Chari Roman
 Drape- Demand AB

On the Translation of the Genetic Code
MARSHALL NIRENBERG

National Heart Institute - National
Institute Oof Health
\because t line to take this oppurcumpy to refate something $0.6-34$ $-2 . a:$ anicuse of the genetic language. For some two to four billion yars some such -anguage has probably provided the basis for a continuous dialogue between cells and their descend-n- i^{\prime} \% ants. Fossil records bacteria about 3 billion years iave been reported Baghoorn Schopf); the first vertebrate appeared approximately 500 million years ago; anci amphibians and mammals about 350 and 180 million years ago, respectively. The presence of bacteria 3 billion years ago may-indicate the presence of an operational code at that time fimost surely the code has functioned for more than 500 million years. The remarkable similarity in code words used in bacterial, amphibian and mammalian replicative processes suggests that most, if not all, forms of life on this planet use almost the same genetic language, and that this language has been used, possibly with few major changes, for at least 500 mili fon years. It is by virtue of thi's language that each generation is abie to pass to the next generation a library of information which specifies in detail how to make the many kinds of protein catalyst that the cells wiII need for their development. And aithougizt now seems clear that all, or almost ally forms of Iife on this planet use virtually the same ianguage, becently a number of "dialects" have been found. I shall describe this
lEet.
The elliciaation of the genetic code has been the subject of much intensive work, particularly in the past four or five years, and I would i ike to stress the outset, that this work, particularly the work with which I have been associaten, ina been, in a very real sense a collaborative project. I mint this will become evident as I proceed.*

First mo r recall briefly - as mise have been done fretquentin thesympsimm - the basic features of the forickWetcon scheme of protein synthesis: (Fig. 1) Here if show

schematically the double-stranded qua which together with an enzyme, - RNA-polymerase, catalyses the synthesis of messengerRNa, using the DNA as a template. Only one strand of the DNA is copied by RNA-polymerase; the copying process is sequential; and win specify the beginning and the end of the messengex-RNA syitteris. The next diagram (Fig. 2), shows schematically" the process of protein synthesis. In the DNA shown here, the diffferment cross-hatchings represent various segments of DNA, each corresponding to a specific protein, or group of proteins. Ribosomes are shown, schematically, attached to the mesengex-avA

[^0]where reading, or translation, begins; as soon as one riosome moves down the $A_{\text {RNA }}$, another becomes attached unail the massigentrya is viftually covered with ribosomes.
$\prod_{\text {The }}^{2 c t i v i t} r e a d n g$ is (and which carrizecific amino acids and recognize marticular $m t R N A$ code words \cap the riboses. Thus the com en - 0 codon. is recognized not by the amino-acid $\$$, perse, but by acaptoror main the + RNA
Fig. illustrates, again diagrammatically but in more detain, the codon recognition process as exemplified by that most inter-
 50.5 and the smaller: 30ξ : The mprex-RNA lies on the $\frac{3}{}{ }^{5}$. par of the ribosome, and presumably fire bases) in the m- RNA molecule (an') amer recognized by (threat bases) in erNA (an anti-codon'r.) and this later can then bind位 one of two possible binding sites on the larger ribosome subunit, a particular amino-acid, (aa) One of these binding sites is for the peptidai s frNA, seethe sfRNA which is attached to the growing (protein) polyfpeptide molecule; and the other, for the incoming aminc-acid sfrNA. Thus Three enzymes (tize-two s- RNA's
 vation energy, are requited for the transfer of the growing polypeptide chain to the next (incoming) amino-acid st rNA complex.

When this is accomplished the stRNA required for the previous aminobacid is discarded, and a shift in some way occurs so that the next codon (triplet of bases) on the mfRNA can be recognized by a new strna. In this way the protein synthesis starts at a given place (on the mfRNA), feads groupings of three bases sequentiaily and with a given polarity.

