Fermentation Biotechnology Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: Industrially Robust Enzymes and Microorganisms for Production of Sugars and Ethanol from Agricultural Biomass

Location: Fermentation Biotechnology Research

Title: Identification and transcriptional profiling of Pseudomonas putida genes involved in furoic acid metabolism

Authors

Submitted to: FEMS Microbiology Letters
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: April 12, 2008
Publication Date: May 1, 2008
Citation: Nichols, N.N., Mertens, J.A. 2008. Identification and transcriptional profiling of Pseudomonas putida genes involved in furoic acid metabolism. FEMS Microbiology Letters. 284:52-57.

Interpretive Summary: To meet the U.S. national goal of producing significant amounts of biofuels; agricultural biomass, waste residues, etc., must be used, in addition to corn, as production feedstocks. During the process of obtaining usable sugars from biomass feedstocks, compounds termed furans often form as byproducts. The byproducts are toxic to many microbes, including the fermenting microbes used to produce important products such as fuel ethanol. Left untreated, furans can cause the fermentation to fail. Even though furan compounds are fermentation inhibitors, some bacteria and fungi can metabolize furans. It may be possible to exploit that natural ability by transferring the genes for furan metabolism into fermenting microbes. This would allow the microbe to detoxify inhibitory byproducts and carry on with fermentation of sugars. We identified genes involved in furan metabolism in the bacterium Pseudomonas putida and demonstrated that the genes are turned on in response to the presence of furans in the growth environment. This work provides a genetic basis for understanding furan metabolism, which is needed to engineer a fermenting microbe that has better inhibitor tolerance.

Technical Abstract: Furfural (2-furaldehyde) is a furan formed by dehydration of pentose sugars. Pseudomonas putida Fu1 metabolizes furfural through a pathway involving conversion to 2-oxoglutarate, via 2-furoic acid and Coenzyme A intermediates. To identify genes involved in furan metabolism, two P. putida transposon mutants were isolated that had impaired growth on furfural and furoic acid. Both strains grew at wild-type rates on succinate and 4-hydroxybenzoate, indicating the mutations specifically affect furan degradation rather than growth in general. DNA flanking the transposon insertion site was cloned from both mutants. The transposons disrupted a LysR-family regulatory gene in mutant PSF2 and a GcvR-type regulatory gene in PSF9. Expression of several open reading frames in the proximity of the regulatory genes was induced during growth of P. putida on furoic acid. Real-time quantitative reverse transcriptase-PCR analysis of P. putida Fu1 RNA demonstrated increased transcription, in response to furoic acid, of 10-fold (a putative permease gene) to greater than 1,000-fold (a putative decarboxylase gene). Disruption of two of the genes demonstrated that both are important for growth on furoic acid. The LysR family gene appears to act positively, and the GcvR-family gene negatively, in regulating expression of neighboring genes.

   

 
Project Team
Dien, Bruce
Cotta, Michael - Mike
Mertens, Jeffrey
Jordan, Douglas
Nichols, Nancy
 
Publications
   Publications
 
Related National Programs
  Bioenergy & Energy Alternatives (307)
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   Biological Hydrogen Production from Biomass Sugars by Electrochemically-Assisted Hydrogen Production in Microbial Fuel Cells
 
Patents
  Method For Turning Plant Material Into Sugar For Producing Ethanol
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House