Plant Polymer Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: Advanced Starch-Based Materials for Non-Food Applications

Location: Plant Polymer Research

Title: Density functional study of the infrared spectrum of glucose and glucose monohydrates in the OH stretch region

Authors
item Bosma, Wayne - BRADLEY UNIV. CHEM DEPT.
item Schnupf, Udo
item Willett, Julious
item Momany, Frank

Submitted to: Journal of Molecular Structure (Theochem)
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: March 13, 2009
Publication Date: N/A

Interpretive Summary: A thorough understanding of the interactions between carbohydrate molecules and water is essential for the design of new carbohydrate-based commercial products. This understanding is often hindered by the available experimental data and the large number of ways that the carbohydrate molecule can link with the water molecules in its solvent environment. Even glucose, the monosaccharide building block of starch and cellulose, is a complicated system in terms of the number of possible molecular conformations and arrangements of surrounding water molecules. In this paper, advanced theoretical methods were employed to study the relative energies of the glucose molecule interacting with one water molecule. These studies offer considerable insight into the differences between isolated glucose molecules and glucose in solution. In addition, a type of experiment that is used to characterize carbohydrate structures (infrared spectroscopy) was modeled on these systems, to identify the experimental ¿fingerprints¿ of individual glucose-water complexes. Comparison was made to some recent experiments that study systems very similar to these in the gas phase. The theoretical calculations were used to provide a detailed picture of the structure of the complexes that were studied in the experiment. This work will lead to more efficient design methods for chemical modifications of starch that will result in biodegradable polymers with physical and structural properties useful for numerous commercial applications.

Technical Abstract: Density functional theory (DFT) has been used to calculate the structures and infrared spectra of glucose and glucose monohydrates. Both the alpha and beta anomers were studied, with all possible combinations of hydroxymethyl rotamer (gg, gt, or tg) and hydroxyl orientation (clockwise or counter-clockwise). A total of 69 glucose monohydrates were studied, representing most of the possible single-donor, single-acceptor complexes. Two monohydrates stand out as being particularly stable relative to the others; these correspond to complexes that require little distortion of the glucose structure in order to accommodate the water molecule. While the alpha anomer is still more stable than the beta anomer at the monohydrate level, the current calculations offer insights into the preference for the beta anomer in solution. The calculated infrared spectrum was studied in the OH stretch region (3300-3800 cm-1). One of the peaks in the spectra produced by the tg rotamers was found to be redshifted by approximately 30 cm-1 relative to its location in the gt and gg rotamers. A second signature redshift (also approximately 30 cm-1) was found to characterize the alpha glucose anomers. In the monohydrates, the water OH stretching motions couple to the glucose vibrations at the hydrogen-bond donor site, giving redshifted peaks characteristic of the glucose-water hydrogen bonds. The extent to which these peaks are conformation-dependent depends strongly on the location of the water molecule. Comparison is made to recent experiments on the OH stretch region of gas-phase monohydrates of glucose derivatives.

   

 
Project Team
Willett, Julious - J L
Momany, Frank
Finkenstadt, Victoria
Shogren, Randal - Randy
 
Publications
   Publications
 
Related National Programs
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   Determination of Structure-Property Relationships in Biological Macromolecules Using Biophysical Approaches
   Agricultural Polymers for Prevention of Corrosion on Metals
   Starch Foam Production by Extrusion
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House