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Abstract

We present a model for optimizing the placement of sensors in municipal water
networks to detect maliciously injected contaminants. An optimal sensor configuration
minimizes the expected fraction of the population at risk. We formulate this problem as
a mixed-integer program, which can be solved with generally available solvers. We find
optimal sensor placements for three test networks with synthetic risk and population
data. Our experiments illustrate that this formulation can be solved relatively quickly,
and that the predicted sensor configuration is relatively insensitive to uncertainties in
the data used for prediction.

1 Introduction
Public water distribution systems are inherently vulnerable to accidental or intentional wa-
ter contamination because of their distributed geography. Major accidental contamination
events, like the defining accident on the River Rhine in Germany, have highlighted these vul-
nerabilities (Brosnan, 1999). Although such accidents are of low probability, their immediate
and long-term human health consequences are potentially severe. More recently, concerns
over terrorist attacks have been heightened following the 9/11 attacks in the United States.
These threats are potentially catastrophic, and the existence of such threats can impact
public confidence in water supplies.

To address these concerns, the U.S. Environmental Protection Agency is working with
community water systems to undertake a more comprehensive view of water safety and se-
curity. The development and implementation of on-line, real-time early warning systems
(EWSs) is a key element of this effort. The general goal of an EWS is to identify a low prob-
ability/high impact contamination incident while allowing sufficient time for an appropriate
response that mitigates any adverse impacts. An EWS complements utilities’ conventional
routine monitoring by quickly providing information on unusual threats to a water supply.
Although several European countries have deployed EWSs to monitor riverine water sup-
plies (Drage et al., 1998; Schmitz et al., 1994; Stoks, 1994), relatively few systems have been
deployed for U.S. water supplies.
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The design of an effective EWS remains an active area of research. Appropriate sensor
technologies need to be identified and developed. Further, the integration of information
from on-line monitoring equipment remains a major challenge. For example, one possible
approach for designing an EWS is to use conventional water monitors, using changes in water
quality parameters (e.g. temperature, chlorine residual, color, conductivity, and pH) to infer
the presence of a contaminant. However, the relationship between changes in water quality
parameters and the presence of specific contaminants is not well understood, and it may
be difficult to effectively characterize baseline statistics for common water quality parame-
ters. Many questions also arise when considering the detection of intentional contamination
events. Issues like the expected general effectiveness, the sensor density requirements and
the expected false alarm rate may be qualitatively different when considering intentional
contamination events.

We consider the deployment of sensors within a water utility’s water distribution system.
In this context, an effective deployment of an EWS requires a set of on-line monitors that
ensures an adequate coverage of the network’s flow for detection of contaminants. In particu-
lar, utilities wish to place on-line sensors such that the deployment cost is minimized and the
level of protection afforded is maximized. However, such an EWS system will not necessarily
provide warnings prior to the initial contamination of the water distribution system itself,
as a traditional EWS would.

We present an approach for determining the placement of contaminant sensors within a
municipal water network so as to minimize the expected fraction of the population exposed
to the contaminant. The likelihood of a contamination is modeled as a fixed probability
distribution across junctions in the network, which can be used to model the likelihood of
either accidental or intentional attacks. We use integer programming techniques to find
a globally optimal set of sensor placements. Our empirical results demonstrate that this
approach is practical on two synthetic datasets and one real-world dataset. Further, our
analysis of the optimal sensor placements for these datasets suggests that data uncertainties
do not have a substantial impact on the optimal sensor placement.

2 Sensor Placement for an EWS

2.1 Technical Approach

A variety of technical approaches have been developed for sensor placement problems in
water networks, including integer programming models (Lee and Deininger, 1992; Watson
et al., 2004), combinatorial heuristics (Kessler et al., 1998; Kumar et al., 1999; Ostfeld
and Salomons, 2004), and general-purpose metaheuristics (e.g. see Ostfeld and Salomons
(2004)). Metaheuristics can be applied to complex simulations, including simulations that
directly model sensor performance in detail (e.g. considering contaminant concentrations,
flow turbulence, etc), as well as detailed health effects (e.g. the impact of accumulated
exposure). Although these detailed models can capture many aspects of sensor performance,
simulation-based optimization is extremely challenging because the total optimization time
can be long in order to provide high confidence that near-optimal solutions are found.

