USGS Home
SOFIA Home

Ecosystem History of the Southwest Coast-Shark River Slough Outflow Area

Metadata also available as - [Outline] - [Parseable text] - [XML]

Frequently-anticipated questions:


What does this data set describe?

Title:
Ecosystem History of the Southwest Coast-Shark River Slough Outflow Area
Abstract:
The objectives of this project are to document impacts of changes in salinity, water quality, coastal plant and animal communities and other critical ecosystem parameters on a subdecadal-centennial scale in the southwest coastal region (from Whitewater Bay, north to the 10,000 Islands), and to correlate these changes with natural events and resource management practices. Emphasis will be placed on 1) determining the amount, timing and sources of freshwater influx (groundwater vs. runoff) into the coastal ecosystem prior to and since significant anthropogenic alteration of flow; and 2) determining whether the rate of mangrove and brackish marsh migration inland has increased since 20th century water diversion and what role sealevel rise might play in the migration.

First, the environmental preferences and distributions of modern fauna and flora are established through analyses of modern samples in south Florida estuaries and coastal systems. Much of these data have already been obtained through project work conducted in Florida Bay and the terrestrial Everglades starting in 1995. These modern data are used as proxies for interpreting the historical data from Pb-210 and C-14 dated sediment cores based on assemblage analysis. On the basis of USGS data obtained from cores in Florida Bay and Biscayne Bay, the temporal span of the cores should be at a minimum the last 150 years; this is in agreement with University of Miami data showing sedimentation rates in Whitewater Bay to be approximately 1cm/year. For the estuarine/coastal ecosystems, a multidisciplinary, multiproxy approach will be utilized on cores from a transect from Whitewater Bay north to 10,000 Islands. Biochemical analyses of shells and chemical analyses of sediments will be used to refine data on salinity and nutrient supply, and isotopic analyses of shells will determine sources of water influx into the system. Nutrient analyses will be conducted to determine historical patterns of nutrient influx. To examine the inland migration of the mangrove/coastal marsh ecotone, transects from the mouth of the Shark and Harney Rivers inland into Shark River slough will be taken. These cores will be evaluated for floral remains, nutrients, charcoal, and if present, faunal remains.

This project will provide 1) baseline data for restoration managers and hydrologic modelers on the amount and sources of freshwater influx into the southwest coastal zone and the quality of the water, 2) the relative position of the coastal marsh-mangrove ecotone at different periods in the past, and 3) data to test probabilities of system response to restoration changes.

  1. How should this data set be cited?

    G. Lynn Wingard Thomas Cronin, Debra Willard, Charles Holmes, Willia, 2006, Ecosystem History of the Southwest Coast-Shark River Slough Outflow Area.

    Online Links:

  2. What geographic area does the data set cover?

    West_Bounding_Coordinate: -81.75
    East_Bounding_Coordinate: -80.83
    North_Bounding_Coordinate: 26
    South_Bounding_Coordinate: 25

  3. What does it look like?

    <http://sofia.usgs.gov/exchange/flaecohist/LocationPaleoCoreswZoneslg.jpg> (JPEG)
    Map showing the genreal location of modern sites and cores included in the Ecosystem History database

  4. Does the data set describe conditions during a particular time period?

    Beginning_Date: 01-Oct-2003
    Ending_Date: 30-Sep-2008
    Currentness_Reference: ground condition

  5. What is the general form of this data set?

  6. How does the data set represent geographic features?

    1. How are geographic features stored in the data set?

      Indirect_Spatial_Reference: Southwest coast-Shark River Slough outflow area

    2. What coordinate system is used to represent geographic features?

  7. How does the data set describe geographic features?


Who produced the data set?

  1. Who are the originators of the data set? (may include formal authors, digital compilers, and editors)

  2. Who also contributed to the data set?

    Project Personnel include James Murray, Carlos Budet, Rob Stamm, Marci Marot, Ruth Ortiz, Margo Corum, Thomas Sheehan, Terry Lerch, Mark Savarese, and K. Waylen

  3. To whom should users address questions about the data?

    Lynn Wingard
    U.S. Geological Survey
    926A National Center
    Reston, VA 20192
    USA

    703 648-5352 (voice)
    703 648-6953 (FAX)
    lwingard@usgs.gov


Why was the data set created?

