
The triplets of links in the genetic meterial which specify the detailed stancture of proteing have now been identified in surficient numbers to fall into a regular patern.

Richerd V. Rck

The author is a biologist in the Iaboratory of Biology, Mational Cancer Institute, Eethesde, 保ryland.

The chemical structure of the genetic mechanism must have several very special characteristics. It must contain large, complex molecules capable of represeneing a large amount of information in hair possible alternative configurations. It must be autocatalytic - capable of producing exact replicas of itselp. It must do this with great reliability, yet be able to mutate occasionally, and still be autocatalytic In its muteted fozm. The Wetson-Crict nodel demonstrates how these properties follon from the structure of DNA.

But this accounts only for the selimreproduction and mutation of the gevetic material. It must also have quite a difereat property. It must catalyse specifically some naterial other than itcely, which enters Into the living chemistry of the organism and results in the phenotypic expression of that "gene". If it is a gene for black rather than brown hair, for example, it mast specifically produce some chemical which affects the chain of events which finaliy results in the production of pigaeat and its deposition in the hair. The "one gene-one enzyme" Poxmation has led to the expectation that this non-genic product is protein.

This second problem is more intricate than the first. The reproduction of the genes ras pictured as some cort of mold-andocast system, and so it has proved to be. But for a "template" to deternine the structure of some product fundamentally dissimilar From itself requires a more elaborate apparabus. Proteins are long, uabranched chains, made of twenty different kinds of links - amino acids. The exact order of hundreds of these links apperrs to be genetically determined for each of thousands of different proteins. The DHA of the chrconsomes also occurs as long, unbrached chains, but with only four diflerent kinds of links - nucleotides. There are two kinds of nucleotides, two purines and two pyrimidines, which differ markediy in size. The specific matching of one purine with one pyrimidine - adenine with thymine, cytosine with gwanine - is the basis for the Watson-Crick nodel. But hou could there possibly be such a matching bebween the mucleotides and the anino acids, especially in view of their different numbers? This problem was posed in 1954 by carov (1) as a matherateal chavenge fo
biochemistry. For each link in a protein chnin being constructed, there are twenty possibilities. How can this be specified by a DKA chain containing only foux different kinds of links? Evidently more than one, semingiy at least three mucleotides would have to combine in the determination of a single aminc acia linis, perhaps in some overlapping feshion.

This mathentical puzale remains velid, and several facets of it have been clarified. The DhA produces "messenger RWA" epparently by some means similar to the those in
Watson-Cricis mechanism. FEA contains mucleotides corresponding to/DriA, with thymine replaced by uracil. The messenger RMA goes go the protein-producing arganelles in the cytoplasm and detemines the production of specific protein molecules, according to its detailed sequence of nucleotides. It does not do this directly, but vie a number of adapter molecules, called "transfer MNA's". Presumably each amino acid has one or more trensier RIIA which specifically attaches to it. Another part of the transfer RWA attaches to its specific nucleotide "codon" (triplet?) wherever it may occur in the polyribonucleotide chain (2). Thus each amino acid is held in its proper place while the polymerizing mechanism links it to the two adjacent amino acids, determined by the sequence of mucleotides in the information-caryying RNA. The elveidation of a codon pattern should provide evidence on the mechanism of transfer RHA specificity. How, transfer seructurally, does the specific/EMA recognize its proper codon combination? An answer to this question is suggested in this paper.

The discovery two years ago that a non-living system could be made to synthesize an artificial pzotein, polyphenylalanine, using as messenger Ema symihetic polyuridylic acid (3), has made possible a rapidiy developing experimerial attack on this problem. The in vitro synthesis of proteins using various syathetic copolymers of two or more ribonucleotides as artificial messenger $R$ Ra has been reported from two laboratories. Tables have been published giving groups of three aucleotides ("triplets") which have been identisied as "coding for" the various amino acids fi). There has been much interest and speculation in the munex of codons and the possible relationships amons then.


$$
\begin{aligned}
& \text { Rece } 4 \\
& \text { R.V.Ect }
\end{aligned}
$$

that date, and predict certain others. The discovery of additional triplets has then required that many of these hypotheses be abondoned or much modified. Judging by the rate at which new ones have been discovered it appears that neariy all, if not all $4 \times 4 \times 4=64$ mathematically possible triplets will ultimately be identified as codons. Will these appear to be a chaotic jumble, or will they fall into some regular pattern8

Some regularity can be seen in the 11st of published triplets. No more amino acids are usualiy assigned to a nuclectide combination than there can be alternetive rearrengements of it. This supporits the expectation that the meximum maber will not exceed 64. There are only three exceptions to this, two of which may be due to laboratory exrors. The third exception will be considered later.