In this paper, we consider sensor placement problems based on combinatorial optimization
formulations. In particular, we consider models that can be solved as integer programs.
Combinatorial models like integer programs can often be solved to optimality in practice,
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thereby providing the ability to ensure that the best solution is found. However, formulations
like integer programs generally rely on simplifying assumptions to limit the number of design
parameters and to enable the model to be solved with a particular method. We use the
following assumptions to formulate a sensor placement problem as an integer program:

1. An attack occurs at a single point in the network

2. We consider the total population exposed, without reference to specific health impacts.
Without sensors in the network, a population at a node is exposed if contaminant (with
any concentration) can reach that point in a given flow period.

3. Sensors protect ‘downstream’ populations. A population is considered exposed if it
could be reached by a flow path from the attack point without passing a sensor.

4. Transitions between time periods are ignored. Each time period is treated indepen-
dently.

These simplifying assumptions allow us to (1) ignore temporal effects, (2) ignore concentra-
tion effects and (3) simplify health impacts. Thus, this model is well-suited for applications
where contaminant flows rapidly through a network and there is a large volume of contam-
inant introduced. In this context, transitions between time periods are not so important,
simple exposure is well-correlated with adverse health impacts, and sensors should reliably
be able to detect the contaminant.

Although these assumptions clearly do not reflect all practical applications, our motiva-
tion here was to create combinatorial models that would scale well to large-scale real-world
problems, while capturing many aspects of the real-world problem. Berry et al. (2004) de-
scribes our initial efforts to consider temporal effects directly, but our preliminary results
suggest that temporal models are much larger and thus less amenable to exact solvers on
large-scale problems. Concentration effects are ignored here because they seem much less
relevant in a non-temporal model, and because we do not have precise information about
how contaminant concentration relates to contaminant detection.

2.2 Detailed Modeling Issues

This section provides a more detailed discussion of the modelling assumptions made in our
combinatorial model. Numerous measures can quantify the efficacy of sensor placements, re-
flecting various costs and risks of an attack on a network. For example, algorithms have been
proposed for optimizing sensor placements with respect to detection coverage and probabil-
ity (Lee and Deininger, 1992; Ostfeld and Salomons, 2004), volume of contaminated water
consumed (Kessler et al., 1998), the extent of contamination (Watson et al., 2004) and time
to detection (Kumar et al., 1999). However, public health protection is the primary goal of
placing contaminant sensors in community drinking water systems.

The objective of our model is to minimize the expected fraction of the population that
is at risk for some attack. We model an attack as the release of a harmful contaminant at
a single point in the network with a single injection. For any particular attack, we assume
that all points “downstream” of the release point (connected by a set of directed flows) can
be contaminated. In general, we do not know a priori where this attack will occur, so our
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objective is to place sensors to provide a compromise solution across a set of weighted attack
scenarios.

We assume that typical water demands throughout a day occur in one of a fixed set of
patterns. The model makes no assumptions about how long each pattern holds, how often
it appears, or the order in which the patterns appear. We use the water network simulator
EPANET (Rossman, 1999) to determine a water flow given a set of available water sources,
assuming each demand pattern holds steady for sufficiently long. Thus the set of sources
and demands and the set of flow patterns are interchangeable concepts in this paper. We
ignore the magnitude of water velocity, requiring only its direction and that it be sufficiently
large.

For each flow, each junction is weighted by the number of people potentially consuming
water at that point. We correlate flow patterns with approximate time of day to set these
population numbers (e.g., to represent people at work during the day and at home in the
evening). Note that these population numbers are not necessarily proportional to demand.
For example, an industrial site could consume a lot of water although few people are on site
and a public drinking fountain could consume a relatively small amount of water, but that
water is directly ingested by many people.

