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Abstract: Disease transmission models predict the spread of disease over time through susceptible, infected, and recovered populations, 
and are commonly used to design public health intervention strategies. A modified disease model is linked to flow and transport models 
for water distribution systems in order to predict the health risks associated with use of contaminated water. The proposed framework 
provides information about the spatial and temporal distribution of health risks in distribution systems and is useful for understanding the 
vulnerability of drinking water systems to contamination events, as well as for designing public health and water utility strategies to 
reduce risks. 
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Introduction 

Contamination of drinking water distribution systems can result 
from cross-connections with nonpotable water, permeation and 
leaching of pipes, chemical reactions and microbial growth within 
pipes, or intentional acts of contamination. Hydraulic and water 
quality models can be used to model the fate and transport of 
contaminants within utility-specific distribution system networks 
�Rossman 2000; Uber et al. 2004a�. Recently, new methods have 
been developed to allow for modeling of multiple interacting spe
cies in flow �Shang et al. 2004�, for example, the full dynamics 
between chlorine and an organic contaminant. By linking flow 
and transport models to dynamic models for disease, a framework 
is presented for estimating the spatial distribution of health risks 
associated with ingestion of contaminated drinking water. 

Contamination warning systems, sometimes referred to as 
early warning systems, have recently been proposed as a promis
ing approach for reducing the risks associated with the intentional 
contamination of drinking water systems �USEPA 2005�. Con
tamination warning systems use continuous online contaminant 
detectors or water quality sensors to detect potential contamina
tion events and provide an early warning of potential health risks. 
The technology involved is early in its development, and costs are 
high; thus, there is a strong incentive to limit the number of sen

1Research Scientist, U.S. Environmental Protection Agency, 26 W. 
Martin Luther King Dr. �MS 163�, Cincinnati, OH 45268. E-mail: 
murray.regan@epa.gov 

2Professor, Dept. of Civil and Environmental Engineering, Univ. of 
Cincinnati, Cincinnati OH 45221. E-mail: jim.uber@uc.edu 

3Research Scientist, U.S. Environmental Protection Agency, 26 W. 
Martin Luther King Dr. �MS 163�, Cincinnati, OH 45268. E-mail: 
janke.robert@epa.gov 

Note. Discussion open until December 1, 2006. Separate discussions 
must be submitted for individual papers. To extend the closing date by 
one month, a written request must be filed with the ASCE Managing 

Editor. The manuscript for this paper was submitted for review and pos
sible publication on September 1, 2005; approved on October 12, 2005. 
This paper is part of the Journal of Water Resources Planning and 
Management, Vol. 132, No. 4, July 1, 2006. ©ASCE, ISSN 0733-9496/ 
2006/4-293–299/$25.00. 

JOURNAL OF WATER RESOURCES P
water; Water quality. 

sors and locate them optimally. Most sensor location methods rely 
on spatial estimates of risk associated with potential contamina
tion events �see, for example, Berry et al. �2005� and Uber et al. 
�2004b��. The risk assessment approach described in this paper 
will provide a more comprehensive framework for estimating 
health effects associated with contamination events. 

This framework is also useful for designing effective public 
health and water utility intervention strategies. By simulating 
the spatial and temporal health risks associated with consumption 
of contaminated drinking water, for instance, one can identify 
the locations of exposed populations in need of public health 
treatment. The same tools are useful for assessing the value of 
hydraulic control options for isolating or flushing contaminated 
water, as well as the potential for treating the water in situ. In 
addition, such tools should be useful for planning and preparing 
for contamination events and also for real-time planning of re
sponse actions. 

