Publication Citation

USGS Series Open-File Report
Report Number 2006-1043
Title Chlorophyll a and inorganic suspended solids in backwaters of the upper Mississippi River system: Backwater lake effects and their associations with selected environmental predictors
Edition -
Language ENGLISH
Author(s) Rogala, James T.; Gray, Brian R.
Year 2006
Originating office Upper Midwest Environmental Sciences Center
USGS Library Call Number
Physical description 2 p.: ill.
ISBN

Online Document Versions

Copies of the original may be available.

For more information or ordering assistance, call 1-888-ASK-USGS (1-888-275-8747), visit http://ask.usgs.gov, contact any USGS Earth Science Information Center (ESIC), or write:

USGS Information Services
Box 25286
Denver, CO 80225
Abstract

The Long Term Resource Monitoring Program (LTRMP) uses a stratified random sampling design to obtain water quality statistics within selected study reaches of the Upper Mississippi River System (UMRS). LTRMP sampling strata are based on aquatic area types generally found in large rivers (e.g., main channel, side channel, backwater, and impounded areas). For hydrologically well-mixed strata (i.e., main channel), variance associated with spatial scales smaller than the strata scale is a relatively minor issue for many water quality parameters. However, analysis of LTRMP water quality data has shown that within-strata variability at the strata scale is high in off-channel areas (i.e., backwaters). A portion of that variability may be associated with differences among individual backwater lakes (i.e., small and large backwater regions separated by channels) that cumulatively make up the backwater stratum. The objective of the statistical modeling presented here is to determine if differences among backwater lakes account for a large portion of the variance observed in the backwater stratum for selected parameters. If variance associated with backwater lakes is high, then inclusion of backwater lake effects within statistical models is warranted. Further, lakes themselves may represent natural experimental units where associations of interest to management may be estimated.