Impact of Exposure and Dose Metrics on the Conduct of Human and Ecological Exposure Assessments

Thomas McCurdy¹, Victoria Sandiford², Harvey Richmond², Stephen Graham¹, and Jennifer Hutchison¹

- 1. National Exposure Research Laboratory, US EPA
- 2. Office of Air Quality Planning and Standards, US EPA

International Society of Exposure Analysis
Paris, France
September 3, 2006

Outline

- Context of human & ecosystem exposure assessments: ozone is used as an example
- The "exposure profile" & dimensions of exposure metrics
- Human and "ecosystem" exposure assessment practices
- Related findings by other scientists
- Conclusions
 - Magnitude & significance of health & ecosystem impacts varies greatly depending upon the metric used to describe them
 - Human and non-human exposure metrics are very different
 - The spatial scale of the two exposure assessments is very different
 - These differences preclude undertaking a joint human/eco risk assessment using one exposure assessment method
 - This probably is true for any pollutant whose effects are not well-described by a cumulative (AUC) dose-response relationship

Environmental Context

fate & transport, deposition considerations are similar in general for human and ecosystem impact assessments, but ...

... intervening media often come between humans and environmental concentrations, but do not for "ecosystems"

Activity patterns greatly affect exposures experienced

- Locational considerations (microenvironments)
- Mobility (commuting, travel patterns, residential moving rates, home territories/ranges, migratory pathways)
- Activities undertaken & their "activity levels" (the latter affects dose rate estimates given an exposure)

Health & ecosystem "endpoints" or effects are very different

- Humans: chest tightness & cough (Schonbein 1851)
 - Changes in lung function, physiology & morphology (1950's)
 - Epidemiological evidence: hospital admissions, doctor visits (1967)
 - Cardiovascular impacts (1997)
 - Chronic effects: chronic morbidity & even mortality (1995)
- Vegetation, sensitive crop and tree species:
 - Leaf morphology (Middleton, 1950)
 - Plant lesions (Middleton, 1958)
 - Yield & biomass reduction; photosynthetic processes (Barnett & Waddell, 1973)
 - Carbohydrate production & Allocation
 - Seedling impacts: reduced root growth
- Animals: lung toxicity-inflammation, edema (Hill & Flack 1912)
- Global systems: world-wide O₃ "background" levels & tropospheric cycles
 - Madden & Hogsett (2001). "A historical overview of the ozone exposure problem." Human & Ecological Risk Assessment 7: 1121-1131.

Because of these factors, human & ecosystem exposure assessments are done at different spatial scales

(In general; there is some overlap)

Level

Personal Level

The "exposure profile"

Exposure profile makes a difference

- Same "area-under-the curve" concentration pattern
- At 0.08 ppm exposures ONLY, significant pulmonary function & symptoms were observed over a longer period of time in the triangular exposure protocol
- However, when "background" was removed, there were no significant differences in the two patterns

Source: W.C. Adams: "Comparison of chamber 6.6-h exposures to 0.04-0.08 ppm Ozone via square-wave and triangular profiles on pulmonary response." **Inhalation Toxicology** 18: 127-136 (2006).

Example of an actual human O₃ exposure profile from a personal monitoring study

Source: Contant et al. "Estimation of individual ozone exposure using microenvironmental measures," pp. 251-260 in: S.D.Lee (ed). **Evaluation of the Scientific Basis for Ozone/Oxidant Standards** (1983).

Generalized dimensions of an exposure metric applicable to both human health and "ecosystem" impact assessments

- Concentration (intensity) level: mass per volume; volume per volume; moles
- Duration (averaging time): minutes, hours
- Frequency (events per specified time period)*
 - One per day, once per week, etc.
- Pattern

*Also known as the temporal aggregation period

Specific dimensions of a O₃ NAAQS for human health and ecosystem impact assessment

- Common to both types of assessments
 - Averaging time basis (one hour)
 - Temporal aggregation period: 8h daily max
 - Data handling and analysis conventions (40 CFR 50 & EPA Guidelines)
- Particular to each assessment
 - Temporal aggregation period: eco: 12 h per day
 - Epoch: (1) health: ozone season; (2) eco: max. consecutive 3 months within ozone season
 - Standard level & "form": varies—see next slides
 - Violation rate: (1) health: see next slide; (2) eco: not to be exceeded

Alternative 8h daily maximum standards analyzed for human exposure impacts

- Standard levels / allowed exceedances evaluated:
 - 0.084 ppm (3 & 4 allowed exceedances)
 - 0.080 ppm (4 allowed exceedances)
 - 0.074 ppm (3, 4, & 5 allowed exceedances)
 - 0.070 ppm (4 allowed exceedances)
 - 0.064 ppm (4 allowed exceedances)
- Thus, there were 8 different NAAQS alternatives that were analyzed

Human Exposure Assessment Practices: general model structure

Input Databases

- Census
- Human Activity
- · Ambient Conc.
- Food Residues
- Recipe/Food Diary

Exposure Factor Distributions

Algorithms

 Calculate Individual Exposure/Dose Profile

Output

Population Exposure

Population Dose

Human exposure assessments

- Need data on where people live, commuting patterns, activity diaries, breathing rates
- Need air quality data on a census tract+ level
- Data come from different sources: US Census, NERL's Consolidated Human Activity Database, EPA's AIRS database, DOE and other sources of air exchange rate information, etc.
- Usually implemented using an age/gender disaggregated time-series longitudinal simulation model
 - Intra- and inter-individual variability is explicitly addressed
 - Analysis of uncertainty in input data often is addressed

Example of locational differences in children <12 y old, by year of age

Population groups & exertion levels evaluated in the human exposure assessment

- Four main population groups were evaluated
 - Entire population
 - Children aged 5-18
 - Active children aged 5-18 (PAI>1.74)
 - Asthmatic children aged 5-18
- Evaluation metrics:
 - Numbers of people and "person-occurances" exceeding "standards" at any breathing rate

Percent of active 5-18 y children engaged in moderate exercise estimated to experience 1+ moderate lung function reduction decrements associated with 8 h ozone exposures for alternative air quality scenarios

Urban Areas

Source: EPA (2006). Review of the National Ambient Air Quality Standards for Ozone: Policy Assessment of Scientific and Technical Information (EPA-452/D-05-002).