In an accual living sell, even the smatest bacterial cell,
 all part of the cell metabolism. The synthesis of even a single protein is quite an elaborace process involving, inter alia, the $=\sim a$ fer of a long DNA message to an mfRNA molecule which
 aminc-aciàs for the protein polytpeptide chains. Moreover. in an actual cell these 1,500 nucleotides will not be arranged in any simple sequence, reflecting the fact that there is a great number of different sequences of 4 mino-acids (\ddagger fieh 20 different varieties are wate) which constitute different proteins.
 investigations, especially with bacteria and viruses geat many features of protein synthesis, including $/$ in particularly mon informatior about the code, thas been obtainedy The work I shall tex describug is, however, characterized by the use of much simpler, in v_{i} ero systems, where the essentially chemical feacures of some of the basic steps in the whole process are studied. The success of these methods, ${ }^{6}$ and the concurrenon ofesults resum
with those from in vive experiments, where beth are avail will, I hope, demonstrate how a physio-chemical or molecular basis can be found for the processes governing such fundamentally biological phenomena as cell metabolism and replication.

The basis for our earlier work on the DNA-RNA code was the use of synthetic messages, (in place, that is, of actual myRNA) Which were randomly oriented sequences of the four code letters, Usacar) of mt RNA. In this way some characteristic of the code could be determined in partitetrax the base compositions of the code- ${ }^{6}$, words, but not the sequence pf the bases in the face in the words. This the problem, 4 up to two or three years ago was like That of an anagram: wa knew the letters comprising the codewords but nofthe order of the letters within each word.

Ethas beemedert established in several laboratories that whoM
in one a synthetic messenger -RNA, in particular polyuridylic acid a synthetic RNA with entirely U bases) to a suit$a b$ e mixture of ribosomes, $s t r N A ' s$, enzymes, ATP, GTP and aminoacids, the poly -U selectively bind phenylalanine st rNA (i.e., the particular sfRNA associated with the incorporation of 4 amino-acid phenylalanine in protein) to the ribosomes. My colleague, Philip zebec, and I then speculated now small a message (c: the RNA type; would direct the binding of s-RNA to the ribo-
some. Experiment showed that only three bases were needed, that is, very small molecules comprising only the triplet itself would direct the binding of the appropriate amino-acid SFRN to tine ribosomes. This provided a, rather simple route towards the determination of the sequence of letters in the RNA codewords.

Our main problem was to devise suitable techniques for synthesizing triplets. At the time we started our work with such triplets, methods had been reported for making some 20 or 25 of the $64\left(=4^{3}\right)$ triplets which can be constructed from the four nucleotides $U, ~ \backsim, A_{\neq}^{\text {and }} G$. These had been prepared by enzymatic breakdown of RNA, or by chemical synthesis, in the latter case using some of the very elegant techniques devised by Khorana and his associates.

Two general techniques were developed in our laboratory, the first by heder, Singer and Brimacombe, and the second by Merton Bernfieid. The first employed polynucleotide phosphory-
 /a ajonion onsingle nucleotides to ditnucleotides to make Fig. ? trimers , tetramers, pentamers, etc. The second method employed the enzyme pancreatic RNA-ase, which, although normally a breakdown o: degradative enzyme, will also catalyze an exchange reaction between polynucieotides and can be used to make rripiezs with weil-defined sequences. Using the methods of

Khorana and these two enzymatic techniques, it was possible to synthesize amost all of the 64 trip $f e t s$.

In connection with the use of small polynucicozicic or 'oligonucleotide" molecuies such as the trinucleotides, it is important to point out that any given sequence of nucleotides can exist, when incorporated in actual m RNA in three chemicaliy distinct forms, depending on the location of the sequence in the wole messenger molecule. The chemical forms reIate to the three positions (a) as an internal codon (trinucieotide) or as one of the other of the terminal groups - so called 3^{\prime}-cerminai cocon and 5^{\prime}-terminal codon. * This is illustrated in Fig.

Fig.

All of tine evidence to date suggests that the bioiogical characteristics of codon recognition may in some, perhaps in many, cases be influenced by the particular position of the codon in The mfRNA (or equivalently in the DNA). Thus each of the 64 triplets zeffered to above may exist in chree effectively different structurai forms.

