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Abstract

We present a mixed-integer programming (MIP) formulation for sensor placement

optimization in municipal water distribution systems that includes the temporal char-

acteristics of contamination events and their impacts. Typical network water quality

simulations track contaminant concentration and movement over time, computing con-

taminant concentration time-series for each junction. Given this information, we can

compute the impact of a contamination event over time and determine affected loca-

tions. This process quantifies the benefits of sensing contamination at different junc-

tions in the network. Ours is the first MIP model to base sensor placement decisions

on such data, compromising over many individual contamination events. The MIP

formulation is mathematically equivalent to the well-known p-median facility location
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problem. We can exploit this structure to solve the MIP exactly or to approximately

solve the problem with provable quality for large-scale problems.

Keywords: Safety, Terrorism, Optimization, Optimization models, Municipal water,

Water management

Introduction

Public water distribution systems are inherently vulnerable to accidental or intentional con-

tamination because of their distributed geography. The use of on-line, real-time early warning

systems (EWSs) is a promising strategy for mitigating these risks. The general goal of an

EWS is to identify a low probability and high impact contamination incident while allowing

sufficient time for an appropriate response that mitigates any adverse impacts. An EWS

may complement conventional routine monitoring by quickly providing information on un-

usual threats to a water supply. Although several European countries have deployed EWSs

to monitor riverine water supplies (Drage et al., 1998; Schmitz et al., 1994; Stoks, 1994),

relatively few systems have been deployed for U.S. water supplies – and the deployment of

robust EWSs to monitor drinking water in the distribution system remains a future goal.

A key element of the design of an effective EWS is the strategic placement of sensors

throughout the distribution network. A variety of technical approaches have been developed

to formulate and solve sensor placement problems in water networks, including mixed-integer

programming (MIP) models (Berry et al., 2005; Lee et al., 1991; Lee and Deininger, 1992;

Propato et al., 2005; Watson et al., 2004), combinatorial heuristics (Kessler et al., 1998;

Kumar et al., 1999; Ostfeld and Salomons, 2004), and general-purpose metaheuristics (e.g.,

Ostfeld and Salomons (2004)). MIPs can often be solved to optimality in practice.

In this paper, we describe a MIP formulation for sensor placement optimization in wa-

ter distribution networks that incorporates information about the temporal characteristics

of a contamination event, as obtained from standard network simulation models. The wa-

ter quality simulations compute contaminant concentration time-series for each junction in
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a network. These time-series are then used to estimate the impact of the contamination

event, including the impact of detection at different junctions in the network. Based on con-

taminant movement data, the MIP estimates whether contaminant arrives at a population

center before the contaminant is detected. Moreover, the fidelity of the water quality sim-

ulations and corresponding contaminant impact calculations is independent from the MIP

model. Thus our MIP model can be used with a diverse set of sensor placement objectives,

and improvements in water quality simulations can be incorporated – without changing the

underlying sensor placement solution strategy.

We show how to solve this MIP model with both heuristic and exact combinatorial

solvers for large-scale, real-world sensor placement problems. Our computational results

show GRASP heuristic is robust and scalable. Thus it is practical in contexts where many

sensor placement analyses are required for trade-off studies. Furthermore, since this heuristic

is solving a MIP model, we can bound the quality of heuristic solutions using the optimal

value of linear programming relaxations of the MIP model. Thus, the structure of our

modeling approach can be leveraged in many different ways.

The next section reviews the previous literature on combinatorial sensor placement for-

mulations for water distribution networks. Section describes our MIP formulation, as well as

a revision of this formulation that facilitates its application to large-scale problems. Section

describes the application of exact and heuristic solvers to large sensor placement problems.

Finally, we discuss the significance of these results in Section .

Background

Sensor placement problems can be naturally formulated as optimization problems. Although

our focus is on detecting contamination events within an EWS, methodologies for placing

water quality monitoring stations are related to sensor placement problems for EWS design.

