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A Causative Matrix Approach to Mobility Studies

by Barry Bye and John Hennessey

Introduction

Markov models have been widely used for the analysis and prediction
of shifts in population distribution over time. The point of depar-
ture for most of these analyses has been the finite state, time
stationary Markov chain. The usual Markov chain model has, however,
been shown to be inadequate for most social science applications.
The principle failure of this model is exhibited in the notion of
empirical regularity (see for example Coleman [5], Singer and

Spilerman [16]).

Proposed alternatives to the stationary Markov chain models have
taken various directions depending on the presumed reason for the
empirical regularity. Coleman [3], Lazarsfeld and Henry [Q], and
Wiggins [18] have considered the effects of response variability as
the source of the empirical regularity. Population heterogeneity

as a source has been discussed starting with Blumen, Kogan and
McCarthy rlj and furthered by Spilerman [lf] and Singer and Spilerman
[14]. A recent publication by Singer and Spilerman [15] has focused
on continuous time stationary models as a possible alternative to

the discrete time Markov chain.

This paper presents a particular kind of discrete time nonstationary
Markov chain. Such chains will be built using a mathematical quantity

called a causative matrix. Causative matrices have been found useful



II.

in the analysis and prediction of certain consumer purchasing
processes [10, 11] and in the analysis of sequences of stochastic

matrices derived from cohort data Pﬂ.

Gection II of the paper defines the notions of a causative and strongly
causative matrix and presents the constant causative matrix model.
Section III relates the causative matrix model to an empirical
regularity which occurs in many social science data. Section IV
discusses a possible variation of the model. Section V presents
directions for future research.

The Causative Matrix

To be best of our knowledge, the notion of a causative matrix
originated with Benjamin Lipstein [id]. Lipstein was interested in

the consumer purchasing process and the ability to detect stability

in the market place after the introduction of a new brand or after

a large advertising campaign. Given a sequence of stochastic matrices
Rys RZ’ cees Ry with states representing brand preference, Lipstein

defined the ith causative matrix,

=1 -1

Ci = R; Ri+1 when Ri exists. (See [11])

Thus, causative matrices are a way of accounting for observed
nonstationarity in the transition probabilities. These matrices

can then be used for prediction purposes.

Following Lipstein's lead, we have chosen to define causative matrices

with respect to nonsingular stochastic matrices as follows:



Definition 1: Let C be an nxn matrix. C 1s causative if there

exists a nonsingular, stochastic matrix R such

that RC is stochastic.

It can be shown that the rows of a causative matrix, C, must sum to
one; and, therefore, 1 is an eigenvalue of C. However, the entries
of C need not be greater than or equal to zero, so, although all
stochastic matrices are causative, there are many nonstochastic

matrices which are also causative.

When viewed as a linear transformation of En’ n dimensional euclidean
space, a causative matrix has specific algebraic properties. The
hyperplanes x1+x2+...xn = k of En are invariant under C and all
eigenvectors of C corresponding to non-unit eigenvalues must be in
the plane X R Pk = 0. These and other properties concerning

convergence of lim ct have been presented by Hennessey and Bye [6].
t oo

Necessary and sufficient conditions for a matrix to be causative,
in terms of its entries, have been given by Hennessey and Bye [7].

They can be stated as follows:

Theorem 2: A matrix C is causative if and only if there exists a
positive vector, r, such that rC is positive in all entries except

those corresponding to zero columns of C.

There are ways to test for the existence of such an r vector in

terms of the entries of C alone (see [7]).



It is interesting to consider the following situation: Given a
nonsingular, stochastic matrix R and a matrix C which is causative

. . 2 t
with respect to R, consider the sequence R,RC,RC™,...,RC .... If
these matrices are all stochastic, one can consider the nonstationary
Markov chain so generated. Thus, it is interesting to consider those

causative matrices for which such a chain can be constructed, and

we have the following definition,

Definition 3: Let C be a causative matrix, then C is strongly

causative if there exists a nonsingular stochastic matrix R such

that RCt is stochastic for all t.

A full statement of necessary and sufficient conditions (given in [7])
is beyond the scope of this paper. However, to give some feeling for

the nature of the restrictions, we state two of the necessary conditions:

Theorem 4: If C is strongly causative then;
1. All eigenvalues of C are less than or equal to ome
in absolute value, and
2. All eigenvalues equal to one in absolute value are

not linked in the Jordan form of C.

These conditions insure that no entry of ct and thus of RCt becomes
indefinitely large in absolute value ( which would make entries of

t .
RC  greater than 1 or less than O and thus makes RCt nonstochastic).
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Given a matrix C which is strongly causative it is shown in [7] that
one can construct nonsingular, stochastic matrices, R, such that C
is strongly causative with respect to R. The question then naturally
arises: Given an R and a C; is C strongly causative with respect
to this particular R? This problem is, at present, unsolved and is

the subject of current research.