The significance of these "secondary" chemical features is indicated by experiments, in vitro, witi the oingonucleotides,

[^1]and specifically by studying the influence of various (mhosphor(iating) substitutions on either the 3^{\prime} or 5^{\prime} terminal kydroxyi groups of the sugar in the trinucleotices. Thus Fig.
Fig.
shows the binding of phenylalanine stRNA to ribosomes as a function of the concentration of the trinucleotide. A simple triplet, $V U U$, has an activity ${ }^{*}$ shown by (a). IE one adds a phosphate to the 5^{\prime} hydroxyl group te the sugar the activity is greatly increased, i.e., the binding or template effectiveness of the trinucieotide is greatly enhanced f (b). A phosphate attached to the 3^{\prime} terminal lowers the template effectiveness, (c). Recently, Fritz Rotman prepared some analogues of UUU Non with a methyl group attached to the 5^{\prime} phosphate, and also, wish a methyl group attached at both terminals, i.e. both 5^{\prime} and 3^{\prime} phosphate. The methyl group at the 3^{\prime} phosphate terminal greatTy reduced the template effectiveness. A triplet with 2'; 3' cyclic phosphate shows very little template activity. It seems possible that'significant terminal variations of this sore may occur in different biological circumstances, and that mistimethesepmay possibly regulate the template activity of the codons. For example, the terminal hydroxyls of the sugars (ribose) may

[^2]be modizied in such a manner. Certainly a substitution at the E'-terminus may be important because this could furnish a signal which specifies the attachment and/oz the detachment of the ribosome from the message, (m-RNA or subscitute). Recently Mitra and Hurwitz, and also Stent, have shown that, in vityo at least, menger RNA contains a triphosphate attached to the terminal hycroxyj; and ajthough it is not clear what physiological function this triphosphate serves, it is highly plausible that it may in some way specify the initiation of reading the message. It could aiso determine the first (three letter) word to be reaci, phase the reading, and, perhaps affect the susceptibility to enzymes that could attack the termini of the messenger-RNA. Internal codions may also be modified by these secondary chemical changes; the 2^{\prime} hydroxyl or the base could be modified and such shanges may be relevant to the punctuation of the Th peajor
message. It aiso cannot be excluded that the codon recognition process is in some instances affected by the particular neighbors of that cocion on the message.

It should also be pointed out that there could po be a difference between internal initiation and termination (i.e., iniciation or cermination of polypeptide sequence (protein) by a sodon internány locazé in the message) and zeming Lnitiaتion and temination (the same process effected by teminal cocons). Consicaz the situation where the merengen-.... appears
to contain the information for the assembly of more than one protein, (or more than one polypeptide chain of a protein). If one starts to read (from the left in Fig.) the codon for Fig.
the terminal initiation, one then reads in the message until one reaches the word that says ${ }^{\prime \prime}$ Stop ${ }^{n \prime}$, and then there witi-be an. unknown mechanism for starting the second message at an inte:vai position. It seems quite plausible, although not known, that these terminal and internal initiation and termination mechanisms could be different --possibly different codons.

Another feature of codon recognition concerns the degeneracy of the code, or the existence of synonyms, i.e., different codons which code the same aminofacid in the polypeptide sequence. With the appropriate oligonucleotides, one can examine, in vitro, the effectiveness of different synonym messages in i binding the particular amino-acid $s+\mathrm{RNA}^{\prime} \mathrm{s}$ to the ribosomes. The results of such are illustrated in Fig. . For example, Fig.
phenylalanine stRNA responded to both the oligonucleotides UUU and UUC, but UUC was slightly more active than UUU. Similarly Iysine-sfinA responded to both AAA and AAG but bemire is the ot quireamatke difference in the template activity bee the
 two syrizajmsf The first of these degeneracies, that between the (smanie:) pyrimidine bases C and U when they occurs as, third let-
ter of Fine cocoon, is universal throughout the code. The second city of degeneracy, the (large) purine bases A and G in Zinc \because ace, occurs in all but two or three words (c.f. Fig.) We turn an from these refinements and detailed features of the triplea-binding method to the actual results obtained by this procedure. Sine triplets have a weil-defined secuence of nucleotidesq゙there are 64 possible triplets; we have synthesized 63 of these and determined the amino-acids which they code. The results are summarised in Fig.
Fig.