Consequently, we include them in our comparison of modeling approaches, and for simplicity

of presentation we refer to the placement of water quality monitoring stations as a sensor

placement problem.
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For EWS design, the general goal of sensor placement optimization is to place a limited

number of sensors in a water distribution network such that the impact to public health of

an accidental or intentional injection of contaminant is minimized. However, there is no spe-

cific formulation of the problem that is widely accepted by the water resources management

community. A major contributing factor is the wide range of design objectives that are im-

portant when considering sensor placements, e.g., minimizing the cost of sensor installation

and maintenance, the response time to a contamination event, and the extent of contami-

nation – which impacts recovery costs. Additionally, it is difficult to quantify precisely the

health impact of a contamination event; human water usage is often poorly characterized, in

terms of both water consumption patterns and how water consumption impacts population

health. Consequently, surrogate measures like the total volume of contaminated water de-

manded have been used to model health impacts; this measure assumes that human water

consumption is proportional to water demand.

One common feature of sensor placement formulations is the simplifying assumption

that sensors can accurately measure water quality and/or the presence of contaminants.

Although this may be reasonable for water quality measurements, it remains unclear how

well this assumption will apply to EWS design activities. New sensor technologies are needed

to detect contaminant threats, but the robustness and accuracy of these contaminant-specific

sensors remains unclear.

For the computational studies in this paper, uncertainty in our solutions is largely caused

by uncertain simulator input data and any inaccuracies of contaminant fate and transport

modeling, not by limitations in solution technology for the mathematical optimization prob-

lem. Future improvements in data collection or simulation will automatically improve the

quality of our sensor placement.

Given a particular contamination scenario, a given sensor placement will either detect

contamination as it is transported through the network, or not. Contamination scenarios

are drawn from a theoretically infinite combination of contaminant type (including fate and

transport characteristics); contaminant source location, mass flow rate, time of day, and
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duration; and network operating condition. All sensor-placement work to date assumes a

particular finite set of scenarios, upon which the solution is conditioned. We have identified

three properties that can distinguish such scenario-based sensor placement models:

Transport (external vs. internal) In an internal-transport model, the impact of a con-

tamination event is embedded in the formulation through explicit constraints incorpo-

rating pipe network topology, flow directions, and travel times. In an external-transport

model, a pre-processing step uses standard water quality simulation models to predict

contaminant concentration time-series resulting from particular contamination scenar-

ios. The formulation thus implicitly incorporates the physical and chemical principles

of the simulation model, by incorporating the calculated impact of a contamination

event given detection by a sensor. The implicit external-transport formulations can

more easily capture realistic temporal evolution of contamination concentrations, be-

cause the formulation size does not depend directly on water quality simulation details

(e.g., number of time steps or demand changes). In contrast, for computational reasons

the explicit internal-transport formulations may assume one or more distinct patterns

of network flows, ignoring the effect of temporal flow transitions on the evolution of

contaminant concentration.

Scenario Handling (raw vs. summary) Sensor placement models accept as input either

raw information about each contamination event or summary information (such as

averages) derived from the full set of events.

Temporal (vs. nontemporal) Nontemporal models do not explicitly represent time. In-

stead, the concept of node protection is structural; nodes are protected only by sensors

that are physically between the injection point and themselves.

Almost all of the research on sensor placement optimization has considered internal-

transport formulations. These differ from each other by (1) the design and/or performance

objective considered and (2) how network flows are modeled. Lee et al. (1991; 1992) de-

veloped a formulation related to a set covering problem. Subsequently several researchers
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refined the model (see Ostfeld and Salomons (2004) for a review). These researchers used

network flow information to compute the fraction of water flow that passes between any pair

of junctions, and then placed sensors to maximize the coverage of water flow.

Kessler et al. (1998) and Ostfeld and Kessler (2001) introduced an internal-transport,

summary-scenario formulation in which the objective is to ensure a pre-specified maximum

volume of contaminated water consumed prior to detection. This formulation is based on a

set covering problem. For each contamination event, there must be a sensor on some junction

that will detect the event early enough to meet a pre-specified “level of service.” Kessler et.

al. estimate contaminant consumption using an auxiliary network determined via analysis

of hydraulic simulation outputs. The network has a directed edge from junction vi to vj if

there is flow from vi to vj at any point in the simulation. These directed edges are weighted

by the average velocity from vi to vj over the course of simulation. Kessler et. al. use this

auxiliary graph along with network pipe lengths to estimate the shortest travel time between

all pairs of vertices in the original water network.

