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INTRODUCTION
The purpose of this paper is to inform users of the 1978 Survey of Disability-
and Work that the usual maximum likelihood procedures for estimating discrete
choice models where the dependent variable is self reported disability status,
beneficiary status or application status are not appropriate. A more complex

approach is needed because the 1978 Survey sample is stratified on these factors.

Such sample designs have been referred to in the literature as retrospective,
choice based or endogenous sampling designs. The likelihood functions for such
designs involve the sample design parameters. This is not the case for simple
random samples or samples which are stratified on only explanatory variables.
The methodology discussed in this paper applies not only to socio-eccnomic
structural equation models, but also to the usual kinds of linear logistic
models that researchers have used in post survey reports to analyze disability,
beneficiary and application status. Although the methodology presented is not
new, its appliqation to the 1978 Survey design ié more complex than that dis-
cussed in the literature thus requiring special attention. In this paper we
suggest an estimation stratagey and discuss it in the context of an analysis of
the effect of local labor market factors on the disability process.
The paper is organized as follows: We first give a brief overview of discrete
choice analysis in retrospective sample designs which serves to identify the
issues at hand. We then develop the likelihood for a simple design which has
the basic structural features of the 1978 Survey design. MNext we describe the
1978 Survey design and the local labor market analysis. This is followed by the
derivation of conditional likelihoods for that analysis. Finally, an estimation
strategy is suggested.

AN OVERVIEW OF ANALYSIS IN RETROSPECTIVE SAMP#ES
In a prospective study of the incidence of the occurence of some random response
variable, ¥ ,.a sample of individuals is drawn from a general population and risk
factors and other explanatory (regression) variables, X, are recorded and considered
as fixed. For each sample case, the dependent variable, Y, is measured and viewed

as a random event. Since the probability of the occurence of the event under study



2
is often swmall, it is necessary to take largé ;;mples in order to estimate, precisély,
the relationship between ¥ and x. Usually we are interested in the estimation of
the parameters of a probabilistic model, P(Y1x16) by maximum likelihood methods.

Since the dependent variable is the random variable, the maximum likelihood

estimator (mle) of 8 is just the solution of max [Hb P(Y[X,e)].
obs

Because of the need for large samples in prospective studies, it is often more
practical to use retrospective techniques. In a retrospective study, the response
variable, Y, is regarded as fixed; and separate sampleé of individuals are selected
from the various categories of the response variable. The explanatory variables
are regarded as random, conditional on response status. Because retrospective
studies draw separate samples for each category of the response variable, Y, a
smaller total sample size is usually required and data collection can often be

completed quickly. 1/

In retrospective studies, the estimation of the probabilistic model P(¥|X) is no
longer straight forward since it is necessary to condition estimation on being in

the sample. The likelihood of the sample data is given by

A(Y,x) =1 p(x|Y).
obs

The mle of 8 for the probabilistic model p(y|xX,8) can be obtained from

nax [n P (Y x9) P(x)}
] obs P(Y) .

by applying Bayes rule to P(X|Y) and choosing 6 subject to the comstraint

P(Y) = f P(¥|Z,8) P(2)€z.
X

If P(X) and/or P(Y) are not known, then other methods must be used to estimate 6.

1/ 1In addition to the 1978 Survey, retrospective sampling approaches have
been used in other studies conducted by the Division of Disability Studies. Both
the Bellmon Review (see the Technical Appendix to Implementation of Section 304(g)
of Public Law 96-265, "Social Security Disability Amendments of 1980," Report to
the Congress by the Secretary of Health and Human Services, January 1982) and the
Study of Trial Work Patterns of Disability Insurance Beneficiaries (see Division of
Disability Studies Workplan No. 07302) used retrospective sampling plans.
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An even more complicated situation arises when the sample is stratified by both
dependent and independent variables. AS example of what can happen, consider the
estimation of the odds ratio from a simple four-fold table. In this case, we have
a dichotomous dependent variable and one dichotomous explanatory variable. The

estimation of the odds ratio is analogous to the estimation of the parameters of

a dicrete choice model where the logistic functional form is assumed.

Let X=1,0 by the explanatory variable, ¥=1,0 by the variable. If a, b, ¢, and 4

represent the observed frequencies of X and Y, jointly, we have the following

table: N o . ) —
Y
0 1
0 a b
X
1 c d
. . .. . b/a _ be _ c/a . .
In prospective studies the odds ratio is given by 372 = 2d = /b which is the

odds ratio from retrospective studies.