Disease models have already been applied to waterborne dis
ease outbreaks �defined as diseases that can be traced back to 
water by epidemiological evidence�; see, for example, Eisenberg 
et al. �1998�. The U.S. Centers for Disease Control and Preven
tion �CDC� along with the USEPA have collected data on water
borne disease outbreaks since 1971. In 2001–2002, 31 outbreaks 
were reported, causing illness among approximately 1,000 per
sons and resulting in seven deaths. Recent outbreaks in the United 
States were linked to Cryptosporidium, Giardia, E. Coli, Salmo­
nella, Campylobacter jejuni, Legionella, and Noroviruses, among 
others �Blackburn et al. 2004�. 

The framework presented in this paper includes the capability 
of tracking waterborne disease outbreaks spatially. This is espe
cially important because of the difficulty of linking disease out
breaks back to water sources. A CDC report found that reported 
water borne illnesses “probably represent only a small proportion 
of all illnesses associated with waterborne-disease agents” �CDC 
1990�. Most illnesses resulting from ingestion of chemicals are 

not collected by this system, nor are diseases resulting from long-
term exposure to low levels of contaminants. Many small-scale 
outbreaks are probably not reported. Moreover, because of the 
difficulty in linking public health events to drinking water 
sources, the number of outbreaks reported is likely conservative. 
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The modeling tools presented in this paper allow one to simulate 
both the contamination event in the water system and the result
ing health impacts in a population, improving the capability of 
linking a public health event back to the water supply. 

This paper links hydraulic models for water flow through dis
tribution systems to models for estimating health impacts in order 
to predict the spread of disease over time in a population using 
contaminated water. The focus is on biological agents, such as 
bacteria and viruses, but some of the methodology would also be 
appropriate for chemical agents. In Section 2, the recommended 
approach for biological agents is examined, as well as the ac
cepted risk assessment paradigm for chemicals, whereas Section 3 
describes a disease transmission model in detail. In section 4 the 
infectivity rate that links the hydraulic models to the disease mod
els is described in detail, and in Section 5 the common methods 
used to predict flow and transport in distribution systems are dis
cussed. In Section 6 some additional assumptions and simplifica
tions to the model are presented. Finally, the new framework is 
used to study a particular contamination example in Section 7. 
There are many potential applications for this framework; how
ever, the focus of this paper is on developing the methodology. 

Discussion of Methods for Quantifying Health Risks 

Generally, attempts to quantify the risk associated with consum
ing contaminated water have used static models that determine 
the probability of individual illness based on a single exposure. 
This approach follows the accepted paradigm for chemical risk 
assessment. The dose and the dose-response curve—the amount 
of contaminant consumed and the probability of a given health 
response—are the main criteria used to determine health impacts. 
Such an approach has been used to estimate health risks associ
ated with long-term exposure to low levels of toxic chemicals 
�Risk 1983�. 

The same information is important for assessing risks associ
ated with exposure to viruses, bacteria, and protozoans. However, 
biological risk assessment requires the consideration of additional 
factors such as multiple infectivity paths �person to person, envi
ronment to person�, possible secondary transmission paths �per
son to environment to person, environment to person to person�, 
immunity to disease, microbial incubation periods, and the poten
tial for asymptomatic carriers of disease. See Haas et al. �1999� 
for a complete treatment of this topic. 

Recently, the use of dynamic disease transmission models has 
been introduced into the biological health risk assessment process 
�Eisenberg et al. 2002�. Disease progression models predict the 
temporal spread of disease through subgroups of a population, 
such as susceptible, infected, and recovered subpopulations. 
While traditional risk assessment approaches use data-driven 
models, disease transmission models include physically based pa
rameters that describe the disease process. Such models may also 
account for the population dynamics of pathogens within the host 
or the natural reservoir. Disease models have been used to assess 
health risks, to differentiate epidemics from endemic disease 
cycles, and to design treatment and control strategies for diseases, 

such as vaccination programs �Anderson and May 1991�. Similar 
models have been used to estimate the spread of disease follow
ing a bioterrorism attack and to optimize public health interven
tion strategies �Barrett et al. 2005�. 
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The model used in this paper is derived from the general dynamic 
model proposed by Anderson and May �1991� and is similar to 
the model used by Chick et al. �2003�. The model describes the 
spread of disease through a population of susceptible persons �S�, 
infected but not symptomatic persons �I�, diseased �infected and 
symptomatic� persons �D�, recovered and immune persons �R�, 
and those impacted fatally from disease �F�. The disease can be 
transmitted person to person or from drinking water. The dynamic 
model is given by the following equations: 