Berry et al. (2003; 2005) and Watson et al. (2004) introduce a variety of internal-transport

formulations expressed as MIPs. In Berry et al. (2003; 2005), the objective is to minimize the

expected fraction of the population exposed to a contamination event. They use hydraulic

simulation results to compute a fixed flow orientation for each pipe in the network for each

of p distinct non-overlapping time intervals, referred to as patterns. A population consuming

water at a junction vj is considered exposed to contaminant injected at a junction vi if and

only if there exists a flow path from vi to vj along which there is no sensor. Thus this is a

nontemporal model. Watson et al. (2004) generalize this formulation to consider a range of

optimization objectives, some of which account for travel times by considering contaminant

propagation rates within each flow pattern separately, as opposed to aggregating these into

a single auxiliary network as is done by Kessler et al. (1998).

Ostfeld and Salomons (2004) propose a model most similar to ours. It is an external-

transport raw-scenario model. Their objective is to ensure that the expected impact of a

contamination event is within a pre-specified “level of service”, defined as the maximum vol-
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ume of sufficiently contaminated water consumed prior to detection. Mirroring the earlier

approach of Kessler et al., Ostfeld and Salomons introduce a formulation based on set cov-

ering, in which sensors are allowed to cover only those junctions for which detection can be

guaranteed within the pre-specified level of service. They approximately solve the problem

using a genetic algorithm, a method that provides no solution quality guarantees.

The sensor placement model described in this article was first presented by Berry et al.

(2004). This model was recently refined by Propato et al. (2005), who consider an alternate

formulation of the underlying combinatorial structure of the sensor placement problem. They

argue that the structure of this formulation can be exploited to limit the number of water

quality simulations that are needed for sensor placement when contaminant dynamics are

conservative or first-order.

The MIP Model

We now introduce our MIP formulation of the sensor placement optimization problem. We

assume a fixed budget of p sensors, each of which can be placed at any junction in a distribu-

tion network; installation of sensors on pipes is disallowed because we rely on water quality

simulations that cannot provide this information. We assumed that sensors are capable of

detecting contaminants at any concentration level, and we assume that a general alarm is

raised when contaminant is first detected by a sensor, such that all further consumption is

prevented.

We model a water distribution network as a graph G = (V, E), where vertices in V

represent junctions, tanks, or other sources, and edges in E represent pipes, pumps, and

valves. In higher-granularity (i.e., skeletonized) network models, each vertex may represent

an entire neighborhood or other geographic region. We assume that demands follow a small

set of patterns, e.g., one pattern per hour throughout the day. Each pattern represents the

demand during a particular time interval on a “typical” day. Because each pattern holds

steady for one or more hours, we assume the gross flow characteristics induced by these

demands holds steady during the time period associated with that pattern.
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Let A denote the set of contamination scenarios against which a sensor configuration

consisting of p sensors is intended to protect. A contamination scenario consists of indi-

vidual contamination events, each of which can be characterized by quadruples of the form

(vx, ts, tf , X), where vx ∈ V is the origin of the contamination event, ts and tf are the con-

tamination event start and stop times, and X is the contamination event profile, e.g., arsenic

injected at a particular concentration at a given rate. The quadruples can easily be extended

to account for multiple coordinated contamination events. Let tas and taf respectively denote

the start and stop times of the contamination event for scenario a. For a given contami-

nation scenario, we use water quality anlysis software (e.g., EPANET (Rossman, 1999)) to

compute the contaminant concentration at each junction in the network from time tas to an

arbitrary point th ≥ tas in the future. The results of such an analysis are expressed in terms

of concentration time-series τj for each vj ∈ V , with samples at regular (arbitrarily small)

intervals within [tas , th]. Our discussion throughout the paper assumes that when contamina-

tion scenarios consist of multiple events, these events involve identical contaminant types. It

should be clear from our definition of contamination events that this is not necessarily true,

and thus the approach described here naturally generalizes.