One of the primary goals of the Central Everglades Restoration Plan (CERP) is to restore the natural flow of water through the terrestrial Everglades and into the coastal zones. Historically, Shark River Slough, which flows through the central portion of the Everglades southwestward, was the primary flow path through the Everglades Ecosystem. However, this flow has been dramatically reduced over the last century as construction of canals, water conservation areas and the Tamiami Trail either retained or diverted flow from Shark River Slough. The reduction in flow and changes in water quality through Shark River have had a profound effect on the freshwater marshes and the associated coastal ecosystems. Additionally, the flow reduction may have shifted the balance of fresh to salt-water inflow along coastal zones, resulting in an acceleration of the rate of inland migration of mangroves into the freshwater marshes. For successful restoration to occur, it is critical to understand how CERP and the natural patterns of freshwater flow, precipitation, and sea level rise will affect the future maintenance of the mangrove-freshwater marsh ecotone and the coastal environment.


How was the data set created?

  1. From what previous works were the data drawn?

  2. How were the data generated, processed, and modified?

    Date: 2007 (process 1 of 4)
    Geochronology and Paleoecology of Southwest Coastal Area

    Processing of all core samples from the southwest coastal area has been completed. Core samples were processed using standard methods and all fractions were retained for analyses. A portion of the less than 63-micron fraction has been used for Pb-210 geochronology. The greater than 63-micron fraction has been sorted for faunal analyses; ostracodes, molluscs and benthic forams have been picked and sorted and identification of the Shark River Transect cores completed. Identification and analyses of the Harney and Lostmans transect cores will be completed in FY08. Percent abundance is calculated for the faunal data, and these data are compared to the modern proxy data. The down-core faunal assemblages and the presence or absence of key indicator species allows interpretation of trends in salinity, water quality and the presence of SAV at the site.

    Analysis of faunal and floral remains, geochemistry and geochronology of three cores forming a transect up Shark River Slough have been completed and are currently being compiled for a report planned for release in Fall 2007. Age models for the cores have been completed and a database of modern analogue data for nearshore environments has been significantly augmented in FY07, improving our interpretation of the downcore data. Processing of all cores from the southwest coastal area was completed in FY07. Sorting and identification of samples from the Harney River Transect is underway.

    Person who carried out this activity:

    Lynn Wingard
    U.S. Geological Survey
    926A National Center
    Reston, VA 20192
    USA

    703 648-5352 (voice)
    703 648-6953 (FAX)
    lwingard@usgs.gov

    Date: Not complete (process 2 of 4)
    Vegetational response to alterations in freshwater inflow: mangrove-freshwater marsh ecotone of southwest Florida

    Analyses of Shark River transect cores was completed in FY07, and Harney River and Lostmans River transects will be completed in FY08. Pollen work will be coordinated with faunal assemblage analyses under the geochronology and paleoecology task. Additional marsh core transects may be planned for collection in FY08, or material from previous collections in the area may be utilized.

    We will reconstruct the position of the coastal marsh-mangrove ecotone at selected time slices during the last few centuries, with the greatest detail provided for the last century. Reconstructions will be based on analysis of pollen, seeds, charcoal, and microfaunal assemblages from sediment cores collected in a transect along Shark River from fresh water marshes to mangroves at the river mouth. (Location of transects will be coordinated with task 1.) These sites correspond to existing vegetation and SET (Surface Elevation Table) sites SH1-5 and some water monitoring sites that are part of the Tides and Inflows in the Mangrove Ecotone (TIME) study. Cores also will be collected at Big Sable Creek. Cores will be described sedimentologically before paleoecological analyses.

    Based on previous radiometric dating of peat cores from the Everglades (Willard et al, 2001a; 2001b), sampling intervals of 1 - 2 cm should provide adequate temporal resolution to identify vegetational and environmental changes on sub-decadal scales for the 20th century. Geochronology will be established using a combination of cesium-137 and lead-210, which provides good age control over the last 100 years, and radiocarbon dating, which provides age control over centennial to millennial time scales.