Given an R and a C which is strongly causative with respect to R,

2 3.

we consider the nonstationary chain: {R,RC,RC

We then construct the t step transition matrix, Tt = P(o,t), where

T = RRCRC? ... ret7l - T RreX.

Then, given an initial state vector, s, we consider the convergence

properties of {sTt} as o,

Necessary and sufficient conditions for the convergence of Tt for

two state chains have been given by Harary, Lipstein, and Styan [5].
Their results, however, could not be generalized to chains with

more than two states. Pullman and Styan [15] and Bye and Hennessey [?J
have presented some partial results for n state chains. Necessary

and sufficient conditions for the convergence of Tt are shown in [2]

in the special case where R and C have the same canonical basis and

structure of the Jordan form.

Both papers contain the following result:
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Theorem 5: Let C be a convergent strongly causative matrix with
respect to R. Let C also be such that there is only one eigenvalue
of C equal to 1 and let v be its eigenvector normalized to lie in
the plane R T 1, then 1lim T = V where V is a matrix

n t->o t
with all rows equal to v.

In this case, the process loses memory with all initial distribution

vectors converging to v.

An Emperical Regularity

Many authors have noted that social mobility data often yields the
following kind of empirical regularity. Given an observed one step
transition matrix P = P(0,1) and an observed k step transition matrix
P(0,k), the diagonal entries of P(0,k) have the property that they

are greater than the diagonal entries of Pk. This means that the
probability of being in the same state after k time periods 1is

larger than that predicted by the stationary chain with P(0,1) as

its transition matrix. To translate this property into more tractable

(though not quite equivalent) form, we define

trace P(0,k) > trace Pk to be the empirical regularily property.

We will be interested in developing certain properties about the
trace of k-step transition matrices generated by certain kinds
of causative matrices. 1In order to do this without too much
complexity, we will place certain mild restrictions on the sto-
chastic R's and causative C's which we have been discussing in

previous sections.



Following the work done by McKenzie [12] we will be interested in

stochastic matrices R with "dominant diagonals."

Definition 7: An stochastic matrix R = (rij) has a dominant diagonal

(d.d.) if r.. > ¥ r.. for all 1i.
ii — .. 1
jti

Such matrices are frequently encountered in social mobility data.

They have the following property: (see [12J for details).

Theorem 8: If a stochastic matrix R has a d.d. then
1. R is non-singular

2. All eigenvalues of R have positive real parts.

In the following discussion we will restrict ourselves to stochastic
matrices, R, which have a d.d. For simplicity, we will also assume

that R has a full set of eigenvectors.

First, it should be noted that if R has a d.d. and R and C satisfy

the hypothesis of Theorem 5, then

. t .
tr(lim R7) = tr(lim Tt) = 1.
£ {0
Also, all strongly causative C's, which we have observed empirically
have generated chains where trace Tt < trace Rt and, therefore, do

not have the empirical regularity property.

However, there is a class of causative (but not strongly causative)
matrices which do have interesting properties with respect to

empirical regularity. Consider the following situation:



Let R be a stochastic matrix with d.d. where

-1
(9) R=V AV

Where V contains the eigenvectors of R in the rows and

where the eigenvalues Ai are real and o<Ai<1 for all i.

Let C be causative with respect to R and

-1
cC=V TV

1
’ \f is real and
(10) where T = :
) v.>1 for all 1
Yn 1

(That is, C and R have the same eigenvectors).

Then, we have the following theorem.

Theorem 11. Given an R and C with properties (9) and (10) respectively,

the trace of Tt = RRC...RCt is greater then trace Rt for all t.

_ sy -1 .
Proof: T, = RRC...RC' L gt {8/ (D) 7 pept/2(e Dy

Therefore, tr(Tt - Rt) = tr At((l‘t/Z(t_l)-I))>0 for all t.

QED



Thus, in particular, for all t for which RCt is stochastic, Tt is

stochastic and exhibits the empirical regularity mentioned above.

Although the restriction of C to have the same eigenvectors of R
appears to be severe, we have had some success in fitting such C's
to observed data. The data in table 1, taken from [?, table'ﬂ
show that the one step matrices can be fitted fairly well even
with the eigenvectbrs for C fixed to be the same as those for R&'
The fitting procedure chooses the four non-unit eigenvalues for

C which minimize the sums of squared deviations from RS’ subject

to the constraints that each estimated eigenvalue be greater than

Thus, it seems reasonable that one can fit C to insure that ’I‘t has
this empirical regularity and we have a model that warrants con-

sideration for social mobility processes.
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A Variation of the Causative Matrix Model

When considering causative matrices with properties specified in
(10), we note that, by Theorem 4, such causative matrices cannot
be strongly causative. in this case it is useful to consider the

B

t
matrix R = RC © where t, is chosen such that one or more entries
t .. . . . . -
of RC first become negative t, 1s not necessarily integral). R¥*
is a limiting value of RC  in the sense that the process 1s moving

toward R** as a boundary value. (In table 1 the estimated R¥*%

seems more realistic than the actual R¥*¥*. )

We also note that such causative matrices will move the rows of

R faster and faster as t gets larger.