The asteisiss indicate base compositions oj codons which were decemined by directing protein synthesis in Ecoli extracts with synthetic randomly-ordered polynucleotides. it is clear that there is a very close correspondence with the results of earlier work. It is interesting to notice the types of synogyms which occur (some of which have already been mentioned). hel airily
$\frac{\text { glutamic acid the codons GAA and GAG an ex- }}{\text { toper }}$ ample of $A=G$ degeneracy in the third place. Eikewo Appartic

$$
\text { ito corer, } \operatorname{sic}
$$

acid and,GAU, GAC Gomesponding $E=C$ degeneracy in the third place. Another type of degeneracy is ilLustrated by threonine which is coded by $A C$ and any o the four U, C, A, G in third place. Metro, Ane, on the other hand, is one of the rare eases (tryptofic) may be another) in which thor rand place de-
genezacy AUG bcra; but AUA codes for Asoleucine.
This degeneracy of the code can have many consequences.
One of the more obvious is the possibility of a great deal of the bachowthe thenpation condo. "silent" mutation, that is fon one of the code-words, or grougs of synonymous cocie-woras, there may be conver the thixd position to another base without resulting in an amino acic repiacement. Another obvious conclusion is that aminom: acicis which are very similar chemically, such as the dicarboxylic acids (aspartic acid and glutamic acig, have closely related cocons. This may reflect the evolution of the code, but whether or not this is so, one consequence would certainly be that when an exroz in repiication does occur, usualiy the first two bases are read correctiy and the third one incorrectly. And very ofzen the result of an error in reading will be the substitution in a protein of a chemically related amino-acid. Thus the general picture of the code is that it is quite conservative-- in the sense that it usually minimizes error or the consequences of error. The various patterns bf synonym codons are summarized in Fig. . (N-formylmethionine sfRNA shown here is the initiator). Fig.
In addition to the codons for the specific amino acids, there as as has been mentioned earlien some code-wonds appear to serve speciai Eunctions ("punctuation" atc.). For exampie, the recen: woik of Brenner, Garen and Zinder, and of others,
indicaces chat UAA and UAG may indicate the end of a message although the precise mechanism for punctuation is unknown. UUC, CUG, AUG and in some cases GUC may specify the initiation of a message. Our recent scudies, and also those of Clark and Marker in England, have indicated that these codons - at jeast wher in terminal positions - are recognized by formylmethionine and this may serve as an initiator of protein synthesis. Some possible special function codons are listed in Fig. .
+'burk Fig.

Sanger first obseryed ineoti that one of the two sfRA Oceies associaced with methionine eoutd aceept a fomylugroup; Enat is the amino group of methionine, after the methionine was linked to cne stRNA eoute be formylatex. The work of Capecchi and colleagues, and of Zinder, suggested that this may specify initiation of message translation. And as I mentioned already, UUG, AUG, CUG and to some extent GUG are recognized by formylme the RNA; also that UAA and UAG may serve as terminators. It also appears likely that the words AG $\mathcal{Y}_{\text {with }}$ ending U, C, A or G may also serve as special function words; but these functions have not sof far been found. The present situation in this field is a most interesting one, in that the necessary toois for decipheting the special function words aze ind, and it sinuid soon be possible to understand more about the mechanism of these special words and the role, they play in protein syathesis.

Fwowdilike torn now to a variation of the tripletDinding methoc, which throws further ifgh the coding mechanism. D. Hatfield has recently prepared some radioactive tripiets, (in the earlier experiments it was the sfRNA which contained the racionacive tracer), and has studied the binding of these tripiets to the ribosomes in the presence of the aminoacid sf$R N A . ~ F i g$. shows both the binding of the triplet and of the $s \nsubseteq R N A$ (here phenylalanine $s f R N A$) to the ribosome. Fig.

