensuring that predictions made with hydrologic models accurately represent field conditions. Comprehensive studies have not yet been conducted because hydrologic data from full-scale instrumented alternative covers have only become available within the last two years. The proposed research will represent the first comprehensive evaluation of five different hydrologic models (HELP, UNSAT-H, Vadose/W, Hydrus-2D, and LEACHM) commonly used for the design of cover systems based on high quality field data from large-scale test facilities of alternative covers that have been constructed and monitored at 12 sites in the US.

The proposed study has four objectives: (1) a baseline assessment and comparison of the algorithms in existing hydrologic models when applied to a variety of meteorological conditions, (2) an unbiased critical assessment of the predictive capabilities of existing hydrologic models for covers using field data, (3) improvement of the hydrologic model (or models) that have the most promise so that predictions made with the model are accurate, and (4) incorporation of additional algorithms in the model that can be used to assess the impact of long-term processes such as plant secession, pedogenesis, and climatic change.

Approach:

The first objective will be achieved by performing comparative simulations with each hydrologic model to define differences in output obtained from the five models for different types of alternative covers and different locations with different climatic conditions. The second objective will be achieved by performing simulations using a subset of the five models based on the results of the first objective for each test facility using data representative of field conditions as input. The third objective will be achieved by modifying the algorithms with deficiencies that were identified in the first two objectives to accurately reflect field behavior based on the detailed and comprehensive data collected at the field sites. This effort may require substantial re-writing of portions of the codes and incorporation of additional algorithms. The fourth objective will involve adding algorithms to the model (or models) for simulating long-term effects that may influence the hydrologic behavior of covers. The characteristics of these algorithms will be based on the short-term pedogenetic and vegetative changes observed at the field sites, as well as the knowledge that has been gained from natural analog studies.

Expected Results:

The key deliverable from this study will be an improved, easy-to-use, and field-verified model for long-term assessment of alternative covers at a variety of sites and climatic conditions. This study will also leverage Rocky Mountain Regional HSRC funds by making use of extensive investments that have been made by three federal agencies (USEPA, USDOE, and US Army).

Supplemental Keywords:

Ecosystem Protection/Environmental Exposure & Risk, Industry Sectors, ENVIRONMENTAL MANAGEMENT, INTERNATIONAL COOPERATION, TREATMENT/CONTROL, Scientific Discipline, Waste, RFA, Remediation, Ecosystem/Assessment/Indicators, Risk Assessment, Geology, Restoration, Waste Treatment, Ecological Risk Assessment, Hazardous Waste, Environmental Engineering, Ecological Effects - Environmental Exposure & Risk, Groundwater remediation, Hazardous, Mining - NAIC 21, Ecology and Ecosystems, Environmental Monitoring, bioavailability, heavy metal contamination, heavy metals, treatment, water quality, aquatic ecosystem, environmental rehabilitation, geochemistry, extraction of metals, contaminated waste sites, mining, mining wastes, groundwater hydrology models, acid mine runoff, aquatic toxicology, acid mine drainage, monitoring, ecological recovery, contaminated aquifers, groundwater pollution, remediation technologies, mining waste, contaminant transport, ecological indicators, acid mine discharge, leaching of toxic metals, aquatic ecosystems, metals, contaminated groundwater, hydrogeology, hydrology, stream ecosystem, restoration strategies, contaminated sites

Progress and Final Reports:
2003 Progress Report
2004 Progress Report
2005 Progress Report


Main Center Abstract and Reports:
R829515    HSRC - Rocky Mountain Regional Hazardous Substance Research Center for Remediation of Mine Waste Sites

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.