Therefore the odds ratio can be estimated from either study design, even though

P(Y¥) and P(X) are usually not known.

If one stratifies by both dependent and explanatory variables, the estimation of the
odds ratio must be adjusted to account for the sampling fraction for each combination.
As an illustration, suppose the entire population was observed in the study and we

obtained the following summary table:

Y
0 1 Total
o |500 1,500 2,000
1 2,500 5,500 8,000
otal 13,000 7,000 10,000

The population odds ratio would be given by

_ 1,500 x.2,500 _ 15
500 x 5,500  IT

OR
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If a sample is drawn which is stratified on both X and Y and the sampling rates

are disproportionate, then knowledge of the sampling rates is required to obtain

an unbiased estimate of the population odds ratio.

For example, if the sampling rates are wpg=l, wgj=l, wjp=.2 and wyj=.l and the

following table based on the sample was obtained

Y
0 1

0 | 500 1,500

1 { 500 550

the sample odds ratio would be

o 200 x 1,500 30

OBs = 00 x350 "~ IT

which is very far from the correctly weighted population estimate

|1
{(1)(500)} [(10)(550)}

((5)(500)] [(1)(1500)] 5
1,

The general problem of estimating associations among dependent and independent
variables in retrospective sample designs has received quite extensive treatment

in the literature. The problem of estimating the parameters of logistic choice

functions has been treated by Farewell 2/, Beaslow and Powers 3/, Prentice 4/, and
Prentice and Pyke 5/. Manski and Lerman 6/ and Manski and McFadden 7/ treat these

issues in the context of general functional forms for P(le,e). Manski and

2/ Farewell, V. T., "Some Results on the Estimation of Logistic Models Based
on Retrospective Data," Biometrika (1979), 66, 1, pp. 27-32.

3/ Breslow, N. and Powers, W., "Are There Two Logistic Regressioms for
Retrospective Studies," Biometrics 34, 100-105.

4/ Prentice, Ross, "Use of the Logistic Model in Retrospective Studies,"
Biometrics 32, 599-606.

5/ Prentice, R. L. and Pyke, R., "Logistic Disease Incidence Models and
Case Control Studies," Biometrika (1979), 66, 3, pp. 403-11.

6/ Manski, Charles F., and Lerman, Steven R., "The Estimation of Choice
Probabilities From Choice Based Samples,' Econometrica, Vol. 45, No. 8 (November, 1977).

7/ Manski, Charles F., and McFadden Daniel, "Alternative Estimators and Sample
Design for Discrete Choice Analysis,' unpublished Manuscript, January 1977.
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McFadden also discuss the general estimation problem when samples are stratified
on both dependent and independent variables considering all possible combinations

of knowledge or the lack thereof of the marginal densitites P(X) and P(Y).

A MORE COMPLICATED SAMPLE DESIGN
The 1978 Survey sample design is somewhat more complex thag those that have
been discussed in the previously cited literature. Before proceeding to the
development of the likelihoods for this design, a simple example of the basic

structure of the 1978 Survey problem might be helpful.

Suppose we have a set of observations (AP,X) 8/ with probability density function

£(AP,X) which is specified up to a set of unknown parameters, 6, such that

£(AP,X) = P(AP|X,8) P(X)

wvhere
P(AP|X,8) is the discrete choice function.

P(X is the marginal denmsity over X.

Let us further suppose that the set of (AP,X) is divided into two groups as shown

in the following diagram:

Set of (AP X)

AP=1 AP=()

}
!
]
]

8/ We can think of AP as the response variable taking on values of 1 and 0, and X
as the set of regressors.



Some (but not all) of the observations with AP=1 have been placed in B, Assume
that the joint density h, of B and G with (AP,X) is also known up to some

unknown parameter ¢ so that

h(B,AP,X) = P(B|AP,X,4) P(AP,X)
h(G,AP,X) = P(G|AP,X,¢) P(AP,X)

where according to the diagram

P(B|AP=0,X,$)=0 and
P(G|AP=0,X,4)=1

Let us now suppose that we have fixed a sample design of size n which specifies

n n
that we choose ng cases from B and ng from G. Let upg = ;E and ug = ;Q .

We can now exhibit the likelihood, A, of observations (AP=1,X) and (AP=0,X)

from this design as follows:
A(AP=1,X) = up P(AP=1,X|B) + u P(AP=1,X|G) and

A(AP=0,X) = u, P(AP=0,X|G) 9/.