�S 
= �R − �S	 �1� 

�t 

�I 
= �S − �I	 �2� 

�t 

�D 
= �I − �� + ��D	 �3� 

�t 

�R 
= �D − �R	 �4� 

�t 

�F 
= �D	 �5� 

�t 

where S�xi , t� =number of susceptible persons at time t; 
I�xi , t�=number of latently infected but not symptomatic persons 
at time t; D�xi , t� =number of diseased �infected and symptomatic� 
at time t; R�xi , t�=number of recovered and immune at time t; 
F�xi , t� =number of fatalities due to disease at time t; and 
��xi , t� =force of infection at time t and is discussed in more detail 
in Section 6. 

The parameters in the model are: 
•	 �=per capita recovery rate �mean duration of illness is 1 /v�; 
•	 � =rate at which hosts move from I to D �mean latency period 

is 1 / ��; 
•	 � =per capita disease induced death rate; and 
• � =per capita rate of loss of immunity. 
The disease model, Eqs. �1�–�5�, is applied at each spatial node xi 

in a distribution system model. Distribution system models are 
not continuous but rather discrete in space, thus, the subscript 
notation xi. If the number of births in the population exactly bal
ances the number of natural deaths �deaths not associated with 
exposure to the contaminant�, the total population at each node is 
given by the constant N 

N         
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Infectivity Rate 

In the disease model, Eqs. �1�–�5�, � is the force of infection or, 
more specifically, the per capita rate of acquisition of infection. 
In general, for any route of transmission, � can be written as 
the product of the rate of exposure to the pathogen and the prob
ability of infection given that exposure. In this paper, infection 
can be transmitted in two ways, from close person to person con
tact, or from ingestion of contaminated drinking water. Therefore, 
let �=�P + �W where the subscripts P and W refer to transmission 
from people or water. For an infectious disease transmitted person 
to person, �P is assumed to have the form 

�P�xi,t� = ��I�xi,t� + D�xi,t�� �6� 

where �=transmission parameter dependent on the disease-
inducing organism and many environmental and societal factors. 
For instance, � may depend on personal hygiene, a person’s age, 
and the seasonal variability in microbial behavior. In this form, 
the disease can be transmitted between persons near to each other 
spatially �i.e., located at Node xi�. Note that Eq. �6� could be 
modified to reflect the mobility of a population that interacts with 
people some distance away from Node xi. Note also that �P may 
vary significantly from node to node because the population den
sity of infected persons varies spatially as well as the likelihood 
of exposure. 

The infectivity rate resulting from the consumption of con
taminated drinking water is related to the amount of water con
sumed and the amount of contaminant in the water. Let d�xi , t� be 
the cumulative dose of a contaminant received by the population 
at Node xi and let r�xi , t� be the corresponding probability of 
infection given dose d. The dose d can be calculated from flow 
and transport simulations, as described in the next section. The 
probability of infection r describes the percent of the population 
responding to a given dose, which is essentially a dose-response 
relationship as a function of space and time, r�xi , t�= r�d�xi , t��. 
The infectivity rate can be modeled as 

dr S0 �r �d S0 
t S��� 

�W � = or r�xi,t� = � �W�xi,�� d� �7� 
dt S �d �t S 0 S0 

where �d / �t =rate of exposure to the pathogen; and �x / �d�pro
bability of infection given that exposure. S0=S�xi ,0��total num
ber of customers at Node xi that may be susceptible to infection. 
Therefore, �W at time t is the rate of new infections rS0 at time t 
per total number of susceptibles S at time t. This formulation of 
�W is a generalization of that used by Chick et al. �2001�. 

