New Crops and Processing Technology Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: BIOCATALYTIC TRANSFORMATION OF PLANT LIPIDS IN UNCONVENTIONAL FLUIDS

Location: New Crops and Processing Technology Research

Title: BIOELECTROCATALYSIS IN IONIC LIQUIDS. EXAMINING SPECIFIC CATION AND ANION EFFECTS ON ELECTRODE-IMMOBILIZED CYTOCHROME C

Authors

Submitted to: Journal of the Bioelectrochemistry Society
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: January 11, 2005
Publication Date: May 1, 2006
Citation: Dicarlo, C.M., Compton, D.L., Evans, K.O., Laszlo, J.A. 2006. Bioelectrocatalysis in ionic liquids. Examining specific cation and anion effects on electrode-immobilized cytochrome c. Bioelectrochemistry. 68:134-143.

Interpretive Summary: A study was conducted to investigate the behavior of electron transfer proteins immobilized on metal surfaces in a new type of solvent called ionic liquids. The objective was to determine if these proteins, which will be used to convert a portion of the 800,000 lbs of excess soybean oil produced in the U.S. to nutritional and cosmetic ingredients, remain active in ionic liquids. The proteins cannot be used in their natural environment to conduct these conversions since soybean oil is not soluble in water. Moreover, the use of traditional organic solvents should be avoided because of harmful health and environmental considerations. Ionic liquids are a new class of solvents that have negligible vapor pressure, making them less hazardous to use than traditional, volatile organic solvents. The results of this study show that the immobilized electron transfer proteins do not remain electrochemically active when exposed to the ionic liquids, but do become catalytically active again when reintroduced to water. The adverse effects of both the cationic and anionic components of the ionic liquids were determined. These fundamental results will be used by us and other scientists as a foundation to develop methods which will allow for the preservation of the immobilized electron transfer protein activity in ionic liquids.

Technical Abstract: Cytochrome c immobilized on mercaptothiol self-assembled monolayers exhibit a characteristic Fe(III)/Fe(II) redox signal that is lost when exposed to ionic liquids composed of a butylimidazolium cation combined with either hexafluorophosphate or bis(trifluoromethylsulfonyl)imide anion. In this study it was shown that exposure to the aqueous solubilized ionic liquid components, butyl-, hexyl-, and octyl- imidazolium cations and bis(trifluoromethylsulfonyl)imide anion, resulted in partial electrochemical signal loss. Absorbance and fluorescence measurements showed that signal loss due to the cationic ionic liquid component followed a different mechanism than that of the anionic component. Although a portion of the signal was recoverable, irreversible signal loss also occurred in both cases. The source of the irreversible component is suggested to be the loss of protein secondary structure through complexation between the ionic liquid components and the protein surface residues. The reversible electrochemical signal loss is likely due to interfacial interactions imposed between the electrode and the cytochrome heme group. The influence of the amount of exposed surface residues was explored with a simplified model protein, microperoxidase-11.

   

 
Project Team
Laszlo, Joseph - Joe
Isbell, Terry
Evans, Kervin
Compton, David - Dave
 
Publications
   Publications
 
Related National Programs
  Quality and Utilization of Agricultural Products (306)
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House