It frequently appears that the two or more triplets found to code for the asme amino acid have two of their three mucleotides in comron. Roberts has used this property to derive a "soublet" code, which inplies that the third nucleotide is irrelevant (5). This, of course, gives only 16 combinations and requires some supplementary explanation to account for the 20 amino acids. It has also been suggested that the code my be partly doublet and partly triplet.

## The Purine-Pyrimidine Pattern

In the most recent lists from the two laboratories there are a total of 49 different triplecs, 26 of them reported by botio (4). This seems like a large enough proportion of the 64 to outline an over-all paitern, if one exists. The data can be arranged in various ways, and if one tabulates these triplets as in table 1 , such a pattern emerges clearly. The pattem is this: All Q triplets occur. Each amino acid is represented by one or more pairs of triplets which are identical except for one nuclectide. The non-identical nucleotides in each pair are the two purines or the two pyrimidines. For example, ACC and AUC have been yound to code for histidine. GGU codes for txyptophan, and this pattem predicts that aAN will also be found to code for tryptophan.

This pattera seems acceptable stereochemically. Furthermore, it is complete and


All 64 possible permutaicions are used, or the 49 reported triplets, four were discandec: two beceuse theze were four amino acias assiened where there could be only three permutations, one because it was assigned to UW in conilict with phemylalanine, anô only one because it was inconsibtent with the pattem presented hers. The 19 remaning combinations have been assigned to the various amino acias in such a wey as co complete the patterm symmetrically. For example, asginine has a pair, CCG and cug, and one unpaired triplet, AAG. The missing triplet could be AAA or Agg. But fAA is alreedy fugy "occupied", and ACG is not. Arginine is thenceore assigned the missing ACG. As this process continues, corpleting all the pairs, the nuber of remeining alternatives is greatly reduced, but all the missing triplets can be accounted for with only one discrepancy es notei.

## 64

This last point is illustrated in table 2 in wich the same/escigments are retabulated. Bere ose can readily confinm that each kxiplet has exactiy as many amino acids assigned to it as these can be permutations.

Any patiem of this soin is open to the suspicion that it may merely resemble the true pattern. It would be poimiless to compute a "probability" that it could bave occurred "by charce", because the data obviously pall into some sort of pattern - they are not random. But there is a suiteble test. one can attempt to construct similar. appearing patterns of 32 pairs in which AC and ©U are paired, or AU and CG. This attempt was made; these patterns cannot be constructed without discarding an unreasonable nuncer of well-established data. For example, the natching triplet for phenylalanine WUW would have to be UGU or UAU reapectively. Hoth laboratories have identified eacia of these with three other amino acids. Oniy UCU, as in the proposed pattern, is free to represent phenylelanine. About seven such conflicts developed in each attampt. In the purine-pyrimidine pattern only one iriplet assignment had to be discarded in this way, and it was reporied from one laboratory only. This appears to be a moderately sfrong indication that this patitern (which incidentally "makes sense" chenically) is not just e concrived modification of ane "partinlly doublet" code.

This test indicates that if there is a pattern of this general sost in the 64 possible triplets, the existing 46 data farter excluding the three which are inconsistent in any case) are more than surficient to determine that pattern. It appears that this many data could fit only inco a frue paterci. Previously, when there were too few data it was possible to devise en almost endless numbr of patterns in which they could be accomodated.

## Determination of Oxer

The pattern at this stage depends only on the published tables of triplets, not on date from amino ecid "motants", etc. If these additionsl clues are used, a begiming can be made in detemining the oxder of the nueleotides within each triplet.