For many contaminants, dose-response curves are available in 
the literature that were developed by matching experimental data 
with an understanding of disease kinetics in the human body. A 
dose-response curve generally has a sigmoidal shape, and an ex
ample of one is given by the curve shown in Fig. 1. Along the 
horizontal axis is the dose in number of organisms, and along the 
vertical axis is the percent of persons expected to become infected 
by the disease at a specific dose. Note that this dose-response 
curve corresponds to an ID50 dose �the dose at which 50% of the 
population would be infected� of 100,000 organisms. 

Exposure to contaminated drinking water is possible from sev

eral routes, including ingestion, inhalation, and dermal contact. 
Ingestion is the focus of this paper; however, the model can be 
modified to incorporate other exposure routes as well. The cumu
lative dose of a contaminant ingested by the population at xi at 
time t is calculated according to 
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Fig. 1. Response curve as function of dose

t 

d�xi,t� = � W�xi,��PW�xi,��VWd� �8� 
0 

where d is measured in number or mass units; W=pathogen con
centration in water; PW =probability of consuming water at time t; 
and VW =volumetric rate of water consumption, for example, 
2 L/day. 

Link to Hydraulic Models 

Several disease transmission models have been developed 
to model transmission from drinking water sources. Eisenberg 
et al.�1998� studied a waterborne Cryptosporidium outbreak in 
1993. In another example, Codeco �2000� studied endemic chol
era and included in the model an equation for the population of V. 
cholerae in aquatic reservoirs. Cholera was transmitted through 
ingestion of untreated water, and infected persons shed pathogens 
back into the water reservoir. The V. cholera population, then, 
increased with growth and addition through shedding and de
creased by a natural death rate. In another example, Colford et al. 
�2003� considered exposure to pathogens resulting from the ap
plication of biosolids to agricultural fields. Pathogens shed from 
infected persons accumulated in the biosolids, to which persons 
were exposed through inhalation or ingestion of surface water, 
groundwater, soil, or plants. This model included growth and 
death processes for the pathogens as well as increased concentra
tions due to human shedding of pathogens into sewage. 

For all of the aforementioned applications of disease transmis
sion models, the spatial distribution of the affected populations 
was not necessary to gain an understanding of an outbreak or to 
design public health interventions. However, to design a spatial 
network of sensors to detect contamination events, spatial infor
mation about the distribution of disease-causing agents within a 
pipe network and the resulting health impacts is required. In the 

rest of this paper, therefore, the disease model is applied at spatial 
locations to track the number of susceptible, infected, diseased, 
recovered, and fatally impacted at each location. The sum of these 
populations over all the spatial locations corresponds to the total 
number of affected persons served by the drinking water system. 
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The commonly used models for flow and transport in distribution 
systems will be combined with the disease model to predict the 
spatial distribution of health effects. 

In drinking water distribution systems, the direction and mag
nitude of flow is determined by time-varying demands and the 
complex, looped geometry of the pipe network. Hydraulic models 
that include pipe lengths and diameters, pipe connectivity, and 
network operations are needed in order to predict time-dependent 
average water velocity in pipes. Most hydraulic models solve the 
flow equations in a pipe network by conserving mass at the pipe 
ends �nodes or junctions� and conserving energy in the pipes. 
EPANET �Rossman 2000� is a publicly available software pack
age for simulating flow through pipes and forms the basis for 
many other commercially available software packages. For a 
complete treatment of pipe hydraulics, including the specific mass 
and energy balance equations in pipe networks, see Walski et al. 
�2003�. 

