Mycotoxin Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: CONTROL OF FUSARIUM GRAMINEARUM MYCOTOXINS IN WHEAT, BARLEY AND CORN

Location: Mycotoxin Research

Title: Development of a Real-Time Pcr Assay to Quantify Fusarium Graminearum Fungal Genomic DNA from Field Trials

Authors

Submitted to: Meeting Abstract
Publication Type: Abstract
Publication Acceptance Date: March 23, 2005
Publication Date: N/A

Technical Abstract: Fusarium graminearum, the predominant causal agent of wheat head scab, is a major economic and food safety concern. In addition to a reduction in yield, infected wheat may also lead to seed contamination by the fungal generated toxin, deoxynivalenol (DON). DON is toxic to both plants and animals and is also a critical component of pathogenicity of wheat. Wheat contaminated with DON exacerbates the economic loss during grain marketing through added expenses for screening and testing. Given these concerns, it is imperative that we understand the pathway(s) for DON synthesis so that effective control strategies can be developed. Through gene knockout technology, genes and pathways suspected of being important in the pathogenesis of F. graminearum are being tested in the greenhouse and in the field on wheat. These studies depend on technology that allows the researcher to distinguish between disease caused by the parental strain and disease caused by the mutant, test strain. The recent advance of quantitative PCR has enabled the detection and quantification of fungi from field samples at the genus and species levels. Nicholson, et al. (Physiological and Molecular Plant Pathology, 53:17-37) has developed primers (Fg16F/R) to specifically detect and quantify F. graminearum from infected grain. In this report, we describe the development of a real-time quantitative PCR protocol using the Fg16F/R primers. In addition, we developed primers specific to our gene knockout technology. Given the documented specificity of the Fg16F/R primers and the widespread use of gene knockout technology, our protocol will be of general use to the plant pathology community for studying the pathobiology of F. graminearum.

   

 
Project Team
Alexander, Nancy
McCormick, Susan
Proctor, Robert
Kendra, David
Desjardins, Anne
Busman, Mark
 
Publications
   Publications
 
Related National Programs
  Food Safety, (animal and plant products) (108)
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House