As can seen, in the presence of the appropriate triplet polynucleotide phenylalanine $5 \$$ RNA binds to the ribosome; in the absence of the sfRA very little triplet binds to the ribosome. Because of this, in the presence of the sfRNA both the triplet poiynucieotide and the phenylalanine $s t R N A$ bind to the ribosome at approximately the same rate. Thus the complex on tine ribosone may well be a one-to-one association of triplet and $s-\overline{K N A}$.

This technique provide's a very simple and quite sensitive method for detecting codon recognition by $s t$ RNA which is not acylated* with amino-acids. Thus some special function words may not be recongized by activating enzymes, stRNA's, which are

noe acyiated, and this method would provide a relatively simple route towards detecting such recognition.

We have also made investigations (in collaboration with B. P. Docter and Waicer Reed) with puri太ied stRNA factions, i.e. media containing essentially only a singie type of sfRNA, derived from Eccoli fractions. We find that Tyrosine-stRNA recognizes both UAC anc UAU, which again exemplifies the $C=U$ degeneracy in the Chird place. (There are two types of MyrosinestRNA, $\dot{\text { inffering }}$ in
; both types recognize UAC and UAU.) Similarly

Vaine $\dot{I}_{S}-R N A$ recognizes both GUA and GUG ($G=A$ degeneracy) but the GUG to a much lesser extent than GUA. The E"Coli fraction leucine-1-s-RNA and leucine-2-s-RNA both recognize the leucine codons (UUA, UUG, CUU, $C U C,{ }^{\text {T }}$ CUA, CUG). Recently, however, J. A. Carion has reported that in mammalian liver one species of iecicine-s-RNA preferentially recognizes $A A G$, and the other preferentially recognizes AAA. There are also types of leucine-strna which recognize CUG, and others which recognize UUG.

The major variant of methionine 2 sfRA which, as mentioned previously, wili accept a formyl group recognizes UUG and CUG, but a less prominert methionine-stRNA recognizes AUG preferenEialiy. Eikewtse there is a Mryptophan sfant which recognizes UGG, $C G G$ and to a smaller extent AGG. The pattenn here is clear: a close relationship beiween U, C and A in the first place of
che oocing Griplet．R．Holley，working with purified fractivas of yeust sfRNA，foundalanine－sfRNA recognized GOY，GCC and GCA －－again the group U, C ，or A but now in the third place of the coding tioiplez．It shouid also be pointed out pzominent iaucine－s－nA binds to ribosomes very weakly in response to the nucleotide tripIees；it is possible that this type of weak re－ cognicion involves oniy two of the three nucleotide basis in the ごさple．

This work with pure Eractions，－such as alanine－s－RNA prepared from yeast，can afford some further insighe into the mechanism of cocon recognition．This is especially so in this case since Holley and his collaborators have recentiy zeported the sequence of bases in the alanine－stRNA．玩 Fig．İs．shown the variation of binding of alaninetstRNA to ribosomes twan－con－ centration of the s URNA．
Fig.

Tne coutei line rapresents 100% binding，i．e．，all the available $S T R N A$ is bound to ribosome．＇This fraction of s－RNA，which Holley suppifed to us，was estimated to be geater than 95% pure；and yet this s－RNA recognized quite well at least three of the alanine codons－－GOU，GCO，and GCA．It didnot respond－ 0 ， sifghtiy，ec GOG．（On the other hand，with unfractionated Ercoif －RNA，aiarina－stan responded quite wall to $50 .-$－－ndoed this was the bese alanine－stavi codon，and the response to GUU，GCC
and CCA was relatively weak.) Since the yeast extracted stRIA Exaction was of high purity, the results strongly suggest that a single molecule of b- twA can recognize altemativaly at least three of the four alanine synonyms.

The whole sequence of the nucleotides in this alanine s+ RNA are shown in Fig.

Fig.

The alanine amino-acid in inked to the teminal adenosine, and this is shown in the diagram in only of the suggested possible conformations. There are several single-stranded regions of the $s-\mathrm{RNA}_{\text {a }}$ of possible interest. There is the sequence: $G, T, \psi U$, \cong ($\psi \mathrm{U}$ is an isomer of U) with sequence has been found in virecualiy every sivA that has been examined. Another interesting sequence is the C, G, G surrounded by two dihydrouridylic acids. A. third is the IGC region ($I=$ inosine) right in the middle of Zine s RNA molecule. These latter two regions of interest are shown in more detail in Fig.