Alternative "ecosystem" standards for ecosystem impacts

- 3-month SUM06: 15 & 25 ppm-h analyzed
- W126: 13 & 21 ppm-h analyzed—see next slide
- 8-h daily maximum (same form as health standard): 0.070 & 0.084 ppm levels were analyzed
- AOT40 (cumulates O₃ above 0.04 ppm): the European critical level, but EPA did not analyze this form

Form of the W126 metric

$$i < 8 \text{ pm}$$
 $W126 = \sum_{i \ge 8 \text{ am}} w(c_i) * C_i$

where:
$$C_i = O_3$$
 concentration for hour *i*
 $w(c_i) = (1 + 4403 * exp - 0.126 C_i)^{-1}$

Ecosystem "exposure" impact assessments

- Need data on location of the crops, tree species, herbaceous perennials, etc. that will be evaluated
- Need air quality data on at least a county level, especially to quantify areaspecific diurnal patterns
- Need species-specific concentration-response (C→R) functions [acts as a surrogate for exposure-response]
- Have to address possible non-air stressors & how they alter the C→R function
- Data come from many sources: EPA's AQS & CASTNET databases, and the literature, CMAQ and other air quality models; interpolation methods
- Data on effects evidence from: published literature, USDA FS, DOI NPS, other

Example of "ecosystem" exposure output: Black Cherry seedling annual biomass loss

Example of crop yield loss estimates for alternative scenarios

	Air Quality Scenarios				
Crops	As Is (2001)	8-hr, 84 ppb	SUM06 25	8-hr, 70 ppb	SUM06 15
Kidney Bean	3.8%	1.8%	0.3%	0.3%	0.1%
Grapes	23.5%	20.5%	16.6%	16.7%	15.0%
Lettuce	0.0%	0.0%	0.0%	0.0%	0.0%
Potato	12.6%	8.6%	3.2%	3.3%	2.0%
Rice	18.1	15.7%	11.2%	11.4%	9.8%
Grain Sorghum	1.0%	0.5%	0.1%	0.1%	0.1%
Cantaloupe	23.5%	19.1%	14.9%	14.8%	12.8%
Com	0.2%	0.1%	0.0%	0.0%	0.0%
Cotton	7.7%	4.8%	1.3%	1.3%	0.7%
Onion	8.1%	7.0%	5.7%	5.8%	5.2%
Peanut	5.4%	3.1%	0.8%	0.7%	0.3%
Soybean	3.4%	1.7%	1.7%	0.8%	0.8%
Valencia	17.0%	15.1%	12.0%	12.1%	10.8%
Orange					
Tomato	13.8%	11.9%	9.8%	9.8%	8.8%
Processing					
Winter Wheat	1.4%	0.6%	0.1%	0.1%	0.0%

^{*} Modified from Figures for Yield Loss (5-5) and Yield Gain (5.6 to 5-9) in the draft Environmental Assessment TSD (Abt, 2006)

Comparing 1h & 8h Metrics

- Examined spatial and temporal patterns of exceedances of 1 h & 8 h
 NAAQS in the southern and middle-Atlantic states
- The 8 h NAAQS was exceeded 2.0-5.2 times more often than the 1 h NAAQS
- The areal extent of the exceedances was 1.8-16.2 times larger for the 8 h NAAQS than the 1 h NAAQS
- "These results imply that a larger population resides in areas with unhealthy O₃ levels than noncompliance with the original 1-hr standard suggests" (p. 1531).

Bell & Ellis. "Comparison of the 1-hr and 8-hr National Ambient Air Quality Standards for Ozone using Models-3." **JAWMA** 53: 1531-1540 (2003)

Comparing Metrics: "Metrics Matter"

- Evaluated 7 emissions/air quality scenarios and ranked them on several indices of O₃ air quality
 - Averaging time, relative versus absolute changes, regional versus global impacts (spatial extent), relative space/time impacts, "thresholds of concern" (peaks) versus entire distribution impacts
- Rankings varied for absolute versus relative metrics, but alternative absolute metrics themselves were highly correlated
- Rankings of peak and average metrics were inversely correlated
- Did NOT, however, investigate SUM06 or other metrics more suitable for ecosystem impacts

Bell et al. "Metrics matter: conflicting air quality rankings from different indices of air pollution." **JAWMA** 55: 97-106 (2005)

Conclusions

- Exposure metrics impacts vary greatly with respect to their "form" (averaging time, temporal aggregation period, epoch, & allowed exceedances), and this holds true for both human and non-human receptors
- Human v. non-human metrics and spatial areas of concern are very different
- The above factors, plus different data inputs needed, obviate "economies of scale" that may occur from undertaking a joint human/ecosystem exposure assessment, at least for O₃
- This probably is true for any pollutant whose effects are not well described by a cumulative (area under the curve) dose-response relationship: i.e., by "Haber's Law"

See: T. McCurdy. "Modeling the dose profile in human exposure assessments: ozone as an example." **Reviews in Toxicology** 1: 3-23 (1997)