Using Bayes theorem and the probabilities previously defined, we can rewrite

these likelihoods as follows:

P(B|AP=1,X,6) P(AP=1]|X,8) P(X))

K(AP’I,X) = UB[
P(B)

+ UG

(p(c[AP=1,x,¢) P(AP=1]|X,8) ?(x)]

\ P(G)

B = a = ]
= P(AP=1]X,0) P(X){ 3(3) P(BlaP=1,X,0) + S P(G|AP=1,X,¢)

A(AP=0,X) = yg P(G|AP=0,X,¢) P(AP=0]X,08) P(X)
P(G)

= P(AP=0]|X) P(X){ a¢

ste)

9/ For this design P(AP=0,X|B)=0.
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where P(B) and P(G) are the marginal probabilities of B and G respectively

“and are related to the other quantities by

P(B) = [ P(B|AP=1,z,4) P(AP=1,2,8) P(2)dz

(AP=1,X)
P(G) = | P(G|AP=1,2,4) P(AP=1|z,8) P(z)dz + [  P(AP=0|z,0) P(z)dz
(AP=1,X) (AP=0,X)

If we wish to estimate 6 and ¢ by maximizing the usual likelihood function, assuming

P(X) to be known, the choice of 6, ¢ would have to satisfy the constraints shown above.

1f P(X) is not known, which is usually the case, Manski and McFadden have suggested

that 6 and ¢ be estimated by maximizing the conditional likelihood function which

in this case would contain products of terms of the form

A(AP=1,X)
A(AP=1,X) + A(AP=0,X)

A(AP=1|X) =

and
A(AP=0,X)
A(AP=1,X) + A(AP=0,X)

A(AP=0|X) =

where A(AP,X), for AP=0,1, are given above.

They have shown that under suitable regularity conditioms, the unconstrained conditional

mle is consistent and asymtotically normally distributed. The advantage of using the

conditional likelihood is that the unknown P(X) does not appear in the formulation.

The standard errors of the estimated parameters can be obtained from the diagonals of

the inverted conditional likelihood information matrix.



THE 1978 SURVEY SAMPLE DESIGN lg/
The 1978 Survey sample must be construed, for some analyses, as having been
stratified on both dependent and independent variables. A two-frame sampling
approach was used. The first frame was a general population frame of
noninstitutionalized adults ages 18-64 as of June 1978, in the continental
United States. This frame was supplemented by a second frame consisting of
recent Social Security disability beneficiaries and denied applicants also

noninstitutionalized and age 18-64.

The 1976 Health Interview Survey (HIS) sample was used for selection from

the general population frame. The HIS sample is designed for use by the National
Center for Health Statistics for gathering basic data on the health of the gemeral
population. The Social Security frame consisted of about 1.8 million personms
obtained from SSA's Master Beneficiary Recoré (IBR). About 1.67 million of these
persons represented Social Security Title II disability beneficiaries with date

of current entitlement between September 1972 and September 1977. The remaining
records represented persons who applied for disability benefits but had been
denied where the administrative demial action had been recorded on the MBR

between January 1 and September 15, 1977.

For the purposes of the subsequent discussion, we assume that the overlap between
the two frames has been removed. 11/ Thus, we can consider that the 1978 Survey
sample design stratifies the noninstitutionalized population into three groups:
B--Beneficiaries with date of current entitlement 9/15/72 - 9/15/77
D--Denied applicants 1/1/77 - 9/15/77

G--All other persons not in B or D.

10/ TFor a‘detailed description of the 1978 Survey Sample design, see 1978 Survey
of stab111;2 and Work--Technical Introduction, Office of Research and Statistics,
SSA Publication No. 13-11745, January 1982,

11/ This has, in fact, been done for most 1978 Survey Analyses The reasons for
fgdl?ethods of exclus1on are discussed in the reference cited in footnote 10, pPages
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The Social Seéurity Beneficiary stratum (B) was further stratified into four age
substrata: under 35, 35-44, 45-54, 55-64. The genmeral population stratum was
further stratified into five substrata designed to represent levels of disability
in 1976 bas2d oz sowerzl dz%z itcms obtained from the HIS interview schedule. The

diagram in figure 1 represents the overall design 12/:

All applicants

All bggeficiaries

f—~— —
B D G Gy Gj3 Gy Gsg
Age <35 (Bl) ~
-4
Age 35-44 (Bj) :
Age 45-54 (33) §
Age 55-64 (B,) -
.
Qe ~~ 3
6 S ( s | 3
8= L e ! ~
Gy o | - G
ez ' 25 |
G3 85 | L
s 1 [ N
o) 3 1
Gy < | 2
. g |
Gs T
{ \

FIGURE 1l.--Diagram of the 1978 Survey Sample stratificationm.