Fig.
the
If triplets GGG and IGC were really the s£RNA anti codons, that is, the nucleotide groups which recognized the nu-cleotide-tapiat col for alanine, recognition would be by parallei ${ }^{*}$ pairing between C and U; and the G would then have to recognize \% (... war.
crit ad
U, C and A. Iz, however, base pairing according to the Watson-Crick hyürgen-bonding, or antifparallel scheme, C would pain with G, G wich C and the inosine I in this position would Dase-pair with one of U, C or A, but not G. This latter is tine pattern observed for the alanine code; and Crick has recently proposec a detailed mechanism which would permit hydrogen-? bonding beiween I and U or C or A.

This mechanism, by which I recognizes U, C or A in the antifcodon - codon pairing, termed the "wobj"e", by Crick, involves a movement, at the end position of the triplet, of either the sfrNA or the messenger-RNA on the ribosome. All the experimental resiults are, I believe, in accord with this type of recognition mechanism. The table shows the basersequences in the

> Table
s£RNA antifgocion and the corcesponding base-sequences in the messenger-RNA codon. Thus lnosine in an end position in sERNA aliernctime can recognize dy alternate base pairing U, C or $A ;$ a G in the end position of sfRNA could'similarly recognize alternately C or U, and A cou recognize U, C or $G A$ and U could recognize by alternate pairing A or G. We would also predict on this modej that a ributhymidylic acid-sfrna would pait also A and G, (perhaps the inceraction with A would be stronger than for a uriaylic acic in sfRNA); that a ψU in sfRNA might recognize aiEEface A, G O: U - a pattern that has been noticed rather
onen with sfrka.
Another possibility is \neq dihydrouridylic acid would not. Dase pair (witione expeoted complementary A), so that the inceanction with the messenger would be a wek inceraction; bu= it is also quite possible that a U or C in a terminal position would not greatly inhibit the interaction. A metal group on a 2^{\prime}-nydroxyl ceoxyribose (sugar) might also result in a weaker inceraction, and furthemore, by permitting a greater freedom of motion on the ribosome, such a modification might result in greater ambiguity, i.e., lower specificity of the soding.

These resuics with infrequently occurring (or "trace") bases, and particuiarly those with Inosine, tather stiongly suggest that sfRNA may be modified enzymatically, after it is released from the DNA template (where it is assembled in the cell). Since the level of "trace" bases is quite high in an actual cell, it seems likely chat there exists a whole spectrum of intermediates, $s \nmid R N A ' s$ in various stages of successive modification. The conseciences of this are extry easy to visualize. For example, if an aüenine(A) in strNA is de-aminalid and so converted into an inosine(I), the A which would nomally recognize the fridylic acid base in the message; would now be repaced by something (the I) which can recognize U, C or A. Simila: interconversions would result from the defamination of a C or the conver-
sion of to \bar{i}. It is possible, although perhaps rather prematuze so specuiate, that this type of interconversion plays an mportone L-aiogical role.

There thas eextinly a greac deal of work recent whecs suggests Chat is possible in actual cells, woud ce way mociny ication of specificity of codon recognition and this is eertainiy somehing whieh coutatave profound biological consequences. An example of this is the effect of the antibiocic scieptomycin. It by Davis, Gilbert and Gorinithat streptomycin will bind on to the 30 至 part of the ribosome (the small subfunit), and all the available evidence suggests this binding of streptomycin to the ribosome may in some way distort the topography of the codon recognition site so that greatex ambiguity in cocion recognition results. This may je one mechanism greater degree of error in procein synchesishy, although, of course, this may not the only ceason-to account for the action of streptomycin on bacterial celis.

There are other exampies In addition to streptomycin, of the modification of the specificity of codon recognition. A rea rocent, comparative study/hae R. Marshail and T. Kaskemade of the specificity of coion recognition with s£RNA from amphibian, Xenopus Zaevus, '̇iver, from guinea pig liver and from E.