Using network hydraulic models, concentrations of chemicals 
or pathogens can be estimated spatially and temporally. Pathogens 
can be assumed to flow with the water in distribution system 
pipes, react with the chlorine residual, adhere to biofilms on pipe 
surfaces, and grow and decay according to natural processes. A 
general one-dimensional model for pathogen fate and transport in 
a distribution system is as follows: 

�W �W 
+ ��x,t� = f1�W� + �b − a�W − g1�W,C� �9� 

�t �x 

where W = W�x , t��concentration of the contaminant in the water. 
The concentration is advected with the average water velocity 
v�x , t�. Molecular diffusion is neglected, because mixing by tur
bulent flows is dominant in distribution system mains. The micro
bial concentration grows with rate b, dies with rate a, increases 
according to the source term f1, and reacts with chlorine C, ac
cording to the reaction function g1. Note that b is assumed 
to be a constant, but in reality may depend on such factors as 
nutrient and substrate concentrations, temperature, and pH. The 
constant a depends on natural death rates of the pathogen. The 
source term f1 represents the addition of the pathogen to the water 
from human sources, such as shedding or contamination. If the 
reaction dynamics with chlorine or other disinfectants are known, 
the chlorine concentration can also be modeled by 

�C �C 
+ ��x,t� = f2�C� − g2�W,C� �10� 

�t �x 

In Eq. �10�, the chlorine concentration increases with the source 
term f2 and decreases as it reacts with the microbial agent and 
other organic and inorganic compounds according to the reaction 
term g2. Eqs. �9� and �10� describe conceptually how pathogen-
chlorine interactions could be modeled within a pipe network to 
support the spatio-temporal estimation of acute health impacts. 
For an example, see Propato and Uber �2004�. 

Assumptions and Model Simplifications

In this section, several assumptions are made in order to simplify
the disease model and examine its basic dynamics in more detail.

First, if the pathogen is not communicable but is transmitted only
via the drinking water, then �=�W. Second, if a person who has
recovered from disease cannot reenter the susceptible state, then
�=0 �i.e., after infection a person either gains permanent immu-
nity or dies�. Third, it is assumed that the death rate from the

296 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT 
�

disease is proportional to the recovery rate, ��=�, meaning that
those in the disease state move at the same rate to both categories.
The final assumption is related to the transition time between
disease states. In the disease model, Eqs. �1�–�5�, the transition
time is exponentially distributed with a mean time between in-
fected and diseased states of 1 /� and a mean time between the
diseased and fatal states of 1 /�. If both of these transition times
are assumed to always be constant, the model can be rewritten as
a time delay model. For a discussion on arbitrary transition
times in disease models, see Van den Driessche �2002�. The new
model is

�S �r
= − S0�xi� �11�

�t �t x ,ti

�I �r �r
= �S0�xi� � �− S0�xi� � �12�

�t �t x ,t �t x ,t−1/�i i

�D �r �r
= �S �x �0 i � �− S �x �0 i � �13�

�t �t x ,t−1/� �t x ,t−1/i i v

�F �r�= �S0�xi� � �14�
�t �t x ,t−1/vi

�

This model can be solved exactly to obtain the following
solutions:

�
S�xi,t� = S0�x��1 − r�xi,t��

S0�x�r�xi,t� if 0 � t � t
I�x �

i,t� =
S0�x��r�xi,t� − r�xi,t − t��� if t � t�

�
D�xi,t� = �0 if 0 � t � t�

S0�xi�r�xi,t − t�� if t� � t � tv

S0�x

�
��r�xi,t − t�� − r�xi,t − tv�� if t � tv

�
0 if 0 � t � t

� v
F xi,t� =

�S0�xi��r�xi,t − tv�� if t � tv
�

where t�=1/��latency period; and t�=1/��disease duration. In
this model, the number of susceptible persons decays linearly
with the response function r. �Note, however, that r is not a con-
stant but varies in space and time.� In turn, the number of infected
persons increases linearly with rate r until after the latency period
t�, when infected persons start showing symptoms and move into
the diseased stage. After the latency period, the number of dis-
eased persons grows linearly until after the duration of the illness,
at which time a fraction of the diseased persons moves into the
fatality stage. This simple model is solved for a specific example
in the next section.