Let da(t) be the total network-wide impact of a contamination scenario a at any given

point in time t ≥ tas . We defer precise specification of an “impact” to Section ; a key

characteristic of our formulation is that it captures a wide range of possible definitions.

Let γaj denote the earliest time t at which a hypothetical sensor at junction vj can detect

contaminant due to a contamination scenario a. If no contaminant ever reaches vj, then

γaj = t∗, where t∗ denotes the stop time imposed on the water quality simulations; otherwise,

γaj can be easily computed from τj. Let daj = da(γaj) be the total impact of contamination

scenario a if the contaminant is first detected by a sensor at vj. Finally, let q denote a

“dummy” location that corresponds to failed detection of contamination scenario a. Thus

daq is the total impact of contamination scenario a if it is not detected before t∗.

Our formulation models the placement of p sensors on a set L ⊆ V vertices, with the

objective of minimizing the expected impact of a set A of contamination scenarios. Each
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contamination scenario a ∈ A has a likelihood αa such that a∈A αa = 1. Let La be the

subset of vertices in L

∑

∪ {q} that could possibly be contaminated by scenario a. The design

objective is then expressed as:

αa daixai,
a

∑

∈A i

∑

∈La

where xai is an indicator variable with value equal to 1 if location i raised the alarm (i.e.,

first detected contaminant) for contamination scenario a and 0 otherwise.

Our complete formulation – which we denote by DSP – is easily expressed as the following

MIP:

(DSP) minimize
a

∑
αa

∈A i

∑
daixai

∈La



 ∑


i∈La
xai = 1 ∀a ∈ A

 xai ≤ si ∀a ∈ A, i ∈ L
where

 a

∑
 i∈L si ≤ p
 si ∈ {0, 1} ∀i ∈ L



0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La

The binary decision variable si for each potential sensor location i ∈ L equals 1 if a sensor

is placed at location i and 0 otherwise. The first set of constraints assures that exactly

one sensor (on average) is credited with raising the alarm for each contamination scenario.

The second set forbids a location from raising an alarm if there is no sensor installed there.

The last constraint enforces the limit on the total number of sensors. Consider an optimal

solution to DSP (binary choices for si). If the impacts are all non-negative, then for scenario

a, the set of locations i such that xai > 0 all have the same (minimum) impact.

A special case of DSP was first described by Berry et al. (2004). Remarkably, the DSP

is identical to the well-known p-median facility location problem (Mirchandani and Francis,

1990). In the p-median problem, p facilities (e.g., central warehouses) are to be located on

m potential sites such that the sum of distances daj between each of n customers (e.g., retail

outlets) a and the nearest facility j is minimized. In comparing the DSP and p-median

problems, we observe equivalence between (1) sensors and facilities, (2) contamination sce-

narios and customers, and (3) contamination impacts and distances. While the DSP allows
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placement of at most p sensors, p-median formulations generally enforce placement of all p

facilities; in practice, the distinction is irrelevant unless p approaches the number of possible

locations.

We used a slightly revised formulation of DSP in our computational experiments. We

have observed that for any given contamination scenario a, there are often many total impacts

daj that have the same value. If the contaminant reaches two junctions at approximately the

same time, then these two junctions could witness the contamination event with the same

impact values. For example, this occurs frequently when a coarse reporting time-step is used

with the water quality simulation. This observation has led us to consider the following

reformulation of DSP:

(cDSP) minimize
a

∑
αa

∈A i

∑
daixai

 ∈L̂a

 ∑
 ˆi a

x 1∈ ai = ∀aL ∈ A
x ≤ s ∈

where

∑
s ∀a A


L̂ai i + j∈La\L̂a:d =d j , i

aj ai
∈ a

∑



i∈L si ≤ p

 si ∈ {0, 1} ∀i ∈ L
 0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ L̂a

L̂ ⊆ L ∈ L̂where a a such that dai = daj for all i, j a. This revised formulation treats sensor

placement locations as equivalent if their corresponding contamination impacts are the same

for a given contamination event. In doing so, the fundamental structure of this formulation

changes only slightly, but this IP may require significantly less memory (by eliminating

duplicate dai values). However, every feasible solution for DSP has a corresponding solution

in cDSP with the same sensor placement. The only difference is that if sensor si is the

witness for attack a, the IP might “credit” the observation to a non-existant sensor sj with

the same impact value (setting xaj = 1 rather than xai = 1). We can always map the

selected observation variable to a real sensor with the same impact. Because the impact

for each attack is the same, the objective value is the same, so we can use cDSP to find

optimal sensor placements. In preliminary experiments, cDSP was often ten times smaller

than DSP , and we have observed corresponding reductions in optimization runtime.

6
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For simplicity of presentation, our subsequent discussion will refer to DSP when describ-

ing MIP formulations. However, the cDSP is the actual MIP model used in our experiments.

Empirical Results

We now describe the application of MIP and heuristic solvers for DSP on a number of large-

scale, real-world water distribution networks. We describe a heuristic search strategy in

Section , our methodology and test networks in Section , and results for MIP and heuristic

approaches in Section and Section , respectively.

Solution Methods

Equivalence with the p-median problem has an immediate bearing on our approach to solving

DSP, because we can directly leverage the extensive literature on algorithms for solving the

p-median problem. The p-median problem can in principle be solved with a MIP solver.

Further, optimal integer solutions frequently result by relaxing the integral constraints and

solving the corresponding pure linear program (LP) (ReVelle and Swain, 1970). However,

heuristics are often used in practice when dealing with large problem instances due to the

rapid growth in the number of constraints and variables as problem size increases.

The current state-of-the-art heuristic for the p-median problem is a hybrid approach

recently introduced by Resende and Werneck, which we denote RW. The core mechanism

underlying RW is a Greedy Randomized Adaptive Search Procedure (GRASP), which is

used to generate a set of high-quality solutions using biased greedy construction techniques.

Steepest-descent hill-climbing is then used to move from each of the resulting solutions to a

local optimum. Finally, path relinking is used to further explore the set of solutions lying

at the intersection of the resulting local optima. For a complete description of RW, we refer

the reader to (Resende and Werneck, 2004).
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Methodology and Test Problems

Each contamination scenario consists of a single EPANET mass injection event of rate 5.7E10

and duration 12 hours. The duration of the entire simulation is 96 hours. EPANET (Ross-

man, 1999) is used to perform water quality simulations for each contamination scenario,

and the resulting concentration time-series τj are used to compute the impact factors daj for

each combination of a ∈ A and vj ∈ V . Simulations begin at time tas = 0 and the 96 hour

duration covers multiple iterations of a daily demand cycle.

Although the objective function of DSP allows for meaningful contamination probabil-

ities αa, for simplicity our experiments address only the case in which αa = 1/|A|. The

impact values dai are obtained from water quality simulations performed by the EPANET

toolkit, which has been instrumented for the objective of contaminant mass consumed. Other

objectives, such as population exposed, number of failed detections, etc., are addressed by

generating different impact numbers, not by changing the MIP structure.

We consider three real-world test networks, which we denote SNL-1, SNL-2, and SNL-3.

These networks respectively contain roughly 400, 3000, and 12000 junctions, and 450, 4000,

and 14000 pipes. The actual identities, exact dimensions, and pump/valve/tank/reservoir/well

counts of these networks are withheld for security purposes. We observe that these models

are not all-pipes models; the complexity is strictly due to size of the region served by the

particular utilities from which the models were obtained. The numbers of nonzero demand

junctions for these three networks are 105, 1621 and 9705, respectively. For each network,

contamination event start times were set to ts = 0, i.e., there is a single attack scenario per

non-zero demand node. The EPANET water quality reporting step for all networks equaled

5 minutes.

SNL-3 is an order of magnitude larger than any network previously considered in the

sensor placement optimization literature, and SNL-1 is an order of magnitude larger than that

typically investigated. The largest network considered in most analyses (e.g., see Kessler et al.

