Fermentation Biotechnology Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: Industrially Robust Enzymes and Microorganisms for Production of Sugars and Ethanol from Agricultural Biomass

Location: Fermentation Biotechnology Research

Title: Forage Energy Crops As Feedstocks for Production of Fuel Ethanol

Authors

Submitted to: Meeting Abstract
Publication Type: Abstract
Publication Acceptance Date: December 8, 2006
Publication Date: December 8, 2006
Citation: Cotta, M.A., Dien, B.S., Iten, L.B., Jung, H.G., Lamb, J.F., Vogel, K.P., Mitchell, R., Sarath, G., Casler, M.D., Weimer, P.J. 2006. Forage energy crops as feedstocks for production of fuel ethanol [abstract]. Biocatalysis and Bioenergy. p. 21.

Technical Abstract: Alfalfa, reed canarygrass, and switchgrass are perennial herbaceous species that have potential as biomass energy crops in temperate regions. Each forage species was harvested at two or three maturity stages and analyzed for carbohydrates, lignin, protein, lipid, organic acids, and mineral composition. The biomass samples were pretreated with dilute sulfuric acid and subjected to enzymatic saccharification using a commercial cellulase preparation. Acid-released sugars and cellulase degradability of the biomass samples were determined. More mature biomass samples of all forage species contained less protein and mineral constituents than immature harvests. Alfalfa stems contained the most protein of the biomass samples, whereas reed canarygrass had more minerals and less lignin than the other biomass samples. Carbohydrate concentration overlapped among the biomass samples, but the two grasses contained more storage carbohydrates (starch and/or fructans) than the alfalfa stems. Cell wall polysaccharides of the grasses were richer in non-glucose residues than alfalfa stems, but cell wall glucose content of the biomass samples was similar. The alfalfa stem samples required a higher acid loading to achieve the same final pretreatment pH as the grasses. Increasing the temperature of dilute-acid pretreatment (150 deg C v 121 deg C) increased the yields of glucose of most all the forage samples; however, yield of non-glucose sugars was generally reduced at the higher pretreatment temperature. The loss in yield was due to the degradation of fructose (present in the biomass samples as free fructose, sucrose, and fructans). Efficiency of glucose release was negatively correlated with Klason lignin content of the biomass samples. Current results comparing ethanol yields following pretreatment with dilute acid and conversion by simultaneous saccharification and yeast fermentation will also be presented.

   

 
Project Team
Dien, Bruce
Cotta, Michael - Mike
Mertens, Jeffrey
Jordan, Douglas
Nichols, Nancy
 
Publications
   Publications
 
Related National Programs
  Bioenergy & Energy Alternatives (307)
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   Biological Hydrogen Production from Biomass Sugars by Electrochemically-Assisted Hydrogen Production in Microbial Fuel Cells
 
Patents
  Method For Turning Plant Material Into Sugar For Producing Ethanol
 
 
Last Modified: 05/12/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House