Fig.

The convarst bewwen alanineístRNA's from yeast, mentioned ainlier, and Ercozi is also shown in this diagram.

In both amphibian İver and guinea-pig liver GCG is a very active codon, in the amphibian liver seg has no activity for alanine-stnur This contrasts with che activity for $\frac{\text { Ercoli }}{h}$ alanine-stanA. In all species tested, AAA is recognized (by Zy-sine-stana, whereas AAG has only slighe activicy in Escoli although i= is a very active codon in higher organisms. Sinne-s sfRNA recognicion of UCG and of AGU and AGC is also variable, as indicated. Threonene recognition of ACG is likewise variable. We have, however, found no differences in the codon recogniton of s甲RNA's corresponding to aspartic acid, cytene, glutamic acid, histadine phenylamine, proline, tiybzine and valine.

F-mightmention, a somewhat different type of sfRNA mociinication. in vivo, whieh we have studied in collaboration with N. Sueoka, "t is observei drafection of bacterial Ercoli cells wich the virus, T2-phage, that within one-minute aftex infection an enzyme (protein) is synthesized by the bacceria/ which modiEies á pre-exiscing Leucine-s甲RNA component. (This sfRNA is necessary for the biochemical machinery of the host bacterium but not to the vinus.; me modification was such that it was techȧcaliy posezbie to purify the mocified sfRNA and cest it

For codon recogn. $\begin{gathered}\text { aid } \\ \text { ad. We found that it recognize }\end{gathered}$ UG but it does not recognize any triplet. We have tested all Wisc bo. lt tine UG-tripiets. Ore also finds that together with the nodifiction of the s-RAA, there $\frac{w}{i s}$ a cessation of protein synthesis by the bacterial host. We do not understand the mechanism O: this "curning-offi, but we think it likeiy that enzyme proGuyed by T-2 infection so modifies the leucine-stRNA component as $=0$ interfere with the host protein synthesis, and it does this without preventing the protein synthesis by the phage. This is a very subtle way of subverting the metabolism of a cell so that viral proteins can be synthesized in a large amount. This is a problem we are now investigating this
 I I haveshows by the examples I trave briefly sear ex how some features of the complex machinery for protein synthesis in cells can be studied by means of relatively much simpler systems, in vitro. Thus it has been established that the same sequences of three nucleotide bases cade the same aminoacids throughout the whole range of organisms, from bacteria to mammalian livers. And this universal code has been explored by molecular biochemistry in vitro.

However, we have seen that there are secondary features, such as the relative responses to different synonym codons, and the subtle modifications of the stRNA's which can be of great which importance in actual, complex living organisms. Features such as
any play impozant biological roles; by selectively controlling ane zate of proccin synthesis they may be an important factor an che general process of ceil differentiacion. These are certainly problems for the future.

Finally, I would draw attention to fact that even, in vition, at its simplest, the whole detailed process of cocing in protein synthesis - involving DNA-mfRNA-sfRNA-riboscmes, activaFion enzymes, ATP, ecc. is far from fully understood. Even the basic underlytio questions - why, for example, does a triplet code of tinis sozt exist, why should not phenylalanine instead of aianine correspond to GCU and GCC? Is there a basic chemical mason $\dot{\text { Hon }}$ this, or is it to some degree a matter of (nistoral). chance? Ny perscnal belief is that there is an underlying meaning for this and that it will be found.

[^0]: $\bar{\psi}_{\text {List }} 0 \pm$ collaborators at Bethesda.

[^1]: *The heincal RXA (or DNA) has a definice sense on direction with a cefinite "beginning" and a defirize "enangi". 3' and 5" refer co features of the chemical structure at these respective reminais.

[^2]: *The binciag of the sENNA to the ribosome is determined by techaicues in which a radioactive tracer is incorporated in the sf inA, so that the racioactivity associated finally with the ribosome complex is a measure of tins binding. It is in that the term activity \therefore figure denotes the effectiveness of the binding.