(1998) and Ostfeld and Salomons (2004)) is the “Anytown U.S.A.” network (Walski et al.,

1987), which consists of 34 pipes, 16 junctions, two tanks, one pump, and one well. Berry
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et al. (2004) solve DSP with a MIP solver for on a network containing roughly 450 junctions

and 600 pipes. Watson et al. (2004) solve internal-transport (sometimes nontemporal) MIP

models with MIP solvers, using both the smaller 450 junction network in addition to a larger

network with roughly 3500 junctions.

We conducted all experiments on a dual-processor 64-bit 2.2GHz AMD Opteron Linux

workstation with 20 GB of RAM and 60GB of total (RAM plus swap) memory. The execution

of the water quality simulations to compute impact values required non-trivial amounts of

computation. For SNL-1, SNL-2, and SNL-3, the respective mean times required to perform

a water quality analysis for a single contamination scenario are approximately 0.75, 1.25, and

4 seconds using EPANET. The run-times required to obtain the full suite of water quality

simulations range from under an hour for SNL-1 to over 2 days for SNL-3. However, this

computation could be easily parallelized across a set of standard workstations.

Solution via Mixed-Integer Programming

We solved DSP problems with ILOG’s AMPL/CPLEX 9.1 MIP solver, which is a state-of-

the-art MIP solver. We computed optimal solutions to cDSP for each of our test networks

for a range of sensor budgets, which were selected to be realistic examples of what might

be used in practice. The computational results for 20 sensors are shown in Table 1. In this

table, the linear programming statistics describe the constraint matrix: the number of rows,

columns and non-zero coefficients in the constraint matrix. These results are typical of those

for other sensor budgets. All MIPs for SNL-1 and SNL-2 solved without branching.

Cplex could not solve the cDSP formulation for largest problem (SNL-3) on a standard

(32-bit) workstation since it required 2.5Gb of memory. It could not solve the larger DSP

formulation even on our high performance 64-bit machine. The solution of cDSP for SNL-3

with 4 contamination times per junction required roughly 2 hours of running time and 9

gigabytes of RAM. Exploring another scalability dimension, allowing 96 different contami-

nation times per junction on a network with roughly 3500 junctions required roughly 4 days

of CPU time and more than 20 gigabytes of RAM.
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Another scalability issue concerns the fidelity of the data used for cDSP. In order to make

the water quality simulations more generally useful, our data collection process involves

an intermediate step in which the concentrations at each junction at each reporting step

are saved. These files become prohibitively large when small reporting steps are used in

conjunction with large models. In particular, in our experiments with SNL-3, our choice of

a 60 minute reporting step reduced the space requirements for concentration data, but also

increased the number of indistinguishable “first hits” at each reporting step.

Solution via the RW Heuristic

Next, we consider the performance of the RW heuristic on each of our test networks; the

results are reported in Table 2. On both SNL-1 and SNL-2, RW executes in negligible run-

times and requires at most modest amounts of memory. Further, the solutions generated by

the heuristic are provably optimal ; the impact is equivalent to that yielded by the exact MIP

solvers, as obtained during the course of the experiments described in Section . Although

not reported, we observe identical behavior on a range of sensor budgets. Relative to the

MIP solver, results can be an order of magnitude or more faster, and require no more total

memory. However, it is important to note that the heuristic cannot in isolation prove the

optimality of its result.

On SNL-3, the RW heuristic generates a final solution in roughly 2.5 minutes, while

requiring 2.5 GB of RAM. In contrast, the MIP approach to solving the same test network

consumed roughly the same amount of total memory in 13.5 minutes. The heuristic’s ad-

vantages are more pronounced on experiments with larger numbers of attacks. Furthermore,

RW has always generated provably optimal solutions for our experiments on real networks.

Conclusions

The DSP/cDSP MIP formulation represents a natural evolution of combinatorial modeling

for contaminant sensor placement. DSP is a particularly interesting MIP formulation because
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the value of solutions to this MIP are exactly the same as if the solution was evaluated

independently. Consequently, with DSP we can disassociate issues related to combinatorial

modeling and water quality analysis. For example, current modeling limitations with DSP

are now principally due to the fidelity of the water quality simulations or invalid assumptions

relating to the attack scenario, sensor behavior, or emergency response protocols.