Attack scenarios are defined by a probability distribution over all pairs of population-
weighted flows and attack points (i.e., junctions in the network). This distribution might
come from expert opinions, potentially taking into consideration knowledge of the network
defenses (ease of access), location of assets within the network (e.g., location of a person or
building that may be a likely target), degree of damage, and attacker psychology. For this
paper, we generated these distributions synthetically.

2.3 Integer Programming Model

In this section we give a more detailed description of the input data and formulate the
problem as a mixed-integer program (MIP). A MIP is the minimization (or maximization)
of a linear objective function subject to a set of linear and integrality constraints on the
variables. In this case, the integrality constraints represent decisions of where to place a
limited number of sensors.

We model a water network as a graph G = (V,E). E is a set of edges representing pipes.
V is a set of vertices, or nodes, where pipes meet. Vertices can represent sources, such as
reservoirs or tanks, where water is introduced, and sinks (demand points) where water is
consumed. In general, the network is represented at some scale or granularity, where nodes
represent neighborhoods or regions of a city. Each pipe connects two vertices vi and vj and
is usually denoted (vi, vj).

We consider risk under a fixed number of flow patterns, where we require only the direc-
tion of the flow on each edge. Thus a flow specifies for each edge (vi, vj) whether the flow is
i-to-j, j-to-i or essentially zero (based on a minimal threshold for the flow). We require the
following input data:

• G = (V, E), the network. V = v1, . . . vn and E = e1, . . . em.

• αip, the probability of an attack at node vi during flow pattern p conditional on exactly
one attack on a node during some flow pattern. We have vi∈V,p∈1...P αip = 1, where

∑
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P is the number of flow patterns.

• δip, the density (number of people) at node vi while flow p is active.
One can replicate a flow and associate multiple population densities with it, for exam-
ple, when flows are associated with time periods and appear multiple times in a day.
δip = 0 if node vi is not a demand node during flow p.

• fijp ≡ fep ∈ {0, 1}. These parameters describe flow pattern p. fijp = 1 if there
is positive flow along (directed) edge e = (vi, vj) during flow pattern p and are 0
otherwise. Water cannot flow in both directions of a pipe, so we have fijpfjip = 0.

• Smax, the maximum number of sensors we can place.

Given a single attack on node vi during flow pattern p, a node vj = vi is contaminated if
there is a path from vi to vj without a sensor for which all edges have “positive” flow during
flow p. More specifically, vj is contaminated if there is a path vi ≡ v1, v2, . . . , vj ≡ vl such
that (vk, vk+1) ∈ E and fk(k+1)p = 1 for all k = 1 . . . l − 1 and we place no sensors on any
edge in the path. If a demand node vj is contaminated during flow p, then all the people at
node vj during time p are exposed. We wish to minimize the expected number of exposed
people.

We introduce the following variables for the MIP formulation of our sensor-placement
problem:

• Decision variable sij = 1 if we place a sensor on (undirected) edge (i, j) and 0 otherwise.
A sensor on edge (i, j) detects contaminants moving in either direction. For ease of
exposition, we will use both variables sij and sji, but they will be equal and, as a pair,
represent the placement of only one sensor.

• Derived variables cipj = 1 if node vj is contaminated by an attack at node vi during
flow pattern p, and 0 otherwise.

The mathematical formulation of the MIP is:

n

(SP1) minimize
∑ P n

αipcipjδjp

i=1 p

c

∑

=1 j

∑

=1

 ipi = 1 ∀i = 1 . . . n, p = 1 . . . P sij = sji ∀i = 1 . . . n− 1, i < j
where  c∑ipj ≥ cipk − skj ∀(k, j) ∈ E s.t. f

 kjp = 1
 (i,j)∈E,i<j sij ≤ Smax

sij ∈ {0, 1} ∀(i, j) ∈ E

The first set of constraints ensures that when a node is directly attacked, it is contaminated.
The second set indicates that a single sensor covers a pipe for flow in both directions. The
third set propagates contamination from a node vk to a node vj if node vk is contaminated,
there is positive flow along a directed edge from vk to vj and there is no sensor on that
edge. The next constraint enforces the limit on total number of sensors. The final set forces
integrality of the sensor-placement decisions. If these variables are set integrally, then the
contamination indicator variables cipj are also integral, even though they are not explicitly

