Crop Bioprotection Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: Production, Stabilization, and Formulation of Microbial Agents and Natural Products

Location: Crop Bioprotection Research

Title: Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their use as a biocontrol agent for soil-inhabiting insects

Authors

Submitted to: Mycological Research
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: March 31, 2009
Publication Date: N/A

Interpretive Summary: The formation of a sclerotium, an overwintering structure produced by many plant pathogenic fungi, has not been reported for any entomopathogenic fungi, including Metarhizium anisopliae. Three strains of M. anisopliae all formed desiccation tolerant microsclerotia (small sclerotia) using deep-tank fermentation. Microsclerotia of M. anisopliae survived drying (less than 5% moisture) with no significant loss in viability. Rehydration and incubation of air-dried microsclerotia of M. anisopliae on moistened soils resulted in filamentous growth and the production of insect-infecting spores. When incorporated in soil, microsclerotia of M. anisopliae infected and killed the sugar beet root maggot, Tetanops myopaeformis. This is the first report of the production of sclerotia by an entomopathogen using deep-tank fermentation and provides a novel approach to the control of soil-dwelling insects with the biocontrol fungus, M. anisopliae.

Technical Abstract: Three strains of Metarhizium anisopliae, F52, TM109, and Ma1200, were evaluated for growth and propagule formation in shake flask studies using media with varying carbon concentrations and carbon-to-nitrogen ratios. Under the conditions of this study, all strains produced blastospores and microsclerotia, a pigmented, compact hyphal aggregate. The formation of a microsclerotium, an overwintering structure produced by many plant pathogenic fungi, is novel for entomopathogens, including M. anisopliae. The three strains of M. anisopliae tested produced similar biomass concentrations when media and growth time were compared. Strain Ma1200 produced significantly higher concentrations of blastospores when compared to the other two strains of M. anisopliae with highest blastospore concentrations (1.6 and 4.2 x 108 blastospores ml-1 on days 4 and 8, respectively) produced in media with the highest carbon and nitrogen concentrations. While all strains formed desiccation tolerant microsclerotia, highest concentrations were produced by strain F52 in carbon-rich media. Microsclerotial preparations of M. anisopliae survived drying (less than 5% moisture) with no significant loss in viability. Rehydration and incubation of air-dried microsclerotia on water agar plates resulted in hyphal and sporogenic germination to produced high concentrations of conidia. Bioassays with the sugarbeet root maggot, Tetanops myopaeformis, where dried microsclerotial preparations of M. anisopliae strain F52 were incorporated into soil, showed significant efficacy in controlling the insect even in drier soils. Microsclerotial preparations of M. anisopliae F52 showed superior efficacy against the sugarbeet root maggot were compared to conventional conidia-containing corn grit granules. This is the first report of the production of sclerotial bodies by an entomopathogen and provides a novel approach to the control of soil-dwelling insects with M. anisopliae.

   

 
Project Team
Jackson, Mark
Dunlap, Christopher
Behle, Robert
Cossé, Allard
 
Publications
   Publications
 
Related National Programs
  Crop Protection & Quarantine (304)
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   Laboratory and Field Demonstrations of Weed Control Properties of Dry Formulations of Mycoleptodiscus Terrestris, a Potential Fungal Bioher
 
 
Last Modified: 05/12/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House