In the experiments which have yielded the triplet codons, no oxder can be determined. Thus, in table 1 "AAG" means, "AAG, AGA, or GAA". In table 2 , "Acc means "ACB, ASC, CAG, CCA, GAC, and GCA". In table 3, however, these oxders have been assigned, and "CAA-threonine" neans that exact oxdex, uith the novision tine the evilence is not rigorously conclusive, and it might be AAC. If the purinepyrimidine linit is aluays in the same nosithon, and in this position were known, the sequence would be detemined in all those cases where tise reneining two are the same (ACA aca). The experimentaily cetemmined sequence avu for mrosine and our for cysteine (6) requires one of the isoleucine codons to be TUA and valine to be UUG is the special link is in the midale, or UAJ and UGU is it is at the right end. It evidenily cannot be at the leat end. iror illustration, it is assumed to be in the middie.

Aside from these, the orderings in table 3 are not rigorously decernined. Any nacleotide pair might be exchanged with the diagonally corzesponding one and stiml be consistent with toible 2. For example, lysine-AAJ and isoleucine- taA might be interchanged. \#owever, some possibilities seem much more plausible than others. It seem reasonable to expect that a mutation will often involve the change of a single link. The amino acids which could raplace one another in this way might be expected to be Pcuni most frequenty as "allele" pairs in homologous protein sequences. For exanle,


```
Page T
R. V.Eck
```

occur in two different pairs. However, if the alanines at C...G were exchanged with serine and arginine at G...C, there would then be no codons of alanine and serine having two letters in comon. Since alanine-serine is the most frequently-cccurring "allele" pair (7), the arrangement as shown is much preferred. Similariy, if valine and cysteine were exchanged, the numerous allele pairs val-ala, val-ilu, val-leu, and others would not be producible by single-link "interchanges". (This, with the previously-mentioned determination of the sequence valine U0, constitutes support for this procedure.) By comparing each possible altermative in this way with a list of about three humared "alleles" Prom hemoglobin and other proteins, the tentative arrangenent shown in table 3 was derived.

There are scme other uncertain details in table 3. Different amino acids might have been discarded. For example, glutamine at AGG might have been retained, and arginine at AAG discarded (table 2). Furthermore, glycine aí cac might exchange places with glutamine, if it were retained at AcG. There are, however, only a few such alternatives, and at each choice there secmed some good clue to the celection. Another source of uncertainty is the possibility of experiticintal error. of the 32 pairs, live consist of an unreported (predicted) triplet and a triplet seported from only one laboratory. Any of these might prove to be in error.

Even if there were no basis for choice in the alternative positions indicated in table 3, it would contain much information about sequence. For each triplet in table 2 there are one, three, or six possible sequences. Table 3 reduces these to two alternatives at most.

This patiern predicts all the amino acids coded by the ramaning 19 oxdered triplets, suggesting that there may be no "nonsenge" combinations. This is not a strong inference, houever. If one of the reported triplets is erroncous its assigned pair might represent "nonsense". Ox, in a few cases the pairs might sub-divided, one of the two triplets being "nonsense".

## Predictions Conceraing Transfer mit 's

 each eriplet. The pattem of 32 petrs suggeats, howevex, twithere may be only 32 transfer mist's end that each one responds indiseriminntely to both of its specifle triplets. The specisichty of the attechrent sitte would aeside in: one or whe four wucleotides in one position, a purine on a pytmiane in arothex position, and one of the Sour nueleotides in o thised posjticn. These three detemminants wouka ceent in

 which might recognize the thisd (midale?) nucleotiae oniy by its sire. in this sence each codon mouth consist of a pain of tapters. One might facetiovegy call this a "rwo-aro-a-helf-rever" code. On this tnterpactetion there mouta be onty one
 trotopian, byrosinc, and valiae mhene woule be two fon each of the gover amino acids



 Wucine axe consistent min this prediction 2 ).

A athong check wid also be provica by each subechuspresteovery of a triplet


The atx cases where the sane wino ncia belongs to both rejerea pairs accombs








## Fage 9

## R.V.Ecls

There are four crucisl tests which could ce made with isolated transfer Rat's. Is the transfer PRA of proline which responds to CAC the same as the one which responds acid.
to CaC? Similarly for aspartic ACG and AUG; glycine GCG and GUG; and leucine UAU and UWJ. If these should prove to be identical, this patotem would be validsted.