A variation of the constant causative matrix model is to consider

a sequence of causative matrices Cl""’ck"" with the properties:

1. V is the constant eigenvector matrix for all Ci'

2. The nonunit eigenvalues for all Ci are real and greater

than one so that

-1

1:RC; 2,...+R*, stochastic for some R where

10

T, =R I Cj_J has the empirical regularity property.
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We then have:

. . t
Theorem 12: 1lim Tt = lim R
et et

- _ I |
Proof: T, = RRGRCIC)...RC;...C._; =V A" T r. 47y

where T'. is the diagonal matrix of eigenvalues for C.,
1

-1 t-i-1 00...0
T,
]

t
But A
]

as t-e

=
oo -

QED

Thus, we have that the long run distributions for both stationary
and nonstationary models are the same, with the nonstationary model
taking the '"high road" with respect to the empirical regularity

mentioned in section III.

Future Research

The nonstationary chains we have discussed have the property that

lim Tt(; lim P(O,t» has trace equal to 1. An attempt to construct
> )

models where tr'@ian(O,t» > 1, has led to the following formulation

e

for P(0,t).

1
Suppose P(0,1) = V AV let
/{ 00
P(0,t) =V 0 ra. (t) v
11
t
A
0 , az(t)

N
N
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]
—

where ai(l)

ai(t) >1 for all i and t

t * . .
and Aia.(t) > @, in such a way that V V 1is stochastic.
i

P(0,t) then describes a t step transition matrix which quarantees
empirical regularity and in general, tr lim P(O,t) > 1.

>
The relationship of this formulation of P(0,t) to certain classes
of mover/stayer and other heterogeneous models by specific para-

meterizations of ai(t) is currently underway.



TABLE 1

Actual Estimated
Bﬁ
.563 .058 .080 .161 .138
Transition .082 .430 .109 .245 .134
matrix .178 .084 .395 .222 .131 Same as actual

.085 .042 .030 .695 .148
.200 .122 .133 .155 .400

.224 -,406 -.530 .219 .390

Eigenvectors .102  .545 -.106 .300 .149

(in columns) .108 .487 -.217 .472 -.876 Same as actual
.376 -.543 ,812 -.223 .188
.190 -.835 .031 -.768 .149

1.60 .394 .507 .271 .312 Same as actual

Pal

R5 R5
.596 .053 .074 .147 .130 .601 .058 .085 .136 .120
Transition .078 .455 .105 .236 .176 .071 .468 .117 .228 .116
matrix L1720 .072  .419  .215 .122 L1740 072 .425  .206 .123
.066 .033 .024 .735 .142 .075 .041 .030 .723 .131
.167 .093 .111 .129 .500 .184 .094 .106 .147 .469

-l -1~
C = R4 R5 C = R4 R5

1.090 .000 -.004 -.024 -.065 1.090 .008 .017 -.051 -.065
Causative .023 1.080 -.009 -.034 -.060 ~.009 1.110 .018 -.051 -.066
matrix -.012 .005 1.090 -.022 -.059 -.020 -.007 1.090 -.040 ~-.030
-.013 -.003 .006 1.080 -.068 -.009 .008 .018 1.050 -.066
-.126 -.071 -.082 -.007 1.350 -.073 -.079 -.120 .01l4 1.260

.242  .353 .791 .822 -.819

Eigenvectors .139 -.193 -.561 -.237 .230

(in columns) .149 -.219 .010 -.377 .518 Same as R
.313 -.115 -.245 -.425 .083
.157 .881 .530 .004 -.013

Eigenvalues 1.00 1.41 1.08 1.10 1.09 1.00 1.10 1.10 1.30 1.10



TABLE 1--continued

Actual Estimated

2

RQC
.633 .048 .068 .132 .119 .643 ,060 .092 .107 .097
.075 .483 .101 .226 .115 .060 .511 .128 .209 .091
.166 .071 .446 .207 .109 .170 .070 .459 .186 .113
.045 .023 .018 .779 .133 .064 .041 .032 .753 .108
.118 .065 .079 .076 .641 .162 .069 .067 .142 .559

3

R4C
675 .044 ,062 .116 .103 .691 .065 .104 .074 .067
.075 .513 .097 .215 .099 .051 .560 .143 .186 .060
161 .070 .476 .200 .092 .166 .069 .496 .168 .101
.023 .014 .013 .829 .121 .055 .044 .038 .785 .078
.048 .025 .033 .055 .839 .133 .034 .018 .142 .677

*%k

Ry,

.698 .042 .059 .108 .093 .704  .064 .108 .067 .057
.075 .529 .096 .210 .089 .047 .573 .147 .179 .054
.160 .070 .492 .197 .081 164 .068 .504 .164 .099
.012 .009 .011 .855 .113 .054 .045 .040 .,791 .071

.003 .000 .003 .030 .964 .126 .024 .000 .144 .708
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