6
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forced to binary values in the MIP. The objective function exerts pressure to minimize these
variables. The first and third set of constraints propagate values of 1 whenever there are no
sensor to prevent the propagation (otherwise the contamination variables can stay at 0).

The practical motivation for formulating our sensor placement problem as a MIP is that
in practice, many MIPs are solved exactly using intelligent variations of branch and bound.
There are a number of commercial and free software packages for solving MIPs such as
CPLEX (an ILOG product) and PICO (Eckstein et al., 2001). Generic branch and bound
for MIPs uses linear programming (LP) as a lower bound, obtained from the original MIP
by relaxing the integrality constraints. LP is efficiently solvable theoretically, and LPs can
be effectively solved in practice with commonly available codes.

3 Methods
We have evaluated our sensor-placement strategy experimentally using two networks from
the EPANET test set and one real network. Because information on population density
and risk was unavailable for the EPANET networks and only partially available for the
other, we used plausible synthetic data. For each of these datasets, we used EPANET to
determine flow patterns during four six-hour time periods within a twenty-four hour time
period. We will sometimes use “time period” interchangeably with “flow pattern” in the
following discussion.
Dataset 1: We adapted the first dataset from “Example Network 2” provided with EPANET
2.0. This network has 36 nodes and 40 pipes, with one pump station. We divided the
nodes in this dataset into four fictitious categories: pump station, residential neighborhood,
business district, and industrial district. We considered twelve sensor placement problems
for this dataset. In each problem, we considered one of the four groups of nodes at risk for
attack (four attack scenarios), and we set the sensor limit to either 3, 5, or 7. To create an
attack distribution, we selected four flow patterns: one from each six-hour time periods in
a 24-hour EPANET simulation. We assumed a constant population of 500 across all of the
nodes in each time period, with shifts between nodes that reflect the likely behaviors of a
typical town. The relative probability of attack across nodes is constant within each attack
scenario: the node group at risk has uniformly high probability, and all other nodes have
low probabilities. The relative (total) probability of each flow pattern is weighted by the
perceived likelihood that a attack would be successful within that time period; for example,
if a residential neighborhood is at risk, an attack is more likely during the day than in the
evening, when more people are in the neighborhood.
Dataset 2: We adapted the second dataset from “Example Network 3” provided with
EPANET 2.0. This network has 97 nodes and 117 pipes, with 2 reservoirs and 3 tanks. We
partitioned the nodes in this dataset into five fictitious categories: residential neighborhood,
the mall, downtown neighborhood, industrial district, and other. The experiments were
identical to those with dataset 1 except that the aggregate population, still constant through
time, was 200000.
Dataset 3: We adapted the third dataset from a real-world network. This network has 470
nodes and 621 pipes, with 3 pumps and 4 tanks. We divided the nodes in this dataset into
three fictitious categories: residential neighborhood, business district, and industrial district.
We considered six sensor-placement problems where the number of sensors was either 10, 50,
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100, 150, 250 or 300. We assumed a maximum total population of 7600, though we did not
keep this number constant within each time period. In each time period, we considered all
three groups of nodes at risk, though with different relative probabilities. Thus the relative
probability of attack at each node depended on the time of day as well as the node category.
This represents a blending of the individual (category-based) attack scenarios.

For each of the problems defined by datasets 1, 2 and 3, we used EPANET 2.0 to calculate
the flow directions for the attack scenarios. Dataset 1 has relatively few changes in its flows
from one time period to the next. In this dataset, the network is almost linear (chainlike),
and since it has only one water source, water simply flows from one end to the other. For
dataset 2, water enters the network from two distinct sources. Changes in demand thus
lead to some gross shifts in the water flow. Dataset 3 exhibits flow direction changes in
roughly 90% of the pipes. In this network, the neighborhood, business and industrial nodes
are somewhat segregated, so flow changes tend to be localized.