Our experiments demonstrate that exact and heuristic solvers can be effectively applied

to DSP instances that are at least an order of magnitude larger than problems commonly

used in the water distribution community literature. Most research on sensor placement

methods has focused on small-scale water distribution networks with at most 200 junctions

and pipes. We have demonstrated that exact and heuristic solvers can compute optimal

solutions to cDSP for networks with ten thousand junctions, with reasonable computational

effort.

Our successful application of cDSP and p-median heuristics to DSP takes advantage of

the mathematical structure in this problem to (a) significantly reduce the cost of evaluating

sensor placement ensembles, (b) tailor the heuristic to the particular structure of this appli-

cation, and (c) rigorously assess whether the value of the final solution is close to the value of

an optimal solution. This heuristic is qualitatively different from general-purpose simulation-

based optimization methods that have been previously considered for sensor placement (e.g.

Ostfeld and Salomons (2004)) by not treating the search strategy as an outer loop around

the water quality analysis. Instead, we precompute the impact of contamination scenarios on

the entire network, and then re-use these values to assess the quality of any ensemble of sen-

sors. Additionally, our heuristic optimizer is specifically tailored to the p-median structure

of DSP. Thus we can reasonably expect that it will outperform general-purpose heuristics,

particularly because the p-median problem is well-studied. Finally, we have leveraged the

fact that the LP-relaxation of the DSP MIP formulation can provide performance bounds

for the final solution provided by the heuristic. Although many authors have claimed that

their sensor placement heuristics are capable of locating optimal solutions, we can quantify

how close to optimality our heuristic has achieved in a rigorous fashion, either by comparing
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with an optimal solution provided by a MIP solver, or by comparing with an LP-bound.

Taken together, these observations have enabled the effective application of the p-median

heuristic to large-scale water networks that are 500 times larger than the largest water net-

work considered by Ostfeld and Salomons (2004), who consider the application of a genetic

algorithm to a similar sensor placement formulation.

Scalability challenges remain a critical research focus, even for these methods. To ade-

quately account for important temporal effects, we may need to (1) use a large number of

attack scenarios and (2) use a small water quality reporting step. These factors dramat-

ically increase the size and difficulty of DSP. The number of attack scenarios determines

the number of water quality simulations used to define a DSP instance. Furthermore, the

water quality reporting step impacts the number of variables and constraints in the DSP for-

mulation. Addressing these scalability issues will require the development of techniques to

perform parallel simulations and to solve large instances of DSP. For example, we expect the

methodology used to formulation cDSP could be generalized to formulate reduced-fidelity

MIP models that can be solved much more efficiently.

Our experience with the RW algorithm suggests that this heuristic method is not as

sensitive to these scalability challenges as the MIP solvers for DSP. Specifically, RW appears

less sensitive to the number of attack scenarios used in a DSP formulation. We expect RW

to be able to solve most large-scale problems using high-performance 64-bit workstations.

Even in cases where the memory requirements are large, this methodology can trade-off

runtime for maximum memory utilization. As detailed in (Resende and Werneck, 2004),

the large memory requirements are due to pre-computations that yield significant run-time

improvements. Consequently, it is therefore possible to take the complementary approach

and sacrifice run-time for reduced memory requirements.

Finally, related research on more fundamental modeling issues is also needed to make

the application of DSP effective in practice. For example, methods to address solution

robustness (Carr et al.), worst-case optimization objectives, and multiple-objective analysis

(Watson et al., 2004) are needed. Practical assessment of sensor placement configurations will
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require the analysis of trade-offs between sensor placement objectives, as well as assessments

of solution robustness to data variabilities.
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Case Study

We illustrate our techniques by applying them to the familar “EPANET Example 3.” This

is a network with 97 nodes and 116 pipes. In order to prepare for a run of cDSP, we run an

EPANET hydraulic simulation, then 236 EPANET water quality simulations: one for each

of the 59 non-zero demand nodes, for each of four different attack times: 12 A.M., 6 A.M.,

12 P.M., and 6 P.M. Each simulation features a 24-hour injection of a fictional contaminant

at strength 100 mg/min (using EPANET’s “MASS” injection type), and has a total duration

of 48 hours.

