Fermentation Biotechnology Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: Cost-Effective Bioprocess Technologies for Production of Biofuels from Lignocellulosic Biomass

Location: Fermentation Biotechnology Research

Title: Continuous Production of Ethanol in High Productivity Bioreactors Using Escherichia Coli Fbr5: Membrane and Fixed Cell Reactors

Authors

Submitted to: American Institute of Chemical Engineers Annual Meeting
Publication Type: Abstract
Publication Acceptance Date: November 4, 2005
Publication Date: November 4, 2005
Citation: Qureshi, N., Dien, B.S., Nichols, N.N., Liu, S., Iten, L.B., Saha, B.C., Cotta, M.A. 2005. Continuous production of ethanol in high productivity bioreactors using Escherichia coli FBR5: membrane and fixed cell reactors [abstract]. American Institute of Chemical Engineers. Paper No. 589g.

Technical Abstract: Biochemical reactor design plays a major role in determining the economics of fuel and chemical production. Reactors that result in continuously high productivities can significantly reduce the cost of the final product. With this aim, three different continuous reactor systems were evaluated for ethanol production from xylose using Escherichia coli FBR5, a strain engineered to produce ethanol in high yield from xylose. The reactor systems evaluated were adsorbed cell, entrapped cell, and membrane cell recycle bioreactors. The cell concentration inside the adsorbed cell reactor varied with time from 0.17-70.2 g/L reactor volume. The entrapped cell reactor contained 39.3 g cell/L bead volume. The cell slurry that was used to fix the cells contained 59.0 g cell/L slurry (dry weight). In the entrapped cell reactor, a maximum ethanol concentration of 37.1 g/L was obtained at a dilution rate of 0.022 h**-1. In this reactor, a productivity of 2.0 g/L.h was obtained at a dilution rate of 0.08 h**-1. At this dilution rate, the ethanol concentration in the effluent was 25.1 g/L. Membrane cell recycle reactors offer high productivities; however, they are fouled by the medium components. All three of the reactors evaluated resulted in productivities higher than batch reactors.

   

 
Project Team
Saha, Badal
Qureshi, Nasib
Hector, Ronald - Ron
Bowman, Michael
Cotta, Michael - Mike
 
Publications
   Publications
 
Related National Programs
  Bioenergy & Energy Alternatives (307)
  Quality and Utilization of Agricultural Products (306)
 
 
Last Modified: 05/12/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House