We used the AMPL modeling language (Fourer et al., 2002) to formulate the MIP (SP1).
In all cases, we solved this MIP on Solaris and Linux workstations using AMPL 9.0, which
applied the CPLEX 9.0 MIP solver. We measure the efficacy of our solution by considering
the run time as well as the expected percentage of the maximum population that is at risk
for the optimal solution.

We expect that it will be difficult to assess the population densities and attack risks in
real-world applications accurately. Consequently, we also studied the sensitivity of our model
to uncertainties in this data. More specifically, we consider how the value of the optimal
solution and optimal sensor configuration change given changes in the population density and
attack risks. We consider three noise levels: 5%, 10% and 25%. For each problem, we altered
each element of the population densities and risk probabilities by multiplying by a uniformly
distributed value in [1.0 − ε, 1.0 + ε], where ε is the noise level. We then renormalized the
population densities and risk probabilities to ensure that the total population size was not
changed in any attack scenario and that the total risk probabilities sum to one. Let us define
an experiment to be a set of trials of our MIP model for a fixed dataset, attack scenario,
noise level, and number of sensors. The experiments for datasets 1 and 2 each consisted of
thirty trials, while those for the larger dataset 3 each comprised five trials.

To measure the sensitivity of the optimal sensor configuration, we define a distance
measure between two sensor placements and compare each trial (optimization under noise) to
the baseline without noise. We defined this distance by matching sensors in one configuration
to the sensors in another. For each pair of matched sensors, the distance between those
sensors is the number of nodes that are traversed in the shortest path between their two
pipes within the water network. The distance of the entire matching is the sum of the
pairwise distances taken all pairs of sensors in the matching. We define the distance between
two sensor placements to be the value of the minimum matching between the two sensor
placements, divided by the number of sensors in the original configuration. This corresponds
to the minimum average movement for each sensor. We can efficiently compute this distance
using a minimum-weight bipartite matching algorithm (Cook and Rohe, 1999), with nodes
corresponding to the two sets of sensor placements and edge weights corresponding to the
distance between each sensor pair.

For example, consider Figure 1. Figure 1a shows an optimal placement of 5 sensors
for dataset 1 where there is an attack on residential districts; edges with thick lines (such
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(a) (b) (c)

Figure 1: (a) A noiseless optimal sensor placement for dataset 1, (b) an optimal placement
in the presence of noise, and (c) the bipartite graph used to compute the distance between
the placements.

as (3,4)) have sensors. Figure 1b shows the optimal placement in the presence of slightly
perturbed data, while Figure 1c depicts the weighted bipartite graph constructed to compute
the distance, which in this case is 9/5. Thickened edges show the minimum-weight matching,
and this figure shows distances only on the matching edges. The diameter of a node is
proportional to its current population. In particular, node 1 has no population. We used
the LINK system (Berry et al., 2000) to compute the minimum-weight matching and create
custom graphics.

4 Numerical Results
Tables 1a, 1b and 1c summarize the values of the optimal solutions found for datasets 1, 2
and 3. The values in each cell of these tables show the expected percentage of population
at risk, and the number of linear program solves required to compute the optimal sensor
configuration. Further, the scenarios in Tables 1a and 1b indicate the set of nodes that are
primarily at risk in these scenarios. These results confirm that the expected percentage of
the population that is at risk goes down as the number of sensors is increased. For these
datasets, a large fraction of the population can be protected with a limited number of sensors.

Tables 1a, 1b and 1c also summarize the number of subproblems CPLEX 9.0 required to
solve the corresponding MIP. In many cases these problems were solved at the root of the
branch-and-bound tree. Thus simply solving a linear program may be sufficient to solve the
MIP in some of these cases.