Sample cDSP run

At each EPANET reporting step (every 5 minutes), we compute for each of the 236 simulated

attacks the expected total mass of contaminant consumed since time 0. We also note the set
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of nodes that first experienced contaminant concentration greater than 1e-7 at that reporting

step. These data become the primary input values for cDSP.

Solving cDSP with a budget of 5 sensors and a response delay of zero hours determines

the optimal expected contaminant mass consumed (over all 236 attacks) to be roughly 22 kg.

The median impact is 1.3 kg, indicating that some attacks, if undetected, cause significant

impact. A sensor placement found by cDSP that achieves these results is shown in Figure 1.

The enlarged nodes are those with sensors, and they are sized proportionally according to the

sum of the impacts of the attacks first witnessed by each sensor. The sensors tend to be placed

at leaf nodes because of the long attack duration. There is a heavy penalty for failing to

detect an attack at a large-demand leaf node. When modeling shorter injections, the sensors

tend to be placed on internal nodes. A real application of sensor placement would involve

running many instances of these models under varying attack assumptions and identifying

areas of the network that usually receive sensors, regardless of input parameters.

Sensitivity analysis

Of course, the base demands in the EPANET input files are merely estimates. Let us

consider the effect of variations in those demands on the sensor placements identified by

cDSP. Specifically, using the EPANET toolkit, we modify the demands as follows. For each

node, we compute a randomized demand in the interval [q − 0.5q, q + 0.5q] for each water

quality time step, where q is the EPANET-computed demand for that node at that time

step. Then, for each node, we normalize this set of randomized demands so that their sum

over all time steps is the same as the sum of the original demands.

With these randomized demands, we now proceed as above and solve cDSP. The consen-

sus of two sensor placements is the size of their intersection divided by the number of sensors

in each. Our results indicate not only a small variation in objective, but a strong consensus

among sensor placements. This holds not only for EPANET Example 3, but for SNL-1 and

SNL-2 as well. Table 3 contains our results. The last column of this table expresses the

standard deviation of the objective values as a percentage of the mean objective.
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The average pairwise consensus figure of 86.5% for SNL-2 is slightly deceiving since

only exact matches are counted. The non-matching sensors are typically very close to one

another or adjacent, so the effective consensus in a skeletonized model is close to 100%.

There are, of course, many other parameters that might be varied in further sensitivity

analyses. Real sensor placement efforts will involve implementing these studies. They will

feature the combination of an extensive number of required runs and large suites of attack

scenarios. Such a study would be completed by using the RW heuristic for most of the runs,

then sampling from these to verify optimality via cDSP.
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Figure 1: Optimal sensor placement for EPANET Example 3 under the conditions described

in the demand sensitivity analysis (24 hour injection, 48 hour simulation). The sensor vertices

are oversized, and the larger of these witness a larger share of the attack impacts.
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Table 1: Computational results for MIP solutions.

Linear Program Statistics Performance Statistics

Test Instance #Attacks p #Rows #Columns #Non-Zeros Memory Run-Time

SNL-1 105 20 8156 8566 38372 18Mb 0.58s.

SNL-2 1621 20 263K 267K 1.7M 484Mb 87.2s.

SNL-3 9705 20 1.2M 1.3M 6.5M 2.5Gb 912.62s.
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Table 2: Computational results for the RW heuristic.

Performance Statistics

Test Instance p Memory Run-Time

SNL-1 20 8Mb 0.2s.

SNL-2 20 230Mb 12.5s.

SNL-3 20 2.8Gb 153.7s.
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Table 3: Sensitivity results based on randomized demands.

Network #Sensors #Placements Ave. Consensus Std. Dev. of Obj.

EPANET Example 3 5 20 100% 0.3%

SNL-1 20 20 97.75% 1.3%

SNL-2 20 5 86.5% 0.3%
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