## Unsetinled Questions

The finaing that leucine as well as phenylalonine (4) is coded by ow is of considerable interest. Is it an accident caused by cowe abnommal condition fin the in vitro aituation, or is it or fudemental signisicance? It reises the poscibility that perhaps in the presence of some other source of information not normaliy present in the artificial situstion there night be a second pattern of 32 codons. Perhaps some of the triplets discarded in making this patteris are other ambiguities of this isind rather than errors. Evidence which seems contrary to this is the finding that the same transser RTI of leucine responds to Vev and to UUU (2).

This patiern seems to be good evidence for a txiplet code, since in it triplets are necessary and sufficient. Put if the abovementioned ambiguities prove to be fundamentai, they would require extra information, which night reside in still otber links fas an overlappinc quadruplet code?).

If this pattern were tine couplete code, any simple type of overlapping should be immediately evident by substituting the triplets for the amizo acias in a gev of the know protein sequences. This does not appear to be the case.

If it were possible to make reguarly ordered synthetic poinners such as polydimucleotides, etc., the question of whether the three elenents of each triplet are adjacent in the chain could be seteled. Aiso, such polymers could be used to study the possibility of overlapping codes. It sechs possible that some regular 3 mA 's covid be synthesized from synthetic Den's using the mechanisn reported by Chanberiln and Perg and by otaka et al. (8).

## Fage 10 <br> R.V.Eck

In retrospect, it seems that this siuple pattern could have been discovered with fever clues, and we may wonder why it was not found earlier. In the lastano years there have been a remarisable number of ad hoc proposals to account for the data currently at hand. When there were about twelve txiplets identified it was expected by sone that the total number would be exacily 20 - one Por each amino acid. Later a number of special combinations were considered, such as combining the three nucleotides wishout regand to order, and others of this sort which were mathematically possible but structurally tmimaginahle. Then there was the "high-t" code, chemicelly implausible but mathematically capable of accounting Por the results to that date. Recentily it was proposed that there may be some sinmle pattern in vivo but that some circumstance is obscuring it in the in vibro experiments. Ey permitting some normally hidden potentialities to be expressed, this would produce too many triplets. All of these were attempts to account for the number 20 and to gusss the pattern et a stage when an indefinitely large number of patterns were yet mathematically possiole. For this reason the probabilities were atrongly against success in this approach.

The point of view which led to this pattern was from the opposite direction: Whatever the pattern may $k e$, there are 64 triplets. In the end some of them may be "nonsense", or even non-existenc in nature. Sone may prove to be equivalent to others, etc. But whatever those details may be they will consist of some sub-patien of the 64. mathematically possible triplets. How, with a total of 49 different triplets identified, surely the pattern must be visible: I tabulated these triplets in various veys and shortly this detail appeared: Five amino acids had two triplets, with two Ietters in common. Another had three, the thira being uncelated to the Iirst two. or these six examples four contained the aiternstives $C$ vs. $U$ fe.g. aspartic acid-ACg and ALGC. It was not surprising that nome contained $G$ in such anternatives, since the $G$ polymers had given the most experinental difficulty and wost of the combinotions hoving two e's were as yet unssigned. Fron this observation table 1 followed directly and the puanle practically solved itseli.

A similar history has occurred in the related probiem of overlapping or nonoverlapping codes. Gamov suggested that the necessary amount of information might be reduced by some systematic constraint on the sequences of amino acids. This could be caused by the same nucieotides serving in more than one eriplet simultaneously (1). At that time there was a moderate amount of protein sequence data available. Several curious overlapping codes were proposed, each of which was followed exthusiasticaliy and then dispsoved mathematically, using the then curremtly available data as it contimued to increase in amount. Then Brenner (9) concluded thet all overlapping triplet codes were inconsistent with the data, and the attention of most protein cryptographers was diverted to non-overlapping codes, where it has remolacd ever since. However, the problen was not approached in its most general form. Bremer's computation, the results of the single step mutations, and the results of Crick et al (10) have been taken to disprove overlapping codes, but this is true only for a certain sub-class of such codes. Furthernore it includes the unstated assumption that there is no other source of genetic information, SThe results of Crick et al (i0) have ouso been taken as evidence for a triplet code but this inference is valid only for non-overlapping codes.) A large number of overlapping codes are still mathematically possible (11), ana several are even structurally plausible which involve a regular folding or coiling of the RNA strand so that the non-adjacent nucleotides of the codons assume their specific positions.