12/ The HIS sample was a stratified cluster sample similar to most Census-type
designs. We assume that this geographic stratification and clustering has no bearing
on the subsequent methodology proposed in this paper.
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AN EXAMPLE OF A DISCRETE CHOICE MODEL
A research design for a 1978 Survey analysis proposed by Jesse M. Levy provides
a context for a discussion of the maximum likelihood methodology. 13/ Levy
proposes fo inveetigste the determinants of self-perceived disability, the decision
to apply for benefits given that one perceives oneself to be disabled, and the
award decision given application (and that the applicant is insured for disability).
In his application and award analyses, Levy excludes those persons who have
applied for benefits prior to January 1977. 14/ This leaves the 1978 Survey

design with the following components:

B--Beneficiaries with date of entitlement 9/72-9/77 who had applied after 1/77.
D—Denied applicants 1/77-9/77 who had applied after 1/77.

G--General population who had not applied before 1/77; and are not in group B or D.

Levy assumes that the self perception of disability, the decision to apply for
benefits on the part of the individual and the award decision by the Social
Security Administration represent discrete choices determined by a vector of
characteristics, X, which may include local labor market factors. For each of
these events there is a choice probability functionm, P(Y|x,8) , which is known

up to the unknown parameters 6. 15/

In the remainder of this paper we will use application and award analyses as
examples of the estimation approach. The development of the likelihood for the

self-perceived disability models is almost identical to that of the application

model.

13/ See Levy, Jesse M., "The Impact of Local Labor Market Characteristics on
the Disability Process: Further Data," draft research proposal, 2/82. Division
of Disability‘Studies, ORS.

14/ The reasons for this are beyond the scope of this paper.

15/ Levy proposes a random coefficient probit model.
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DERIVATION OF THE CONDITIONAL LIKELIHOOD--APPLICATION MODEL

The presentation of the likelihood of an observation from the 1978 Survey sample

design follows closely the development in the last section. Let us define the

following quantities:

Let

AP

P(B;i)

P(X,4A;)

be the application indicator; that is AP=1 if the person applied for

benefits after January 1977, and AP=0 otherwise.

be the vector of exogenous variables upon which the application decision

depends.

be the SSA beneficiary stratum indicators; i=1,...4.

be the indicator that the age for individual i is in the range specified

by Bj.
be the SSA denied applicant stratum indicator.
be the HIS stratum indicators; j=1,...5.

be the proportion of the population in the SSA frame in stratum B,; and

‘similarly for P(D) and P(Gj). 16/

be the marginal demsity of (X,Ai).

’ nB.
be the proportion of sample cases in stratum B;; that is HBi = —;l

where nBi is the number of sample cases in Bi and n is the total

sample size. Similarly define Hp and ucj.

After exclusions.



12

We will also assume that P(AP|X,A{,8) 17/ and P(Bi|AP,X,A;,$) 18/ are known functions

up to the unknown parameters 8 and ¢.

The likelihood of an observation (AP=1,X,Aj) from the 1978 survey sample design is

given by
- A(AP=1,X,Ai) = ug; P(AP=1,X,Ai|Bj) + up P(AP=1,X,A{|D) (1
. 5
521 HG; P(AP=1,X,Ai|Gj). 19/

Each term of this expression represents the joint probability of occurence of
(AP=1,X,A;) and the indicated stratum; thus, for example, uBi P(AP=1,X,A;|Bi) is the
probability of drawing a case from Bj times the probability of drawing (AP=1,X,Aj)

given Bi and so on.

Using Bayes theorem and collecting terms, equation (1) can be rewritten as:

B
A(AP=1,X,Ai) = P(AP=1|X,A;,8) P(X,A ( 1 P(Bi |AP=1,X,A;,
1 ’ 1 ) ( Al) m—i—-y ( ll 1 ¢) (2)
5
o+ 3D AP=],X,A{, PGi__ p(c; AP=1,X,A'.¢)]

In 8 similar fashion, the likelihood of an observation (AP=0,X,Ai) is given by

5 .
A(AP=0,X,A;) = P(AP=0|X,A{,8) P(X,Ai) [ )) ;%éfy P(GjIAi=0,X,Ai,¢)]
j=1 7773
(3)

where P(AP=0[X,Ai,6)=1-P(AP=1]|X,Ai,8)

The conditional likelihoods, A(AP=1|X,A;i) and A(AP=0|X,Aj) are shown on the next page.