The column with zero sensors provides a baseline for assessing the impact of using sensors
to protect the population. Consider the example of “pump station” scenario in Table 1a.
There was roughly a 90% probability that the attack would occur at the pump station (Node
1) sometime during the 24 hour simulation. Without any sensors, all of the population would
be exposed during an attack at that node. However, the expected percent exposed is less than
100% since there is a nonzero probability of attack at the other nodes. On the other hand,
the extremely low objective value for Table 1c is an artifact of topological characteristics of
the dataset 3. The flow in this network looks like a main trunkline with bush subnetworks
that are tree-like. Consequently, most nodes are leaves or nearly leaves, and thus most
attacks will impact a small number of “downstream” nodes.
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Scenario Num Sensors
0 3 5 7

Pump Station 93.56 ( 1) 1.16 ( 1) 0.92 ( 1) 0.76 ( 1)
Residential 36.12 ( 1) 11.35 ( 1) 9.87 ( 3) 8.57 ( 1)
Business 55.16 ( 1) 6.03 ( 1) 4.23 ( 1) 3.38 ( 1)
Industry 10.49 ( 1) 2.75 ( 1) 2.39 ( 1) 2.11 ( 1)

(a)

Scenario Num Sensors
0 3 5 7

Industry 14.77 ( 1) 3.44 ( 1) 2.66 ( 1) 2.16 ( 1)
Downtown 3.33 ( 1) 2.15 ( 1) 2.10 ( 20) 2.06 ( 1)
Residential 19.34 ( 1) 8.54 ( 1) 6.81 ( 3) 5.54 ( 1)
Mall 45.54 ( 1) 12.87 ( 9) 5.22 ( 1) 1.48 ( 1)

(b)

Num Sensors
0 10 50 100 150 250 300

Values 3.77 ( 1) 1.35 ( 4) 0.52 ( 1) 0.32 ( 1) 0.24 ( 112) 0.17 ( 32) 0.15 ( 161)

(c)

Table 1: Summary of the values of optimal sensor configurations for (a) dataset 1, (b) dataset
2 and (c) dataset 3.

The run time to solve the MIP in these experiments varied significantly with the problem
size. For datasets 1, 2 and 3, these problems were solved on average within a second,
a minute and a half hour respectively. In preliminary experimentation, we had difficulty
solving problems substantially larger than dataset 3. Further investigation indicated the
limitation was due to the size of the LPs; intelligent preprocessing of the MIP, e.g., by
eliminating constraints between pairs of vertices that are not reachable, largely avoids this
problem.

The optimal solution value (percentage of the population that is at risk) showed very
little sensitivity to noise for all three datasets. In virtually all cases, the mean value of the
modified problem was within 0.1% of the baseline value, and usually within 0.05%. The
variance of the modified problem values was also quite low. Even with noise levels of 25%,
variance was almost always at or below 0.02%.

However, the configuration of the optimal solution did exhibit sensitivity to noise. The
data in Table 2 demonstrates that with increasing uncertainty in the data, the uncertainty
in the optimal sensor configuration increases. In these tables, the first two values in each cell
show the mean and average variance of the distance between the optimal sensor configuration
for the baseline data and the optimal sensor configuration for perturbed data. The third
entry for each cell is the average consensus, the percentage of sensors which do not move at
all.

As the noise level increases, the average distance from the baseline solution increases as
well as the variance of this distance. However, even for noise levels of 25%, the average
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distance is less than 2 in all cases. Thus we should expect to move each sensor at most
two edges from our baseline solution configuration even when the input data for the model
changes by as much as 25%.

As a function of number of sensors, for datasets 1 and 3, sensor placement sensitivity to
noise at all tested levels and all scenarios consistently climbs to a peak at some middle value
of number of sensors, and then drops as the number of sensors climbs. Dataset 2 shows this
trend weakly, except for scenario 4. We’ll discuss a plausible explanation in Section 5.

5 Discussion
In this section we present possible explanations for the data from our pilot study and discuss
some implications and directions for further study.