The substance of the argumert against overlapping codes, whether from amino acid sequences or from the single-sitep mutation data, is that such codes could not contain enough information to account for the onserved muber of variations in protein sequences. However, all proposed codes have required, explicibly or implicitly, sorme aditional unimown source of information such as "comas", spacers", "stepping by threes", "Soribiden combinations", etc. As long as the nature of that additional mechanism is undiscovered the possibility remains that it could contain enough information to supplement an overlapping code. Cleax evidence of patterns in the constraints on protein scauences would be a basic for an attack on this problem. The amout of protein senuence data now available mey be barely surficient for this (7). In numericel propontion this

Page 12
R.V.Eck
prohlem is at a much earlier stage than that of the nueleotide triplets. Fere we required about 45 of the 64 possibilities before the pattern revealed itself. In the protein cryptogram less than two thousand of the potential eight thousand tripeptide sequences have been reported. If, say, three thousand of the eight thousand were "forbidden" according to some pattern, could we see that pattera? Perhaps this seeningly obscure problem will seem siuple when it is solved.

## Sunmery

The accumalation of experimental results from the systen of Nirenberg and Ratthaei has now reached about $75 \%$ of the total possible, if the "triplet" concept is correct. Considered as a mathematical puazle this bas proved to be sufficient to detemmine an epparentiy unique solution: The sixty-four combinations of four nucleotides taken three at a time, are resolved into thirty-two pairs. The second member of eachpair is identical with the first, encept that in one position a purine is replaced by the other purine or a pyrimidine by the other pyrimidine. Almost all of the reported triplets fit into this pattern, and it predicts which anino acids will be found to correspond to the remaining ninetecn unidentified triplets. This pattern accounts for several of the observabions concerning regulayities inthe data. It partially determines the order of the nucleotides in each triplet and suggests a structural tasis for transier RIIA specificity. Whether the three nucleotides oi each triplet are adjacent in the mucleic acia chain, and whether they somehow impose constraints on the possible sequences of amino acids which they detemine, is yet to be worised out.

## Bibl.lography

1. G. Gamow, Rature 173,318 (1954).
2. B. Heisblum, S. Benzer, and R. W. Holley, Proc. Mat. Aced. Sci. 48, 14i9 (1960),
3. M. W. Mirenberg and J. K. Matthaei, Proc. Kat. Acad. Sct. 47, 1588 (1961).
4. 0. W. Jones, Jix. and M. W. Hirenberg, Eroc. Hat. Acac. Sci. 18, 2115 (2962); J. Nahbe, S. Gardner, C. Basilio, R. S. Miller, F. Speyer, and F. Lengyel, 1bid. 49, 116 (1963); Two additional triplets wexe reported at a meeting: J. Abelson, Science 139, 774 (1963).
1. R. B. Roberts, Proc. Nat. Acad. ScI. 48, 897 (1962).
2. A. J. Wahba, C. Febilio, J. F. Speyer, P. Lergyel, R. S. Miller, and S. Ochoa, Proc. Mat. Acad. Sci. 48, 1683 (2962).
3. R. V. Fck, J. gheoret. Biol. 2, 139 (1962).
4. M. Chamberiin and P. Berg, Proc. 耳ait. Acad. Sci. 48, 81 (1962); E. Oiaisa, H. Titsui, and S. Osawe, ibid. 48, 425 (1962).
5. S. Brenner, Proc. Rat. Acad. Sci. 43,687 (1957).
6. F. H. C. Crick, L. Barwett, S. Eremer, and R. J. Watts-Mobin, Mature, 192, 1227 (1961).
7. R. Wall, Kature 193, 1268 (1962).