    The natural variability of the system will be established through analysis of pre-drainage sediments. Globally documented climatic events may have elevated temperature as much as climate models predict for the 21st century, and an understanding of the past response of the system to such perturbations will provide important information to policymakers in designing restoration plans that incorporate expected climate variability.

    Data on the timing and extent of salinity changes at the freshwater wetland-mangrove marsh ecotone will be used for calibration and verification of the TIME Study hydrodynamic and transport model being developed for the entirety of Everglades National Park.

    Person who carried out this activity:

    Debra Willard
    U.S. Geological Survey
    Project Chief
    926A National Center
    Reston, VA 20192
    USA

    703 648-5320 (voice)
    703 648-6953 (FAX)
    dwillard@usgs.gov

    Date: Not complete (process 3 of 4)
    Patterns, Causes, and Impacts of Salinity Changes in Southwest Coastal Zone

    Extensive work in the nearshore area of Biscayne Bay has provided relevant additional proxy information on species present in the southwest area. We plan to conduct modern field work in FY08 in the southwest area to fill in a few remaining gaps in the modern analogue dataset. In addition, we plan to collaborate with Florida Gulf Coast University (Dr. Michael Savarese) and share data and resources for modern calibration work.

    Person who carried out this activity:

    Tom Cronin
    U.S. Geological Survey
    926A National Center
    Reston, VA 20192
    USA

    703 648-6363 (voice)
    703 648-6953 (FAX)
    tcronin@usgs.gov

    Date: Not complete (process 4 of 4)
    Geochemical History of Southwest Coastal Zone: Nutrients and Organics

    In FY08, we will conduct analyses for C,N,P, and S on the remaining priority cores collected in the SW coast area by Wingard and others. Results will be included in the existing SW Coast Geochemical Database. This database also includes nutrient data from upstream (Shark Slough and Big Cypress National Preserve), and nutrient, sulfur, and mercury biogeochemistry collected in the SW coastal area, as part of the Linking Land, Air and Water Management in the Southern Everglades and Coastal Zone to Water Quality and Ecosystem Restoration project (Orem and Krabbenhoff). The Open-File Report begun in FY07 will be completed (corrections and Director’s Approval). Data, figures, interpretations, and text will also be contributed toward publication of a journal article on the SW Coast paleoecology (Wingard et al.)

    The approach we are taking is to examine the historical record of nutrients from dated sediment cores. Results will also be compared to water flow records to determine if known changes in the water control system of south Florida may correspond to distinct nutrient changes within the cores. Historical changes in sulfur geochemistry of the cores will also provide information on historical changes in salinity related to construction of canals within the Everglades. Work conducted on this project will link to work being conducted in the Integrated Biogeochemical Studies in the Everglades project (Orem and Krabbenhoff), which includes: (1) studies of nutrients, sulfur, and mercury geochemistry in upstream areas of Shark Slough and Big Cypress National Preserve, and (2) studies of nutrient, sulfur and mercury biogeochemistry in the SW coastal area (Florida Bay to Rookery Bay). Results will be compiled with faunal and floral data from the project in order to reconcile the timing of changes in nutrient input to that of changes in the biological community, and to permit determination of whether eutrophication of the coastal zone and changes in biota are directly linked.

    Splits of the <63-micron fraction from selected cores will be analyzed for nutrient history studies. Results from 210Pb and 137Cs dating of these cores, and paleoecological studies will be available for comparison to the nutrient data. Once cores are collected and processed, nutrients will be analyzed from selected 2-cm intervals for TC, OC, TN, and total S using a Leco elemental analyzer available in USGS biogeochemistry labs (Orem) in Reston, VA. TP content will be analyzed using a standard geochemical method involving baking at 550?C, extraction in acid, and colorimetric analysis. All equipment for this procedure is also available at USGS labs in Reston. Organic geochemical studies will involve the use of published methods. These methods involve soxhlet extraction of biomarkers from sediments, isolation procedures involving column chromatography, and identification and quantification using GC and GC/MS. All organic geochemical equipment and instrumentation needed from this work is available in lab facilities at the USGS in Reston, VA. All geochemical data will be plotted down-core, and compared to results of other tasks. Accumulation rates for TC, OC, TN, TP, and total S will be calculated using sediment accumulation rates calculated from 210-Pb dating and the concentrations of these chemical species in the sediments. Accumulation rates for these elements in Taylor Slough and the C-111 Basin, and eastern Florida Bay have already been published by Orem. Comparison of accumulation rates in Biscayne Bay, Florida Bay, and the SW coast cores may provide additional insights into processes and flow patterns