17/ We assume implicitly that P(AP|X,A;,68) does not depend on Gj.

18/ And similarly for P(DIAP,X,A;,s), P(Gj|AP,X,Ai,4).
19/ Note that P(AP=1,X,A;|B;) = 0 for j # i.
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P(AP=1]|X,4;  g)
A(AP=1|X,A{) =

P(AP=1|X,A;,0) M; + (1-P(AP=1|X,Ai,0)) M,

(1-P(AP=1|X,A;,08))M2
A(AP=0|X,A{) =

P(AP=1|X,A{,8) M; + (1-p(AF-1|x,Ai,a)),M2

5
Where ¥G; (G‘lAP"l X,A;,%)
5%  FApa . Up =1,X,Ai . 6) +Z . P(Gj 2858
M = Bspy POBilAP=1,X,4i,0) + 755 P(D[AP=1,X,Ai,¢ j=1 B(Gy)

H 5 .
M= ] S
j=1 P(Gj)

P(Gj|AP=0,X,41,¢)
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Although we are carrying a lot of baggage in the formulae on page 13, the general
nature of the sample design seems to leave little choice. Things could be much
simplified if we could assume that P(X|AP=1) was independent of the strata. The
problem is, however, that the applicants have not been randomly distributed among
the strata. In particular, given knowledge of SSA's disability program, it is
unlikely that the distribution of X for beneficiaries is the same as that for

denied applicants.

The complexity of the overall estimation problem depends to a large extent on the
kinds of simplifying assumptions one is willing to make about the conditional
probability functions involving 6 and ¢. Some aspects of these issues will be

discussed in a subsequent section.

Finally, it can be noted that if one assumes that the self-perception of disability

is a necessary condition to application for benefits, then the conditional likelihood

functions for analyses of self-perceived disability have the same form as those just

presented, where the conditional probability functions take on meaning in that context.

A

THE CONDITIONAL LIKELIHOOD--AWARD MOTEL
The likeliboods for the award model shown below are similar to those developed for the
applications model. We are dealing with award status conditional on application.
The terms defined in the previous section should be taken in that context. Also
note that allowed applicants can only come from the Bj and Gj strata whereas the

denied applicants come from only the D and Gj strata.

The award likelihoods are given by:

. v uB. 5 .
AW=1,X,A.) =P(AW=1|X,A;, P(X,A. 1 . - . H
A(C 1) ( ' i 9),..'1,(}{ Al) [_-”(Bi P(B4 A? 1,X,Ai,¢) +j£l F((;_é? (Gj IAW'I’X.Ai,fb)J

Yp

5 H
= = - = t——— == 'G' £
A (AW o,x,Ai) <1 P (AW 1|X,Ai,ebP(X,Ai) [ T6) P(D| AW 0,X,A,,4) +j-§-1 i P(GjIAW O,X,Ai,cb)J
b
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A TWO STEP ESTIMATION APPROACH
We now turn to the practical problem of the estimation of 8 and ¢ for the
application model. We propose a two step approach where ¢ is estimated first.
Then the expression M, and M, in (4) can be computed for each sample case and

§ obtained by maximizing the conditional likelihood functiom. 20/ 1Imn all cases,

the quantities uBi, Hp, qu, P(Bi)’ P(D) and P(Gj) are treated as known. 21/

To see how ¢ can be estimated, let S represent the sample strata (Bi, D, Gj)
with the following correspondence: S=1-B], S=2+B), S=3+B3, S=4-B4, S=5-D,
§=6+G],...5=11+G5. M] and M2 are just linear functiomns of the conditional
probabilities P(SIAP,X,A1,¢) where ¢ is a vector of unknown parameters, AP is

the application status and X is a vector of regressors.

Assume that P(SiAP,X,Ai,¢)F can be represented by a probabilistic model with unknown

parameters ¢. 22/ As before, the likelihood of observing (S,X,Ai) is given by
A(S,X,Ai) =#g p(AP,X,A;|S)

which by Bayes theorem

= Ug P(S!AP_,X,Ai,¢) * P(sti)

P(s)

20/ Ome could also leave ¢ unspecified in the likelihood and estimate 8 and ¢
simultaneously. However, due to the large number of parameters and observations
plus the complicated nature of the assumed probabilistic models, this becomes
computationally impractical.

21/ 1In practice, the P's can be consistently estimated using the individual
case weights available in the file. For Levy's analysis, this would be done only
for persons who had not applied prior to January 1, 1977. The u's for this subsample
are also unknown but can be consistently estimated by counting the unweighted
subsample cases which meet the criterion.