A symmetrical patitem in the genctic code

| Alanine | Cccaig CuOd | cabit caci | Leucine |  | $\begin{aligned} & \mathrm{CuF}=\mathrm{E} \\ & \mathrm{CCO} ? \end{aligned}$ | $\begin{aligned} & \text { (wut } \\ & \text { discard. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arginine | Cc cuce | AAS悬 A0CO? | Hysine |  | $\begin{aligned} & \mathrm{AMU} \mathrm{~S}_{1} \\ & \mathrm{AGU} \end{aligned}$ | $\begin{aligned} & (A \operatorname{cas} \\ & \text { discand }) \end{aligned}$ |
| Asparagine |  | $\begin{aligned} & \operatorname{CAU} \\ & \text { CGU? } \end{aligned}$ | ？${ }_{\text {atethionine }}$ | AUSM新 <br> ACE？ |  |  |
| Aspartic acid | scaf $A W_{0}$ |  | Fhenylalenine |  |  |  |
| Cyatesue | $\begin{aligned} & \text { cuoven } \\ & \text { scor? } \end{aligned}$ |  | Proline | $\begin{aligned} & \mathrm{Ccsen}^{2}+ \\ & \mathrm{CuO}^{2} \frac{4}{4} \end{aligned}$ | $\frac{\operatorname{cac}^{2}}{\operatorname{coc}^{\circ}}$ |  |
| Glutamic acia | AAGEM AgC？ | GAOM | Serine | $\begin{array}{cccc} \text { cowe } \\ \text { curs } \end{array}$ | $\begin{aligned} & \text { CACH } \\ & \text { CEOR } \end{aligned}$ | $\begin{aligned} & \text { caud } \\ & \text { CAU? } \end{aligned}$ |
| Glutanize | AAC： kec？ | $\begin{aligned} & \text { GAGGH} \\ & \text { discarai) } \end{aligned}$ | Wareonine | $\begin{aligned} & \text { ACC: } \\ & A B C H \end{aligned}$ | A $\sec ?$ | $\begin{aligned} & f \operatorname{cogan}^{2} \\ & \text { disen }) \end{aligned}$ |
| alycine |  acte | $\begin{aligned} & \mathrm{CAO}_{2} \mathrm{~F} \\ & \mathrm{GRG} \end{aligned}$ | Ixyptophan | $\begin{aligned} & \text { GGJ*\# } \\ & \text { GAU? } \end{aligned}$ |  |  |
| Histidine |  |  | Tyrosise | $\begin{aligned} & \text { AUU: } y \\ & \text { ACES } \end{aligned}$ |  |  |
| Isoleucine | $\begin{aligned} & \text { Ainves } \\ & \text { Acti? } \end{aligned}$ | $\begin{aligned} & \text { AACH }{ }^{2} \\ & \text { ACTI? } \end{aligned}$ | Yaline | $\begin{aligned} & \operatorname{coves} \% \\ & \text { cocu? } \end{aligned}$ |  |  |

table 1．In this petcrica there are 32 peirs having the two puxines or the two pyrimidines in a certain position（illustrated as if in fre center）．（it includes all 64 possible configurations of three nucleotides．It eccommodates 45 of the 49 pubishad wiplotw．three are dibcerded because thay are intern． ally inconsistent with ide published list ftoo many amino acids for one emp－ let）．One is discardei becnuse it is inconsisteat with this pattern． 29 zemaning triplets are preaicted，as showa．The actual order of the nucleotides is biill undetermined，essept AUI for tyrosine and anv for cystenne．
st sheported by Birenberg＇s group．
媵 a Peported by Ochoa＇s group．


Peported
Pacaicer

AA
CCC Eys
Pro
年

| AAC | Asmin | contay | Thx ${ }^{\text {\％}}$ 葹 | 3nys ${ }^{\text {3 }}$ |
| :---: | :---: | :---: | :---: | :---: |
| AAG | Argat | Eivaty | TyE |  |
| AAIS | Asu娄 | 12．19 | dxscoit |  |
| CCA | Kisfor | 2 man 20 | Thr＊ |  |
| col | A1a＊${ }^{\text {基 }}$ | ATE ${ }^{29} 4$ | PYow | miny |

