Cereal Products and Food Science Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: NEW METALWORKING FLUIDS FROM BIO-BASED MATERIALS

Location: Cereal Products and Food Science Research

Title: NON-LINEAR ADSORPTION MODELING OF FATTY ESTERS AND OLEIC ESTOLIDES VIA BOUNDARY LUBRICATION COEFFICIENT OF FRICTION MEASUREMENTS

Authors
item Kurth, Todd
item Byars, Jeffrey
item Cermak, Steven
item Sharma, Brajendra - PENN STATE UNIVERSITY
item Biresaw, Girma

Submitted to: Wear
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: June 28, 2006
Publication Date: September 15, 2006
Citation: Kurth, T.L., Byars, J.A., Cermak, S.C., Sharma, B.K., Biresaw, G. 2007. Non-linear adsorption modeling of fatty esters and oleic estolides via boundary lubrication coefficient of friction measurements. Wear. 262(5-6):536-544.

Interpretive Summary: Expanding on our previous work to develop and apply advanced modeling techniques to friction derived adsorption data, we chose to compare and contrast the behaviors of simple and complex bio-based materials as lubricant additives. This work demonstrates the failure of previously applied methods and models to adequately account for subtle features of the data. It was found that the more massive and complex materials exhibited improved lubricity at low concentration which may be partially accounted for by increased mass and/or multiple adsorption interactions of each additive molecule. This work extends our understanding of the complex interactions of lubricant additives and provides a theoretical basis for the future development of bio-based lubricant additives.

Technical Abstract: The frictional behaviors of a variety of fatty esters (methyl oleate (MO), methyl palmitate (MP), methyl laurate (ML), and 2-ethylhexyl oleate (EHO)) and oleic estolide esters (methyl oleic estolide ester (ME) and 2-ethylhexyl oleic estolide ester (EHE)) as additives in hexadecane have been examined in a boundary lubrication test regime using steel contacts. Critical additive concentrations were defined and used to perform novel and simple Langmuir analyses that provide an order of adsorption energies: EHE greater than or equal to ME > EHO > MP > MO greater than or equal to ML. Application of Langmuir, Temkin, and Frumkin-Fowler-Guggenheim (FFG) adsorption models via non-linear fitting demonstrates the necessary inclusion of cooperative effects in the applied model. Fits of the steady-state Coefficient of Friction (COF)-concentration data for EHE, ME, and EHO indicate slight cooperative adsorption. MO, MP, and ML data require larger attractive interaction terms (alpha less than or equal to -2.5) to be adequately fit. Primary adsorption energies calculated via a general adsorption model are necessarily decreased while total adsorption energies correlate well with values obtained via critical concentration analyses. To account for multiple surface-site coverage a multiple-site model was defined. The intuitive assumption of multiple-site coverage of more massive components suggests deceptively increased calculated adsorption energies for typically applied models (e.g. FFG, Langmuir).

   

 
Project Team
Biresaw, Girma
Bantchev, Grigor
Liu, Sean
 
Publications
   Publications
 
Related National Programs
  Quality and Utilization of Agricultural Products (306)
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House