One plausible explanation for the rise, then decline of sensor placement sensitivity is
that the number of sensors falls into one of three regimes with respect to the network and
data sets. With very few sensors, the best strategy is to protect the most valuable asset(s).
Eventually, with more sensors, there are more choices for secondary assets to protect, and
these choices may be quite sensitive to variations in attack probabilities and population
densities. Finally, when there are enough sensors to essentially protect everything, sensors
are always placed in core locations.

For example, in Table 2 (a), all four scenarios exhibit this regime change, with 3 sensors
representing the first regime, 5 sensors representing the second, and 7 sensors representing
the last. The pattern is exhibited again in the scenarios 1 and 2 of Table 2 (b), and strongly
so in Table 2 (c), with 250 sensors representing the turning point. The only scenarios that
do not appear to exhibit a regime change are scenarios 3 and 4 in Table 2 (b). We conjecture
that in the former case, the regime change point is at a level greater than 7 sensors, and in
the latter case, 3 sensors are sufficient to assume the highest regime.

Verifying regime changes and predicting their location (number of sensors) as a function
of network and data set is a topic for further study. Some networks may show multiple
regime changes depending upon the number of major, localized assets.

The low sensitivity of the objective function implies that one may be able to predict a
reasonable sensor budget as a function of desired protection level. However, it may be difficult
to determine a single set of sensor locations that will work for a variety of related datasets.
In a setting where sensor placement is sensitive, network planners may prefer a formulation
that explicitly addresses data uncertainties. One possible method is to incorporate the noise
into additional attack scenarios. However, one must then tolerate sparse sampling or solve
huge problem instances. Another possibility is to find a solution that uses a limited number
of additional sensors to guarantee robustness. For example, for a goal number of sensors gs,
place gs + k sensors in such a way that this static sensor placement performs as well as a
mobile set of gs, always (near) optimally placed sensors would perform.

Finding an optimal sensor placement for full-sized networks containing 100000 or more
nodes is likely to require parallelization using, for example, the PICO massively-parallel MIP
code (Eckstein et al., 2001). Parallel LP solvers are being incorporated into PICO, which will
enable the solution of MIPs whose LP solves are too large for workstations. PICO also has
facilities for exploiting problem structure in order to speed search and reduce the number of
subproblems. An analyst can stop the computation early once a solution is provably within

10



Scenario Num Noise Level
Sensors 0.05 0.10 0.25

1 3 0.00 (0.00) 100% 0.00 (0.00) 100% 0.01 (0.01) 99%
5 0.01 (0.01) 99% 0.01 (0.01) 99% 0.36 (1.65) 83%
7 0.00 (0.00) 100% 0.00 (0.00) 100% 0.06 (0.13) 96%

2 3 0.00 (0.00) 100% 0.00 (0.00) 100% 0.00 (0.00) 100%
5 0.81 (4.50) 83% 1.01 (4.49) 78% 1.39 (3.15) 67%
7 0.13 (0.09) 87% 0.18 (0.25) 85% 0.32 (0.79) 82%

3 3 0.00 (0.00) 100% 0.00 (0.00) 100% 0.00 (0.00) 100%
5 0.01 (0.01) 99% 0.05 (0.04) 95% 0.10 (0.05) 90%
7 0.00 (0.00) 100% 0.00 (0.00) 100% 0.05 (0.24) 98%

4 3 0.01 (0.01) 99% 0.04 (0.04) 96% 0.12 (0.08) 88%
5 0.07 (0.67) 99% 0.22 (1.84) 96% 0.67 (3.98) 87%
7 0.04 (0.03) 96% 0.05 (0.03) 95% 0.10 (0.06) 90%

(a)

Scenario Num Noise Level
Sensors 0.05 0.10 0.25

1 3 0.00 (0.00) 100% 0.41 (7.35) 97% 1.66 (23.41) 86%
5 0.11 (0.05) 89% 0.10 (0.05) 90% 0.37 (4.92) 83%
7 0.06 (0.04) 94% 0.07 (0.07) 93% 0.18 (0.25) 82%