    Person who carried out this activity:

    William Orem
    U.S. Geological Survey
    956 National Center
    Reston, VA 20192
    USA

    703 648-6273 (voice)
    703 648-6419 (FAX)
    borem@usgs.gov

  3. What similar or related data should the user be aware of?

    Wingard, G. Lynn Cronin, Thomas M.; Holmes, 2005, Descriptions and Preliminary Report on Sediment Cores from the Southwest Coast Area, Everglades National Park, Florida: USGS Open-File Report 2005-1360, U.S. Geological Survey, Reston,VA.

    Online Links:

    Willard, Debra A. Weimer, Lisa M.; Riegel, W., 2001, Pollen assemblages as paleoenvironmental proxies in the Florida Everglades: Review of Palaeobotany and Palynology v. 113, n. 4, Elsevier Science B.V., Amsterdam, The Netherlands.

    Online Links:

    Other_Citation_Details:
    The full article is available via journal subscription or single article purchase. The abstract may be viewed on the Science Direct website by selecting the volume and issue number.
    Willard, D. A. Holmes, C. W.; Weimer, L. M, 2001, The Florida Everglades Ecosystem: Climatic and Anthropogenic Impacts over the Last Two Millenia: Bulletins of American Paleontology v. 361, Paleontological Research Institute, Ithica, NY.

    Other_Citation_Details: in Paleoecology of South Florida, B. R. Wardlaw, ed.
    Wingard, G. Lynn Budet, Carlos A.; Ortiz, , 2006, Descriptions and Preliminary Report on Sediment Cores from the Southwest Coastal Area, Part II: Collected July 2005, Everglades National Park, Florida: USGS Open-File Report 2006-1271, U.S. Geological Survey, Reston, VA.

    Online Links:


How reliable are the data; what problems remain in the data set?

  1. How well have the observations been checked?

  2. How accurate are the geographic locations?

  3. How accurate are the heights or depths?

  4. Where are the gaps in the data? What is missing?

    not available

  5. How consistent are the relationships among the observations, including topology?

    not applicable


How can someone get a copy of the data set?

Are there legal restrictions on access or use of the data?

Access_Constraints: none
Use_Constraints:
These data are subject to change and are not citeable until reviewed and approved for official publication.

  1. Who distributes the data set? (Distributor 1 of 1)

    Heather S.Henkel
    U.S. Geological Survey
    600 Fourth St. South
    St. Petersburg, FL 33701
    USA

    727 803-8747 ext 3028 (voice)
    727 803-2030 (FAX)
    hhenkel@usgs.gov

  2. What's the catalog number I need to order this data set?

    Ecosystem History of South Florida Estuaries Data

  3. What legal disclaimers am I supposed to read?

    The field data contained in this database have not been reviewed for publication and therefore may contain inconsistencies or errors.

  4. How can I download or order the data?


Who wrote the metadata?

Dates:
Last modified: 20-Jun-2008
Metadata author:
Heather Henkel
U.S. Geological Survey
600 Fourth Street South
St. Petersburg, FL 33701
USA

727 803-8747 ext 3028 (voice)
727 803-2030 (FAX)
sofia-metadata@usgs.gov

Metadata standard:
Content Standard for Digital Geospatial Metadata (FGDC-STD-001-1998)


This page is <http://sofia.usgs.gov/metadata/sflwww/eco_hist_swcoast_srs_04.faq.html>

U.S. Department of the Interior, U.S. Geological Survey
Comments and suggestions? Contact: Heather Henkel - Webmaster
Generated by mp version 2.8.18 on Fri Jun 20 16:22:02 2008