CCII Exo \%ir Sezny In Leu

| CGA | 62y ${ }^{\text {a }}$ |  | Arg | 614 | clunt |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cac | c1u\％ |  | Ala | Sex |  |
| （6） | 62y ${ }^{3}$ | Tayerin | G1u |  |  |




| ACS | Alasi | Asper | Sext | G12． | 锐を | 72\％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACU | Agnit | Eisif | Whany | IIu | Ser | Tys |
| AGT | Asp ${ }^{4}$ | G． $10{ }^{20} 4$ | Netry | T1u | Inys | Txy |
| Cred | Alaif | Axgre | Ser＊ | Cys | Val | Asn |

Table？．Entwies of cable 1 reansanged，to emphasize the nuaber of emino actas reported ran predicted foz eech Briplet．There ane as may entries for each tuxptet as thexu are possible germutations of the thee mucleo－ tides－one，therex，or six．
＊Reporied by dinemberg＇s gxoup．
＊E Feporten by Ochos＇s moun．

```
A symetaicol pottent in the genetac code
```

| $\begin{aligned} & \text { Mat, } \\ & \operatorname{Rns} \end{aligned}$ | $\begin{aligned} & \text { hoct } \\ & \text { MTC } \end{aligned}$ | $\begin{aligned} & \mathrm{AR}_{2}=\mathrm{G} \\ & \mathrm{ANS} \end{aligned}$ | $\frac{A M O}{\operatorname{AnO}} 2 y s$ |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { necay } \\ & \text { nect } \end{aligned}$ | $\begin{aligned} & \operatorname{Acos} \% \\ & \text { Masp } \end{aligned}$ |  |
| $\begin{array}{ccc} \mathrm{CAB} \cdot \frac{g}{6} \\ \mathrm{CoA} \end{array}$ |  | CASt COS | $\begin{aligned} & \text { CAD } \\ & \text { coter sen } \end{aligned}$ |
|  | $\begin{aligned} & \cos h \\ & \operatorname{cut} \end{aligned}$ | $\frac{\cos h}{\cos ^{2}} \mathrm{ela}$ | $\cos \mathrm{cos} \mathrm{se}$ |
|  | $\begin{aligned} & \operatorname{GAC} y \\ & \operatorname{GGE} \end{aligned}$ | $\csc ^{2} \operatorname{Gx}$ |  |
| $\begin{aligned} & \text { GCA } \\ & \text { GUA } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { accent } \\ & \text { cext } \end{aligned}$ | $\operatorname{ccos}_{\cos }^{\cos }$ | GUN: EXS |
| $\frac{\text { UAA量 }}{\text { LiAA }}$ | $\begin{aligned} & \text { whet } \\ & \text { was } \\ & \text { was } \end{aligned}$ | $\frac{\mathrm{yac}^{2}}{\mathrm{ax}}=8$ | $\mathrm{wu}_{\mathrm{urg}}^{\mathrm{y}} \mathrm{y}$ |
| $\begin{aligned} & \text { UCA } \\ & \text { WHAR TE } \end{aligned}$ | $\begin{aligned} & \mathrm{UCC} \\ & \mathrm{We}: \frac{5}{n} \text { leus } \end{aligned}$ |  | $\begin{aligned} & \text { WCU } \\ & \text { UUN: We } \end{aligned}$ |

Table 3. The purino-pycimidne pairs in the gemette code, whorer tentabively detemnined. In one position of each patr, the mo purinee (A and $C$ ), and the two pyrimidine ( $c$ and $v$ ) ane equivaletr, reducing the 64. rxiplets to 32 "codons". Amtro acids in capisels have theta sequences unamiguousy decerained, essuaing that the spectiol postition is th the midde, Amino acics in lower cese could poesibly belong to the pairs aidgonally opposite, e.g., CAinghn; ARc-the, etc. The Requencies of anino acid "alleles" suganst the ascigments indicated.
= Reporved by Wreabergis azoup.
Whenomed by Ockoa's grong.