Case Study: Biological Contamination Event

An example case study is presented in which the health impacts
of a contamination event are calculated according to the disease
model, and the times for effective intervention are considered as
© ASCE / JULY/AUGUST 2006 

well as the benefit of intervention. In this example, a large quan-
tity of a pathogen is introduced at one particular location in a
specific drinking water distribution system. The operations and
hydraulics of this system are known, and the water velocity,
v�xi , t�, pressure head, h�xi , t�, and pathogen concentration in the



ter co
Fig. 2. At one node, concentration of contaminant, volume of wa

water, W�xi , t�, are predicted by EPANET. The population served 
by the drinking water system is approximately 200,000. The 
drinking water system covers approximately 100 mi2, and draws 
water equally from surface water and groundwater sources. The 
hydraulic model includes approximately 3,000 nodes, 40 ground
water wells, and 30 storage tanks. At each node in the model, 
xn , n=1. . . N, a population of tens to hundreds is served water. The 
disease model, Eqs. �1�–�5�, is applied at each node to predict the 
spread of disease among the population consuming water at that 
node. 

The pathogen is a hypothetical biological agent with a latency 
period of 1 week ��=1/168�, a total disease duration of 2 weeks 
�� =1/336�, and an untreated fatality rate of 30%. In this example, 
exposure to the contaminant occurs only through the ingestion 
route. Each person consumes 2 L/day of water. The probability 
that an individual at Node xi consumes water at time t is assumed 
to be proportional to the ratio of the demand q at time t to the 
average demand over the time period T 

q�xi,t� PW�xn,t� = �15� 
1 �T 

q�xi,��d� 
T 0 

This assumption reflects the average usage patterns of all the 
persons being served at a particular node. The dose-response 
curve predicts the probability of infection based on a given dose 
and is given by Fig. 1. Note that the dose-response curve corre
sponds to an ID50 dose of 100,000 organisms. 

The initial conditions of the model are S�xi ,0� = S0, I�xi ,0�=0, 

D�xi ,0� =0, R�xi ,0� =0, and F�xi ,0�=0, for all i=1. . . N, where 
S0�total population of persons served by the water system 
through node xi. These conditions correspond to the case in which 
all persons are susceptible to the disease but no one is currently 
infected or has immunity. 
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Fig. 2 shows how one particular node in the system �down
stream of the introduction location� would experience this con
tamination event. The figure shows four plots: �1� the concentra
tion of contaminant that passes by the consumers at one node; �2� 
the water consumption patterns of consumers; �3� the cumulative 
dose received by consumers; and �4� the response function �cu
mulative percent of population experiencing a health response� 
over time. Note that the concentration profile is very complicated, 
because the spatial location is under the influence of a nearby 
tank. The contaminant is drawn inside the tank as the tank fills 
and is transported out as the tank drains. 
Fig. 3. Infected, diseased, and fatally impacted populations over time
at one location in distribution system.
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Fig. 4. Disease progression over time in total population

Fig. 3 shows the disease progression through the population at 
the same node shown in Fig. 2. The four curves show the number 
of susceptible persons, the number of infected persons, the num
ber of diseased persons, and the number fatally impacted. The 
slope of the infections curve is directly related to the infectivity 
rate or the response function r, which encapsulates all the infor
mation about the hydraulics of the contamination event. The sus
ceptible population quickly becomes infected and drops off to a 
very small asymptotic number. The infected population grows 
rapidly, sustains itself as the disease is latent �for one week�, and 
then drops quickly as the infected persons transition into the dis
eased stage. Similarly, the diseased �symptomatic� population 
grows rapidly, sustains itself for the duration of the illness �one 
week�, then a proportion of the diseased population recovers, 
while the remaining die. A similar set of curves could be drawn 
for each of the approximately 2,000 nodes in the network; how
ever, each set of curves would be unique depending on the prox
imity to the location of contaminant introduction and the flow and 
transport dynamics near the node. 