2 3 0.00 (0.00) 100% 0.00 (0.00) 100% 0.00 (0.00) 100%
5 0.00 (0.00) 100% 0.00 (0.00) 100% 0.39 (3.54) 92%
7 0.00 (0.00) 100% 0.00 (0.00) 100% 0.00 (0.00) 100%

3 3 0.00 (0.00) 100% 0.01 (0.01) 99% 0.10 (0.07) 90%
5 0.24 (0.45) 92% 0.28 (0.46) 91% 0.38 (0.52) 87%
7 0.62 (11.12) 89% 0.90 (13.59) 85% 1.95 (15.64) 67%

4 3 0.00 (0.00) 100% 0.13 (0.22) 93% 0.09 (0.16) 96%
5 0.00 (0.00) 100% 0.00 (0.00) 100% 0.00 (0.00) 100%
7 0.00 (0.00) 100% 0.00 (0.00) 100% 0.00 (0.00) 100%

(b)

Num Noise Level
Sensors 0.05 0.10 0.25
10 0.00 (0.00) 100% 0.00 (0.00) 100% 0.26 (3.58) 93%
50 0.03 (0.19) 98% 0.12 (0.45) 93% 0.54 (1.77) 86%
100 0.07 (0.57) 96% 0.20 (1.62) 94% 0.50 (4.44) 85%
150 0.16 (0.87) 92% 0.30 (0.69) 85% 0.43 (2.20) 80%
250 0.37 (2.77) 89% 0.41 (1.72) 87% 0.61 (5.07) 79%
300 0.14 (0.83) 93% 0.20 (1.24) 92% 0.34 (1.54) 82%

(c)

Table 2: Summary of the effect of noise on the sensor configuration for (a) datasets 1, (b)
dataset 2 and (c) dataset 3.
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a desired tolerance of the global optimum.
In Section 4, we normalized the optimal number of people at risk by the maximum

population. A alternative normalization factor is the value of the MIP with zero sensors,
the average number of people exposed within a particular attack scenario. The normalized
objective would then be the expected number of people saved by the sensors compared with
this baseline.

6 Conclusions
We have demonstrated that the MIP model described in this paper can be used to effectively
solve large-scale sensor placement problems. Although we have limited our discussion to a
particular MIP formulation for sensor placement, there clearly are a variety of related mod-
els that address different performance objectives, consider alternative placement locations,
address temporal modeling issues and consider data uncertainties. Although a detailed dis-
cussion of these issues is beyond the scope of this paper, we summarize here some ideas of
how our current model can be generalized:

• Temporal Effects: As we noted earlier, the current model is well suited for ap-
plications where water flow is quick, or where water flow does not change direction.
We have developed another MIP formulation for sensor placement that more directly
models temporal effects, using a qualitatively different modeling strategy (Berry et al.,
2004). Our preliminary results indicate that this MIP requires considerable data about
flow patterns and contaminant properties, and that it can be much more difficult to
solve for a given network size.

• Placement Locations: Although our current model places sensors on edges, it is
easy to adapt this model to place sensors on nodes of the network, or a mixture of
both (e.g. see the models discussed in Watson et al. (2004)).

• Sensor Costs: Our current model treats cost issues by simply limiting the total num-
ber of sensors. It is straightforward to generalize this approach to consider installation
costs, as well as maintenance costs (which may differ on the location and type of
sensor).

• Performance Objective: Although protecting public health is the primary goal of
community drinking water systems, MIPs can be used to formulate sensor placement
problems for a variety of related objectives. Early work by Lee and Deininger (1992)
a considered detection coverage metric, and more recently Watson et al. (2004) have
formulated MIPs for metrics like the extent of contamination and time to detection.
Although we have proved that sensor placement is NP-hard for the population exposed
and time-to-detection metrics (e.g. see Berger-Wolf et al. (2003)), our computational
experience suggests that such MIP formulations can be effective in practice.
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