Crop Bioprotection Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: GENOMICS AND ENGINEERING OF STRESS-TOLERANT MICROBES FOR LOWER COST PRODUCTION OF BIOFUELS AND BIOPRODUCTS

Location: Crop Bioprotection Research

Title: Impact of culture nutrition on tolerance of furan inhibitors and the conversion of high xylose concentrations to ethanol by Pichia stipitis NRRL Y-7124

Authors
item Slininger, Patricia
item Liu, Zonglin
item Gorsich, Steven - FORMER NCAUR EMPLOYEE

Submitted to: American Institute of Chemical Engineers Annual Meeting
Publication Type: Abstract
Publication Acceptance Date: November 17, 2006
Publication Date: November 12, 2006
Citation: Slininger, P.J., Liu, Z., Gorsich, S.W. 2006. Impact of culture nutrition on tolerance of furan inhibitors and the conversion of high xylose concentrations to ethanol by Pichia stipitis NRRL Y-7124 [abstract]. American Institute of Chemical Engineers Annual Meeting. Paper No. 531d.

Technical Abstract: Efficient fermentation processes to produce ethanol from both the hexose and pentose sugars available in low-cost lignocellulosic biomass are sought to support the expansion of the biofuels industry. Such an expansion is expected to strengthen our nation by lessening dependence on foreign sources of fuel, preserving our environment and national resources, and boosting our rural economy. Stress tolerant microorganisms are needed that are able to consume both hexose and pentose sugars and to withstand, survive, and function in the presence of stress factors common to fermentations of lignocellulose hydrolysates, including various chemical fermentation inhibitors such as furfural, hydroxymethylfurfural (HMF), and ethanol. Furfural and HMF are key byproducts of the dilute acid pretreatment hydrolysis of lignocellulosic biomass, the most economical method of releasing hemicellulosic sugars for fermentation to ethanol biofuel. The availability of tolerant microbial catalysts would allow efficient fermentation of low-cost acid hydrolysates despite the presence of inhibitory byproducts. Our research has shown that natural strains of the yeasts Saccharomyces cerevisiae and Pichia stipitis can survive and adapt to the presence of furfural and HMF and that this survival is linked in part to a fully functioning pentose phosphate pathway, a likely key in maintaining the cofactor balance needed for the in situ detoxification of furfural and HMF to their less toxic alcohols (furfuryl alcohol and 2,5-bis-hydroxymethylfuran, respectively). Data will be presented showing the impact of mineral and nitrogen source composition on the ability of P. stipitis to survive and detoxify furan inhibitors and to convert high xylose concentrations efficiently to ethanol. Implications of these findings in context of the current literature on biomass to ethanol conversion and stress tolerance will be discussed. Process-based strategies to produce a tolerant initial population and then to foster and sustain tolerance during growth and ethanol fermentation will be considered.

   

 
Project Team
Slininger, Patricia - Pat
Liu, Zonglin
 
Publications
   Publications
 
Related National Programs
  Bioenergy & Energy Alternatives (307)
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   GENOMIC MECHANISMS OF IN SITU DETOXIFICATION OF BIOMASS CONVERSION INHIBITORS FOR ETHANOLOGENIC YEAST SACCHAROMYCES CEREVISIAE
   GENOMIC MECHANISMS OF IN SITU DETOXIFICATION OF BIOMASS CONVERSION INHIBITORS FOR ETHANOLOGENIC YEAST SACCHAROMYCES CEREVISIAE
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House