Fig. 4 shows the disease progression throughout the entire 
population �summed over all the nodes�. Over the entire popula
tion served by the water system, a total of 25% of the population 
became infected after consuming contaminated water. It is inter
esting to note that the shape of these curves can change dramati
cally with different parameters. For some diseases, the latency 
period and disease duration are not equal; therefore, the I and D 
Fig. 5. Sensitivity of infections to time of day of contaminant
introduction
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Fig. 6. Sensitivity of infections to volume of contaminant introduced

curves have different shapes. Figs. 5–7 show how the cumulative 
infections vary with three parameters: �1� the time of day of con
taminant introduction; �2� the volume of contaminant introduced; 
and �3� the slope of the dose-response curve. In this example, the 
number of infections changes with the time of day of contaminant 
introduction, through the change is less than 1% of the total popu
lation. The number of infections increases with the volume of 
contaminant introduced, though it is not a linear relationship. Fi
nally, as the slope of the dose-response curve increases and the 
curve steepens, the number of infections increases. Given that the 
data used to generate dose-response curves is often sparse and 
sometimes conflicting, this represents a source of great uncer
tainty in the model. 

Information from Fig. 4 could be used by decision makers to 
plan public health and utility intervention strategies. In this case, 
the biological agent has a one-week latency period during which 
people would not yet be symptomatic or aware of the illness. This 
is a long period, during which a drinking water contamination 
warning system could provide the first detection of the incident. 
Following detection of a contamination incident, the utility could 
identify the contaminant through laboratory analysis and provide 
information to the public health sector about which neighbor
hoods were likely exposed to the specific contaminant, thereby 
informing the public health process. The data in Fig. 4 also 
shows, however, that the utility would need to detect and respond 
very rapidly in order to prevent exposure. Indeed, within 20 h of 
the contamination event, more than 50% of the exposures have 
already occurred. The modeling framework can also be used to 
compare the costs and benefits of various intervention strategies. 
Fig. 7. Sensitivity of infections to slope of dose-response curve
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Conclusions 

This paper presents a new framework for estimating the spatial 
and temporal distribution of health impacts resulting from inges
tion of contaminated drinking water. The example in this paper 
shows that the method is not restricted to small problems but can 
be applied even to large drinking water systems. Moreover, the 
method is flexible enough to accommodate most types of diseases 
that could be transmitted through water. The model could be ex
tended to incorporate exposure to contaminated water through 
dermal and inhalation routes. 

Though the focus of this paper is on describing the models and 
methods in detail, there are many important and useful applica
tions that can be studied in future papers. This framework can be 
applied to both accidental and intentional contamination sce
narios. Given the necessary parameter values for the health im
pacts of contaminants, the framework could be used to estimate 
the potential health risks of accidental backflows and intrusion 
events. Combined with flow information calculated in EPANET, 
the economic impacts of contamination events could be estimated 
�including public health costs and water utility cleanup and recov
ery costs�. In addition, the public health costs and benefits of 
control options such as flushing and superchlorination could be 
examined. 

In understanding the threat of intentional contamination of 
drinking water, this framework provides several useful tools. 
First, the number of infections or fatalities could be used as a 
metric in determining the optimal number and location of con
tamination warning system sensors �Berry et al. 2005; Uber et al. 
2004b�. Many methods for locating sensors attempt to minimize 
quantities such as the volume of contaminated water; however, 
the number of infections may be a more accurate reflection of 
public risk. In addition, the disease model could allow decision 
makers to determine the contaminant-specific time available for 
effective public health intervention strategies, such as vaccina
tion, treatment, and “Do Not Drink” or “Do Not Use” orders. 
Finally, given the spatial estimates of health risk, decision makers 
could identify and prioritize populations and regions in the most 
urgent need of public health intervention. 
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