Crop Bioprotection Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: IDENTIFICATION AND PRACTICAL USE OF SEMIOCHEMICALS FOR THE MANAGEMENT OF AGRICULTURALLY IMPORTANT INSECTS

Location: Crop Bioprotection Research

Title: Direct aldehyde homologation utilized to construct a conjugated-tetraene hydrocarbon insect pheromone

Authors

Submitted to: Journal of Agricultural and Food Chemistry
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: January 25, 2007
Publication Date: February 24, 2007
Citation: Petroski, R.J., Bartelt, R.J. Direct aldehyde homologation utilized to construct a conjugated-tetraene hydrocarbon insect pheromone. Journal of Agricultural and Food Chemistry. 55:2282-2287.

Interpretive Summary: The sap beetle pheromones can be used to control a group of insect pests that cause damage to a wide variety of crops and spread oak wilt disease and other harmful microorganisms. The pheromones are being sold commercially, but continued production was uncertain because of the length and high cost of synthesis. We designed and developed new synthetic reagents that were used to shorten the synthetic pathway from seven steps to just five steps and nearly double the overall yield of pheromone. The viability of commercial pheromone production was enhanced. This more concise chemistry could also be applied to the practical synthesis of a variety of natural products, pharmaceuticals, and other compounds.

Technical Abstract: New phosphonate reagents were developed for the two-carbon homologation of aldehydes to methyl- or ethyl-branched unsaturated aldehydes and used in the practical synthesis of (2E,4E,6E,8E)-7-ethyl-3,5-dimethyl-2,4,6,8-undecatetraene (1), a pheromone of the beetle, Carpophilus lugubris. The phosphonate reagents, diethyl ethylformyl-2-phosphonate dimethylhydrazone and diethyl 1-propylformyl-2-phosphonate dimethylhydrazone contained a protected aldehyde group instead of the usual ester group. A homologation cycle entailed condensation of the reagent with the starting aldehyde followed by removal of the dimethylhydrazone protective group with a biphasic mixture of dilute HCL and petroleum ether. This robust two-step process replaces the standard three-step aldehyde homologation route using ester-based Horner-Wadsworth-Emmons reagents. The new synthesis of 1 from (2E)-2-methyl-2-butenal was run on a 10-gram scale and required just five steps (two cycles of condensation and deprotection followed by a final Wittig olefination) instead of the usual seven. In addition, the Wittig olefination step was simplified, and its E-isomer selectivity was improved. The overall yield for the entire synthetic pathway was increased from 20 percent to 37 percent, enhancing the commercial potential of Carpophilus pheromones.

   

 
Project Team
Bartelt, Robert
Cossé, Allard
Petroski, Richard
 
Publications
   Publications
 
Related National Programs
  Crop Protection & Quarantine (304)
 
Related Projects
   ISOLATION AND IDENTIFICATION OF SEMIOCHEMICALS IN SUPPORT OF THE DETECTION AND BIOCONTROL OF EMERALD ASH BORER, AGRILUS PLANIPENNIS
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House