22/ Whether or not one chooses a separate set of parameters for each i and
performs a separate mle on each partition, Ai, of the sample depends on whether
one wants to assume that the coefficients of the regressor variables are constant
across Aj(i=1,4). Of course it is possible to test this hypotheses after one has
completed the separate estimation of each Aj. As an intermediate position, assume
that the coefficients of the regressor variables, X, are the same for all i and
allow for different constants by making A; a dummy variable in the model.
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whence the conditional likelihood is

. HUs
Vp(slAp,x,Al,qa) O]
A(S|X,Ai) =
1 p(5|AP,X,Ai,9) Bs
<

pis
where ug is the probability of choosing strata S and P(S) is the marginal

density of S.

An estimation of ¢ can then be obtained by maximizing the conditional likelihood

function:

g{gbs in s “SIX.Ai)J. 23/ 24/

Once ¢ has been obtained, the quantities M] and M2 can be computed for each case

and 6 can be obtained by maximizing the conditional likelihood function:

&_1 A(qulx,Ai)] (Xp-o A(Apfolx,Ai)]. 25/

23/ 1f ome chooses the logistic functional form for p(S|AP,X,A{,$); that is
P(SJX,A1,¢) = (1 + e~ (Bg+XB+YAi))~1 pere ¢=(87,8,,Y) then B and y can be
estimated by the usual prospective analysis approach, and By obtained after

proper adjustment in terms of the ug and P(S). (See Manski and Lerman).
7T 77T TThese parameters would be estimated separately for AP=0 and AP=l.

24/ Note that
P(SIAP,X,Ai,¢)=P(SIAW,X,Ai,quw) P (AW]X,A]._, AW,)

The quantities ¢AW and<%w are obtained from the award model estimation. If the

award model is estimated before the application model then P(S[AP,X,Ai¢) can be

computed directly and ¢ (for the application model) need not be estimated.

25/ The maximization of either of these likelihoods can be handled quite
manageably by & computer program, DFP, developed in the Division of Disability
Studies. This program uses the Davidon-Fletcher-Powell method of optimization

and supplies both estimates of the unknown parameters and their standard errors.
This technique is described

in G. R. Walsh, Methods of Optimigation, J. Wiley, 1975.
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One further comment on the estimation is required. At the present time no data
field is available either in house or on the public use tapes which identifies

the HIS sample strata (the Gj). Without this item it appears as though the

HIS sample will have to be treated as unstratified. 26/ While treating the

HIS sample this way significantly reduces the number of parameters Eo be estimated
in ¢, it also entails the very strong assumption that the joint distribution of
(AP,AW,X,Ai) does not depend on Gj. This assumption is much stronger than the
earlier assumption that P(AP|X,Aj) and P(AW|X,Aj) do not depend on Gj. 22/ The

direction and magnitude of potential biases in estimated parameters is not knownm.

CONCLUSION
We have shown in this paper that the likelihood functions for certain discrete
choice models for the 1978 Survey are quite a bit more complicated than those
ordinarily encountered. We have suggested gn estimation approach which maximizes

the conditional likelihood in two steps.

We should note that not all discrete choice models need have this complicated
formulation. ' An example which may occur frequently would be labor force status.

If one can exhibit a regression vector which exhausts a model of labor force status
then the stratification in the 1978 Survey is of no consequence to the estimation.
Of course Social Security Disability program status may be included in such a
regression. 1In this case, the sample design is exogenous and the kernal of the

likelihood function contains only the regression model specification as usual.

26/ We are now obtaining these data from the Bureau of the Census.
27/ We also feel that this assumption is much stronger than the ignoring of the
geographic stratification in the HIS sample.
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Also, there are alternative estimation strategies which might be entertained.
1f the number of regressor variables is small, a generalized least squares approach
might be used on a summary crosstabulation of the dependent and independent variables

together with the sampling variance/covariance matrix for the table. 28/

Finally, as discussed in the reference in footnote 10, the BIS general population
sample with overlap cases included constitutes an exogenous sample of the entire
population and might be suitable in its own right for certain analyses without
recourse to the complex methodology described above. It does however seem
improbabl that such an analytic strategy could be very efficient after having

excluded thousands of cases belonging to the SSA sample.

28/ This technique is described in G¥izzle, Starmer, and Koch, "Analysis of
Categorical Data by Linear Models," Biometrics 25, 1969, pp 489-504.



