Ensuring Representative Conditions for Performance Testing

> Rhonda Jeffries ODEQ (918)293-1626 Rhonda.Jeffries@deq.state.ok.us

## Objectives

- Using Standard Deviation to Determine Representative Conditions
- Case Studies Representative conditions in the Glass Container Industry
- Factors to consider in other industries

Clean Air Act National Stack Testing Guidance

- Final guidance issued September 30, 2005 (copy on CD)
- Applies only to NSPS, NESHAP and MACT but the principles in the guidance should be considered for any testing

## The guidance addresses:

- Time frames for conducting stack test
- Stack test waivers
- Stack test notifications
- Observation of stack tests
- Representative testing conditions
- Stoppages
- Postponements
- Test reports

# **\*Remember This\***

- The Act requires continuous compliance with emission limits
- NSPS, MACT & NESHAP require that performance tests be conducted at conditions specified by the Administrator
- NSPS & MACT require tests be conducted during representative operating conditions

#### **Representative Conditions**

- Performance tests should be performed under those representative (normal) conditions that:
  - Represent the range of combined process and control measure conditions under which the facility expects to operate (regardless of the frequency of the conditions): and
  - Are most likely to challenge the emissions control measures of the facility with regard to meeting the applicable emission standards, but without creating an unsafe condition.

## **Operating Conditions**

 If operating conditions are not indicated by the applicable requirements they should be developed as part of the sitespecific test plan.

#### Operating conditions cont.

For a facility operating under an emission rate standard (e.g., lb/hr) or concentration standard (e.g.,  $\mu$ g/m<sup>3</sup>), normal process operating conditions producing the highest emissions or loading to a control device would generally constitute the most challenging conditions with regard to the emissions standard.

#### Operating conditions cont.

For a facility operating under a control or removal efficiency standard (e.g., 98% control or removal of a specified pollutant), lower emissions loading at the inlet of a control device within the range of expected process operating conditions may be the most challenging.

## Test plan

The test plan should generally include the use of fuel, raw materials, and other process/control equipment that the facility expects to use during future operations that would present the greatest challenge in meeting applicable emissions standards.

### **Using Standard Deviation**

"mean of the mean"

Normal Distribution of data

#### Graph of Standard Deviation



## Standard Deviation as a % of Probability



## Standard Deviation cont.

- One Standard Deviation from the mean in both directions accounts for about 68% of the data.
- Two Standard Deviation accounts for about 95%.
- Three Standard Deviations accounts for about 99%.

How to use Standard Deviation

- Collect data
- Use excel to determine standard deviation (tutorial available within the Help menu)
- Compare test data to standard deviation

#### Calculation

- 1<sup>st</sup> column is the date
- 2<sup>nd</sup> column is sample data
- Calculate the mean of the data =Average(x,y)
- Calculate the Standard Deviation =STDEVA(x,y)
- 3<sup>rd</sup> column is the difference between the sample value and the mean
- 4<sup>th</sup> column is the 3<sup>rd</sup> column divided by the standard deviation

## Example

| Date     | Value | Dif. From Mean |          |
|----------|-------|----------------|----------|
| 3/1/2007 | 123   | -2.5           | -1.33631 |
| 3/2/2007 | 124   | -1.5           | -0.80178 |
| 3/3/2007 | 125   | -0.5           | -0.26726 |
| 3/4/2007 | 126   | 0.5            | 0.267261 |
| 3/5/2007 | 127   | 1.5            | 0.801784 |
| 3/6/2007 | 128   | 2.5            | 1.336306 |

| SD   | 1.870829 |
|------|----------|
| Mean | 125.5    |

#### **Example Graph**



## **Glass Container Manufacturing**

- Factors that affect emissions for the same furnace without design or burner changes
  - Fuel
    - Natural gas
    - Electric Boost
    - Oxygen boost
  - Glass recipe
    - Fining agents Sodium Sulfate
    - Cullet
  - Temperature of melt
    - Optical Bridgewall
  - Age of furnace
  - Production Rate

## **Knights Facility**

- Manufactures Container Glass
- Test Date May 23, 2006
- Electric Boost
- Natural Gas
- Oxygen Boost
- Flint and colored glass





#### Knights Facility – Cont.







#### Knights Facility – Cont.



#### Knights Facility – cont.



## **Chieftain Facility**

- Glass Container Manufacturing
- Test Dates March 9, 2007
- Flint glass
- Natural Gas
- Optional Oxygen boost

#### Chieftain Furnace B



#### Chieftain Furnace B







#### Chieftain Furnace B



## Retesting

- A facility is not required to automatically retest if the initial test does not represent the range of combined process and control measure conditions.
- A facility is not required automatically to retest if the facility's operating conditions subsequently vary from those in place during the performance test.
- The delegated agency must determine whether retesting is warranted; however, in both instances, the facility is responsible for demonstrating continuous compliance.

### Lime Kilns

- Recipe
- Fuel
  - Coal
  - Natural gas
- Temperature
- Production Rate

### Secondary Aluminum

- Capture efficiency
- Raw materials
- Flux rate and recipe

## RTO

- Temperature
- Capture efficiency
- Paint usage

## Summary:

- Each test must be evaluated individually
- The inspector has to know or determine what factors are important
- Standard deviation can be used to determine if the test was representative
- If the test is not representative did the deviation cause higher emissions?